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Abstract

Most of the work presented in this document can be read as a sequel to previ-

ous work of the author and collaborators, which has been published and ap-

pears in [DSZ16, DSZ17, ABdSZ17]. In [ABdSZ17], the mathematical descrip-

tion of quantum homomorphisms of graphs and more generally of relational

structures, using the language of category theory is given. In particular, we

introduced the concept of ‘quantum’ monad. In this thesis we show that the

quantum monad fits nicely into the categorical framework of effectus theory, de-

veloped by Jacobs et al. [Jac15, CJWW15]. Effectus theory is an emergent field

in categorical logic aiming to describe logic and probability, from the point of

view of classical and quantum computation. The main contribution in the first

part of this document prove that the Kleisli category of the quantum monad on

relational structures is an effectus. The second part is rather different. There,

distinct facets of the equivalence relation on graphs called cospectrality are de-

scribed: algebraic, combinatorial and logical relations are presented as suffi-

cient conditions on graphs for having the same spectrum (i.e. being ‘cospectral’).

Other equivalence of graphs (called fractional isomorphism) is also related us-

ing some ‘game’ comonads from Abramsky et al. [ADW17, Sha17, AS18]. We

also describe a sufficient condition for a pair of graphs to be cospectral using the

quantum monad: two Kleisli morphisms (going in opposite directions) between

them satisfying certain compatibility requirement.
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Impact Statement

This thesis follows the tradition of using category theory to combine concepts

across disciplines that are not yet related, with the hope of provide sensible def-

initions at a formal level, and then use them to single out fundamental aspects

along with potential new applications. The work presented in this thesis could

be put to a beneficial use inside academia. The main focus is on the flow of ideas

between logic and computation, on the one side, and the foundations of quan-

tum and probabilistic reasoning , on the other. We emphasise the logical and

structural aspects of this connection, since this gives a more specific focus, and

also because we see many very exciting possibilities for progress and increasing

interactions between the various scientific communities involved. Therefore,

the benefits of this document could be on the computer science field of seman-

tics of quantum computation. These benefits could be brought about through

increasing the interaction of researchers within this very active field, by the use

of a conceptual framework developed for embracing the common ground of

ideas. In general, this is what category-theoretic methods have brought within

pure mathematics and logic, so it makes sense to keep using them in more ap-

plied areas of mathematics and logic in computer science as e.g. probability,

statistics, and artificial intelligence. This however, only starts to be seen, for in-

stance in categorical foundations of probabilistic and quantum computation, as

briefly expounded within this document.
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Chapter 1

Introduction

Over the past decades, starting with the work of Moggi [Mog89, Mog91], mon-

ads have been widely used to provide a categorical semantics of computation.

In this framework, data types are identified with objects A, B, . . . of a given cat-

egory C, and programs of type B taking parameters of type A with morphisms

A→ TB in C. The unary type-constructor T is interpreted as the functor part of

a monad defined on C, whose monadic structure allows programs to be com-

posed and thus form a category indeed (the so-called Kleisli category K`(T)).

By changing the choice of T one obtains different notions of computation such

as partiality, non-determinism, side-effects, exceptions, inputs and outputs, etc.

For a historical overview of monads within mathematics and logic in computer

science, we refer the interested reader to the monograph by Manes [Man03].

In the present document, we explore several aspects of probability and quan-

tum computation by defining suitable monads on distinct concrete categories

(e.g. on sets, graphs, or more generally, relational structures). Morphisms in the

corresponding Kleisli categories of these monads represent some kind of prob-

abilistic or quantum processes between objects of the underlying categories.

Specifically, we shall be interested in the categorical/logical structure of these

8



Kleisli morphisms. This view naturally yields a modular way to reason about

the logic of probability and computation, from classical to quantum.

Building on the work of Giry [Gir82], and inspired by algebraic methods

in program semantics [Koz79, JP89, DDLP06, VW06, TKP09, Pan09], the study

of various ‘probability’ monads has evolved and became part of a new branch

of categorical logic called effectus theory. The main goal of effectus theory is to

describe the essentials of quantum computation and logic using the language of

category theory. This description includes probabilistic and classical logic and

computation as special cases. Various publications have promoted the theory,

see e.g. [Jac10, Jac11, Jac13, Fon13, Jac15, CJWW15, Jac16, JZ16, CJ17a, CJ17b,

ABdSZ17, Jac18b, Jac18c, JZ18, Jac18a]. The present work is a contribution to

this subject: it shows that the quantum monad of [ABdSZ17] fits nicely into this

effect-theoretic framework.

An effectus is a rather convenient environment for reasoning about the logic

of probability and quantum computation, categorically. More concretely, it is a

category with finite coproducts (+, 0) and a final object 1 satisfying two pull-

back conditions, and one joint monicity requirement (see Definition 2.3.1). The

central feature of an effectus B is that its maps of type A→ 1 + 1 form an effect

module, i.e. B(A, 1 + 1) ∈ EMod for any A ∈ B; these maps are called predi-

cates and they are thought as the logical abstraction of characteristic functions.

This approach emphasises a more ‘quantitative’ interpretation of predicates as

characteristic maps, suitable for quantum and probabilistic reasoning. The logic

of this predicates is called effect logic [Jac13]. The word ‘effect’ suggests empha-

sis in the observer’s effect after a measurement procedure has been performed.

In quantum computation, one can even make use of these effects to show ad-

vantages in tasks which require processing information efficiently, such as con-

straint satisfaction problems via non-local games [CMN+07, Rob, MR14, CM14,
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MR16, ABdSZ17, AMR+18].

To put things into context, we start in Chapter 2 reviewing standard frame-

work in effectus theory, describing the mathematical structures of effect alge-

bras, effect modules, and effectuses in general. The main original work pre-

sented, in Chapter 3 of this document, consists of introducing the quantum

monad on relational structures, which we claim fits into the framework of ‘prob-

abilistic’ effectuses. We summarise and extend previous work done and pub-

lished in [ABdSZ17]. Specifically, we show that the Kleisli category of the quan-

tum monad is an effectus (see Theorem 3.3.1). We also explore the notions of

states and predicates, validity and conditioning in K`(Qd). Supplementary

material on the quantum monad is contained in the Appendix A. All of these

correspond to this first part of the thesis.

Part two is rather different. It is a summary of various results published

by the author and collaborators in [DSZ16, DSZ17]. The relationship with the

material in the first part is minimal. Chapter 4 is about graphs and several

equivalence relations defined on them, coarser than graph isomorphism, and

in relation to cospectrality: the equivalence relation on graphs defined by hav-

ing the same multiset of (adjacency matrix) eigenvalues. The concept of ‘game’

comonads, introduced by Abramsky et al. [ADW17, Sha17, AS18], is used in

Chapter 5 to characterise as coKleisli isomorphisms, in particular, two of the

relaxations of graph isomorphism described in the previous chapter. These two

relaxations are related to both cospectrality and quantum graph isomorphism.

Quantum isomorphisms emerge from two maps in the Kleisly category of the

quantum monad of part one satisfying certain pairing requirement (see Theo-

rem 5.3.2). An attempt to describe graph spectra, monadically, can be founded

in the Appendix B. We finish this document with some concluding remarks and

future work in Chapter 6.
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Chapter 2

Preliminaries

Prior working knowledge on basic concepts from (fibred) category theory, linear

algebra, and first-order logic shall be assumed and used without being formally

introduced. The standard references shall be [Jac99, Awo10, Lei14]. The follow-

ing presentation is standard in the literature of effectus theory. We shall review

only the parts that are needed in our exposition about the Kleisli category of

the quantum monad, later in Chapter 3. For a more detailed account, see for

instance [Jac11, Jac13, Jac15, CJWW15]. Here we shall define effect algebras, ef-

fect modules and effectuses. We also review basic definitions about graphs and

(binary) relations.

2.1 Effect Algebras

The concept of effect algebras is build on top of the concept of a partial commu-

tative monoid. The prime example of a partial commutative monoid is the real

unit interval [0, 1].

Definition 2.1.1. A partial commutative monoid consists of a set E with a distin-

guished element 0 ∈ E, and a partial function > : E× E ⇀ E for which x ⊥ y
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denotes x > y is defined, satisfying:

(1) x ⊥ y ⇒ y ⊥ x ∧ x > y = y> x

(2) y ⊥ z ∧ x ⊥ (y > z) ⇒ x ⊥ y ∧ (x > y) ⊥ z ∧ x > (y > z) =

(x > y)> z

(3) 0 ⊥ x ∧ 0> x = x

The notation x ⊥ y for saying x > y ∈ E is defined can also be read as x

and y are ‘orthogonal’ or ‘independent’. Axiom (1) is commutativity of >, (2)

associativity, and (3) zero element. The partial commutative operation > on

[0, 1] is given by addition x> y := x + y defined only when the sum x + y is less

or equal than 1. So, in this case x ⊥ y denotes x + y ≤ 1.

Definition 2.1.2. An effect algebra is a partial commutative monoid (E, 0,>) with

a unary operation (−)⊥ : E→ E satisfying the following axioms:

(1) ∃!x⊥ ∈ E such that x > x⊥ = 1, where 1 := 0⊥

(2) x ⊥ 1 ⇒ x = 0

A morphism E → D of effect algebras is defined as a function f : E → D

satisfying the following axioms:

(1) f (1) = 1

(2) x ⊥ y ⇒ f (x) ⊥ f (y) ∧ f (x > y) = f (x)> f (y)

Effect algebras form a category denoted by EA. Indeed, the real unit interval

[0, 1] ∈ EA with x⊥ := 1− x and x > y := x + y if x + y ≤ 1 is an effect algebra.
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2.2 Effect Modules

Monoids in the category of effect algebras are called effect monoids. (Monoids

in the category of commutative rings are called semirings.) Effect monoids form

a category denoted by Mon(EA). The usual multiplication of real numbers

turns the unit interval [0, 1] ∈ Mon(EA) into an effect monoid.

Definition 2.2.1. An effect module is an effect algebra E ∈ EA along with a func-

tion α : M × E → E, for some effect monoid M ∈ Mon(EA), satisfying the

following axioms:

(1) α(1, 1) = 1

(2) α(r,−) : M→ M and α(−, x) : M→ E are morphisms in EA

The action of α can be thought as a scalar multiplication. A map of effect

modules is a map of the underlying effect algebras that commutes with scalar

multiplication. There is a category EModM of effect modules over M, for any

effect monoid M ∈ Mon(EA). Fuzzy predicates X → [0, 1] on a set X form an

effect module, i.e. [0, 1]X ∈ EMod[0,1].

2.3 Effectuses

Effectus theory is an emergent field in categorical logic aiming to describe logic

and probability, from the point of view of classical and quantum computation.

The category Set of sets and functions has finite coproducts (+, 0) and a

terminal object 1 ∈ Set. The disjoint union + of X, Y ∈ Set is the set defined as

X + Y := {(x, 0) | x ∈ X} ∪ {(1, y) | y ∈ Y} with coprojections X
κ1→ X + Y

κ2←
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Y, and cotupling [p, q] : X + Y → Z for any pair of maps X
p→ Z

q← Y given by:

[p, q](v) :=

p(v) if v ∈ X

q(v) if v ∈ Y

for all v ∈ X +Y. The empty set 0 := ∅ ∈ Set is the initial object, and any choice

of a singleton set 1 := {∗} is terminal in Set. The unique function !X : X → 1 is

given by x 7→ ∗ for each x ∈ X. Given functions f : A → B and g : X → Y then

f + g : A + X → B + Y is defined as f + g := [κ1 ◦ f , κ2 ◦ g].

Definition 2.3.1. An effectus B is category with finite coproducts (+, 0) and a

terminal object 1 ∈ B, where the following commutative squares are pullbacks:

X + Y
!X+idY //

idX+!Y
��

1 + Y

id1+!Y
��

X
!X //

κ1

��

1

κ1

��
X + 1

!X+id1

// 1 + 1 X + Y
!X+!Y

// 1 + 1

for all X, Y ∈ B and the following maps in B are jointly monic:

(1 + 1) + 1
�1:=[[κ1,κ2],κ2]

--

�2:=[[κ2,κ1],κ2]

11 1 + 1

Joint monicity of �1,�2 means that given f , g functions: �1 ◦ f = �1 ◦ g and

�2 ◦ f = �2 ◦ g implies f = g.

The category Set is the effectus used for modelling classical (deterministic,

Boolean) computations. More exactly, we have the following result.

Proposition 2.3.1. The category Set is an effectus.

Proof. We know how pullbacks are constructed in Set. For the first pullback

condition from Definition 2.3.1, let P be the set of pairs (x, y) ∈ (X+ 1)× (1+Y)
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such that (! + id)(x) = (id+!)(y). Note that we have:

(X + 1)× (1 + Y) ∼= (X× 1) + (1× 1) + (X×Y) + (1×Y)

Let X + 1 = X + {1} and 1 + Y = {0}+ Y. By cases:

(1) (x, y) ∈ X×{0} implies (x, y) = (x, 0), and so (!+ id)(x) = 0 = (id+!)(0)

for all x ∈ X, thus X× 1 ⊆ P;

(2) (x, y) ∈ {1} × {0} implies (! + id)(1) = 1 6= 0 = (id+!)(0), so 1× 1 6⊆ P;

(3) (x, y) ∈ X×Y implies (! + id)(x) 6= (id+!)(y), so X×Y 6⊆ P;

(4) (x, y) ∈ {1}×Y implies (x, y) = (1, y), and so (!+ id)(1) = 1 = (id+!)(y)

for all y ∈ Y, thus 1×Y ⊆ P.

Hence, the pullback is indeed given by (X× 1) + (1×Y) ∼= X + Y.

For the second pullback condition from Definition 2.3.1, take 1 = {0} and

consider the set of pairs (w, 0) ∈ (X + Y)× 1 such that (!+!)(w) = κ1(0). Note

that (X + Y)× 1 ∼= (X× 1) + (Y× 1). By cases:

(1) if (w, 0) ∈ X× 1 then (!+!)(w) = 0 = κ1(0) for all w ∈ X;

(2) if (w, 0) ∈ Y× 1 then (!+!)(w) = 1 6= 0 = κ1(0) for all w ∈ Y.

Thus the pullback is indeed given by X× 1 ∼= X.

For the joint monicity requirement from Definitions 2.3.1, we consider sets

1 + 1 + 1 ∼= {a, b, c} and 1 + 1 ∼= {0, 1}, and functions �1,�2 : 3 ⇒ 2 defined as:

�1(a) = 0 �1 (b) = �1(c) = 1 �2 (a) = �2(c) = 1 �2 (b) = 0

Further assume we have functions f , g : X ⇒ 3 such that:

�1 ◦ f = �1 ◦ g �2 ◦ f = �2 ◦ g

15



We need to show that f = g. Suppose that f 6= g. Then f (x) 6= g(x) for

some x ∈ X. Assuming the existence of such x, we arrive to the following

contradictions:

• f (x) = a⇒ g(x) ∈ {b, c} ⇒ �1( f (x)) 6= �1(g(x))

• f (x) = b⇒ g(x) ∈ {a, c} ⇒ �2( f (x)) 6= �2(g(x))

• f (x) = c ⇒ g(x) ∈ {a, b} ⇒ �1( f (x)) 6= �1(g(x)) if g(x) = a, or

�2( f (x)) 6= �2(g(x)) if g(x) = b

Hence it must be the case that f = g, and so �1 and �2 are jointly monic.

2.4 Discrete Probabilities

Effectuses are intended to serve also as categorical models for probabilistic (and

quantum) logic and computation. To talk about discrete probabilities (categori-

cally) one uses the discrete distribution monadDM defined on Set, for any effect

monoid M ∈ Mon(EA) as follows. For any set X, the set DM(X) consists of all

finite convex combinations of elements from X with ‘mixing probabilities’ from

M, i.e. finite formal sums m1|x1〉+ · · ·+mr|xr〉 ∈ DM(X) where xi ∈ X, mi ∈ M

and m1 > · · ·> mr = 1. An element ω ∈ DM(X) is called a state/distribution

on X, and can also be thought as a function ω : X → M with finite and orthog-

onal support supp(ω) := {x ∈ X | ω(x) 6= 0}, satisfying >x∈X ω(x) = 1.

If supp(ω) = {x1, . . . , xr} then the assignment ω(xi) 7→ mi gives the bijective

correspondence between these two equivalent representations (i.e. as convex-

sums, or as mixing-functions) of states. States on X can be coarse-grained along

a map f : X → Y to get states on Y: for any state ω ∈ DM(X) there is a state

DM( f )(ω) ∈ DM(Y), given by DM( f )(ω)(y) :=>x∈ f−1(y) ω(x).
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Now we describe the monadic structure of DM. The unit ηX : X → DM(X)

is the Dirac delta distribution, i.e. ηX(x)(x′) = 1 if x = x′ and ηX(x)(x′) = 0 if

x 6= x′. The multiplication µX : D2
M(X) → DM(X) is given by the expectation-

value of evaluation functions ω 7→ ω(x) with respect to some Ω ∈ D2
M(X),

i.e. µX(Ω)(x) :=>ω∈DM(X) Ω(ω) ·ω(x). So there is a (M-valued, discrete) dis-

tribution monadDM = (DM, η, µ) on Set for each effect monoid M ∈ Mon(EA).

The Kleisli category K`(DM) of the distribution monad DM on Set has sets

as objects, and morphisms X → Y in K`(DM) are precisely functions of type

X → DM(Y) in Set. For every X ∈ Set, the identity map X → X in K`(DM)

is given by the unit ηX : X → DM(X). One can define the Kleisli extension

c∗ : DM(X) → DM(Y) of a Kleisli map c : X → DM(Y) as c∗ := µY ◦ DM(c).

More concretely, this is c∗(ω)(y) =>x∈X ω(x) · c(x)(y) for all ω ∈ DM(X) and

y ∈ Y. Composition of Kleisli maps c : X → DM(Y) and d : Y → DM(Z), is

given using Klesli extension (to simplify notation) as:

X d∗◦ c

= µZ◦DM(d)◦c
// DM(Z)

Remark 2.4.1. For any set function f : X → Y, one can define a Kleisli map:

X
f̂ := ηY◦ f

= DM( f )◦ηX

// DM(Y)

given by naturality of η.

Thus, the category K`(DM) has finite coproducts (0,+) given by the empty

set 0 := ∅ ∈ Set, and disjoint union X1 + X2 with coprojections:

Xi
κ̂i := ηX1+X2◦κi

= DM(κi)◦ηXi

// DM(X1 + X2)

for i = 1, 2. The following result is well-known, see e.g. [Jac11, Proposition 6.4].
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Lemma 2.4.1. The distribution monad DM is affine, i.e. DM(1) ∼= 1, for any effect

monoid M ∈ Mon(EA). Moreover, DM(2) ∼= M.

Proof. An element ω ∈ DM(1) can be regarded as a function ω : 1 → M such

that >x∈{1} ω(x) = 1. Therefore, it must be the case that ω(1) = 1. Thus

DM(1) ∼= 1. Now, an M-valued distribution over a 2-element set consists of a

choice of an element m ∈ M, which in turn immediately determines a choice of

m⊥ ∈ M such that m>m⊥ = 1 ∈ M. Hence DM(2) ∼= M.

By Lemma 2.4.1 above, any choice of a singleton set 1 ∈ Set is a terminal

object in K`(DM) so we have unique arrows:

X
!̂X := η1◦!X

= DM(!X)◦ηX

// DM(1)

for any X ∈ Set. Since 1 ∼= DM(1), the unit η1 : 1 → DM(1) and the identity

function id1 : 1 → 1 are equal η1 = id1. Therefore, we have !̂X =!X for all

X ∈ Set. So K`(DM) has finite coproducts and a terminal object.

Now, we would like to have the two pullbacks from Definition 2.3.1 instan-

tiated in K`(DM). Let’s describe this situation in general first.

Remark 2.4.2. Assume we have the following commutative diagram:

A d

%%

c
..

u

'' B i //

h
��

C
g
��

D
f

// E

where all the arrows live in K`(DM), and the dashed arrow means that u is

uniquely defined. That is, we have a function u : A → DM(B) which is deter-
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mined in a unique way given Kleisli maps:

c : A→ DM(D) f : D → DM(E) h : B→ DM(D)

d : A→ DM(C) g : C → DM(E) i : B→ DM(C)

satisfying the following four equations:

h∗ ◦ u = c (2.1)

i∗ ◦ u = d (2.2)

f∗ ◦ c = g∗ ◦ d (2.3)

f∗ ◦ h = g∗ ◦ i (2.4)

In that case, we have that B is the pullback of g along f in K`(DM).

Proposition 2.4.1. Let M ∈ Mon(EA) be an effect monoid. The Kleisli category

K`(DM) of the distribution monad DM on sets is an effectus.

Proof. We need to check two pullback conditions and one joint monicity require-

ment for the Kleisli category K`(DM). We start with the first pullback from

Definition 2.3.1. We assume to have the following Kleisli maps:

c : A→ DM(X + 1) f : X + 1→ DM(1 + 1) h : X + Y → DM(X + 1)

d : A→ DM(1 + Y) g : 1 + Y → DM(1 + 1) i : X + Y → DM(1 + Y)

where:

f := DM(!X + id1) ◦ ηX+1 h := DM(idX+!Y) ◦ ηX+Y

g := DM(id1+!Y) ◦ η1+Y i := DM(!X + idY) ◦ ηX+Y

19



By definition of Kleisli extension we have:

f∗ = µ1+1 ◦ DM( f )

= µ1+1 ◦ DM(DM(!X + id1) ◦ ηX+1)

?
= µ1+1 ◦ DM(η1+1 ◦ (!X + id1))

= µ1+1 ◦ DM(η1+1) ◦ DM(!X + id1)

= DM(!X + id1)

where the marked equality ?
= follows from naturality of η, and the last one from

the axioms of monads. Similarly, we have:

g∗ = DM(id1+!Y)

h∗ = DM(idX+!Y)

i∗ = DM(!X + idY)

Therefore, equation (2.4) above holds:

f∗ ◦ h = DM(!X + id1) ◦ h

= DM(!X + id1) ◦ DM(idX+!Y) ◦ ηX+Y

= DM((!X + id1) ◦ (idX+!Y)) ◦ ηX+Y

?
= DM((id1+!Y) ◦ (!X + idY)) ◦ ηX+Y

= DM(id1+!Y) ◦ DM(!X + idY) ◦ ηX+Y

= g∗ ◦ i

where the marked equality ?
= follows from the fact that both squares in the

definition of effectus (see Definition 2.3.1) commute in every category with finite

coproducts and a terminal object.
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Let X + 1 = X + {1} and 1+Y = {0}+Y. Further suppose the Kleisli maps

c : A → DM(X + {1}) and d : A → DM({0}+ Y) satisfy equation (2.3) above.

More concretely, suppose:

D(! + id)(c(a)) = D(id+!)(d(a)) ∈ DM({0}+ {1}) (2.5)

for all a ∈ A. Specifically, this equation (2.5) expanded and evaluated says that:

D(! + id)(c(a))(0)
(2.5)
= D(id+!)(d(a))(0)

= >
y∈(id+!)−1(0)

d(a)(y)

= d(a)(0) ∈ M

(2.6)

D(! + id)(c(a))(1) = >
x∈(!+id)−1(1)

c(a)(x)

= c(a)(1) ∈ M

(2.7)

Thus:

d(a)(0)> c(a)(1) = 1 ∈ M (2.8)

Let u : A → DM(X + Y) be the Kleisli map defined as u(a)(x) := c(a)(x) ∈ M
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for all x ∈ X and u(a)(y) := d(a)(y) ∈ M for all y ∈ Y. We have:

>
x∈X

u(a)(x)>>
y∈Y

u(a)(y) def
=>

x∈X
c(a)(x)>>

y∈Y
d(a)(y)

= >
!(x)=0

c(a)(x)> >
!(y)=1

d(a)(y)

= D(! + id)(c(a))(0)>D(! + id)(c(a))(1)
?
= d(a)(0)> c(a)(1)

=1

where the marked equality ?
= follows from (2.6) and (2.7), and the last equality

from (2.8). Hence u is well-defined. We still need to check (2.1) and (2.2) above,

which in this case amounts to show that:

D(id+!) ◦ u = c

D(! + id) ◦ u = d

For all a ∈ A, we have indeed:

D(id+!)(u(a))(x) = >
x′∈(id+!)−1(x)

u(a)(x′)

= u(a)(x)
def
= c(a)(x)

D(id+!)(u(a))(1) = >
y∈(id+!)−1(1)

u(a)(y)

=>
y∈Y

u(a)(y)

def
=>

y∈Y
d(a)(y)

= c(a)(1)
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D(! + id)(u(a))(y) = >
y′∈(!+id)−1(y)

u(a)(y′)

= u(a)(y)
def
= d(a)(y)

D(! + id)(u(a))(0) = >
x∈(!+id)−1(0)

u(a)(x)

=>
x∈X

u(a)(x)

def
=>

x∈X
c(a)(x)

= d(a)(0).

By definition, u : A → DM(X + Y) is the unique Kleisli map satisfying the

needed requirements. This completes the proof of the first pullback condition

for K`(DM).

For the second pullback from Definition 2.3.1, let 1 := {0} and 1 := {1} be

two distinct (choices of) singleton sets, and θ = 1|0〉 ∈ DM(1) where DM(1) ∼=
{θ} and 1 ∈ M is a (Dirac) distribution on the first singleton {0} defined above.

Consider Kleisli maps ! : A→ {θ} and c : A→ DM(X + Y) such that:

D(!+!) ◦ c = D(κ1)◦ ! (2.9)

Since c(a) = ∑x mx|x〉+∑y my|y〉 ∈ DM(X +Y) with>x mx >>y my = 1 ∈ M

for all a ∈ A, we have that the left-hand side of equation (2.9) expands to:

D(!+!)(c(a)) = ∑
x

mx|0〉+ ∑
y

my|1〉
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The right-hand side of equation (2.9)expands to:

D(κ1)(!(a)) = D(κ1)(θ)

= 1|κ1(0)〉

= 1|0〉

Hence >x mx = 1, and so c(a) ∈ DM(X). Let u : A → DM(X) be defined as

u(a)(x) := c(a)(x). By definition, the Kleisli map u : A→ DM(X) is the unique

arrow satisfying the needed requirements.

Now we prove that the maps �1,�2 : (1+ 1) + 1 ⇒ 1+ 1 in are jointly monic

in K`(DM). This part is taken exactly from [Jac15, Example 4.7]. Let σ, τ ∈

DM(3) be distributions such that

D(�1)(σ) = D(�1)(τ)

D(�2)(σ) = D(�2)(τ)
(2.10)

in DM(2). Assume 3 = {a, b, c} and 2 = {0, 1}. We have the following convex

combinations for σ in DM(2):

D(�1)(σ) = σ(a)|0〉+ (σ(b) + σ(c))|1〉

D(�2)(σ) = σ(b)|0〉+ (σ(a) + σ(b))|1〉

Similarly for τ:

D(�1)(τ) = τ(a)|0〉+ (τ(b) + τ(c))|1〉

D(�2)(τ) = τ(b)|0〉+ (τ(a) + τ(b))|1〉

Hence, by the first equation in (2.10), we have σ(a) = τ(a). Similarly, by the

second equation in (2.10), we have σ(b) = τ(b). We still need to show that
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σ(c) = τ(c). Since σ(a)> σ(b)> σ(c) = 1 = τ(a)> τ(b)> τ(c), then:

σ(c) = (σ(a)> σ(b))⊥

= (τ(a)> τ(b))⊥

= τ(c)

This completes the proof.

2.5 Graphs and Relations

To begin our formal discussion about another ‘probabilistic’ monad in the next

chapter, we shall consider graphs as they are rather generic objects.

Definition 2.5.1. A graph G consists of a set of vertices V(G), together with a set

of edges E(G) ⊆ V(G)×V(G) which are pairs of adjacent vertices.

By definition E(G) is a binary relation on the vertex set V(G). We shall

write v ∼ v′ to denote a pair of adjacent vertices v, v′ ∈ V(G), i.e. a pair

(v, v′) ∈ V(G)× V(G) in the edge/adjacency relation (v, v′) ∈ E(G). A mor-

phism G → H of graphs is given by a function f : V(G) → V(H) between

vertices preserving edge adjacency: if v ∼ v′ in G then f (v) ∼ f (v′) in H. Mor-

phisms of graphs are also known as graph homomorphisms. Graphs and their

homomorphisms form a category denoted by Gph.

Remark 2.5.1. Essentially, the category Gph defined as above is the category

Rel of binary relations on sets: there is a category Rel whose objects are pairs

(A, R) where R ⊆ A × A is a (binary) relation on A ∈ Set, and morphisms

(A, R) → (B, S) are functions f : A → B between the underlying sets such that

(a, a′) ∈ R implies ( f (a), f (a′)) ∈ S for all a, a′ ∈ A (see [Jac99, Chapter 0]).
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Hence, we have Gph ∼= Rel by definition. Recall that Sub(Set) is the cate-

gory with pairs (A, X) where X ⊆ A is subset of a set A ∈ Set as objects, and

functions f : A → B satisfying a ∈ X implies f (a) ∈ Y ⊆ B for each a ∈ A

as morphisms. The forgetful functor Gph → Set which maps a graph to its

vertex set G 7→ V(G) is a bifibration obtained, by taking the ordinary pullback

of categories (i.e. pullback in the category Cat of small categories and functors),

from the subsets fibration Sub(Set)→ Set defined by (A, X) 7→ A, as follows:

Gph

��

// Sub(Set)

��
Set

A 7→ A×A
// Set

Actually, more can be said about the bifibration Gph → Set. For instance, it

preserves finite products and coproducts (see [Jac99, Example 9.2.5 (ii)]).

Remark 2.5.2. From now on, throughout this document, we use the word graph

to refer to simple, irreflexive and undirected graphs always, unless otherwise is

explicitly stated. Simple means that there is at most one edge between pairs of

vertices. Irreflexive means that E(G) is not a reflexive relation, i.e. v 6∼ v for all

v ∈ V(G). Undirected means that E(G) is a symmetric relation, i.e. v ∼ v′ if and

only if v′ ∼ v. However, for the sake of convenience, the category Gph shall

include all type of graphs in the sense of Definition 2.5.1.

There is a category Pre of preordered sets with monotone functions. A pre-

order is a reflexive and transitive binary relation. Preordered sets are sets carry-

ing a preorder.

Definition 2.5.2. A preordered monoid E = (E,v, ∗, ·) consists of a preordered

set (E,v) ∈ Pre with a distinguished element ∗ ∈ E, together with a monotone
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function · : (E,v)× (E,v)→ (E,v) satisfying the axioms of monoids:

1× E e×id //

λ %%

E× E
·
��

E× 1 id×e //

ρ
%%

E× E
·
��

E× E× E id×· //

·×id
��

E× E
·
��

E E E× E ·
// E

where 1 = {∗} is a (choice of a) one-element set, and λ and ρ are bijections

given by λ(∗, e) := e and ρ(e, ∗) := e for all e ∈ E.

Preordered monoids are monoids in the cateogry of preordered sets Pre.

Preordered monoids form a category Mon(Pre). Graded monads on an ar-

bitrary category C can be described as preordered monoids in the (functor)

category [C, C] of endofunctors C → C and natural transformations between

them. The natural numbers N with 1 ∈ N as the distinguished element is

a preordered monoid, and is in fact the one we use for grading the quantum

monad [ABdSZ17].
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Chapter 3

The Quantum Monad on Relational

Structures

Measurement is a central aspect in any frequentist interpretation of probabil-

ity. Quantum theory is a physical theory of measurements in the sense that it

provides a framework to build models for predicting the probability distribu-

tions of observable properties (aka ‘observables’). Physical indeed because the

probabilities given by the distributions are interpreted as statistical frequencies

of observables, after a measurement procedure has been performed repeatedly

for a sufficient number of times. A good mathematical introduction to quantum

theory (with foundational aspects) can be founded in [Ish01].

In quantum computation, one uses the mathematical representation of quan-

tum systems and measurements for processing information more efficiently,

like finding solutions to systems of polynomial equations for which it is known

there are no classical solutions, as for instance in proving existence of e.g. non-

classical ‘quantum’ perfect strategies for non-local games [CMN+07, Rob, MR14,

CM14, MR16, ABdSZ17, AMR+18].
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3.1 Quantum Graph Homomorphisms

The language of graphs is simple, yet powerful enough to talk about key as-

pects of logic and computation (see Remark 2.5.2). For instance, consider the

following game involving a given pair of graphs G and H, played by Alice and

Bob cooperating against a Verifier. Their goal is to establish the existence of a

graph homomorphism from G to H. The game is ‘non-local’ which means that

Alice and Bob are not allowed to communicate during the game, however they

are allowed to agree on a strategy before the game has started. In each round

Verifier sends to Alice and Bob vertices v1, v2 ∈ V(G), respectively; in response

they produce outputs w1, w2 ∈ V(H). They win the round if the following con-

ditions hold:

v1 = v2 ⇒ w1 = w2 and v1 ∼ v2 ⇒ w1 ∼ w2

If there is indeed a graph homomorphism G → H, then Alice and Bob can

win any round of the game described above by using such homomorphism

as strategy for responding accordingly. Conversely, they can win any round

with certainty only when there is a graph homomorphism G → H. A strategy

for Alice and Bob in which they win with probability 1 is called a perfect strat-

egy. Hence, the existence of a perfect strategy is equivalent to the existence of

a graph homomorphism. Using quantum resources in the form of a maximally

entangled bipartite state, where Alice and Bob can each perform measurements

on their part, there are perfect strategies in cases where no classical homomor-

phism exists.

We write Md(C) for the set of all d× d matrices with complex entries (d ∈

N). Also, we write 1 ∈ Md(C) for the d × d identity matrix. Let E ∈ Mn(C)

and F ∈ Mm(C) be two complex square matrices of possibly different size.
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Their tensor product is defined as E ⊗ F := (eijF) ∈ Mnm(C) if E = (eij) with

i, j ∈ {1, . . . , n}.

Definition 3.1.1. A quantum perfect strategy for the homomorphism game from

G to H consists of a complex unitary vector ψ ∈ CdA ⊗ CdB for some dA, dB ∈

N finite, and families (Evw)w∈V(H) and (Fvw)w∈V(H) of dA × dA and dB × dB

complex matrices for all v ∈ V(G), satisfying:

(1) ∑w∈V(H) Evw = 1 ∈ MdA(C) and ∑w∈V(H) Fvw = 1 ∈ MdB(C);

(2) w 6= w′ ⇒ ψ∗(Exy ⊗ Fvw′)ψ = 0;

(3) v ∼ v′ ∧ w 6∼ w′ ⇒ ψ∗(Evw ⊗ Fv′w′)ψ = 0.

This characterisation of quantum perfect strategies eliminates the two-person

aspect of the game and the shared state, leaving a ‘matrix-valued relation’ as

the witness for existence of a quantum perfect strategy. It also gives rise to the

notion of ‘quantum’ graph homomorphism. This concept was introduced in

[Rob], as a generalisation of the notion of quantum chromatic number from

[CMN+07]. Analogous results for constraint systems are proved in [MR14,

CM14, MR16, ABdSZ17, AMR+18].

Definition 3.1.2. A quantum graph homomorphism from G to H is given by an

indexed family (Evw)v∈V(G),w∈V(H) of d × d complex matrices (Evw ∈ Md(C)),

for some d ∈N, such that:

(1) E∗vw = E2
vw = Evw for all v ∈ V(G) and w ∈ V(H);

(2) ∑w∈V(H) Evw = 1 ∈ Md(C) for all v ∈ V(G);

(3) (v = v′ ∧ w 6= w′) ∨ (v ∼ v′ ∧ w 6∼ w′) ⇒ EvwEv′w′ = 0.
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An important further step is taken in [Rob]: a construction G 7→ MG on

graphs is introduced, such that the existence of a quantum graph homomor-

phism from G to H is equivalent to the existence of a graph homomorphism of

type G → MH. This construction is called the measurement graph, and it turns

out to be a graded monad on the category of graphs. Hence the Kleisli maps

of this monad are exactly the ‘quantum’ maps between graphs of [Rob, MR14,

MR16, AMR+18].

3.2 The Quantum Monad

A simple undirected graph G is a relational structure with a single, binary ir-

reflexive and symmetric relation E(G) that we have been written as ∼ in infix

notation. The objects of the category Gph (as in Definition 2.5.1) are sets to-

gether with a binary relation. Relational structures are even more general.

Definition 3.2.1. A relational structure A consists of a set A together with an

indexed family R(A ) = (RA
i )i∈I of relations RA

i ⊆ Aki with I ∈ Set, and

ki ∈N for all i ∈ I.

A map of relational structures A → B is a function f : A → B between the

underlying sets, preserving all relations: (x1, . . . , xk) ∈ RA ⇒ ( f (x1), . . . , f (xk)) ∈

RB for all (x1, . . . , xk) ∈ Ak and all R ∈ R(A ) with arity k ∈N. In fact, there is a

category of relational structures that we denote by RStr. This category RStr has

a relationship with the category Rel of binary relations defined in Section 2.5.

By definition, Rel ∼= Gph is a (full) subcategory of RStr.

Remark 3.2.1. For the sake of simplicity (wrt. notation), we shall assume that all

the relational structures have only one relation of a fixed arity k ∈N, i.e. R(A ) =

{RA } and RA ⊆ Ak for all A ∈ RStr. That is, the category RStr is obtained
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from the fibration Sub(Set)→ Set of subsets by taking the pullback:

RStr

��

// Sub(Set)

��
Set

A 7→ A×···×A
// Set

Since RStr→ Set is obtained from the above change-of-base situation, it is a bi-

fibration by construction. This is indeed very similar to the case of the category

Gph (see Remark 2.5.1). In particular, RStr→ Set is defined by A 7→ A, and it

also preserves finite products and coproducts.

The measurement graph construction from [Rob], which we mentioned in

the last paragraph of the previous section, is an instance of the quantum monad

Qd defined on RStr instantiated in the category of (simple, undirected) graphs.

We write Proj(d) ⊆ Md(C) for the set of all d× d complex matrices that are both

self-adjoint and idempotent, i.e. Proj(d) = {a ∈ Md(C) | a∗ = a2 = a} for all

d ∈ N. The set Proj(d) of ‘projectors’ (of dimension d ∈ N) is an effect monoid

with the usual operations of sum and product of matrices, defined partially:

p + q is defined only when projectors p, q ∈ Proj(d) are orthogonal p · q = 0,

and p · q only when they commute p · q = q · p. That is, for all d ∈ N we have

Proj(d) ∈ Mon(EA). The functor part of this monad Qd ∈ Mon([RStr, RStr])

is defined as follows.

Definition 3.2.2. Let A = (A, RA ) be a relational structure. We define the set

of projection-valued distributions Qd(A) := DM(A) on A with M := Proj(d),

where DM is the distribution functor/monad (see Section 2.4). The k-ary rela-

tion RQd(A ) ⊆ Qd(A)k is defined as (p1, . . . , pk) ∈ RQd(A ) if and only if the

projection-valued distributions p1, . . . , pk ∈ Qd(A) satisfy the following two

conditions: (1) pi(x) and pj(x′) commute for all x, x′ ∈ A, and (2) (x1, . . . , xk) /∈
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RA implies ∏k
i=1 pi(xi) = 0 for all (x1, . . . , xk) ∈ Ak.

Remark 3.2.2. An element p ∈ Qd(A) is a map p : A → Proj(d) satisfying

∑x∈A p(x) = 1. Note that because of the normalisation condition, all these

projectors p(x) resolving the identity 1 are pairwise orthogonal.

This was the definition of the relational structure Qd(A ) = (Qd(A), RA ) ∈

RStr from [ABdSZ17]. Given a map f : A → B of relational structures, we

define Qd( f ) : Qd(A ) → Qd(B) by coarse-graining p : A → Proj(d) along f as

given by the formula:

Qd( f )(p)(y) = ∑
x∈ f−1(y)

p(x) (y ∈ B)

This is a well-defined homomorphism between relational structures, see Propo-

sition A.1.1. This definition preserves composites and identities, so there is a

functor Qd : RStr → RStr for every dimension d ∈ N (see Appendix A for

more details).

Note that Proj(1) = {0, 1} ∼= 2 = 1 + 1. We define η : A → Q1(A ) to be

a Dirac delta distribution: η(x)(x′) = 1 if x = x′ and η(x)(x′) = 0 if x 6= x′.

Verification that this is well-defined is straight-forward. For µd,d′ : QdQd′(A )→

Qdd′(A ), let µd,d′(P)(x) = ∑p∈Qd′ (A) P(p)⊗ p(x) ∈ Proj(dd′). Verification that

this is well-defined is also straight-forward: one just need to recall that all of our

distributions have finite support. These two maps turn out to be components of

two natural transformations η : 1⇒ Q1 and µd,d′ : QdQd′ ⇒ Qdd′ satisfying the

axioms of graded monads [MPS15]:

Qd(A )
Qd(η)//

id ((

QdQ1(A )

µd,1
��

Qd(A )
ηQd //

id ((

Q1Qd(A )

µ1,d
��

Qd(A ) Qd(A )
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QdQd′Qd′′(A )
Qd(µ

d′ ,d′′ )
//

µd,d′Qd′′ ��

QdQd′d′′(A )

µd,d′d′′
��

Qdd′Qd′′(A )
µdd′ ,d′′

// Qdd′d′′(A )

The full proof of this fact can be found in [ABdSZ17]. For the sake of complete-

ness, we included the complete details in the Appendix A. We have:

Proposition 3.2.1. ((Qd)d∈N, η, (µd,d′)d,d′∈N) is a graded monad defined on RStr.

Also in [ABdSZ17], we have defined a quantum version of homomorphisms

between relational structures, and shown that the Kleisli category of the quan-

tum monadQd is (equivalent to) the category of relational structures with quan-

tum homomorphism between them. Hence, by Theorem 16 from [ABdSZ17], in

the case of graphs, we have that the existence of a Kleisli map G → Qd(H) im-

plies the existence of a quantum graph homomorphism G → MH in the sense

of [Rob, MR14, MR16] (i.e. in the sense of Definition 3.1.2 above).

3.3 Quantum Maps of Relational Structures

We have observed that ‘quantum’ maps A → Qd(B) between relational struc-

tures can be interpreted as projection-valued relations called quantum homo-

morphisms or, more operationally, as quantum perfect strategies for the non-

local homomorphism game on relational structures from [ABdSZ17]. In this

section we shall prove that the category of relational structures with quantum

maps is an effectus. More exactly, we shall see that relational structures with

maps A → Qd(B) form an effectus.
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3.3.1 Relational Structures on Sets

Since the functor RStr→ Set is a bifibration (see Remark 3.2.1) preserving finite

products and coproducts, the category RStr of relational structures inherits the

finite coproducts (+, 0) and (a choice of) a terminal object 1 from the category

Set of sets. For instance, given A , B ∈ RStr relational structures, A + B ∈

RStr is the relational structure over the set A+ B where the k-ary relation RA +B

is defined as all the tuples (x1, . . . , xk) ∈ (A+ B)k satisfying either (x1, . . . , xk) ∈

RA or (x1, . . . , xk) ∈ RB. Also, we have the structure 0 ∈ RStr over the empty

set ∅ = 0 ∈ Set with no relations. Further we have a structure 1 ∈ RStr over

some singleton set 1 = {∗} with the universal relation of arity k, i.e. one has

R1 := 1k = 1× · · · × 1.

Like the distribution monad DM (see Subsection 2.4), the quantum monad

Qd is also an affine monad since Qd(1) ∼= 1. In fact, the functor Qd is a lift of

DM along the fibration RStr→ Set when M = Proj(d):

RStr

��

Qd // RStr

��
Set DM

// Set

That is, DM(A) = Qd(A) if M = Proj(d) for any A = (A, RA ) ∈ RStr (see

Definition 3.2.2). Hence K`(Qd) has a terminal object 1 ∼= Qd(1) ∈ K`(Qd) and

finite coproducts (+,0) given by disjoint union + of relational structures and

0 ∈ K`(Qd) the empty structure.

Theorem 3.3.1. The Kleisli categoryK`(Qd) of the quantum monadQd is an effectus.

Proof. This proof is very similar to the one for the distribution monad in Propo-

sition 2.4.1. We need to check two pullback conditions and one joint monicity

requirement for the Kleisli category K`(Qd). We start with the first pullback
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from Definition 2.3.1. Let A + 1 = A + {1} and 1 + B = {0}+ B be the under-

lying sets of relational structures A + 1 ∈ RStr and 1 + B ∈ RStr. Suppose

we have Kleisli maps f : P → Qd(A + 1) and h : P → Qd(1 + B) which are

homomorphisms of relational structures in RStr, such that for all a ∈ P:

Qd(! + id)( f (a)) = Qd(id+!)(h(a)) ∈ Qd({0}+ {1}) (3.1)

Specifically, this equation (3.1) expanded and evaluated says that:

Qd(! + id)( f (a))(0)
(3.1)
= Qd(id+!)(h(a))(0)

= ∑
y∈(id+!)−1(0)

h(a)(y)

= h(a)(0) ∈ Proj(d)

(3.2)

Qd(! + id)( f (a))(1) = ∑
x∈(!+id)−1(1)

f (a)(x)

= f (a)(1) ∈ Proj(d)

(3.3)

Thus:

h(a)(0) + f (a)(1) = 1 ∈ Proj(d) (3.4)

Let u : P → Qd(A + B) be the Kleisli map defined for each a ∈ P as

u(a)(x) := f (a)(x) ∈ Proj(d) for all x ∈ A, and u(a)(y) := h(a)(y) ∈ Proj(d)

for all y ∈ B. This Kleisli map u is homomorphism by definition, since both f

and h are. Hence, we have:

36



∑
x∈A

u(a)(x) + ∑
y∈B

u(a)(y) def
= ∑

x∈A
f (a)(x) + ∑

y∈B
h(a)(y)

= ∑
!(x)=0

f (a)(x) + ∑
!(y)=1

h(a)(y)

= Qd(! + id)( f (a))(0) +Qd(! + id)( f (a))(1)
?
= h(a)(0) + f (a)(1)

=1

where the marked equality ?
= follows from (3.2) and (3.3), and the last equality

from (3.4). Hence u is well-defined. We still do need to check that:

Qd(id+!) ◦ u = f

Qd(! + id) ◦ u = h
(3.5)

For all a ∈ P, the two equations (3.5) hold since:

Qd(id+!)(u(a))(x) = ∑
x′∈(id+!)−1(x)

u(a)(x′)

= u(a)(x)
def
= f (a)(x)

Qd(id+!)(u(a))(1) = ∑
y∈(id+!)−1(1)

u(a)(y)

= ∑
y∈B

u(a)(y)

def
= ∑

y∈Y
h(a)(y)

= f (a)(1)
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Qd(! + id)(u(a))(y) = ∑
y′∈(!+id)−1(y)

u(a)(y′)

= u(a)(y)
def
= h(a)(y)

Qd(! + id)(u(a))(0) = ∑
x∈(!+id)−1(0)

u(a)(x)

= ∑
x∈X

u(a)(x)

def
= ∑

x∈X
f (a)(x)

= h(a)(0).

By definition, u : P → Qd(A + B) is the unique homomorphism satisfying

equations (3.5). This completes the proof of the first pullback condition for

K`(Qd).

For the second pullback from Definition 2.3.1, let 1 := {0} and 1 := {1}

be two distinct (choices of) singleton sets, and ρ = 1|0〉 ∈ Qd(1) ∼= {ρ} with

1 ∈ Proj(d) a (Dirac) distribution on the first singleton. Consider Kleisli maps

! : P → {ρ} and f : P → Qd(A +B), which are homomorphisms of relational

structures in RStr such that:

Qd(!+!) ◦ f = Qd(κ1)◦ ! (3.6)

Since f (a) = ∑x px|x〉 + ∑y py|y〉 ∈ Qd(A + B) with ∑x px + ∑y py = 1 ∈

Proj(d) for all a ∈ P, we have that the left-hand side of equation (3.6) expands

to:

Qd(!+!)( f (a)) = ∑
x

px|0〉+ ∑
y

py|1〉
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The right-hand side of equation (3.6)expands to:

Qd(κ1)(!(a)) = Qd(κ1)(ρ)

= 1|κ1(0)〉

= 1|0〉

Hence ∑x px = 1, and so f (a) ∈ Qd(A). Let u : P → Qd(A ) be defined as

u(a)(x) := f (a)(x). Once again, here we have that u : P → Qd(A ) is homo-

morphism by definition since f is homomorphism by assumption. Therefore,

the Kleisli map u is the unique homomorphism of relational structures satisfy-

ing the needed requiremnts.

Now we prove that the maps �1,�2 : (1+ 1) + 1 ⇒ 1+ 1 in are jointly monic

in K`(Qd). This part is (again) taken exactly from [Jac15, Example 4.7]. Let

σ, τ ∈ Qd(3) be distributions such that

Qd(�1)(σ) = Qd(�1)(τ)

Qd(�2)(σ) = Qd(�2)(τ)
(3.7)

in Qd(2). Assume 3 = {a, b, c} and 2 = {0, 1}. We have the following convex

combinations for σ in Qd(2):

Qd(�1)(σ) = σ(a)|0〉+ (σ(b) + σ(c))|1〉

Qd(�2)(σ) = σ(b)|0〉+ (σ(a) + σ(b))|1〉

Similarly for τ:

Qd(�1)(τ) = τ(a)|0〉+ (τ(b) + τ(c))|1〉

Qd(�2)(τ) = τ(b)|0〉+ (τ(a) + τ(b))|1〉
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Hence, by the first equation in (3.7), we have σ(a) = τ(a). Similarly, by the

second equation in (3.7), we have σ(b) = τ(b). We still need to show that

σ(c) = τ(c). Since σ(a) + σ(b) + σ(c) = 1 = τ(a) + τ(b) + τ(c), then:

σ(c) = 1− σ(a)− σ(b)

= 1− τ(a)− τ(b)

= τ(c)

This completes the proof.

3.3.2 States and Predicates, Validity and Channels

Essential aspects of the semantics of programs like state and predicate trans-

formers are core parts of the internal logic of an effectus. Speaking intuitively,

states are used for representing a state of affairs and predicates for representing

evidence (classically, in the form of events). In the effectus obtained by taking

the Kleisli category of the quantum monad K`(Qd), states are quantum mea-

surments and predicates are ‘quantum’ events represented by assignments of

orthogonal subspaces to possible outcomes. We shall start describing what is

the situation with respect to states and predicates in general for an arbitrary ef-

fectus B. A state on X ∈ B is a morphism in B with type 1 → X. A predicate on

X is a morphism in B with type X → 1 + 1. There is an adjunction:

Pred(B)op ,,
> Stat(B)ll

B

99ff

where B → Stat(B) and B → Pred(B)op are the functors defined on objects

as Stat(X) := B(1, X) and Pred(X) := B(X, 1 + 1) for any X ∈ B; the action
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of these functors on a given morphism f : X → Y in B produce morphisms

Stat( f ) : Stat(X) → Stat(Y) and Pred( f ) : Pred(Y) → Pred(X) called state and

predicate transformer defined as Stat( f )(ω) := f ◦ω and Pred( f )(q) := q ◦ f , for

any ω ∈ Stat(X) and q ∈ Pred(Y). The following notation is standard in the

field:

f � ω := Stat( f )(ω) ∈ Stat(Y) f � q := Pred( f )(q) ∈ Pred(X)

With this terminology and notation, we have that state transformer acts for-

wardly while predicate transformer acts backwardly. Given a state ω ∈ Stat(X)

and a predicate p ∈ Pred(X) on the same object X ∈ B, the validity ω |= p of p in

ω is defined to be the morphism p ◦ ω ∈ B(1, 1 + 1). Morphisms in B(1, 1 + 1)

are called scalars. Hence, validity is a scalar representing the degree of certainty

of some evidence in the current state of affairs.

The effectusK`(Qd) has relational structures as objects and homomorphisms

of type A → Qd(B) as morphisms. At the level of sets, states of K`(Qd) are

quantum measurements (i.e. projection valued distributions) and sinceQd(2) ∼=
Proj(d), predicates are assignments of projectors. We can think about Proj(d)

as a relational structure of projectors with a k-ary relation RProj(d) given by

(p1, . . . , pk) ∈ RProj(d) if and only if pi · pj = pj · pi for all i, j = 1, . . . , k.

Proposition 3.3.1. Let A = (A, RA ) ∈ RStr be a relational structure. Then:

• a state on A is a quantum (projective) measurement p ∈ Qd(A ) on the under-

lying set A;

• a predicate f : A → Proj(d) is an assignment of projectors f : A → Proj(d)

such that points appearing in some tuple in the relation RA get assigned com-

muting projectors, i.e. projectors f (xi), f (xj) ∈ Proj(d) commute if there exists

α ∈ Ak such that α = (x1, . . . , xi, . . . , xj, . . . , xk) and α ∈ RA .
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Given a state and a predicate we can always compute their validity, or ex-

pected value, of the predicate in the state.

Proposition 3.3.2. Let p ∈ Qd(A ) be a state and f : A → Proj(d′) be a predi-

cate. The validity p |= f ∈ Proj(dd′) of the predicate f in the measurement p is the

projector given by Kleisli composition f∗ ◦ p:

p |= f := ∑
x∈A

p(x)⊗ f (x)

The concept of ‘channel’ is central in the logical essentials of effect-theoretic

reasoning and its applications, see e.g. [CJ17a, JZ18, Jac18b]. Formally, a channel

is just a morphism in some effectus. For the category Set, channels are func-

tions. For discrete probabilities K`(DM), channels are conditional probability

distributions X → DM(Y). Finally, for quantum probabilities K`(Qd), channels

are quantum homomorphisms of relational structures A → Qd(B).
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Chapter 4

Graph Spectra

The algebraic theory of graphs that we shall describe in this part is concerned

with properties of certain type of matrices which are naturally associated with

graphs. Specifically, we shall focus on the adjacency matrix. In particular, we

look at the spectra of adjacency matrices and the equivalence relation on graphs

called cospectrality defined by having the same spectrum. From the algebraic

perspective, the spectrum of a graph is relevant because it is an invariant of the

isomorphism class of the graph. We begin describing other algebraic and com-

binatorial invariant of graphs that does have an exact logical characterisation.

With graph spectra, in contrast, we only know a logical equivalence sufficient

for cospectrality but not necessary.

4.1 The Adjacency Matrix

The most natural way to assign an algebraic object to a graph is defining a ma-

trix. A good treatment of algebraic graph theory can be founded in the book of

Godsil and Royle [GR13].

Definition 4.1.1. The adjacency matrix A(G) of a graph G is the integer matrix
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with rows and columns indexed by the vertices of G, such that the uv-entry of

A(G) is equal to the number of edges from u to v for all u, v ∈ V(G).

Since we are working with simple and undirected graphs (see Remark 2.5.2),

adjacency matrices are symmetric binary matrices with all diagonal entries equal

to zero. Permutation matrices are binary matrices with a unique one per row

and per column.

Definition 4.1.2. Two graphs G and H are isomorphic G ∼= H if there is a per-

mutation matrix P such that A(G)P = PA(H).

4.2 Equitable Partitions

A partition of a set X is a collection of mutually disjoint subsets of X called

cells, such that the union of all cells is the set X. Given π = {C1, . . . , Cr} and

π′ = {C′1, . . . , C′r′} partitions of X with r′ ≤ r, we say that π is a refinement of

π′ if there is a surjection σ : {1, . . . , r} → {1, . . . , r′} such that Ci ⊆ C′
σ(i) for all

i ∈ {1, . . . , r}. Partitions of a set form a poset by refinement: π ≤ π′ iff π is a

refinement of π′ which can also be read as π′ is coarser than π.

Definition 4.2.1. A partition π of the vertex set V(G) of a graph G with cells

C1, . . . , Cr is equitable if the number of neighbours in Ci of a vertex u in Cj is a

constant bij ∈N for all u ∈ Cj and i, j ∈ {1, . . . , r}.

Every graph has an equitable partition, namely the one where each cell con-

sists of a singleton set containing one of the vertices of the graph. If G is a

regular graph of degree d ∈N (i.e. all vertices have exactly d neighbours), then

a partition of V(G) consisting of a unique cell with all vertices included is an eq-

uitable partition. A result in fractional graph theory guarantees that any graph
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G has a unique coarsest equitable partition which we shall denote by π(G), see

e.g. [SU11, Theorem 6.3.2].

Computing the coarsest equitable partition π(G) of G can be done efficiently

(quasilinear time), with an algorithm called colour refinement (see e.g. [AKRV15]):

first, all vertices are in the same cell/colour; then, vertices u, v ∈ V(G) get dif-

ferent colours (i.e. we add a cell to the partition) if there is a cell C ∈ π(G) such

that u and v have different numbers of neighbours in C; this process is repeated

until the number of colours/cells stops increasing. Every pair of isomorphic

graphs have a common coarsest equitable partition. Hence, if two graphs have

different coarsest equitable partitions then it must be the case that they are not

isomorphic. Thus, colour refinement is a test for non-isomorphism. However,

two regular graphs of the same degree and the same number of vertices (see

e.g. Figure (4.1) below) have the same coarsest equitable partition.

In a branch of modern mathematical logic called model theory one is usu-

ally concerned with models, or mathematical structures (for instance, relational

structures from Definition 3.2.1), and the sets of sentences (aka theories) in cer-

tain formal language, as e.g. in finite-variable fragments of first-order logic, that

are true for them.

Definition 4.2.2. Two graphs G and H are elementary L-equivalent G ≡L H with

respect to some fragment L of first-order logic if G and H satisfy the same set of

first-order sentences in L.

Let Ck be the k-variable fragment of first-order logic, boosted with counting

quantifiers. A counting quantifier is of the form ∃n for some n ∈ N, and its

semantics is such that ∃nx ϕ(x) is true in a structure/model if there are at least

n elements which can be substituted for x to make ϕ(x) true. The following is a

well-known result in descriptive complexity theory, see e.g. [IL90].
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Theorem 4.2.1 (Immerman-Lander). Two graphs G and H are indistinguishable by

colour refinement π(G) = π(H) if and only if they are C2-equivalent G ≡C2 H.

4.3 Fractional Isomorphism

Doubly stochastic matrices are square matrices with entries from [0, 1] for which

the sum of each row and each column is equal to 1. There are two reasons why

this type of matrices are of interest to us: (1) any permutation matrix is dou-

bly stochastic (and isomorphism is always implemented by a permutation, see

Definition 4.1.2); and (2) the set of all doubly stochastic matrices of a fixed size

forms a convex set. In fact, points (1) and (2) are formally related. Let Πn :=

{P ∈ Mn(R) | P permutation} and ∆n := {D ∈ Mn(R) | D doubly stochastic}

be the sets of all permutation and doubly stochastic matrices of size n ∈ N, re-

spectively. ThenD(Πn) ∼= ∆n. The proof of this statement is called the Birkhoff–

von Neumann theorem. It says that every doubly stochastic matrix is a convex

combination of permutation matrices.

Definition 4.3.1. Two graphs G and H are fractionally isomorphic G ∼= f H if there

is a doubly stochastic matrix D such that A(G)D = DA(H).

Surely, isomorphic graphs are fractional isomorphic:

G ∼= H ⇒ G ∼= f H

The converse is not true and here is a counterexample:

◦ ◦ ◦ ◦
G ◦ ◦ ∼= f H ◦ ◦

◦ ◦ ◦ ◦

(4.1)
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Actually, fractional isomorphic graphs have the same number of vertices, num-

ber of edges, degree sequence, and maximum eigenvalue. The two graphs G

and H in (4.1) are, in particular, both regular of degree 2 with 6 vertices each.

Therefore, the doubly stochastic matrix D := 1
6 J where J is the 6× 6 all-ones

matrix gives us the fractional isomorphism: A(G)D = 2
6 J = DA(H) but of

course G 6∼= H. The main result of [SU11, Chapter 6] is the following:

Theorem 4.3.1. Two graphs G and H are fractionally isomorphic G ∼= f H if and only

if they have a common coarsest equitable partition π(G) = π(H).

4.4 Cospectrality

The coarsest equitable partition aka colour refinement is a combinatorial graph

invariant. Indeed, colour refinement is also algebraic since not being distin-

guished by it is equivalent to fractional isomorphism. Now we shall describe

another graph invariant with both combinatorial and algebraic interpretations,

starting with the algebraic one. Once again, we turn to the adjacency matrix.

The difference (in spirit, at least) is that now we look within and not in relation

to another matrices. Thus the algebraic invariant we study by looking closer to

the adjacency matrix is its (multiset of) eigenvalues, or its spectrum.

Definition 4.4.1. The spectrum sp(G) of a graph G is the multiset of zeros of the

characteristic polynomial φ(A(G), θ) := det(1− θA(G)), where 1 denotes the

identity matrix.

The elements of sp(G) are called the eigenvalues of G. The adjacency matrices

of (simple undirected) graphs have real eigenvalues. It is convenient to think

about the adjacency matrix A := A(G) as a linear operator A : RV(G) → RV(G)
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defined for any map f : V(G)→ R and any vertex u ∈ V(G) by:

A( f )(u) := ∑
v∈V(G)

Auv · f (v)

where

Auv :=

1 if u ∼ v

0 if u 6∼ v

for all v ∈ V(G). Hence, we have:

A( f )(u) = ∑
u∼v

f (v)

Definition 4.4.2. An eigenvector fθ of a graph G with eigenvalue θ ∈ sp(G) and

adjacency matrix A(G) = A : RV(G) → RV(G) is a function in fθ ∈ RV(G) such

that A( fθ) = θ fθ.

Now we are ready to talk about the spectral decomposition of (the adjacency

matrix of) a graph G. Let ev(G) = {θ ∈ R | ∃ f ∈ RV(G). A( f ) = θ f } be the set

of eigenvalues of A = A(G). Note that ev(G) is a set while sp(G) is a multiset,

so it is not always the case that ev(G) = sp(G). Let Eθ : RV(G) → RV(G) be

the orthogonal projection onto the eigenspace of θ ∈ ev(G). The Eθ are also

known as principal idempotents or projectors, as they satisfy the following three

equations:

E2
θ = Eθ (θ ∈ ev(G))

Eθ · Eτ = 0 (θ 6= τ)

∑
θ∈ev(G)

Eθ = 1

Definition 4.4.3. The spectral decomposition of a graph G is the spectral decom-

48



position of its adjacency matrix:

A(G) = ∑
θ∈ev(G)

θEθ

Orthogonal matrices are square matrices whose rows and columns are or-

thonormal vectors. By definition, permutation matrices are orthogonal. The

relevance of orthogonal matrices here is that they preserve the spectral decom-

position.

Definition 4.4.4. Two graphs G and H are cospectral G ∼=sp H if there is an

orthogonal matrix Q such that A(G)Q = QA(H), or equivalently if sp(G) =

sp(H).

4.5 Closed Walks

Useful information can be obtained about the internal structure of a graph by

looking at its spectrum. Specifically, we get the total number of closed walks of

each length in the graph.

Definition 4.5.1. For each k ∈ N, let Wk be the graph with vertex set V(Wk) =

{v0, . . . , vk} and edge set E(Wk) = {(v0, v1), . . . , (vk−1, vk)}. The number of walks

w(G, k) ∈ N of length k in a graph G is the number of graph homomorphisms

Wk → G, i.e.

w(G, k) := |Gph(Wk, G)|

For example, one possible graph homomorphism W1 → G for some graph
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G could be:

G •
◦ ◦

W1 ◦ 7→ ◦
• ◦

◦

(4.2)

In fact, there are two graph homomorphisms W1 → G for each edge in G

(one as shown in Figure (4.2) above, and the other defined by mapping the

black instead of the white vertex from W1 to the central vertex of largest degree

in G). The image of a given homomorphism Wk → G is said to be a walk of

length k in G, so we identify walks in G with homomorphisms of certain type

into G. Walks of length 1 are the same thing as traveling along single edges in

one direction. Thus w(G, 1) = 2 · |E(G)| for any graph G.

Definition 4.5.2. For each k ∈ N, let Ck be the graph with vertex set V(Ck) =

{v0, . . . , vk−1} and edge set E(Ck) = {(v0, v1), . . . , (vk−1, v0)}. The number of

closed walks cw(G, k) ∈ N of length k in a graph G is the number of graph ho-

momorphisms Ck → G, i.e.

cw(G, k) := |Gph(Ck, G)|

Since our graphs are not reflexive (see Remark 2.5.2), then Gph(C1, G) = ∅.

Therefore, cw(G, 1) = 0 for any graph G. The image of a given homomorphism

Ck → G, and Ck itself, is called a cycle of length k, so we identify cycles in G with

homomorphisms of certain type into G. Cycles of length 2 are the same thing

as traveling along an edge in one direction and then going back to the vertex

where we started. Thus, every edge gives a pair of cycles of length 2. Hence,

we have cw(G, 2) = w(G, 1) = 2 · |E(G)|.
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Actually, for counting the number of cycles there is more that can be said.

By definition, the uv-entry of the kth power A(G)k of the adjacency matrix of

a graph G is equal to the number of walks of length k from vertex u to vertex

v in G. Therefore, we have trA(G)k = cw(G, k) for each k ∈ N. Now, by

the spectral decomposition trA(G)k = tr(∑θ∈ev(G) θkEk
θ) = ∑θ∈ev(G) θk which

implies cw(G, k) = ∑θ∈sp(G) θk. Thus, if we have two graphs G and H cospectral

sp(G) = sp(H), then both graphs have the same total number of closed walks

of every length. The converse holds as well and this is a well-known theorem

in spectral graph theory, see e.g. [VDH03, Lemma 1].

Theorem 4.5.1. Two graphs G and H are cospectral G ∼=sp H if and only if they have

the same number of closed walks cw(G, k) = cw(H, k) for all k ∈N.

This theorem was the motivation to define the following formulas of the

counting three-variable fragment C3 of first-order logic. Given n ≥ 0 and k ≥ 1,

there is a formula wlkk
n(x, y) of C3 so that for any graph G and vertices v, u ∈

V(G), we have G |= wlkk
n[v, u] iff there are exactly n walks of length k in G

that start at v and end at u. We define this formula by induction on k. Note

that in the inductive definition, we refer to a formula wlkk
n(z, y). This is to be

read as the formula wlkk
n(x, y) with all occurrences of x and z (free or bound)

interchanged. In particular, the free variables of wlkk
n(x, y) are exactly x, y and

those of wlkk
n(z, y) are exactly z, y. For k = 1, the formulas are defined as follows:

wlk1
0(x, y) := ¬E(x, y); wlk1

1(x, y) := E(x, y);

and wlk1
n(x, y) := false for n > 1.

For the inductive case, we shall need some notation. A collection (i1, n1), . . . , (ir, nr)

of pairs of integers with ij, nj ≥ 1 is called an indexed partition of n if the n1, . . . , nr

are pairwise distinct and n = ∑r
j=1 ijnj. Let N denote the set of all indexed par-
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titions of n and note that this is a finite set. Assuming we have defined the

formulas wlkk
n(x, y) for all values of n ≥ 0, we proceed to define them for k + 1:

wlkk+1
0 (x, y) := ∀z(E(x, z)→ wlkk

0(z, y))

wlkk+1
n (x, y) :=

∨
(i1,n1),...,(ir,nr)∈N

(( r∧
j=1

∃=ij z wlkk
nj
(z, y)

)
∧ ∃dz E(x, z)

)
where d = ∑r

j=1 ij. We have used ij to denote the number of neighbours of x for

which there are exactly nj walks of length k from each of them to y. Note that

without allowing counting quantification it would be necessary to use many

more distinct variables to rewrite the last formula.

Similarly, we can define the sentence:

clwk
n :=

∨
(i1,n1),...,(ir,nr)∈N

( r∧
j=1

∃=ij x∃y
(
x = y ∧ wlkk

n(x, y)
))

Thus, we have that G |= clwk
n if and only if the total number of closed walks of

length k in G is exactly n. Hence G |= clwk
n if and only if cw(G, k) = trA(G)k = n.

The following result was inspired on Theorem 4.2.1 and appears published in

[DSZ16]. It says that elementary equivalence in C3 refines cospectrality and

cospectrality of complements. Recall that the complement of a graph G is the

graph Ḡ with vertex set V(Ḡ) = V(G) and edge set E(Ḡ) = V(G)2 \ E(G).

Theorem 4.5.2. Two graphs G and H are cospectral sp(G) = sp(H) with cospectral

complements sp(Ḡ) = sp(H̄) if they are C3-equivalent G ≡C3 H.

Proof. By contrapositive, let G and H be non-isomorphic graphs such that either

sp(G) 6= sp(H) or sp(Ḡ) 6= sp(H̄). Without loss of generality, suppose there

is some k > 0 such that n(k) := cw(G, k) 6= cw(H, k). Then G |= clwk
n(k) and

H 6|= clwk
n(k). Thus G 6≡C3 H.
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Chapter 5

Game Comonads

Pebble games are certain type of two-person games of perfect information used

to study elementary equivalence in various logics with limited access to re-

sources, such as e.g. finite number of variables or different kinds of quantifiers.

We construct a graph Gk(G) (with k ∈ N) that encodes all the possible moves

that a player can make in G during a k-pebble game played on a pair of graphs

G, H when H is left unspecified. In fact, this construction is the functor part

of a comonad called the ‘pebbling’ comonad in [ADW17, Sha17]. The logical

equivalence that isomorphism in the coKleisli category of Gk encodes is elemen-

tary equivalence in Ck the k-variable fragment of first-order logic with counting

quantifiers.

5.1 Logical Games

Consider the following pebble game played by Spoiler against Duplicator on

two given graphs G and H. Each player has initially k ∈N distinct pebbles and

their goal would be to either distinguish (Spoiler) or identify (Duplicator) the

graphs under consideration. In each round, Duplicator selects a bijection f be-
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tween V(G) and V(H), and Spoiler places one of his pebbles on a vertex v of G;

Duplicator then places her pebble on f (v) and a new round starts. Spoiler wins

the game if, after some round, the partial map v 7→ f (v) defined on vertices

carrying a pebble is not an isomorphism between the induced subgraphs.

The pebble game defined above is called the k-bijective game, and it is used to

characterise the expressive power of k-variable first-order logic with counting

quantifiers Ck.

Theorem 5.1.1 ([Hel96]). Duplicator has a winning strategy in the k-bijective game

for graphs G, H if and only if G ≡Ck H for each k ∈N.

Therefore, two graphs G and H have the same coarsest equitable partition

π(G) = π(H) if Duplicator has a winning strategy in the 2-bijective game

played on them G ≡C2 H (see Theorem 4.2.1). Similarly, G and H have the

same number of closed walks cw(G, k) = cw(H, k) and so their complements

cw(Ḡ, k) = cw(H̄, k) for all k ∈ N, if Duplicator has a winning strategy in the

3-bijective game played on them G ≡C3 H. This is because G and H are cospec-

tral sp(G) = sp(H) with cospectral complements sp(Ḡ) = sp(H̄) if G ≡C3 H

(see Theorem 4.5.2).

Now consider the slightly different pebble game called existential k-pebble

game for some k ∈ N, again played by Spoiler versus Duplicator on a pair of

graphs G, H and defined as follows: each round consists of Spoiler placing one

of his k pebbles on a vertex v of G; in response, Duplicator places one of her k

pebbles on a vertex w of H. The winning condition for this game is that Spoiler

wins if after some round, the partial map v 7→ w defined on pebbled vertices

only, fails to be a homomorphism of the induced subgraphs. In contrast with

the k-bijective game, here the first move in each round is made by Spoiler rather

than Duplicator, no bijection is explicitly involved and so, the winning condi-

tion is stated in terms of homomorphisms rather than isomorphisms. The log-
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ical equivalence that this existential k-pebble game characterise is elementary

equivalence in the k-variable existential positive fragment ∃+Lk of first-order

logic (k ∈ N). Positive means that no universal quantifiers or negations are

allowed.

Theorem 5.1.2 ([Lib13]). Duplicator has a winning strategy in the existential k-pebble

game for graphs G, H if and only if G ≡∃+Lk H for each k ∈N.

5.2 The Pebbling Comonad on Graphs

There has been recent formulations of game-theoretic concepts in terms of cat-

egory theory [ADW17, Sha17, AS18]. Specifically, winning strategies of Du-

plicator in the existential k-pebble game for graphs G, H can be formalised as

coKleisli morphisms Gk(G) → H for a commonad (Gk, ε, δ) called the pebbling

comonad. Recall that Gph denotes the category of (all) graphs and homomor-

phisms between them (see Remark 2.5.1). Let Gk : Gph → Gph be the functor

defined on objects as follows. For any G ∈ Gph, let Gk(G) be the graph with

vertex set:

V(Gk(G)) :=
⋃

r∈N

{[(p1, v1), . . . , (pr, vr)] | ∀i ≤ r. pi ∈ {1, . . . , k}, vi ∈ V(G)}

For any s, s′ ∈ V(Gk(G)), let (s, s′) ∈ E(Gk(G)) if and only if (1) either s v s′

or s′ v s, where s v s′ if and only if there exists t ∈ V(Gk(G)) such that

st = s′; (2) the last pi in s is not in t, where st = s′ if s v s′ and similarly for

the case when s′ v s; (3) εG(s) and εG(s′) are adjacent in G, where the map

εG : V(Gk(G))→ V(G) is defined by [(p1, v1), . . . , (pn, vr)] 7→ vr.

Given a graph homomorphism f : G → H, let Gk( f ) : Gk(G) → Gk(H) be
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the map defined on tuples of pairs by:

[(p1, v1), . . . , (pn, vr)] 7→ [(p1, f (v1)), . . . , (pn, f (vr))]

Indeed, the map εG defined above is the counit of the pebbling comonad. For

the comultiplication, let δG : Gk(G)→ GkGk(G) be defined by:

[(p1, v1), . . . , (pn, vr)] 7→ [(p1, s1), . . . (pr, sr)]

where si := [(p1, v1), . . . , (pi, vi)] for i ∈ {1, . . . , r} with r ∈N.

In [ADW17], it was shown that these data satisfy the required properties to

form a comonad (Gk, ε, δ) for each k ∈ N. The graph Gk(G) precisely captures

all the moves Spoiler can make during the existential k-pebble game when play-

ing on a given pair of finite graphs G, H. By specialising Theorem 13 in [ADW17]

from finite relational structures to the particular case of finite graphs we obtain

the following:

Theorem 5.2.1. Duplicator has a winning strategy in the existential k-pebble game for

finite graphs G, H if and only if there is a coKleisli map Gk(G)→ H.

Again by specialising to finite graphs Theorem 18 from [ADW17], we have

the following result:

Theorem 5.2.2. Two finite graphs G and H are isomorphic in coK`(Gk) if and only if

G ≡Ck
H.

Finally, the next result is a consequence of Theorem 4.5.2, combined with

Theorem 5.2.2. It provides yet another necessary condition for cospectrality.

Corollary 5.2.1. Two finite graphs G and H are cospectral with cospectral comple-

ments if they are isomorphic in the coKleisli category coK`(G3) of the pebbling comonad

G3.
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5.3 Quantum Isomorphisms

Collecting results from previous sections, we have that fractional isomorphism

is equivalent to isomorphism in coK`(G2). Also we saw that cospectrality is

refined by isomorphism in coK`(G3). In this last section, we shall see two more

relaxations of graph isomorphism that are related.

For any graph G, let rel : V(G)2 → {0, 1, 2} be the function defined for all

v, v′ ∈ V(G) by:

rel(v, v′) :=


0 if v = v′

1 if v ∼ v′

2 if v 6= v′ & v 6∼ v′

Recall that a real square matrix M ∈ Md(R) is positive semidefinite if it is sym-

metric and xT Mx ≥ 0 for all x.

Definition 5.3.1. Two graphs G and H are doubly nonnegative isomorphic G ∼=dn

H if there is a positive semidefinite matrix M with rows and columns indexed

by V(G)×V(H), which is also entrywise nonnegative and satisfies the follow-

ing:

(1) ∑w,w′∈V(H) Mvw,v′w′ = 1 for all v, v′ ∈ V(G);

(2) ∑v,v′∈V(G) Mvw,v′w′ = 1 for all w, w′ ∈ V(H);

(3) Mvw,v′w′ = 0 if rel(v, v′) 6= rel(w, w′).

In an unpublished manuscript available online [MRV18], Mančinska et al.

have shown that doubly nonnegative graph isomorphism coincides with C3-

equivalence. We can immediately derive the following:

57



Theorem 5.3.1. Two graphs G and H are isomorphic in coK`(G3) if and only if they

are doubly nonnegative isomorphic G ∼=dn H.

It is also known that cospectrality is refined by quantum graph isomorphism,

as defined in [AMR+18].

Definition 5.3.2. Two graphs G and H are quantumly isomorphic G ∼=q H if

there are projectors Evw ∈ Proj(d) for some d ∈ N, v ∈ V(G) and w ∈ V(H)

satisfying the following:

(1) ∑w∈V(H) Evw = 1 for all v ∈ V(G);

(2) ∑v∈V(G) Evw = 1 for all w ∈ V(H);

(3) Evw · Ev′w′ = 0 if rel(v, v′) 6= rel(w, w′).

We think the following fact is relevant as well:

Theorem 5.3.2. Let f : G → Qd(H) and g : H → Qd(G) be graph homomorphisms

for some d ∈ N, such that f (v)(w) = g(w)(v) for all v ∈ V(G) and w ∈ V(H).

Then, f and g give rise to a quantum isomorphism G ∼=q H between graphs G and H.

Proof. Let us define the projectors Evw := f (v)(w) = g(w)(v) for v ∈ V(G) and

w ∈ V(H). The claim is that (Evw)v,w is a quantum isomorphism. We already

know that for all v ∈ V(G) and w ∈ V(H), we have:

∑
w′∈V(H)

f (v)(w′) = ∑
v′∈V(G)

g(w)(v′) = 1

We shall prove that for all pairs of vertices v, v′ ∈ V(G) and w, w′ ∈ V(H), if

rel(v, v′) 6= rel(w, w′) then Evw · Ev′w′ = 0.

By cases, suppose rel(v, v′) = 0; if rel(w, w′) = 1, i.e. w ∼ w′ then g(w) ∼

g(w′), because v 6∼ v′ since v = v′, so g(w)(v) · g(w′)(v′) = Evw · Ev′w′ = 0; if
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rel(w, w′) = 2, then f (v)(w) · f (v′)(w′) = Evw · Ev′w′ = 0 because f (v) = f (v′).

Now suppose rel(v, v′) = 1; if rel(w, w′) = 0 or rel(w, w′) = 2, then w 6∼ w′ so

f (v)(w) · f (v′)(w′) = 0 since f (v) ∼ f (v′). Finally, suppose rel(v, v′) = 2; if

rel(w, w′) = 0 then g(w) = g(w′) so g(w)(v) · g(w′)(v′) = 0; if rel(w, w′) = 1

then g(w) ∼ g(w′), and so g(w)(v) · g(w′)(v′) = 0. This completes the proof.

59



Chapter 6

Conclusions

With the intention to place this thesis in a wider context and to mention its sig-

nificance as a whole, here we provide a general overview of the work presented

in this document. First of all we see that indeed it is a mixture of two distinct

parts:

• Part I: Quantum Probability and Logic

• Part II: Descriptive Complexity and Finite Model Theory

So the purpose has admittedly been to combine ideas and concepts across two

different general situations in a coherent manner. Below we provide an outlook.

Quantum Probability and Logic

The first part of this document consists of Chapters 2 and 3. This part has ex-

pounded details regarding quantum and probabilistic reasoning via the notion

of effectus from categorical logic [Jac15]. The exposition has build on previ-

ous work [ABdSZ17] about the logical and categorical structure of quantum

solutions to constraint systems via the quantum monad Qd. Here it has been
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shown that the Kleisli category K`(Qd) of the quantum monad forms an effec-

tus. States are quantum measurements (i.e. projection-valued distributions) and

predicates are assignments of d-dimensional projections to elements. In case of

having relations and not just sets, predicates must assign commuting projec-

tions to elements in some tuple in some relation. Essential aspects of the seman-

tics of programs like validity and channels which are core parts of the internal

logic of an effectus were also described, instantiated in the effectus K`(Qd).

Details regarding the quantum monad Qd are presented in Appendix A.

Descriptive Complexity and Finite Model Theory

The second part of the thesis was concerned with the descriptive complexity

of graph spectra. This second part consists of Chapters 4 and 5. We presented

formal connections between finite model theory and descriptive complexity, on

one side, and probability and quantum computation, on the other. For doing

this we used certain ‘game’ comonads Gk from [ADW17, Sha17, AS18]. Specifi-

cally, we considered coKleisli maps Gk(G)→ H which corresponds to strategies

for combinatorial games encoding the notion of elementary equivalence in first-

order logic with k variables called k-pebble games. Unfortunately, the natural

attempt to provide with formal semantics to arrows of type Gk(G) → Qd(H),

as a notion of quantum strategies for k-pebble games, has not been expanded

here because of the failure to provide a distributive law between the comonad

Gk and the monad Qd. However, some other investigation of the author and

collaborators found that if G and H are graphs isomorphic in the coKleisli cat-

egory coK`(Gk) of the comonad Gk for k = 3, then the (adjacency matrices of

the) graphs G and H are cospectral G ∼=sp H, i.e. G and H have the same spec-

trum [DSZ16, DSZ17]. We contrasted this fact against the existence of an exact
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logical characterisation for isomorphism in coK`(Gk) with k = 2, in terms of an

algebraic and combinatorial graph invariant called fractional isomorphism (frac-

tionally isomorphic graphs are precisely those graphs that are not distinguished

by their coarsest equitable partition). We have summarised the whole second

part of this document in the following picture:

G ∼=dn H
KS

��

+3

!)

G ∼= f H
KS

��

G ∼= H +3 G ∼=q H

5=

 (

G ∼=sp H

G ∼=coK`(G3) H +3

5=

G ∼=coK`(G2) H

Other Directions

One direction of research that we would like to pursue is to describe in more

detail the effect logic of the Kleisli category of the quantum monad Qd with re-

spect to other effectuses coming also from ‘probability’ monads, as for instance

wrt. the Giry monad, the Kantorovich monad, the Radon monad and the expec-

tation monad (see e.g. [Jac18c]). Future work could also include to study the cat-

egorical formulation of Bayesian networks given in [Fon13], and try using the

quantum monad in the places where the Giry monad is used. Another direction

would be to look at a categorical description of various stochastic processes and

their applications in e.g. statistics and machine learning, with the same idea of

‘quantisation’ via the quantum monad. Another possible line of work could be

to study more deeply the monad S on graphs defined in Appendix B, since it

captures the spectral information of a graph G by arranging in the form of a

graph S(G) all the closed walks of each length in G.
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Appendix A

Quantum Monads

Here we reproduce the details of the proof of Proposition 3.2.1, which can also

be founded in [ABdSZ17]. For simplicity let us assume that all the relational

structures have only one relation of a fixed arity k, i.e. R(A ) = {RA } and RA ⊆

Ak for all A ∈ RStr. That is, the category RStr is obtained from the fibration

Sub(Set)→ Set of subsets by taking the pullback:

RStr

��

// Sub(Set)

��
Set

A 7→ A×···×A
// Set

A.1 Functor Part

The next three results show that indeed, for any d ∈ N, we have a functor

Qd : RStr → RStr giving a relational structure Qd(A ) whose underlying set is

the convex set Qd(A) of all formal orthogonal convex combinations ∑x px|x〉 ∈

Qd(A) of elements in x ∈ A, for each A ∈ RStr, with probabilities/scalars

px ∈ Proj(d) from the set of projections into a d-dimensional complex space,

satisfying ∑x px = 1 ∈ Proj(d). Such formal convex combinations can also
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be regarded as projection-valued distributions (aka projection-valued measures

PVMs) which are the mathematical description of sharp observables in quan-

tum theory, see e.g. [HZ11, Definition 3.27]. The relation RQd(A ) ⊆ Qd(A)k is

defined as follows: given p1, . . . , pk ∈ Qd(A), we have (p1, . . . , pk) ∈ RQd(A )

if and only if (1) the pi’s pairwise commute, i.e. for all x, x′ ∈ A we have

pi(x) · pj(x′) = pj(x′) · pi(x), and (2) for all x1, . . . , xk ∈ A if (x1, . . . , xk) /∈ RA

then ∏k
i=1 pi(xi) = 0. Again, from a homomorphism f : A → B of rela-

tional structures, we define a mapQd( f ) : Qd(A )→ Qd(B) asQd( f )(p)(y) :=

∑x∈ f−1(y) p(x) for all p ∈ Qd(A) and y ∈ B.

Proposition A.1.1. For any homomorphism f : A → B of relational structures with

d ∈ N, the map Qd( f ) : Qd(A ) → Qd(B) is a homomorphismof relational srtruc-

tures.

Proof. Fix d ∈ N and take p1, . . . , pk ∈ Qd(A) such that (p1, . . . , pk) ∈ RQd(A ).

Given y1, . . . , yk ∈ B with (y1, . . . , yk) /∈ RQd(B), we have ∏k
i=1 pi(xi) = 0 for all

xi ∈ f−1(yi). Hence

k

∏
i=1
Qd( f )(pi)(yi) =

k

∏
i=1

∑
xi∈ f−1(yi)

pi(xi)

= ∑
xi∈ f−1(yi)

k

∏
i=1

pi(xi) = 0

and so (Qd( f )(p1), . . . ,Qd( f )(pk)) ∈ RQd(B).

Proposition A.1.2. Let f : A → B and g : B → C be homomorphisms of relational

structures. Then Qd(g) ◦ Qd( f ) = Qd(g ◦ f ) for all d ∈N.

Proof. Fix d ∈ N. Let p ∈ Qd(A) and z ∈ C. The claim is that the following
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equation holds:

Qd(g) ◦ Qd( f )(p)(z) = Qd(g ◦ f )(p)(z)

The proof of the above equation is the following calculation:

Qd(g) ◦ Qd( f )(p)(z) = ∑
y∈g−1(z)

Qd( f )(p)(y)

= ∑
y∈g−1(z)

∑
x∈ f−1(y)

p(x)

= ∑
x∈(g◦ f )−1(z)

p(x)

= Qd(g ◦ f )(p)(z)

Proposition A.1.3. Let A ∈ RStr be a relational structure. Then Qd(idA ) =

idQd(A ) for all d ∈N.

Proof. Let p ∈ Qd(A) for some d ∈N, and x ∈ A. Then, we have:

Qd(idA )(p)(x) = ∑
x′=x

p(x′)

= p(x)

= idQd(A )(p)(x)
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A.2 Graded Monad Structure

Now, as mentioned already in Section 3.2, let ηA : A → Q1(A ) be defined by

ηA (x)(x′) :=

1 if x = x′

0 if x 6= x′

and µd,d′
A : QdQd′(A )→ Qdd′(A ) be defined by

µd,d′
A (P)(x) := ∑

p∈Qd′ (A)

P(p)⊗ p(x).

Proposition A.2.1. For any A ∈ RStr, the maps ηA : A → Q1(A ) and µA : QdQd′(A )→

Qdd′(A ) are homomorphism of relational structures.

Proof. Let x1, . . . , xk ∈ A such that (x1, . . . , xk) ∈ RA . Consider x′1, . . . , x′k ∈ A

such that (x′1, . . . , x′k) /∈ RA . We need to show that the following equation holds:

k

∏
i=1

ηA (xi)(x′i) = 0 (A.1)

But ∏k
i=1 ηA (xi)(x′i) 6= 0 if and only if xi = x′i for all i = 1, . . . , k, and so the only

case when equation (A.1) does not hold is when (x1, . . . , xk) = (x′1, . . . , x′k) and

by assumption this is not the case since one tuple is in the relation and the other

is not. Hence (ηA (x1), . . . , ηA (xk)) ∈ RQ1(A ).

Now, suppose we have P1, . . . , Pk ∈ QdQd′(A) such that (P1, . . . , Pk) ∈ RQdQd′ (A ).

Consider x1, . . . , xk ∈ A such that (x1, . . . , xk) /∈ RA . We need to show that the

following equation holds:

k

∏
i=1

µd,d′
A (Pi)(xi) = 0
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The proof of the equation above is the following calculation:

k

∏
i=1

µd,d′
A (Pi)(xi) =

k

∏
i=1

∑
pi∈Qd′ (A)

Pi(pi)⊗ pi(xi)

= ∑
pi∈Qd′ (A)

k

∏
i=1

Pi(pi)⊗ pi(xi)

= ∑
pi∈Qd′ (A)

k

∏
i=1

Pi(pi)⊗
k

∏
i=1

pi(xi)

= 0

where the last equality holds because our assumptions imply ∏k
i=1 pi(xi) = 0.

Proposition A.2.2. Let f : A → B be a homomorphism of relational structures. Then

the following diagram commutes:

A
f

//

ηA
��

B
ηB
��

Q1(A )
Q1( f )

// Q1(B)

Proof. For any x ∈ A and y ∈ B, the claim is that:

(Q1( f ) ◦ ηA )(x)(y) = (ηB ◦ f )(x)(y)

The proof of equation above this is the following calculation:

Q1( f )(ηA (x))(y) = ∑
x′∈ f−1(y)

ηA (x)(x′)

= ∑
y= f (x′)

ηA (x)(x′)

= ηB( f (x))(y).
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Proposition A.2.3. Let f : A → B be a homomorphism between relational structures

and d, d′ ∈N. Then the following diagram commutes:

QdQd′(A )
QdQd′ ( f )

//

µd,d′
A ��

QdQd′(B)

µd,d′
B��

Qdd′(A )
Qdd′ ( f )

// Qdd′(B)

Proof. For any P ∈ QdQd′(A) and y ∈ B, the claim is that the following equation

holds:

(µd,d′
B ◦ QdQd′( f ))(P)(y) = (Qdd′( f ) ◦ µd,d′

A )(P)(y) (A.2)
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The proof of the equation above is the following calculation:

µd,d′
B (QdQd′( f ))(P)(y) = ∑

q∈Qd′ (B)
(QdQd′( f )(P))(q)⊗ q(y)

= ∑
q∈Qd′ (B)

 ∑
Qd′ ( f )(p)=q

P(p)

⊗ q(y)

= ∑
q∈Qd′ (B)

∑
Qd′ ( f )(p)=q

P(p)⊗Qd′( f )(p)(y)

= ∑
q∈Qd′ (B)

∑
Qd′ ( f )(p)=q

P(p)⊗ ∑
f (x)=y

p(x)

= ∑
q∈Qd′ (B)

∑
Qd′ ( f )(p)=q

∑
f (x)=y

P(p)⊗ p(x)

= ∑
p∈Qd′ (A)

∑
f (x)=y

P(p)⊗ p(x)

= ∑
f (x)=y

∑
p∈Qd′ (A)

P(p)⊗ p(x)

= ∑
f (x)=y

µd,d′
A (P)(x)

= Qdd′( f )(µd,d′
A (P))(y).

Hence η : 1RStr ⇒ Q1 is a natural transformation, and for all d, d′ ∈ N we

have a natural transformation µd,d′ : QdQd′ ⇒ Qdd′ .

Lemma A.2.1. Let A ∈ RStr be a relational structure and d ∈N. Then the following

diagrams commute:

Qd(A )

idQd(A ) ((

Qd(ηA )
// QdQ1(A )

µd,1
A��

Qd(A )

idQd(A ) ((

ηQd(A )
// Q1Qd(A )

µ1,d
A��

Qd(A ) Qd(A )
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Proof. Take p ∈ Qd(A) and x ∈ A. Recall Proj(d) = {0, 1} when d = 1. Com-

mutativity of the left-hand side triangle above is the following calculation:

µd,1
A (Qd(ηA )(p))(x) = ∑

p′∈Q1(A)

Qd(ηA )(p)(p′)⊗ p′(x)

= ∑
p′∈Q1(A)

∑
ηG(x′)=p′

p(x′)⊗ p′(x)

= ∑
x′∈A

p(x′)⊗ ηA (x′)(x)

= p(x)

The right-hand side triangle above commutes, since:

µ1,d
A (ηQd(A )(p))(x) = ∑

p′∈Qd(A)

ηQd(A )(p)(p′)⊗ p′(x)

= p(x)

Lemma A.2.2. Let A ∈ RStr be a relational structure and a, b, c ∈ N. Then the

following diagram commutes:

QaQbQc(A )

µa,b
Qc(A ) ��

Qa(µ
b,c
A )
// QaQbc(A )

µa,bc
A��

QabQc(A )
µab,c

A

// Qabc(A )

Proof. Let P ∈ QaQbQc(A) and x ∈ A. The claim is that the following equation

holds:

(µa,bc
A ◦ Qa(µ

b,c
A ))(P)(x) = (µab,c

A ◦ µa,b
Qc(A )

)(P)(x) (A.3)
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The left-hand side of equation (A.3) expands to:

µa,bc
A (Qa(µ

b,c
A )(P))(x) = ∑

q∈Qbc(A)

(
Qa(µ

b,c
A )(P)(q)

)
⊗ q(x)

= ∑
q∈Qbc(A)

∑
µb,c

A (q′)=q

P(q′)⊗ q(x)

= ∑
q∈Qbc(A)

∑
µb,c

A (q′)=q

P(q′)⊗ µb,c
A (q′)(x)

= ∑
q∈Qbc(A)

∑
µb,c

A (q′)=q
∑

p∈Qc(A)

P(q′)⊗ q′(p)⊗ p(x)

= ∑
p′∈QbQc(A)

∑
p∈Qc(A)

P(p′)⊗ p′(p)⊗ p(x)

and the right-hand side of (A.3) to:

µab,c
A (µa,b

Qc(A)
(P))(x) = ∑

p∈Qc(A)

µa,b
Qc(A )

(P)(p)⊗ p(x)

= ∑
p∈Qc(A)

∑
p′∈QbQc(A)

P(p′)⊗ p′(p)⊗ p(x).

Finally, we are ready to prove Proposition 3.2.1 from Section 3:

Proposition 3.2.1. ((Qd)d, η, (µd,d′)d,d′) is an N-graded monad on RStr.

Proof. By Propositions A.1.1, A.1.2, A.1.3, for all d ∈ N we have that Qd is an

endofunctor on RStr. By Proposiotions A.2.1, A.2.2 and A.2.3, η : 1 ⇒ Q1 is a

natural transformation, and for all d, d′ ∈ N, we have that µd,d′ : QdQd′ ⇒ Qdd′

is a natural transformation. By Lemmas A.2.1 and A.2.2, we have that η and µ

satisfy the axioms for the unit and graded multiplication.
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Appendix B

Graph Spectra Monad

Reflexive graphs were not included in our discussions throughout the course

of this thesis. Specifically, they were not referred to when we used the word

‘graph’ unless otherwise was clearly mentioned. Note, however, that we have

been using Gph to denote the category whose objects are all graphs in the sense

of Definition 2.5.1, i.e. including reflexive and directed graphs with multiple

edges. Morphisms in Gph are edge-preserving functions between the underly-

ing vertex sets. Recall that Cn ∈ Gph is the n-cycle with:

V(Cn) = {v0, . . . , vn−1}

E(Cn) = {(v0, v1), . . . , (vn−1, v0)}

for each n ∈ N. By definition, for all G ∈ Gph the number |Gph(C1, G)| ≥ 0

of graph homomorphisms from C1 to G is equal to the number of vertices in G

carrying a loop, i.e. vertices v ∈ V(G) such that (v, v) ∈ E(G). As previously

mentioned in Remark 2.5.2 (and also as noted above), for us graphs don’t have

loops so this number attains its minimum |Gph(C1, G)| = 0 when G is a graph.
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For any G ∈ Gph, let S(G) be defined as:

V(S(G)) := V(G) ∪ ∑
n∈N

Gph(Cn, G)

E(S(G)) := E(G) ∪ {(σ, σ′) ∈ V(S(G))2 | σ(v0) ∼ σ′(v0) in G}

where the big sum in the vertex set denotes disjoint union of sets of graph

homomorphisms of type Cn → G when n is ranging along the set of natu-

ral numbers N. When G, H ∈ Gph are finite graphs (i.e. irreflexive, simple

and undirected) their adjacency matrices have the same spectrum if and only if

V(S(G)) = V(S(H)) (see Theorem 4.5.1).

For any graph homomorphism f : G → H, let S( f ) : V(S(G)) → V(S(H))

be the map defined by S( f )(σ) := f ◦ σ ∈ Gph(Cn, H) ⊆ V(S(H)) for all

σ ∈ Gph(Cn, G) ⊆ V(S(G) with n ∈ N, and by S( f )(v) := f (v) ∈ V(H) for

all v ∈ V(G). By definition, S( f ) = f ◦ − is a graph homomorphism. Given

another graph homomorphism g : H → K, since (g ◦ f ) ◦ σ = g ◦ ( f ◦ σ) we

have:

S(G)
S( f )

//

S(g◦ f ) ''

S(H)

S(g)
��

S(K)

Hence, we have a functor S : Gph→ Gph defined as above.

For every G ∈ Gph, let ηG : V(G)→ V(S(G)) be the inclusion map of G into

S(G) defined by ηG(v) := v for all v ∈ V(G). This definition turns ηG : G →

S(G) into a (injective) graph homomorphism.

Lemma B.0.1. Let f : G → H be a graph homomorphism. Then the following diagram
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commutes:

G
f

//

ηG
��

H
ηH
��

S(G)
S( f )

// S(H)

Thus η : 1⇒ S is a natural transformation.

Proof. For each v ∈ V(G), traveling along both sides of the square above yields:

S( f )(ηG)(v) = S( f )(v)

= f (v)

= ηH( f (v))

Hence S( f ) ◦ ηG = ηH ◦ f indeed.

Now, let εG : V(S(G)) → V(G) be the map defined by εG(σ) := σ(v0) ∈

V(G) for all σ ∈ Gph(Cn, G) with n ∈ N, and by εG(v) := v for all v ∈ V(G).

Because of the way we defined adjacency in S(G), we have that εG : S(G) →

G is a graph homomorphism. Finally, we can apply the functor S to εG and

obtain a graph homomorphism µG := S(εG) : S2(G) → S(G). Thus for all Σ ∈

Gph(Cn, S(G)), σ ∈ Gph(Cn, G) and x ∈ V(Cn) with n ∈ N, and v ∈ V(G) we

have:

µG(Σ)(x) = S(εG)(Σ)(x)

= εG ◦ Σ(x)

= Σ(x)(v0)

µG(σ)(x) = σ(x)

µG(v) = v

Lemma B.0.2. Let f : G → H be a graph homomorphism. Then the following diagram
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commutes:

S2(G)
S2( f )

//

µG
��

S2(H)

µH
��

S(G)
S( f )

// S(H)

Thus µ : S2 ⇒ S is a natural transformation.

Proof. Let Σ ∈ Gph(Cn, S(G)), σ ∈ Gph(Cn, G) and x ∈ V(Cn) for some n ∈N,

and v ∈ V(G). Then:

S( f ) (µG(Σ)) (x) = ( f ◦ µG(Σ))(x)

= f (Σ(x)(v0))

= S( f ) (Σ(x)(v0))

= S2( f )(Σ)(x)(v0)

= µH(S
2( f )(Σ))(x)

S( f )(µG(σ))(x) = ( f ◦ σ)(x)

= µH( f ◦ σ)(x)

= µH(S( f )(σ))(x)

= µH(S
2( f )(σ))(x)

S( f )(µG(v)) = S( f )(v)

= f (v)

= S2( f )(v)

= µH(S
2( f )(v))

Hence S( f ) ◦ µG = µH ◦ S2( f ) indeed.

We have so far an endofunctor S : Gph → Gph, and a couple of natural

transformations η : 1 ⇒ S and µ : S2 ⇒ S looking very much like a monoid
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in the category of endofunctors on Gph with natural transformations as mor-

phisms.

Theorem B.0.1. Let G ∈ Gph. Then the following diagrams commute:

S(G)
S(ηG) //

id ((

S2(G)
µG��

S(G)
ηS(G) //

id ((

S2(G)
µG��

S3(G)
S(µG) //

µS(G) ��

S2(G)
µG��

S(G) S(G) S2(G) µG
// S(G)

Therefore, (S, η, µ) is a monad on Gph.

Proof. Let σ ∈ Gph(Cn, G) and x ∈ Cn for some n ∈ N, and v ∈ V(G). Com-

mutativity of the first triangle on the left above µG ◦ S(ηG) = id holds:

µG(S(ηG)(σ))(x) = S(εG)(S(ηG)(σ))(x)

= S(εG)(ηG ◦ σ)(x)

= εG(ηG(σ(x)))

= εG(σ(x))

= σ(x)

µG(S(ηG)(v)) = µG(ηG(v))

= µG(v)

= v

Commutativity of the second triangle on the middle above µG ◦ ηS(G) = id also
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holds:

µG(ηS(G)(σ))(x) = S(εG)(ηS(G)(σ))(x)

= S(εG)(σ)(x)

= εG(σ(x))

= σ(x)

µG(ηS(G)(v)) = µG(v)

= v

Now, let Σ̂ ∈ Gph(Cn, S2(G)) ⊆ V(S3(G)) and Σ ∈ Gph(Cn, S(G)) ⊆ V(S2(G)).

Commutativity of the rectangle on the right above µG ◦ S(µG) = µG ◦ µS(G)

holds as well:

µG(S(µG)(Σ̂))(x) = µG(µG ◦ Σ̂)(x)

= (µG ◦ Σ̂)(x)(v0)

= µG(Σ̂(x)(v0))

= µG(µS(G)(Σ̂)(x))

µG(S(µG)(Σ))(x) = µG(µG ◦ Σ)(x)

= µG ◦ Σ(x)

= µG(Σ)(x)

= µG(µS(G)(Σ))(x)
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µG(S(µG)(σ)(x)) = µG(µG(σ)(x))

= µG(σ(x))

= µG(µS(G)(σ)(x))

µG(S(µG)(v)) = µG(µG(v))

= µG(v)

= µG(µS(G)(v))

This completes the proof.
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[MRV18] Laura Mančinska, David E Roberson, and Antonios Varvitsiotis.

Semidefinite relaxations of quantum isomorphism. Available online,

2018.

[Pan09] Prakash Panangaden. Labelled Markov Processes. World Scientific,

2009.

[Rob] David E Roberson. Variations on a theme: Graph homomorphisms.

PhD’s thesis, University of Waterloo, 2013.

[Sha17] Nihil Shah. Game comonads in finite model theory. Master’s thesis,

University of Oxford, 2017.

[SU11] Edward R Scheinerman and Daniel H Ullman. Fractional graph the-

ory: a rational approach to the theory of graphs. Courier Corporation,

2011.

[TKP09] Regina Tix, Klaus Keimel, and Gordon Plotkin. Semantic domains

for combining probability and non-determinism. Electronic Notes in

Theoretical Computer Science, 222:3–99, 2009.

[VDH03] Edwin R Van Dam and Willem H Haemers. Which graphs are deter-

mined by their spectrum? Linear Algebra and its applications, 373:241–

272, 2003.

[VW06] Daniele Varacca and Glynn Winskel. Distributing probability

over non-determinism. Mathematical Structures in Computer Science,

16(1):87–113, 2006.

84


	Introduction
	Preliminaries
	Effect Algebras
	Effect Modules
	Effectuses
	Discrete Probabilities
	Graphs and Relations

	The Quantum Monad on Relational Structures
	Quantum Graph Homomorphisms
	The Quantum Monad
	Quantum Maps of Relational Structures
	Relational Structures on Sets
	States and Predicates, Validity and Channels


	Graph Spectra
	The Adjacency Matrix
	Equitable Partitions
	Fractional Isomorphism
	Cospectrality
	Closed Walks

	Game Comonads
	Logical Games
	The Pebbling Comonad on Graphs
	Quantum Isomorphisms

	Conclusions
	Appendices
	Quantum Monads
	Functor Part
	Graded Monad Structure

	Graph Spectra Monad
	Bibliography

