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Understanding the mode of action of drugs is a challenge with
conventional methods in clinical trials. Here, we aimed to explore
whether simvastatin effects on brain atrophy and disability in
secondary progressive multiple sclerosis (SPMS) are mediated by
reducing cholesterol or are independent of cholesterol. We applied
structural equation models to the MS-STAT trial in which 140
patients with SPMS were randomized to receive placebo or
simvastatin. At baseline, after 1 and 2 years, patients underwent
brain magnetic resonance imaging; their cognitive and physical
disability were assessed on the block design test and Expanded
Disability Status Scale (EDSS), and serum total cholesterol levels
were measured. We calculated the percentage brain volume
change (brain atrophy). We compared two models to select the
most likely one: a cholesterol-dependent model with a cholesterol-
independent model. The cholesterol-independent model was the
most likely option. When we deconstructed the total treatment
effect into indirect effects, which were mediated by brain atrophy,
and direct effects, simvastatin had a direct effect (independent of
serum cholesterol) on both the EDSS, which explained 69% of the
overall treatment effect on EDSS, and brain atrophy, which, in
turn, was responsible for 31% of the total treatment effect on
EDSS [β = −0.037; 95% credible interval (CI) = −0.075, −0.010]. This
suggests that simvastatin’s beneficial effects in MS are indepen-
dent of its effect on lowering peripheral cholesterol levels, impli-
cating a role for upstream intermediate metabolites of the
cholesterol synthesis pathway. Importantly, it demonstrates that
computational models can elucidate the causal architecture under-
lying treatment effects in clinical trials of progressive MS.

causal modeling | multiple sclerosis | clinical trial | structural equation
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Understanding mechanisms underpinning progression in
multiple sclerosis (MS) is a significant challenge and a major

research focus (1). Therefore, the mode of action of potential
therapies for progressive MS is difficult to elicit. This is further
compounded by the use of outcome measures in clinical trials
that may not relate directly to the mechanism of action of the
medication under study (1). The challenge of understanding the
mode of action of a medication is exemplified by the simvastatin
trial, a phase 2 trial for secondary progressive MS (2), in which
MRI measures of atrophy and clinical disability showed benefi-
cial effects. The fundamental question as to whether simvasta-
tin’s beneficial effects on clinical outcomes and brain atrophy

were mediated by lowering peripheral cholesterol levels was
impossible to answer (3).
Mechanistic computational methods can elucidate the most

plausible chain of events, by simultaneous analysis of multimodal
data; these models assess hypothesized causal (and statistical)
associations linking intermediate variables to outcomes of in-
terest (4). They have been employed in clinical trials of Alz-
heimer’s disease (5), neurocognitive aging (6), and more
extensively in social sciences (7). Applying multivariate mechanistic
models to the simvastatin trial allows a quantitative comparison of
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the statistical pathways resulting in the observed effects of sim-
vastatin on clinical outcomes clarifying the mechanisms underpin-
ning its effect. An improved understanding of these statistical
pathways will show that this methodology can be extended to other
trials to obtain insights into the mechanisms through which ex-
perimental therapies provide clinical benefit.
In this study, we reanalyzed the MS-STAT trial data and

modeled hypothesized causal associations by which simvastatin
leads to changes in brain atrophy, clinical and cognitive out-
come measures, either directly or indirectly via changes in pe-
ripheral cholesterol level. We tested the hypothesis that the
reduction in serum cholesterol levels mediated the impact of
simvastatin on brain atrophy and on disability against the al-
ternative hypothesis that simvastatin effects were independent
of peripheral cholesterol level. A subsidiary aim was to inves-
tigate whether the effect of simvastatin on brain atrophy was
targeting specific regions.

Materials and Methods
Participants. Thiswas a post hoc study that included participants of theMS-STAT
trial (ClinicalTrials.gov registration number: NCT00647348) (2). MS-STAT was a
phase 2 double-blind randomized controlled trial whose primary and pre-
planned analyses have been reported previously (2, 8). Briefly, the eligibility
criteria were as follows: (i) age between 18 and 65 y, (ii) Expanded Disability
Status Scale (EDSS) (9) of between 4.0 and 6.5, (iii) fulfilling revised 2005
McDonald criteria (10), and (iv) secondary progressive MS defined by clinically
confirmed disability worsening over the preceding 2 y. Detailed eligibility
criteria are available elsewhere (2). The trial protocol was reviewed and ap-
proved by the Institutional Review Board at each study center (Charing Cross
Hospital, The Chalfont Centre, Buckinghamshire, UK, and Hurstwood Park
Hospital, Surrey, UK). Ethics was granted by Berkshire Research Ethics Com-
mittee (reference 07/Q1602/73). All participants gave informed consent before
entering this study.

Imaging Protocol. Patients were scanned at each visit (three visits in total) with
3D T1-weighted, double-echo proton density (PD) and T2-weighted MRI at
two imaging centers in the United Kingdom with 1.5- and 3-T scanners. The
same scanner and imaging protocol were used for an individual participant
throughout the trial. “Scanner” was a minimization variable (as explained
above) between treatment and placebo groups. Acquisition protocols are
reported elsewhere (2).

Clinical and Cognitive Outcomes. Patients underwent comprehensive clinical
and cognitive assessments. Here, we studied those outcomes that had shown
significant (or marginally significant) changes in previous reports (2, 8), which
were the following: the total cholesterol level, EDSS, Multiple Sclerosis Im-
pact Scale-29v2 (MSIS-29v2) (total score and physical subscale) (11), Wechsler
Abbreviated Test of Intelligence (WASI) block design test (T score) (12),
paced-auditory serial addition test (PASAT) (13), and Frontal Assessment
Battery (FAB) (14).

Image Analysis. We performed image analysis based on our established
pipeline for patients with MS, which is similar to what we have previously
reported (15). Our goals were to extract regional volumes, T2 lesion masks,
and the whole-brain percentage volume change with SIENA (16). Briefly, the
pipeline included N4-bias field correction of T1-weighted scans to reduce in-
tensity inhomogeneity (17), constructing a symmetric within-subject template
for unbiased atrophy calculation (18), rigid transformation of T1, PD, and
T2 sequences to the within-subject unbiased symmetric space, automatic lon-
gitudinal lesion segmentation of visible T2 lesions with Bayesian model se-
lection (19, 20), manual editing of these lesion masks and quality assurance
with the 3D-Slicer software, filling of hypointense lesions in T1 scans (21), and
brain segmentation and parcellation with geodesic information flows (GIF)
software (22). Technical details are given in SI Appendix, Supplemental
Methods. Outputs of this pipeline were the following: (i) percentage whole-
brain volume change (SIENA PBVC), (ii) T2 lesion masks, and (iii) regional brain
volumes according to Neuromorphometrics’ atlas, which is similar to the
Desikan–Killiany–Tourville (23) atlas available at https://scalablebrainatlas.incf.org/
human/NMM1103; for each region, we summed volumes of the left and
right hemispheres.

Statistical Analysis. We employed separate mixed-effects models to calculate
the differences in the rate of changes in brain volume loss, EDSS, and cog-
nitive scores (PASAT, frontal assessment battery, and block design T score)
over time between the two arms of the trial. The aim of these analyses, which
are different from the statistical tests carried out in the previous publication
of this trial (2, 8), was to identify variables that showed a significant dif-
ference in their rates of change between treated and placebo arms and can
be entered in the subsequent multivariate analysis (see below). De-
mographic and disease characteristics and the details of these mixed-effect
models and the corresponding results are given in SI Appendix.

Multivariate Analysis. We performed multivariate analyses in the following
steps:

i) Variable selection using the above (mixed-effects) univariate analyses:
to limit the analysis to measures with significant rates of change.

ii) Model construction: to formulate mechanistic hypotheses as structured
statistical models.

iii) Model selection: to choose the most likely hypothesis.
iv) Parameter estimation: to quantify, in the most likely model, pathways

between serum cholesterol levels, brain atrophy, cognitive, patient-
reported outcome measure, and clinical variables.

Variable Selection and Model Construction. We implemented multivariate
analysis with structural equationmodeling. Specifically, we fit a series of path
models, which test whether a set of causal relationships is compatible with
the observed associations. We used Lavaan package, version 0.5–23 (24), in R.
Structural equation models allow simultaneous fitting of several regression
models to quantify statistical pathways between variables. We included
outcomes from the univariate analyses (explained above) that had signifi-
cant differences in their rate of change between placebo and simvastatin
groups. Since nuisance variables (age, gender, and center) did not affect the
above univariate analyses, we did not include them in multivariate models.
We only entered the physical subtest of MSIS-29v2 (instead of the total
score) in structural equation models, because changes in this subtest drove
the change in total score. Similarly, we entered the block design test because
the mixed-effects models showed a significant difference in this test be-
tween the treated and the placebo arm (SI Appendix). We calculated the
difference between baseline and second-year values for each variable and
divided it by 2. We refer to this as the “annualized change” throughout
this manuscript.

We hypothesized two a priori models to explain relationships between
these variables according to the literature (25, 26) and on the basis of our
opinion. The first is a cholesterol-mediated model, in which the effects of
simvastatin on clinical measures (both physical and cognitive) and brain at-
rophy are mediated by changes in cholesterol (Fig. 1A). The second is a
cholesterol-independent model, in which simvastatin has a direct effect on the
clinical and MRI outcome measures, independent of its effect on serum cho-
lesterol levels (Fig. 1B). In both models, the rate of brain atrophy development
has a direct effect on clinical change, as measured by the EDSS, block design,
and MSIS-29v2 (Fig. 1). In both models, we included MSIS-29v2 (physical sub-
score) as the last variable in the cascade of events, because it is a subjective
patient-reported questionnaire of physical ability expected to reflect the im-
pact that clinical and cognitive impairment has on patient’s quality of life.

Significance

Traditional analysis of clinical trials precludes a mechanistic
understanding of drug actions. This is further compounded by
the use of outcome measures in clinical trials not directly re-
lated to the mechanism of action of the medication under
study. Here, we applied structural equation models to the
double-blind randomized controlled trial of simvastatin in
secondary progressive multiple sclerosis to investigate causal
associations that underlie treatment effects. Our results sug-
gest that beneficial effects of simvastatin on reducing the rate
of brain atrophy and slowing the deterioration of disability are
independent of serum cholesterol reduction. Our work dem-
onstrates that structural models can elucidate the statistical
pathways underlying treatment effects in clinical trials of
poorly understood neurodegenerative disorders, such as pro-
gressive multiple sclerosis.
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Model Selection and Parameter Estimation. We fitted both the cholesterol-
mediated and cholesterol-independent model (shown in Fig. 1) using full-
information maximum likelihood to adjust for missingness, and with the
robust SEs to account for nonnormality (e.g., EDSS). We assessed the
goodness of fit for each model and reported the parameters for the most
likely model. To evaluate overall fit of a model, we used the comparative fit
index (CFI) (compares the fit of the model with a model with uncorrelated
variables; acceptable fit > 0.95; good fit > 0.97), standardized root-mean-
square residual (square root of the average of the covariance of residuals;
good fit < 0.08), and root-mean-squared error of approximation (RMSEA)
(discrepancy between the model and population covariance; good fit < 0.06)
(27). To estimate the relative quality of a model given the data, we calcu-
lated information criteria [Akaike information criterion (AIC) and Bayesian
information criterion (BIC)] of each model. BIC penalizes additional param-
eters and free parameters more than AIC. BIC assumes that the true model is
among the candidate models, while AIC assumes that the true model is
unknown. We used different model comparison measures and several
goodness-of-fit measures to make sure that our results were confirmed
when using different methods. Since raw AIC and BIC values do not have a
meaningful scale, we calculated the Akaike and Schwarz weights to repre-
sent the conditional probability of each model given the data directly (28).
To have an unbiased estimate, we calculated fit measures (mentioned
above) iteratively on 1,000 bootstrap samples and reported the median of
bootstrap results with 95% confidence intervals.

Bayesian Mediation Models. To calculate how much of the total treatment
effect was mediated by intermediate variables, we constructed post hoc
models for variables involved in the significant pathways of a priori models
(explained above). Each model included three variables: treatment, an in-
termediate variable, and a final outcome. Intermediate and outcome vari-
ables were the rates of annual change of the following variables: total
cholesterol level, brain atrophy, EDSS, and block design score. Here, we used

Bayesian multivariate models to report credible intervals (CIs), especially for
those of cholesterol-mediated pathways, instead of P values and confidence
intervals to allow an easier interpretation of nonsignificant findings. This
enabled testing whether the lack of statistically significant cholesterol-mediated
effects were because of lack of statistical power or there was evidence for
the absence of cholesterol-mediation effects of simvastatin (29, 30). We used
Blavaan package, version 0.3–2.283 (31), inside R, version 3.4.0 (32). In the
Bayesian analysis, we considered an effect to be significant when the 95% CI
of a parameter did not cross zero. We discarded the first 4,000 (“burn-in”
samples) and reported the next 10,000 samples as posterior distributions
with Markov chain Monte Carlo method with Stan, version 2.16.0 (33). We
used noninformative uniform priors for Bayesian analyses.

Regional Brain Atrophy Analysis. To investigate whether the effect of sim-
vastatin was predominant in, and limited to, certain brain regions, we carried
out univariate mixed-effects models to compare regional atrophy rates be-
tween trial arms, by adjusting for age, gender, center, and total intracranial
volume (34).We summed respective regions from left and right hemispheres
and constructed linear mixed-effects models for each area (∼60 models),
where the volume of a given area was the dependent variable. Independent
variables (fixed effects and random effects) were similar to the models used
for cognitive and clinical outcomes with an additional variable for total in-
tracranial volume to adjust for the head size (34) and scanner (1.5 or 3 T).
First, we extracted rates of atrophy for those regions that showed a signif-
icant rate of change (significant slope, P < 0.05), after adjustment for mul-
tiple comparisons with the false-discovery rate (35). With a similar model, we
calculated the rate of change within the treatment and placebo groups.
Therefore, we reported brain regions that showed a significant rate of
change in the combined treatment and placebo groups as well as separate
rates within each group. To explore whether the effect of simvastatin on
EDSS was mediated by regional atrophy, we performed mediation analysis
with the following variables:

Fig. 1. Model A or cholesterol-mediated model assumes that the cholesterol-lowering effect of simvastatin is the cause of the slowing of the brain atrophy
and disability worsening. Model B or cholesterol-independent (or pleiotropic) model assumes that the cholesterol-lowering effect of simvastatin is in-
dependent of its effect on brain atrophy and clinical outcomes. In both models, a lower rate of brain atrophy development has an effect on the clinical
change, as measured by the EDSS, block design, and MSIS-29v2. Additionally, in both models, the physical subscore of MSIS-29v2 (that showed significant
effect of treatment) is included as the last variable in the cascade of events, because it is a subjective patient-reported outcome measure. All of the variables
are “annualized” and represent annual rates of change between baseline and second-year follow-up visits. Each rectangle represents a variable. The arrows
represent multivariate regressions, where an arrow starts from a predictor and points to the dependent variable. C compares fit-measures that are shown on
the y axis of each of the five bar plots with models A and B on the x axis. Blue corresponds to cholesterol-mediated model, and red, to cholesterol-
independent model. Fit measures suggest that cholesterol-independent model (or model B) was the most likely model given data, because it had a
higher Akaike and Schwarz weights, higher CFI, lower SRMR, and lower RMSEA. CFI, confirmatory factor index; EDSS, Expanded Disability Status Scale; MSIS,
Multiple Sclerosis Impact Scale; PBVC, percentage brain volume change; RMSEA, root-mean-squared error of approximation; SRMR, standardized root-mean-
square residual.
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Fig. 2. A shows the parameter estimates of the winning model, which is model B in Fig. 1. Each arrow is a regression “path,”where the arrow starts from the
predictor(s) and points to the dependent variable(s). Significant paths (P < 0.05) are shown with bold arrows, while nonsignificant paths are thinner. The black
numbers on each arrow represent regression coefficients and their P values. The blue numbers represent SEs of the coefficients. The red numbers represent
standardized coefficients. B shows the Bayesian post hoc analysis of cholesterol-mediated pathway vs. direct pathway that does not depend on cholesterol to
slow brain atrophy. The results confirm that a direct pathway (cholesterol-independent) slows brain atrophy. The numbers on the Left side of the B show
median of the posterior distribution of the model parameters, and the numbers inside parentheses show 95% credible intervals (CIs). The 95% CIs of co-
efficients of direct pathway and cholesterol-mediated pathways do not overlap; this suggests that the lack of significance in cholesterol-mediated pathway is
unlikely to be due to a lack of statistical power. We used a Bayesian method to ease the interpretation of nonsignificant findings and to report CIs (rather
than the confidence intervals). B also shows Bayesian mediation analyses for brain atrophy and EDSS. The direct effect is shown in blue and the mediation
effect (or indirect effect) is shown in green. The treatment effect on brain atrophy is independent of its effect on cholesterol because the 95% CIs do not
overlap. Brain atrophy mediates 31% of the treatment effect on EDSS. C shows mediation analysis for other variables. They can be interpreted similarly. EDSS,
Expanded Disability Status Scale; MSIS, Multiple Sclerosis Impact Scale (physical subtest); PBVC, percentage brain volume change.
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i) Predictor variable: treatment (categorical: simvastatin or placebo);
ii) Mediator variable: volume change in the area with the largest effect of

treatment (transverse temporal gyrus);
iii) Dependent variable: EDSS.

For regional mediation analysis, we employed the same methodology as
explained above (Multivariate Analysis).

We also performed a focused analysis on the volume ofmedulla oblongata
(to capture spinal cord related pathology in the absence of spinal cord im-
aging data), which is explained in SI Appendix.

Code and Material Availability. Computer codes with simulated data for this
manuscript can be found at https://github.com/armaneshaghi/causalTrialModel.
The ethical approval of this project restricts public release of the raw dataset.

Results
Multivariate Analysis: Simvastatin Effect on Clinical Outcomes and
Brain Atrophy Is Independent of Cholesterol. The cholesterol-
independent model, in which simvastatin has a direct effect on
the clinical and MRI outcome measures, independently by its im-
pact on lowering the serum cholesterol levels, was the most likely
model (Fig. 2 A and B). The cholesterol-independent model showed
a better overall fit than the cholesterol-mediated model. Boot-
strapped fit measures for the cholesterol-independent model were
the following: CFI = 0.95 (95% CI = 0.86, 1), SRMR = 0.049 (95%
CI = 0.02, 0.07), RMSEA = 0.11 (90% CI = 0, 0.18), AIC = 1800
(95% CI = 1,719, 1,892), BIC = 1860 (95% CI = 1,779, 1,952),
Akaike weight = 0.71, Schwarz weight = 0.46 (Fig. 2C). A direct
comparison by computing Akaike weights (Model B Akaike weight/
Model A Akaike weight = 0.976/0.023) and Schwarz weights
(Model B Schwarz weight/Model A Schwarz weight = 0.704/0.295)
suggested that the cholesterol-independent model was considerably
more likely than the cholesterol-mediated model (42.24/2.38
times, respectively).
Within the cholesterol-independent model, simvastatin had a

significant direct effect on the EDSS (β = −0.086, SE = 0.044,
P = 0.047), a direct effect on brain atrophy (β = 0.234, SE =
0.099, P = 0.019), and a direct effect on serum cholesterol levels
(β = −0.739, SE = 0.076, P < 0.001). Other model parameters
are shown in Fig. 2A. Annualized changes in the selected vari-
ables are shown in SI Appendix, Fig. S3.

The Bayesian Analysis: Simvastatin Effects on Clinical Outcomes Are
Independent of Cholesterol and Are Partially Mediated by Brain
Atrophy. When we calculated how much of the treatment effect
was mediated by intermediate variables involved in the pathways
of the models discussed above, simvastatin effects on brain at-
rophy and disability were confirmed to be independent of cho-
lesterol. In particular, simvastatin delayed atrophy directly
[treatment → atrophy, β = 0.32; 95% CI = 0.09, 0.54], without
the mediation of cholesterol (treatment → cholesterol → atro-
phy, β = −0.08; 95% CI = −0.23, 0.07; Fig. 2B). Since the 95%
CIs of these two parameters do not overlap, the lack of statistical
significance for cholesterol-mediated slowing of atrophy is un-
likely to be due to the lack of statistical power (Fig. 2B).
Similarly, simvastatin directly delayed disability progression, as

measured by the EDSS (treatment → EDSS, β = −0.139; 95%
CI = −0.255, −0.025) without any significant mediation from
cholesterol (treatment → cholesterol → EDSS, β = 0.014; 95%
CI = −0.062, 0.093). Since the 95% CIs of the direct and indirect
effects only slightly overlap, this shows that simvastatin effects on
EDSS are at least partly independent of cholesterol reduction.
When we investigated the possible mediation of brain atrophy,

we found that brain atrophy significantly mediated 31% of the
total treatment effect on the EDSS (treatment → atrophy →
EDSS, β = −0.037; 95% CI = −0.075, −0.010; Fig. 2B) and 35%
of the total treatment effect on block design score (treatment →
atrophy → block design, β = 0.33; 95% CI = 0.06, 0.72).

The Effect of Simvastatin on Brain Atrophy Was Predominant on the
Lateral Ventricles and Transverse Temporal Gyrus. In the analysis of
the merged treatment and placebo groups several regions
showed significant rate of change over time (after adjustment for
multiple comparisons), the fastest of which was the lateral ven-
tricles [1.95% annual expansion (95% confidence interval:
1.53%, 2.38%)], followed by the transverse temporal gyrus [esti-
mated annual rate = −1.17% (95% confidence interval: −0.88%,
−1.46%)] (Fig. 3). Rates of volume loss in the postcentral and
precentral gyri, frontal regions, anterior and middle parts of the
cingulate cortex, precuneus, and thalamus were also significant
(which implies ongoing volume loss). Fig. 3 shows the full list of
regions that showed statistically significant change over time in the
merged analysis of treatment and placebo groups.
When comparing placebo and simvastatin groups, the rates of

atrophy were numerically slower in several regions in the sim-
vastatin group (Fig. 3), but only the transverse temporal gyrus
showed a significantly faster volume loss in placebo than the
treated arm [estimated annual rate (95% confidence interval)
in placebo group = −1.58% (95% confidence interval: −1.17%,
−1.98%); simvastatin group = −0.79% (95% confidence in-
terval: −0.22%, −1.35%)] (P = 0.002). The spatial pattern of
focal volume loss was similar between the placebo and simvas-
tatin groups on visual inspection and qualitative comparison.
There was no significant treatment mediation effect of regional
volume loss in the transverse temporal gyrus on EDSS.

Discussion
We used multivariate structural equation models to explore and
test hypothesized causal mechanisms that may explain the ob-
served treatment effect of a potential neuroprotective drug using
the simvastatin trial as a model. In this recent phase 2 trial,
simvastatin had a direct effect on delaying EDSS worsening and
brain atrophy. What mediates this beneficial effect of statin
treatment remains unclear as both cholesterol-mediated and
cholesterol-independent mechanisms may contribute. In support
of the former, various studies have reported that elevated pe-
ripheral cholesterol levels are associated with adverse MS out-
comes (36, 37). Therefore, it would be reasonable to hypothesize
that a reduction in serum cholesterol levels through statin
treatment may confer benefit. Our study, however, suggests that
these effects were independent of lowered serum cholesterol
and, therefore, does not support the hypothesis that simvastatin’s
beneficial effects can be attributed to its effects on lowering
serum cholesterol levels and its consequent improved hyperlip-
idemia, which is known to be a comorbidity in MS (3). This does
not rule out a pathogenic role for altered lipid metabolism in MS
but suggests that key statin-mediated beneficial effector mech-
anisms may be independent of peripheral cholesterol lowering.
A cholesterol-independent model, therefore, was the most

likely option, and mediation models suggested that a reduction
in the rate of EDSS worsening was partly (31%) explained by the
treatment effects on brain atrophy, and partly (69%) by a sep-
arate direct treatment effect. All of these effects were independent
of the change in serum cholesterol levels. Our mechanistic ap-
proach, also known as mediation analysis, goes beyond correlation
analysis and provides causal evidence of association between two
variables. This starts by mathematically deconstructing simvastatin
effects as cholesterol-mediated or cholesterol-independent and
allows an indirect understanding of whether beneficial simvastatin
effects are mediated directly via its effect on lowering peripheral
cholesterol levels or via other upstream products of the mevalo-
nate pathway (that produces cholesterol). Serum cholesterol is
only one of the downstream products of the 3-hydroxy-3-methyl-
glutaryl-CoA (HMG-CoA) reductase (part of the mevalonate
pathway), an enzyme that is inhibited by simvastatin. Therefore,
the independence of treatment effects in MS from the peripheral
cholesterol levels does not indicate that the effect is independent
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of HMG-CoA reductase inhibition and cholesterol synthesis, but
points toward a role for intermediate metabolites downstream of
HMG-CoA reductase, but upstream of cholesterol. Cholesterol-
independent (or pleiotropic) products of this pathway include
isoprenoids that prenylate a variety of key signaling proteins that
regulate cell function (38) and whose attenuation may have ben-
eficial neuroprotective and vasculoprotective effects. It has been
shown in experimental models that simvastatin inhibits brain
protein isoprenylation (39).
The central nervous system is highly enriched in cholesterol,

especially within myelin, and most of the cholesterol of the
nervous system is synthetized de novo and is independent of
blood cholesterol (40). Moreover, intermediate substrates of the
cholesterol biosynthesis pathway, such as 8,9-unsaturated sterols,
could profoundly stimulate myelin formation and repair (41).
While the effect of statins on human brain cholesterol levels,
which cannot readily be measured in humans, are unclear, ex-
perimental animal data suggest that they reduce the de novo

synthesis of cholesterol and, consequently, impair remyelination
(40, 42), which, in turn, would worsen patient outcomes. Since we
have observed positive effects of simvastatin on brain atrophy and
disability, it is unlikely that they are due to its possible effect on
central cholesterol. Our results suggest that future research should
focus on changes in levels of the upstream intermediate metabo-
lites of the cholesterol synthesis pathway, rather than the potential
anti-comorbidity effects of statins in progressive MS (43).
It is possible to speculate that statins can reduce brain atrophy

and clinical progression through various biological processes that
are not linked with peripheral cholesterol level and cholesterol
metabolism. For example, statins have effects on leukocyte ad-
hesion through direct stearic interference of the ICAM-1/LFA-
1 adhesion molecules (44), can modulate T cell immune response
(45), and inhibit CNS leukocyte migration (46). Furthermore,
previous work has demonstrated that the benefit of statins in
neuroinflammation can be a consequence of their effects on
isoprenoid intermediates (independent of cholesterol) in the

Fig. 3. This graph shows the adjusted annual rates of volume loss (or expansion for the lateral ventricles), which are calculated from the coefficient of the
interaction of time and treatment group in the mixed-effects models constructed separately for each region. Only regions with significant volume change in
the combined placebo and treatment analysis are shown (adjusted for multiple comparisons with the false-discovery method). Different colors correspond to
different regions that are shown with the same appearance in Left on the T1-weighted scan of one of the patients (chosen at random) and, in the Right, as
bar plots. Two bar plots are shown; the above shows the rate of change in the combined analysis of placebo and treatment groups on the horizontal axis and
different regions on the vertical axis. The lower bar plot shows the rate of change for the same areas for placebo and simvastatin groups separately. This bar
plot shows that only the transverse temporal gyrus shows a significant difference in the rate of change when comparing simvastatin and placebo groups. The
error bars indicate 95% confidence interval of the rate of change.
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mevalonate pathways (47). Atorvastatin treatment that caused
T cell immune modulation and reversed relapsing and chronic ex-
perimental autoimmune encephalomyelitis models, did not affect
circulating levels of cholesterol or cholesterol level in the plasma
membrane of T cells. Specific isoprenoid intermediates were re-
sponsible for immune modulation by atorvastatin, and not mole-
cules within the sterol (cholesterol) synthetic branch downstream of
squalene synthase (47). However, our previous report of the MS-
STAT trial demonstrated no significant effect of simvastatin on five
immunological markers (IFN-γ, IL-4, IL-10, IL-17, and CD4 Fox
P3), suggesting that alternative mechanisms such as neuroprotective
and vasculoprotective mechanisms could play a role (38, 48).
A strength of our study is the investigation of the spatiotem-

poral pattern of ongoing atrophy in patients with secondary
progressive multiple sclerosis with very long disease duration
(21 y). Our regional analysis showed that brain atrophy at the
whole-brain level, rather than the regional level, mediated the
treatment effect, suggesting that simvastatin has a generalized
effect on brain atrophy and does not target a single region (e.g.,
thalamus) (15). Regional susceptibility of neuroanatomical areas
to neurodegeneration manifests by faster percentage of atrophy
rates than that of the entire brain. For example, annual per-
centage volume loss can be up to 4% in the hippocampus in
Alzheimer’s disease (49, 50), while it is up to 1% for the entire
brain. In MS, the deep gray matter atrophy rates can be up to
1.5% (15), while the whole-brain atrophy is 0.6%. In this study,
we found that the highest rate of loss was in the lateral ventricles,
which represent a nonspecific, generalized measure of atrophy.
Unlike patients with early secondary progressive or primary
progressive MS, none of the deep gray matter nuclei showed a
higher rate than total brain rate (the thalamic atrophy rate was
0.24%), while the whole-brain volume loss on average was sim-
ilar to previous studies (0.65%). Similarly, the medulla oblongata
volume, which we used as a proxy for spinal cord atrophy (51) (in
the absence of spinal cord imaging data), did not show change
over time. The slower than expected rate of atrophy in these
structures in patients (who had a disease duration of more than
20 y) suggests a floor effect at which the decline of these struc-
tures may slow down, while other structures, such as the trans-
verse temporal gyrus, show a faster rate of atrophy in the placebo
arm than in the treated group. As we have shown previously (52),
patients with longer disease duration have lower rates of atrophy
in the spinal cord than patients with shorter disease duration. We
can speculate that the transverse temporal gyrus, which is the
auditory cortex and responsible for a “basic” function (53), is
spared until later stages of secondary progressive MS, which
might show a higher rate after exhaustion of other areas. Our
results are in line with pathological observations that generalized
neurodegeneration may dominate long-standing secondary pro-
gressive MS (54–56), while a more selective pattern and ongoing

spinal cord atrophy is seen in earlier MS alongside focal in-
flammation that responds to immunomodulation (54, 57).
A major difference between our study and the previous anal-

yses of MS-STAT (2, 8) is that we calculated rates of change in
imaging and clinical outcomes, rather than average differences
between treatment groups at each, as previously reported (2, 8).
In this study, we performed an independent image analysis and
looked at the rate of change, using all three visits (baseline, year
1, and year 2) with mixed-effects models, and found that the rate
of change in the block design but not in the frontal assessment
battery was significantly different between treated and untreated
patients. This is because the frontal assessment battery, unlike
the block design, showed a ceiling effect after the first year of the
trial, which reduces the rate of change. For this reason, we only
included the block design scores in the multivariate mechanistic
models. Block design evaluates the visuospatial memory and
depends on fine motor coordination (as it is timed) (58). While
there was an association between the rate of brain volume loss and
the block design test, evidence for an indirect treatment effect on
this cognitive outcome was weaker than EDSS. Our results dem-
onstrate that mechanistic multivariate models can quantify and
elucidate interrelations of multimodal measures in a clinical trial.
It is important to note that our study is limited by its post hoc

nature. While preplanned statistical analyses of clinical trials are
the gold standard to compare treatments, post hoc analyses may
nevertheless provide information to generate new hypotheses
from the wealth of information collected as part of a trial.
In conclusion, we compared mechanistic hypotheses on how a

potential neuroprotective drug, simvastatin, can influence im-
aging, clinical, cognitive, and patient-reported outcomes through
changes in peripheral cholesterol level. We found that beneficial
effects of simvastatin in secondary progressive MS were in-
dependent of circulating cholesterol. Simvastatin affected motor
functioning directly, and indirectly by slowing atrophy rates. A
weaker simvastatin effect on visuospatial memory was mediated
by slowing atrophy rates. Structural equation models can be
applied to trials of neurodegenerative disorders to provide po-
tential insight into mechanisms and quantify the pathways un-
derlying disease-worsening and treatment effects.
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