
Discriminative learning for structured outputs and
environments

Simon Cousins
Department of Computer Science

University College London

This dissertation is submitted for the degree of
Doctor of Philosophy

2018

I would like to dedicate this thesis to my loving parents ...

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other University. This
dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration, except where specifically indicated in the text. This dissertation
contains less than 65,000 words including appendices, bibliography, footnotes, tables and
equations and has less than 150 figures.

Simon Cousins
2018

Acknowledgements

First I would like to thank my supervisor, Prof. John Shawe-Taylor, for his help and guidance
over these last years. The breadth and depth of his knowledge never failed to amaze me and
his ability to explain complex concepts in a simple and intuitive manner was a blessing. I
would like to thank all of those in the computer science department who ungrudgingly gave
their time to engage in research discussions, and act as a sounding board for ideas, however
ill-conceived they may have been. A special thanks to the Centre for Doctoral Training
in Financial Computing for their generous scholarship, which made this thesis possible.
Furthermore I would like to thank my colleagues at Stratagem Technologies and Realedge
Associates who I had the pleasure to work with during my studies. They empowered me with
the skills needed to bring new ideas into fruition and helped me to bridge the gap between
academia and industry. Finally, I would like thank my parents for their insistent nagging
and unwavering impatience. Admittedly, it was much needed and brought this thesis to its
conclusion, thank you.

Abstract

Machine learning methods have had considerable success across a wide range of applications.
Much of this success is due to the flexibility of learning algorithms and their ability to tailor
themselves to the requirements of the particular problem. In this thesis we examine methods
that seek to exploit the underlying structure of a problem and make the best possible use
of the available data. We explore the structural nature of two different problems, binary
classification under the uncertainty of input relationships, and multi-label output learning
of Markov networks with unknown graph structures.

From the input perspective, we focus on binary classification and the problems associ-
ated with learning from limited amounts of data. In particular we pay attention to moment
based methods and investigate how to deal with the uncertainty surrounding the estimate
of moments using either small or noisy training samples. We present a worst-case analysis
and show how the high probability bounds on the deviation of the true moments from their
empirical counterparts can be used to generate a regularisation scheme that takes into con-
sideration the relative amount of information that is available for each class. This results in a
binary classification algorithm that directly minimises the worst case future misclassification
rate, whilst taking into consideration the possible errors in the moment estimates.

This algorithm was shown to outperform a number of traditional approaches across
a range of benchmark datasets, doing particularly well when training was limited to small
amounts of data. This supports the idea that we can leverage the class specific regularisation
scheme and take advantage of the uncertainty of the datasets when creating a predictor.
Further encouragement for this approach was provided during the high-noise experiments,
predicting the directional movement of popular currency pairs, where moment based methods
outperformed those using the peripheral point of the class-conditional distributions.

From the output perspective, we focus on the problem of multi-label output learning
over Markov networks and present a novel large margin learning method that leverages the
correlation between output labels. Our approach is agnostic to the output graph structure
and it simultaneously learns the intrinsic structure of the outputs, whilst finding a large
margin separator. Based upon the observation that the score function over the complete
output graph is given by the expectation of the score function over all spanning trees, we
formulate the problem as an L1-norm multiple kernel learning problem where each spanning
tree over the complete output graph gives rise to a particular instance of a kernel.

We show that this approach is comparable to state-of-the-art approaches on a number
of benchmark multi-label learning problems. Furthermore, we show how this method can
be applied to the problem of predicting the joint movement of a group of stocks, where we
not only infer the directional movement of individual stocks but also uncover insights on the
input-dependent relationships between them.

Impact Statement

This thesis explores methods for making the best possible use of the data that has been
made available. We approach this from two different perspectives.

The first part of the thesis will be of most interest to academics working in the field
of generalisation and error bound analysis. We present an extension to current moment
based approaches, addressing the issue of moment uncertainty by directly including it into
an optimisation scheme to minimise worst case future performance. The framework for doing
this is general and can be extended across a number of other domains. We have outlined
several promising areas where we believe our approach is appropriate and can be readily
adopted, which could form part of a wider research agenda in the future. This paper was
published in the Machine Learning Journal and can be found here [Cousins and Shawe-
Taylor, 2017]

Our new classification algorithm can be added to the arsenal of existing methods avail-
able to practitioners and distinguishes itself from other methods by having an implicit class-
specific regularisation scheme. We believe it will be of particular interest to those working
with small and/or noisy datasets, where our method was shown to perform favourably during
experiments.

In the second part of the thesis we look at the problem of assigning labels to several
output variables that are possibly related and depend on some arbitrary input. This work
is of most interest to academics working in the fields of structured prediction and multiple
kernel learning. We brought together these two fields by posing the problem of learning
structure on a graph as multiple kernel learning with trees. This produced an intuitive
scheme for dealing with problems with unknown or intractable output relationships, and is
general enough to be extended beyond the binary output labellings that we considered. An
alternative inference scheme over connected graphs was proposed, which provided in sights
on how to guide an inference scheme based upon the observation of the input variable. This
is something that could form an interesting direction for future research, and the preliminary
results were presented at a Neural Information Processing Systems workshop on optimisation
[Cousins et al.].

Practitioners are increasingly encountering high dimensional datasets where the rela-
tionships between variables is not known a priori. We have presented a new methodology that
aims to find intuitive and interpretable structures that represent the underlying dataset. We
believe that this approach can be deployed beyond the relatively straightforward examples
we gave on conditional correlations between stocks.

Contents

Contents xiii

List of Figures xv

List of Tables xix

1 Introduction 1
1.1 History . 3
1.2 Thesis organisation . 5

2 Machine Learning 7
2.1 Learning framework . 7
2.2 From theory to practice: the support vector machine 13
2.3 Kernel methods . 17
2.4 Summary . 24

3 Linear discriminants: moments, uncertainty and applications 27
3.1 Fisher’s discriminant analysis . 28
3.2 Minimax probability machine (MPM) . 32
3.3 High-probability minimax probability machine (HP-MPM) 38
3.4 Experiments . 51
3.5 Conclusions and future work . 65

4 Multi-label learning over unknown graph structures 71
4.1 Graphical models . 73
4.2 Inference over graphs . 75
4.3 Learning over graphs . 79
4.4 Large margin multi-label learning on graphs 90
4.5 Summary . 123

5 Final remarks 125

References 129

List of Figures

2.1 The trade off between over and under fitting. We see that as the model com-
plexity increases it is capable of better performance on the training sample.
However this comes with an additional complexity penalty in its generalisation
ability. In srm we look for the sweet spot between complexity and training
error represented by the minimum of the generalisation term. 12

2.2 Decision boundaries found on a training set generated by two multivariate
normal distributions. The optimal decision boundary is given by a linear
hyperplane and we see that the linear representation finds a good decision
boundary. The decision boundary of the quadratic function performs well
on the bottom right quadrant, however the quadratic nature of the solution
means that it will incorrectly classify points in the top left quadrant. The
Gaussian kernels find irregular decision boundaries with the one with small
width finding an particularly over complicated pattern for the problem at
hand. 21

2.3 Decision boundaries found on a training set generated by XOR dataset, where
yk = −1 if sign(xk,1) = sign(xk,2) and yk = 1 otherwise. The linear represen-
tation places along the diagonal and fails to perform better than randomly,
whereas the quadratic representation finds a good decision boundary due to
the product between the different dimensions. The Gaussian representations
find good decision boundaries, with the smaller width kernel being capable
of better approximating the optimal boundaries determined by the x1 and x2

axes. 22
2.4 Decision boundaries found on a training set generated by circle dataset. If

x2
k,1 + x2

k,2 ≤ 1 then yk = −1, otherwise yk = 1. The linear representation is
unable to find a separating hyperplane that is better than random guessing
and the quadratic representation finds a smooth circular decision boundary
that almost perfectly separates the data. Both Gaussian representations per-
form well finding a circle like pattern for classification, however we see the
smaller width Gaussian has a slightly less smooth decision boundary. 23

xvi List of Figures

3.1 Minimax probability machine visualisation . 35
3.2 In this figure we show the geometrical differences of the solutions found using

mpm and fda . The green plots represent the fda ellipsoids and hyperplane,
whereas the black plots correspond to the mpm. In the mpm solution we
see that the difference in the covariance structures permits a better solution
that better separates the two classes, however that the pooling together of
covariance matrices results in a sub-optimal hyperplane formed using the fda
approach. 37

3.3 Geometric interpretation of the high-probability mpm and the intermediate
solutions produced during the optimisation scheme. We can see that in the
beginning, for small values of κ, the penalised (regularised) covariance ma-
trices are almost spherical. As the value of κ increases, and we move away
from the class means, the ellipsoids begin to take on a shape increasingly de-
termined by the sampled covariance matrix, however there still remains the
regularisation caused by the uncertainty in the value of the covariance matrix.
We see that the intermediate solutions h(w, κ) = 0 result in hyperplanes that
are tangential to the each classes ellipsoid, however these ellipsoids are only
tangential to one another at the optimal solution. In the samples used to
generate this solution, m1 = 20 and m0 = 200, explaining the larger size of
the ellipsoid for class 1. 48

3.4 The impact that flipping training labels has on the performance of the different
classification algorithms, when training using 0.2 of the full dataset. 60

3.5 The impact that flipping training labels has on the performance of the different
classification algorithms, when training using 0.5 of the full dataset. 61

3.6 Currency experiments: profit on trading decisions advised by the different
algorithms. We see that the hp-mpm performs consistently well across the
majority of settings (training window and regularisation). However, all of the
algorithm seem to struggle with the AUD/USD currency pair. 63

3.7 Currency experiments: improvement of accuracy on random guessing i.e. im-
provement over 50% correct. The hp-mpm appears to be the most consis-
tently performing algorithm and only does worse than random guessing on
two particular parameterisations. The other algorithms appear to perform
quite considerably worse in terms of accuracy, with the svm only consistently
better than random for the EUR/USD currency pair. 64

4.1 Complete output graph . 76
4.2 Two-clique graph . 76
4.3 Tree-structured graph . 76

List of Figures xvii

4.4 Complete output graph: every node i ∈ {1, . . . , 5} is connected to every other
j ∈ {1, . . . , 5} \ i. There are

(ℓ
2
)

edges in total. 91
4.5 Example tree structure showing how the augmentation of the edge potentials

works, where the correct labelling is given by y = (0, 0, 0, 0). 113

List of Tables

3.1 Overview of the UCI datasets used during the experiments. 52

3.2 Linear experiments: we show how the performance of the classification al-
gorithms on the datasets vary as the amount of data used during training
changes. The best performing results for each dataset and training propor-
tion are reported in bold typeface. 53

3.3 Kernel experiments: we show how the performance of the classification al-
gorithms on the datasets vary as the amount of data used during training
changes. The best performing results for each dataset and training propor-
tion are reported in bold typeface. 55

3.4 german dataset: we evaluate the performance (classification accuracy) of
selecting the bias term for the hp-mpm according to its performance on the
validation set. We see that this simple approach to adjusting the decision
boundary, represented in column bhp-mpm , improves the performance of the
hp-mpm , correcting for its implicit assumption that classes are equally likely,
and brings its performance inline with the SVM. 56

3.5 adult dataset lines experiment: we evaluate the performance (classification
accuracy) of the proposed algorithm on a large scale dataset. The number of
training samples m is varied and we observe the changes in classifier perfor-
mance. We see that with a small number of training examples the bhp-mpm
tends to outperform the other approaches, with its relative advantage deteri-
orating as m increases. 58

4.1 Summary statistics of the datasets used during the experiments. 114

4.2 Prediction performance of each algorithm in terms of 0/1 loss. The best
performing algorithm is highlighted with boldface, the second best is in italic.115

4.3 Prediction performance of each algorithm in terms of microlabel loss. The
best performing algorithm is highlighted with boldface, the second best is in
italic. 115

xx List of Tables

4.4 Comparison of algorithm performance on stock market dataset in terms of
microlabel loss, 0/1 loss and percentage return of an investment strategy
following this advice. The best performing algorithm for each evaluation
criteria is highlighted with boldface, the second best is in italic. 119

Chapter 1

Introduction

Machine learning is a data-driven learning mechanism that uses the incomplete information
contained within the training examples to formulate predictions regarding unseen examples
in the future. The goal is to find a function that is capable of summarising these relation-
ships, and one that can be used to make predictions in the future. The success of these
learning methods is measured by how well the function learned on the training sample gen-
eralises to unseen examples. The study of the generalisation ability of a function is outlined
in the theoretical work of statistical learning theory. Broadly speaking, statistical learning
theory relates the generalisation ability of a function to the hypothesis class from which it
was chosen, the number of examples that were used during learning and its performance on
these examples. Functions obtained from simple hypothesis classes are expected to generalise
better than those learned over complex spaces. One also expects the generalisation ability of
a function to improve as with the number of examples used during training increases. This
is the fundamental idea that underpins machine learning; the more data that you present to
the machine, the better it will get a performing the task it has been designed to do.

As humans we have a remarkable capacity for generalisation. For example, we only need to
observe a few examples of a dog to be capable of accurately identifying a whole range of dogs
from unseen breeds, despite the variety of shapes and sizes that they come in. For a machine
to learn to identify a dog, it must first be able to recognise the underlying characteristics
of what constitutes a dog, and then learn to discriminate these from other animals such as
cats or wolves. This requires the use of a highly expressive hypothesis space and it needs
to be trained using large amounts of data to prevent overfitting on the training examples,
and allow for generalisation. Fortunately for problems such as image recognition we have
access to vast datasets where complex hypothesis spaces can be used without worrying about
overfitting. This is the appealing nature of a data-driven learning approach, the more data
that we have available, the more we can explore complex hypothesis spaces without worrying
about diminishing returns on generalisation. Unfortunately not all datasets have grown at

2 Introduction

the same pace, and we must still face the problem of learning how to get the most out of a
dataset by trading off the accuracy on training examples with the complexity of the solution.
In this thesis we examine two such problems where we must seek to balance these opposing
forces.

The first involves binary classification when there is a small number of training examples
and/or the input dimension is large. In this setting we have limited information about the
class conditional distributions that have generated the training examples. Previous meth-
ods that used empirical estimates of the class conditional moments often suffered through
inaccurate moment estimates and/or overly confident generalisation guarantees. In this the-
sis we seek to address these issues by proposing the high-probability minimax probability
machine. This approach builds upon the original formulation of the minimax probability
machine [Lanckriet et al., 2003], addressing the possible dangers of assuming the empirical
and true moments to be equal. We do this by deriving a new optimisation scheme that in-
cludes bounds on the deviation of the true moments from their empirical counterparts, and
minimises the worst-case future misclassification rate. We see that they act as an intuitive,
class specific, regularisation scheme where one penalises moment estimates based upon the
relative number of observations seen in each class, and therefore our degree of confidence in
their values.

The second involves multi-label learning, where one must learn a function that maps an
arbitrary input to a binary output vector. Quite often in this setting there are more possible
output configurations than there are training examples, which makes learning to generalise a
challenging task. One solution is to take advantage of the relationships between the output
variables by encoding their dependencies using a Markov network, and allow the learning
algorithm access to this information. However if we have no a priori knowledge of the
relationships between output variables then one could argue that it is as reasonable to train
each output node individually as it is to train them as if they were completely connected to
one another. The former suffers from the inability to leverage the strength of the correlation
between output labellings, whereas the latter is crippled by np-hardness of both learning and
making predictions. In this thesis we seek to address these problems by presenting a novel
learning method for multi-label learning over Markov networks. Our approach is agnostic
to graph structure and simultaneously learns the intrinsic structure of the dataset, whilst
finding a large margin predictor on it. The intrinsic graph structure is learned by framing
it as a multiple kernel learning problem (mkl), where spanning trees over the complete
graph define the joint feature spaces used by the base kernels and the final structure is given
by a weighted combination of these spanning trees. Standard mkl methods can be used to
update the tree weights and the interesting part is that we show it is possible use a maximum

1.1 History 3

spanning tree algorithm to efficiently search over the space of all exponentially many kernels,
and provide an update direction. Furthermore we present a simple lemma that allows one
to check whether exact inference was performed over the inferred graph. This method takes
advantage of the representation of the graph as the combination of spanning trees, and only
requires inference to be performed on an individual tree basis.

1.1 History

Machine learning represents the intersection of a number of well studied fields including tra-
ditional statistics, signal processing, optimisation and theoretical computer science. It is a
sub-field of artificial intelligence that arguably has its roots in the realisation that equipping
a computer with general intelligence was more difficult than was first conceived. This led to
a kind of research that focused on what was possible to solve, and so came about machine
learning, a data driven approach that can be tailored to solving a particular problem.

One of the earliest examples of a machine learning approach came during Fisher’s 1936 work
on linear discriminants [Fisher, 1936] and the classification of iris flowers. This approach
used information regarding the observed mean and covariances of the different species of iris.
It is still popular today, thanks largely in part to its interpretability and the work done by
[Mika et al., 1999] to extend the learning routine into higher dimensional spaces. Another
old idea that is still prevalent in the machine learning community is Rosenblatt’s 1956 work
on the perceptron [Rosenblatt, 1958], which provides the basis of the learning architectures
employed by today’s deep neural networks. Despite its current popularity, research into the
use of the perceptron was largely curbed by the criticisms in [Minsky and Papert, 1988]
on its inability to solve linearly inseparable problems such as the XOR problem. This led
to a change in research direction and the ensuing A.I. winter. It wasn’t until 1986 and
the re-discovery of the backpropagation algorithm [Williams and Hinton, 1986] that interest
resumed, with the authors showing that it was possible for errors to be propagated back
through a multilayered neural network and address the shortfalls outlined by [Minsky and
Papert, 1988].

At around the same time the perceptron was coming under fire, statistical learning theory
[Vapnik and Chervonenkis, 1968], another important part of modern machine learning, was
being developed. This approach brought together ideas from statistics and functional anal-
ysis to analyse characteristics of a function estimated on a given dataset. The main goal of
the theory was to provide a statistical framework for studying how a function learned from
a dataset will perform on unseen examples. It wasn’t until the early 1990s that this largely
theoretical analysis started to be exploited and used in the design of better algorithms for

4 Introduction

prediction. The support vector machine [Boser et al., 1992; Cortes and Vapnik, 1995] was
one of the first approaches that took advantage of the generalisation properties afforded
to large margin predictors. The statistical guarantees offered by these methods, coupled
with their ability to efficiently use high dimensional spaces through the representer theorem
[Aronszajn, 1950; Wahba, 1990] and exploit the well developed tools of convex optimisation,
resulted in a surging interest in this field of research and led to state-of-the-art performance
across a wide range of problems.

These data efficient, kernel based methods largely dominated the community, in terms of
both research interest and performance, up until the mid 2000s. However with the advent
of high performance computing, which allows thousands of processors to run in parallel, and
the availability of vast datasets such as ImageNet [Deng et al., 2009], it became possible
to train large multilayered neural networks with millions of parameters without worrying
about overfitting on the training sample. These deep neural networks represent state-of-the-
art performance across a wide range of problem domains, and as such their popularity in
the community has swelled. We can expect future performance improvements to be driven
largely by three forces; technological advances of computing hardware, the increasing avail-
ability of large amounts of data, and a greater understanding of theoretical properties of the
learning that takes places within the layers.

Artificial intelligence has always captured the imagination of the general public, thanks in
part to best-selling books and blockbuster movies but the media has also paid significant
attention to many of the actual successes of the research community. The most popular of
these successes come in the form of mastering games of skill. Some of the earliest successes
included Samuel’s checkers program [Samuel, 1959] and Tesauro’s temporal difference learner
for playing backgammon [Tesauro, 1995]. Then came the 1997 re-match between world-chess
champion Gary Kasparov and IBM’s supercomputer DeepBlue [Campbell et al., 2002]. This
match was marred with controversy with Kasparov claiming his defeat was because of foul
play, his suspicions arising from the human like nature of several of DeepBlue’s moves. In
2011 IBM made the headlines with another supercomputer, Watson [Ferrucci, 2012], beat-
ing the best contestants on the American television game show Jeopardy! This required not
just perfect knowledge recall but also the ability to understand the hidden clues within the
questions that it had to answer. In more recent successes, Google DeepMind showed that
it was possible for a single general purpose algorithm to master a number of Atari games
[Mnih et al., 2013] using only the information contained within the screen pixels as inputs
for learning. They have also recently beaten a former world champion [Silver et al., 2016] at
the ancient game of Go, a feat many believed to be out of reach for at least another ten years.

1.2 Thesis organisation 5

A considerable amount of research has been devoted to training machines to play these
games. This helps to engage the wider public in the research efforts of the AI community
because of the public’s familiarity with these games and their understanding of the amount
of skill that is required to master such games. Another appealing feature of using games is
that their dynamics are relatively well defined and can be formulated mathematically. This
means a simulator can be created, which allows the machine to learn from its own experiences
playing the game, similar to how a human would. The major difference being a human’s
ability to use their intuition and complex planning abilities, versus the computer’s ability to
simulate and learn from an almost infinite amount of game experience. These successes by
no means indicate that we are close to solving general artificial intelligence, however they do
represent large steps towards being able to solve even more complex problems in the future.

1.2 Thesis organisation

This thesis can be divided into three main parts. We continue in Chapter 2 with a short re-
view of statistical learning theory to help shed light on the intuition behind a number of the
algorithms used throughout this thesis. We explore the notion of empirical and structural
risk minimisation, and explore the concept of the complexity of a specific function class.
We show how the support vector machine is directly motivated by the theory of statistical
learning, and conclude the chapter by explaining how more complex representations can be
efficiently incorporated into classical linear learning algorithms through the use of kernel
functions.

In Chapter 3 we deviate from the support vector methodology and focus on algorithms
that construct predictors using the moments of the underlying class-conditional densities
rather than peripheral points. We introduce a novel binary classification algorithm, the
high-probability minimax probability machine (hp-mpm), that takes into consideration the
deviation of moments from their empirical counterparts, and directly minimises the worst-
case future misclassification rate of the predictor. We compare the hp-mpm with traditional
approaches on a number of small sample and high noise datasets, with empirical results
providing evidence supporting the implicit regularisation scheme that it implements.

Chapter 4 examines the problem of learning over structured output spaces. In particular,
we focus on Markov networks with unknown graph structures and develop an algorithm that
is capable of simultaneously extracting information regarding the structure of the data and
finding a large margin separation between correct and incorrect labellings. This approach
builds on advances made in large margin methods that use a set of random spanning trees
to approximate the unknown graph structure. Our approach is different in that we guide the

6 Introduction

inclusion of new trees. It is similar to multiple kernel learning where we iterate between the
addition of new kernels, which are represented by our trees, and solving a restricted SVM
over the new combined kernel.

Chapter 2

Machine Learning

In this chapter we provide a short introduction to several of the key ideas that underpin
modern machine learning. Through this short introduction we hope to provide the reader
with an insight into how some of today’s most popular learning algorithms have been con-
structed in the context of statistical learning theory, and provide an understanding of the
intuition behind them. We begin the chapter by introducing much of the basic notation
that will be used throughout this thesis and present a short overview of the main ideas be-
hind statistical learning theory. We then discuss the support vector machine, an algorithm
motivated by the generalisation guarantees offered by the theory, and conclude the chapter
by discussing how kernel based methods allow linear learning algorithms to efficiently use
complex, high-dimensional representations.

2.1 Learning framework

Machine learning is an inductive process whereby we are given a set of training examples
and we wish to infer some relationship that will hold true in the future. The relationship
is characterised by the function that we learn and its generalisation ability measures how
well this relationship holds true in the future. There are three classical learning problems;
classification, regression and density estimation. The first two are considered supervised in
the sense that each training example consists of an input-output tuple, the output being a
class label for classification and a real-valued output for regression, and the goal is to learn
a function that maps inputs to outputs. Density estimation is considered unsupervised and
training examples consist only of inputs. The goal here is to learn how the inputs are related
to one another and find a function that models the underlying probability distribution that
the examples were drawn from.

The No Free Lunch theorem [Wolpert and Macready, 1997] tells us that in order for a best
function to exist for these tasks, we must make a number of assumptions regarding the rela-

8 Machine Learning

tionship between the data that we have currently seen, and the data we expect to see in the
future. In the statistical learning theory setting we assume that the data, both past and fu-
ture, are sampled independently according to the same underlying distribution. This means
that each new observation brings with it as much possible information about the underlying
phenomenon that generates the data. Therefore as more data is presented to the learning
algorithm, our ability to model the phenomenon should improve. This is the underlying
principle of the data-driven approach taken by machine learning; more data means more
information, which makes better predictions possible.

We now begin to formalise the learning setup and start by introducing some notation that
will be used throughout the thesis. Let X denote the input space and Y the output space.
We assume that the input space X is arbitrary and the nature of the output space Y depends
on the problem. The focus of this chapter is on binary classification and as such we will
assume that Y ∈ {−1, +1} for the remainder and make the further assumption that the input
space X is Euclidean. The training data is denoted by the set S = {(xk, yk) ∈ X × Y | k =
1, . . . , m}, and we use this to learn a function f : X → Y mapping input observations to class
membership. We consider a probabilistic framework, where we assume that each example
(xk, yk) is sampled independently from some fixed but unknown probability distribution
P (X, Y). Our goal is to model the probability of an observation x ∈ X belonging to a
specific class y ∈ Y, therefore we are interested in the distribution P (Y |X). This can be
obtained through Bayes law where

P (Y |X) = P (X|Y)P (Y)
P (X) = P (X, Y)

P (X) .

In the case of binary classification, if we are able to compute P (Y |X) then for each x ∈ X
the optimal prediction function f∗(x) would assign the labelling y ∈ Y with maximum a
posterior probability i.e.

f∗(x) = argmax
y∈Y

P (Y = y|x) . (2.1)

This is known as Bayes rule and we now discuss how to formalise this in terms of loss
functions and expected risk. We define the risk of a function f as

R(f) := P (f(x) ̸= Y) = E [ℓ(f(X), Y] , (2.2)

where ℓ : Y × Y → {0, 1} is the loss function and the expectation is taken with respect to
the probability distribution P (X, Y). For binary classifiers a natural choice of loss function
is given by the indicator 1{f(x) ̸= y}, which returns one if the function f(x) predicts
incorrectly, and zero otherwise. If we plug this loss function into expression 2.2 we see that

2.1 Learning framework 9

the function given in 2.1 corresponds to the one that minimises its values. Unfortunately
we do not have access to the joint probability distribution P (X, Y) and we must use other
means to minimise the expected risk.

Empirical risk minimisation

Given our limited amount of training data S, we want to be able to find a function f from
the space of possible functions F so that we come as close as possible to minimising the
expected risk. A direct approach would be to examine the risk of a function on the training
sample S and use this information to construct the predictor. To do this we replace the
expected risk R(f) over P (X, Y) with the empirical risk R̂(f) over the training sample S,
where

R̂(f) := 1
m

m∑
k=1

ℓ(f(xk), yk) . (2.3)

The goal of the learning algorithm is to search over the space of all possible functions F
and return the function f ∈ F that minimises the empirical risk. This approach is known
as empirical risk minimisation (erm) and plays a crucial role in much of statistical learning
theory (slt).

One can encounter a number of problems when implementing this inductive process. For
example, if the space of all possible functions is infinite then it is possible that there are
infinitely many functions f ∈ F capable of obtaining zero empirical risk. The difficultly now
amounts to choosing which of these candidate functions is the best. Another potential pitfall
arises when we work with datasets where the dimensionality of the data is large compared
to the number of training samples. In this setting it is relatively easy to find a function that
obtains low empirical risk, however the performance of the function may fail to generalise
to unseen examples. This is known as over-fitting and is a result of the hypothesis space
F being overly complex for the training data that it was trained using. The opposite can
also occur where the best classifier from the hypothesis space results in a large number of
errors on the training data, indicating that the hypothesis is not complex enough for the
training data that we have seen. This is known as under-fitting, and later we will discuss
how it, and overfitting, can be handled using regularisation methods and/or following a
structural risk minimisation (srm) scheme. For now we discuss the necessary and sufficient
conditions that a learning machine must possess in order to be sure that the minimisation
of the empirical risk can lead to small values of actual risk. This is known as the consistency
of the learning process, and it can be stated more formally by ensuring that the following

10 Machine Learning

expression converges in probability∣∣∣R(fm)− R̂(fm)
∣∣∣→ 0 as m→∞ (2.4)

where fm ∈ F is the function chosen by the learning machine on S. We know by the law
of large numbers that for any fixed function f ∈ F , the empirical risk will converge to the
expected risk. However for erm, the function fm is dependent on the training data S, and
we need to be sure that the function returned by the learning process satisfies the expression
above. The following theorem states what is required for the erm to be consistent:

Theorem 1 [Vapnik and Chervonenkis, 1991]. One-sided uniform convergence in probabil-
ity i.e.

lim
m→∞

P

[
sup
f∈F

(
R(f)− R̂(f)

)
> ϵ

]
= 0 ∀ϵ > 0

is a necessary and sufficient condition for the consistency of erm.

This theorem states that in order for a learning process to be consistent the empirical risk
of the worst function in F must converge in probability to its expected risk. Therefore as-
suming that consistency is a desired feature of the learning process, any analysis of the erm
principle should be conducted in a worst-case setting.

Suppose we assume consistency for a given function class F , we know that as the number
of samples tends to infinity, erm will converge upon the function fm ∈ F that minimises
the expected risk. However in reality we only ever have a finite amount of data to learn
from, and therefore we would like to understand the rate of convergence for a particular
class of functions F . Intuitively this depends on the complexity of the function class used
during the learning, where complexity can be defined in a number of different ways e.g.
the covering number, Rademacher complexity or the VC dimension. Each of these methods
basically measure the number of possible functions that the class F can generate, and thus
its capacity to fit the data. Given that this is a light introduction to slt, we will only
touch briefly on the VC (Vapnik-Chervonenkis) dimension h of the function class F that
f is chosen from. This measures the maximum number h of points that can be shattered
in all possible 2h configurations using functions f ∈ F . For example, if we consider binary
classification for linear functions with n-dimensional inputs, the maximum number of points
that can be shattered is n + 1.

We want to form bounds on the probability that the empirical risk of any function on sample

2.1 Learning framework 11

S will not deviate by much from the expected risk on the function i.e.

P

[
sup
f∈F

(R(f)− R̂(f,S)) > ϵ

]
< H(F , m, ϵ) ,

where H is some function that depends on the number of training samples m, the maximum
deviation of empirical and expected risks ϵ and properties of the function class F , namely
the V C dimension h. By fixing the value of H(F , m, ϵ) = δ, and solving with respect to
ϵ, we can make statements regarding the deviation of the expected and empirical risk that
hold true for high probability i.e. with probability at least 1 − δ over the random draw of
the training sample S

R(f) ≤ R̂(f,S) + H̃(F , m, δ) , (2.5)

where H̃ measures the uncertainty in the estimate of the expected risk of the function f .
Intuitively the value of H̃ decreases as the number of samples m increases, and increases
as the complexity of the function class or the desired level of precision increases. Note that
this bound (2.5) holds true for each function f ∈ F , not just the one that minimises the
empirical risk.

Structural risk minimisation

These bounds are the principle behind the learning setting known as structural risk minimi-
sation (srm) [Vapnik and Chervonenkis, 1974]. In this setting one has access to a nested
subset of function classes

F1 ⊂ F2 ⊂ · · · ⊂ Fn . . .

such that the VC dimension hk of each subset Sk satisfies

h1 ≤ h2 ≤ · · · ≤ hn

For each subset of functions Fk erm is performed and the learning algorithm then selects
the function that minimises the bound on the expected risk i.e.

fm = argmin
k

(
argmin

f∈Fk

R̂(f) + H̃(Fk, m, δ)
)

We mentioned earlier the concept of over/under-fitting and we can see that the srm trades
off the fit on the data, given by the empirical risk R̂, with the complexity of the function
represented by the penalty term H̃. As the subset index n increases, the empirical risk

12 Machine Learning

Model complexity

E
rr

o
r

Training Error

Complexity Penality

Generalisation Ability

Fig. 2.1 The trade off between over and under fitting. We see that as the model complexity
increases it is capable of better performance on the training sample. However this comes
with an additional complexity penalty in its generalisation ability. In srm we look for
the sweet spot between complexity and training error represented by the minimum of the
generalisation term.

will decrease since all functions f ∈ Fi−1 are also in Fi. However the value of the penalty
term in the bound will increase as we use a more complex function class. When there is a
large amount of data relative to the VC-dimension i.e. m/h > 20, then one can expect that
the minimisation of the empirical risk is what dominates the determination of the solution.
However if m/h is small then the relationship between the complexity of the functions across
subsets plays a larger role in determining what function the srm selects. One of the most
famous bounds is given by Vapnik and Chervenonkis, and is the basis behind the formulation
of the support vector machine that we discuss later in this chapter

Theorem 2 [Vapnik and Chervonenkis, 1974] Let h denote the VC-dimension of the func-
tion class F , S a training sample of m examples and let R̂ define the empirical risk given in
2.3. For all δ > 0 and f ∈ F , the following bound regarding the expected risk of f holds true

R(f) ≤ R̂(f,S) +

√√√√h
(
log 2m

h + 1
)
− log(δ/4)

m
, (2.6)

with probability at least 1− δ for m > h over the random draw of the training sample S.

srm provides a principled way to select the function that minimises expected risk, however
it can be difficult to implement in practice. For example we need to have access to a
nested subset of function classes of known VC-dimension. This can be done rather easily

2.2 From theory to practice: the support vector machine 13

for functions that are linear in parameters and a nested sequence can be obtained by simply
increasing the polynomial degree of the function class, however it is not so straightforward
when we consider non-linear approximating functions.

Regularisation

A perhaps more straightforward approach uses a large function class F and directly penalises
the complexity of f ∈ F using a penalisation (regularisation) function Ω : F → R. This
results in the minimisation of the regularised risk functional given by

fm = min
f∈F

R̂(f) + λΩ(||f ||) , (2.7)

where λ ∈ R is the regularisation parameter that controls the trade off between the com-
plexity of the solution and the fit of the data. The regularisation function is a non-negative,
non-decreasing function that takes as input the norm of the function f . Similar to srm,
one has to solve expression 2.7 several times for different values of λ, and often one has to
withhold another part of the training data to evaluate the quality of the solution obtained
from minimising the regularisation risk functional. One popular procedure for this is known
as cross-validation, where the training data is split in to K disjoint subsets of S, a model is
then trained using the data in S \Sk and evaluated on Sk. The best choice of regularisation,
λ, is given by the value that performs the best when averaged across all K subsets Sk, and
the final function is learned using the full training sample with the best performing value of
λ.

2.2 From theory to practice: the support vector machine

The bounds found by srm methods are often very loose, and most modern machine learning
methods apply the notion of regularisation coupled with cross-validation in order to find the
function that best approximates the one with lowest expected risk. We now present the sup-
port vector machine (svm), a state of the art classification algorithm, whose regularisation
scheme mimics the srm bounds.

Suppose the dataset S = {(xk, yk)}mk=1, where xk ∈ Rm and yk ∈ {−1, +1}, can be perfectly
separated by the hyperplane H(w, b) := {x ∈ X | ⟨w, x⟩ = b}. This means that the following
relationship holds true

yk (⟨w, xk⟩ − b) > 0 ∀ k = 1, . . . , m . (2.8)

There may be many such hyperplanes where the relationship 2.8 holds true and the empirical
risk on S is zero, however what we are looking for is the optimal hyperplane. Given that we

14 Machine Learning

are considering the space of linear functions F := {f : X → R | f(x) = ⟨w, x⟩ − b}, each of
these hyperplanes has a VC-dimension of n + 1, and therefore the srm principle is unable to
distinguish between separating hyperplanes using this interpretation of complexity. Before
we describe the complexity measure considered by the svm we introduce the concept of a
margin and discuss the uniqueness of hyperplanes. Assuming the condition 2.8 holds true,
the margin of a hyperplane H(w, b) on S is given by the smallest distance of a datapoint
(xk, yk) to the hyperplane i.e.

Γ(w, b,S) := min
k=1,...,m

yk (⟨w, xk)− b)
||w||

.

If a dataset can be separated by some hyperplane defined by (w, b), then it can also be
separated by some scalar multiple of these quantities. Therefore there are infinitely many
separating hyperplanes and we must use a method to ensure that each hyperplane is defined
uniquely. To do this we use the canonical hyperplane approach, where each separating
hyperplane satisfies the following,

yk (⟨w, xk⟩ − b) ≥ 1 ∀ k = 1, . . . , m .

The svm considers the complexity of a function in terms of its norm ||w||, where a larger
norm is considered to be a more complex function. Therefore the goal is to find the minimum
norm hyperplane that separates the data. From a srm perspective, we can can view this in
terms of a nesting scheme of hypothesis classes of increasing norm i.e.

Fn = {f : X → R | f(x) = ⟨w, x⟩ − b, ||w|| ≤ Λn} ,

where Λ1 ≤ · · · ≤ Λn ≤ It seems reasonable to assume that when Λk < Λk+1, the
complexity of the function classes satisfy h(FΛk

) ≤ h(FΛk+1). Theoretical justification of
this nesting sequence is provided in the following theorem regarding the VC-dimension of a
canonical hyperplane with γ-margin where γ = Γ(w, b,S) = 1

||w|| .

Theorem 3 Let x ∈ X be bounded by a sphere of radius R i.e. ||x|| ≤ R. Then the set of
γ-margin separating hyperplanes has VC-dimension bounded by the inequality

h ≤ min
(

R2

γ2 , n

)
+ 1 (2.9)

In the canonical hyperplane setting, finding the minimum norm hyperplane is equivalent to
finding the one that maximises the margin on S. Geometrically the intuition behind this
approach is that by maximising the distance between any two examples of different classes,
we minimise the chances new unseen examples will fall on the wrong side of the hyperplane.

2.2 From theory to practice: the support vector machine 15

The svm optimisation problem is given by

min
w,b

1
2 ||w||

2 s.t. yk (⟨w, xk⟩ − b) ≥ 1, k = 1, . . . , m . (2.10)

This is referred to as the primal problem formulation, and can be solved using a standard
quadratic optimiser. However we will see later that it is most commonly solved using the
dual version of the problem. The dual is constructed by introducing Lagrange multipliers
(dual variables) αk ≥ 0 for the margin constraints on each example k = 1, . . . , m. This
results in the Lagrangian

L(w, b, α) := 1
2 ||w||

2 −
∑

k

αk (yk (⟨w, xi⟩ − b)− 1) (2.11)

Solving for the primal variables w and b we see that at optimality

∂L

∂w
= 0 and ∂L

∂b
= 0 ,

which results in the following properties for the optimal hyperplane

• Each dual variable is non-negative and there is an even distribution of weight placed
upon the observations from each class

∑
k

αkyk = 0 , αk ≥ 0, k = 1, . . . , m . (2.12)

• The optimal hyperplane is represented using a linear combination of the input vectors
xk, weighted according to dual variable αk and take the sign of the class yk,

w =
∑

k

αkykxk, αk ≥ 0, k = 1, . . . , m (2.13)

• The Karush-Kuhn-Tucker (kkt) conditions

αk (yi(⟨w, xi⟩ − b)− 1) = 0, k = 1, . . . , m , (2.14)

state that only those examples that appear on the margin have non-zero weight. This is
where the term support vector comes from since it is only these examples that support
the hyperplane and determine the solution.

By plugging these values into the Lagrangian, and taking into consideration the kkt condi-
tions, we obtain the functional

L(α) =
∑

k

αk −
1
2
∑

k

∑
j

αkαjyiyk⟨xk, xj⟩ , (2.15)

16 Machine Learning

and the goal of the svm is maximise this functional subject to the constraints on the dual
variables given in 2.12. This results in the quadratic program given by

max
α

∑
k

αk −
1
2
∑

k

∑
j

αkαjyiyk⟨xk, xj⟩ (2.16)

s.t.
∑

k

αkyk = 0, αk ≥ 0, k = 1, . . . , m .

The svm makes a prediction y∗ for new example x∗ ∈ X according to

y(x∗) =

 1 if ⟨w, x∗⟩ − b ≥ 0

0 otherwise
, (2.17)

where value of the bias term b is found by selecting a support vector from each class x+ and
x−, and using the kkt conditions 2.14 to get

b = 1
2 (⟨w, x+⟩+ ⟨w, x−⟩) . (2.18)

So far we have only discussed the case where the data is assumed to be perfectly separable,
however the modern day version of the svm [Cortes and Vapnik, 1995] deals with the case
of inseparable data through the introduction of slack variables. These slack variables allow
violations of the margin condition and the optimal solution often contains a number of data
points lying within the margin of the hyperplane, and even some falling on the wrong side
of it. The primal optimisation is now given by

min
w,b,ξ

1
2 ||w||

2 + C
∑

k

ξk (2.19)

s.t. yk (⟨w, xk⟩ − b) ≥ 1− ξk, ξk ≥ 0, k = 1, . . . , m , (2.20)

where ξk are the slack variables and C is the regularisation parameter that trades off train-
ing data accuracy with the complexity of the solution. Larger values of C are likely to
be associated with fewer errors on the training dataset, however this comes at the cost of a
smaller margin on the dataset and a tendency for the function to overfit on the training data.

The dual formulation takes a very similar form to before and is given by

max
α

∑
k

αk −
1
2
∑

k

∑
j

αkαjykyj⟨xk, xj⟩ (2.21)

s.t.
∑

k

αkyk = 0 , 0 ≤ αk ≤ C, k = 1, . . . , m

From the kkt and complementary slackness conditions, we once again expect the solution

2.3 Kernel methods 17

to consist of a sparse set of non-zero dual variables where

• if αk = 0 then yk (⟨w, xk⟩ − b) ≥ 1 and ξk = 0,

• if αk = C then yk (⟨w, xk⟩ − b) < 1 and ξk ≥ 0,

• if α ∈ (0, C) then yk (⟨w, xk⟩ − b) = 1 and ξk = 0,

This implementation overcame the requirement of separable data imposed by the original
formulation, and was shown to have strong generalisation guarantees on real world datasets.
It was noted in [Cortes and Vapnik, 1995] that it often exhibited better out-of-sample perfor-
mance than the hard-margin approach even on separable data. This was due to the added
flexibility of the soft-margin that allowed a larger margin to be obtained on the training
data. The large margin principle behind the svm has also been successfully applied to the
problem of regression [Drucker et al., 1997], density estimation [Schölkopf et al., 2001] and
structured prediction [Tsochantaridis et al., 2004], and later in Chapter 4 we formulate our
multilabel learning over an unknown graph structure using this principle.

2.3 Kernel methods

Kernel methods typically refer to a two-step approach for solving machine learning problems.
The first step involves the mapping the input vectors to a high-dimensional feature space,
and the second implements a learning algorithm to find a linear solution in that space. The
benefit of this approach stems from the use of the kernel trick [Aizerman et al., 1964; Boser
et al., 1992; Vapnik, 1998]. If the learning algorithm can be formulated so that the feature
mappings appear only as inner products then these high-dimensional spaces can be used
without having to explicitly compute them. The inner product between feature mappings is
known as the kernel function and provided this can be computed efficiently, the cost of using
these high dimensional spaces is only polynomially with respect to the size of the dataset.
We now outline the key components of the kernel methods. A feature mapping

ϕ : X → H , (2.22)

takes the original input observations x ∈ X and maps them to some feature space H, which
is typically of a much larger dimension than the original space. The kernel function is given
by the inner product of feature mappings

k : X × X → R with k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ ,

where ⟨·, ·⟩ corresponds to the inner product in the feature space H. For classification
purposes, the hope is that in this new feature space observations belonging to different

18 Machine Learning

classes can be better separated, therefore making the task of classification easier. To help
motivate this we refer back to the XOR problem, which represented a significant obstacle
during the early days of neural networks. We consider the two dimensional version of the
problem where x = (x1, x2) ∈ R2 and the class membership function is given by

y(x) =

 1 if sign(x1) ̸= sign(x2)

−1 otherwise

It is well known that the XOR dataset is not separable in the original linear space X = R2,
however we see that by implementing the feature mapping

ϕ : R2 → R3 where (x1, x2)→ (x2
1, x2

2,
√

2x1x2) , (2.23)

the data becomes perfectly separable in the new space. This is shown in Figure 2.3 , where
we observe that the hyperplane given by wϕ = (0, 0,−1) and b = 0 is capable of perfectly
separating the dataset. This simple example highlights the benefits of working with feature
mappings, however given its small dimension the benefits of using kernel methods for this
problem are not overly clear.

The most attractive features of kernel based methods are their flexibility and efficiency. In
terms of their flexibility we will present a theorem that states that the kernel function k

can be chosen arbitrarily, provided there is a guarantee on the existence of a corresponding
feature mapping. This allows us to implicitly use feature spaces that we may not even know
how to explicitly compute, provided the kernel function satisfies certain properties.

Definition 1 Positive definite kernel
A function k : X×X → R is called a positive definite kernel iff it is symmetric i.e. k(x, x′) =
k(x′, x) for any two x, x′ ∈ X , and is positive definite i.e.

m∑
k=1

m∑
j=1

akajk(xk, xj) ≥ 0 ,

for any sample of m > 0 objects x1, . . . , xm ∈ X , and any choice of real numbers a1, . . . , am ∈
R.

Before we present the theorem, we first mention that the original input observations are
mapped to a Hilbert space. This is simply a complete inner-product space, which generalises
the notion of a Euclidean space, and the operations that one can perform on it to spaces
with finite and even infinite dimensions.

Theorem 4 For any positive definite kernel k on space X , there exists a Hilbert space H

2.3 Kernel methods 19

and a mapping ϕ : X → H such that

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩, for any x, x′ ∈ X .

This allows us to think of the kernel function as inducing a feature mapping. The dimen-
sion of these mappings are normally very large, which makes explicitly working with them
intractable. Fortunately for many popular kernels there are efficient methods for computing
the inner product that avoids having to ever explicitly compute the mapping ϕ(x). Con-
sider for example the kernel used during the XOR problem. This feature map contains all
monomials of degree two and its inner product can be computed using

k(x, x̃) = ⟨ϕ(x), ϕ(x̃)⟩ =
〈
(x2

1, x2
2,
√

2x1x2), (x̃2
1, x̃2

2,
√

2x̃1x̃2)
〉

(2.24)

= x2
1x̃2

1 + 2x1x2x̃1x̃2 + x2
2x̃2

2 (2.25)

= ⟨x, x̃⟩2 . (2.26)

The more general form of this kernel is known as the polynomial kernel and its feature
mapping includes all monomials up to the degree d > 0

k(x, x′) = (⟨x, x′⟩+ c)d, where c ≥ 0 . (2.27)

For input data of dimension n, the dimension of the feature space N grows at a rate of(n+d
d

)
making it computationally challenging to work with ϕ(x) explicitly for large values

of n and d. On the other hand, the kernel function only requires n operations to compute
the inner product in the original space, which is followed by the raising of this value to a
given power. This is considerably more efficient for large n and d. Note that when using
polynomial kernels we have to be mindful of the fact that as d increases, the absolute value
of the inner products have a tendency to drift towards either zero or infinity as d increases.

Another popular choice of kernel is the Gaussian kernel,

k(x, x′) = exp
(
−||x− x′||2

2σ2

)
. (2.28)

where σ > 0 is referred to as the smoothness parameters of the kernel. Kernels are often
thought of as similarity measures and the Gaussian kernel measures similarity in terms of
the Euclidean distance between points in X . Points x, x′ ∈ X that are far from one another
have a small value of k(x, x′). However as the value of σ increases the effective distance
between points decreases and this is captured by a larger value of k(x, x′). This is where the
interpretation of smoothness comes from, the larger the value of σ the greater the distance
required for observations to be thought of as dissimilar. The feature map corresponding to

20 Machine Learning

this kernel is actually infinite dimensional, however through the kernel trick we can use it
efficiently.

We return to the svm algorithm and focus on the dual formulation given in 2.21. We can
now replace the inner products ⟨x, x′⟩ with an arbitrary kernel k(x, x′) and the optimisation
becomes

max
α

∑
k

αk −
1
2
∑

k

∑
j

αkαjykyjk(xk, xj) (2.29)

s.t.
∑

k

αkyk = 0 , 0 ≤ αk ≤ C, k = 1, . . . , m .

The kernel function represents the inner product of the feature mappings ϕ(x) and the
prediction function is given by

y∗(x) =

 1 if ⟨w, ϕ(x)⟩ = ∑
k αkykk(xk, x) ≥ b

−1 otherwise
. (2.30)

In Figures 2.2 and 2.3 we illustrate the nature of the solutions derived from different kernels.
Recall that linear patterns are found in the feature space, however these translate to non-
linear relationships in the original space, as shown in Figure 2.2. When it comes to choosing
a kernel for a particular task, prior knowledge of the dataset one is learning over is key to
selecting an appropriate one. For example, on the linear dataset the function found by the
Gaussian kernel with small σ is unnecessarily complex for the problem at hand, and would
be prone to overfitting. On the other hand, on the circle dataset, any function found using
the linear kernel will struggle to get an accuracy of more than 50%.

We conclude our introduction to kernels by outlining a simple but powerful theorem that ties
together notions of regularisation and kernels. To do this we view things from a reproducing
kernel Hilbert space point of view. We think of the feature space H as a Hilbert space of
functions f ∈ H coupled with a reproducing kernel k : X × X → R such that

ϕ(x) = k(·, x) and ∀ x ∈ X , ∀ f ∈ H, ⟨f, k(·, x)⟩ = f(x) . (2.31)

Theorem 5 Representer theorem [Wahba, 1990]
Suppose we have a dataset S = {x1, . . . , xm} and the problem is to minimise the regularised
risk functional given by

min
f∈H

R̂(f) + Ω(||f ||2) , (2.32)

2.3 Kernel methods 21

x1

x
2

Linear SVM solution

class +

class −

Linear

x1

x
2

Quadratic SVM solution

class +

class −

Quadratic

x1

x
2

Gaussian σ = 1 SVM solution

class +

class −

gaussian σ = 1

x1

x
2

Gaussian σ = 10 SVM solution

class +

class −

gaussian σ = 0.1

Fig. 2.2 Decision boundaries found on a training set generated by two multivariate normal
distributions. The optimal decision boundary is given by a linear hyperplane and we see
that the linear representation finds a good decision boundary. The decision boundary of the
quadratic function performs well on the bottom right quadrant, however the quadratic nature
of the solution means that it will incorrectly classify points in the top left quadrant. The
Gaussian kernels find irregular decision boundaries with the one with small width finding an
particularly over complicated pattern for the problem at hand.

22 Machine Learning

x1

x
2

Linear SVM solution

0

0

1

class +

class −

Linear

x1

x
2

Quadratic SVM solution

0

0

1

class +

class −

quadratic

x1

x
2

Gaussian σ = 1 SVM solution

0

0

1

class +

class −

gaussian σ = 1

x1

x
2

Gaussian σ = 10 SVM solution

0

0

1

class +

class −

gaussian σ = 0.1

Fig. 2.3 Decision boundaries found on a training set generated by XOR dataset, where yk =
−1 if sign(xk,1) = sign(xk,2) and yk = 1 otherwise. The linear representation places along
the diagonal and fails to perform better than randomly, whereas the quadratic representation
finds a good decision boundary due to the product between the different dimensions. The
Gaussian representations find good decision boundaries, with the smaller width kernel being
capable of better approximating the optimal boundaries determined by the x1 and x2 axes.

2.3 Kernel methods 23

x1

x
2

Linear SVM solution

−1 0 1

−1

0

1

class +

class −

Linear

x1

x
2

Quadratic SVM solution

−1 0 1

−1

0

1

class +

class −

quadratic

x1

x
2

Gaussian σ = 1 SVM solution

−1 0 1

−1

0

1

class +

class −

gaussian σ = 1

x1

x
2

Gaussian σ = 10 SVM solution

−1 0 1

−1

0

1

class +

class −

gaussian σ = 0.1

Fig. 2.4 Decision boundaries found on a training set generated by circle dataset. If x2
k,1 +

x2
k,2 ≤ 1 then yk = −1, otherwise yk = 1. The linear representation is unable to find a

separating hyperplane that is better than random guessing and the quadratic representation
finds a smooth circular decision boundary that almost perfectly separates the data. Both
Gaussian representations perform well finding a circle like pattern for classification, however
we see the smaller width Gaussian has a slightly less smooth decision boundary.

24 Machine Learning

where Ω : R → R is the regularisation term, which takes as input the norm of the function
f and is a strictly increasing monotonic function. The solution f∗ ∈ H to this problem is
given by

f∗ =
m∑

k=1
αkϕ(xk) =

m∑
k=1

αkk(xk, ·)

and

∀ x ∈ X . f∗(x) =
m∑

k=1
αkk(xk, x) (2.33)

Proof Let the function be comprised of two components f = fS + f⊥, where fS ∈ FS

represents the projection of f onto the space spanned by the dataset S, and f⊥ is orthogonal
to the space FS i.e. f⊥ ⊥ FS . An evaluation of the function is given by

f(xk) = ⟨f, k(xi, ·)⟩ = ⟨fS , k(xk, ·⟩) + ⟨f⊥, k(xk, ·)⟩ = ⟨fS , k(xk, ·)⟩ ,

and we see that f⊥ has no influence on the evaluation of the function on training samples
S. However, there is a non-negative contribution by f⊥ to the norm of the function

||f ||2 = ||fS ||2 + ||f⊥||2 ≥ ||fS ||2

Therefore f⊥ can have no influence on reducing the empirical risk R̂, however it does con-
tribute positively to the penalisation term Ω, and it should therefore not contribute be part
of the optimal solution.

Earlier we mentioned that regularisation encourages a smooth solution but we can now
also see that it has considerable computational advantages. This theorem tells us that the
solution we are looking for resides in the space spanned by the original dataset, which makes
the optimisation problem much easier and it can dramatically reduce the space over which
we have to search for a solution. Furthermore this supports and explains the representation
of the svm solution found through the Lagrangian expression 2.13.

2.4 Summary

In this chapter we provided a short introduction to several of the key ideas that underpin
much of modern machine learning methods. The goal of classification is to find the function
that minimises the expected rate of misclassification, however without knowledge of the joint
distribution over inputs and outputs, we must somehow make do with an approximation of

2.4 Summary 25

this. Empirical risk minimisation was presented as a natural alternative to the minimisa-
tion of expected risk, however we saw that it often suffered from problems calibration with
respect to over and under fitting. Structural risk minimisation sought to overcome the cali-
bration issues by taking into consideration the complexity of the function class and sample
size by minimising high-probability bounds of the expected risk. These bounds are often so
weak that they became invalid, and in practice most modern methods select a function by
minimising a regularised risk functional, coupled with a cross validation scheme. Later in
Chapter 3 we will present a new algorithm, the high-probability minimax probability ma-
chine, that directly minimises the high-probability worst case future misclassification rates,
and in practice we saw that an approximation to this approach had to be used in conjunction
with cross-validation to choose the desired function.

The support vector machine was presented as an example of an algorithm motivated by
statistical learning theory. We saw that it minimised a regularised risk functional and showed
that the complexity of a function could be related to its norm. We focused on the dual form
of the solution, which led to our discussion of kernel based methods. If the input vectors
appeared only as inner products in the learning algorithm then the kernel trick could be
applied, meaning that very high dimensional feature spaces could be used without having
to ever explicitly compute them. In Chapter 4 we make use of both the support vector
methodology and kernel based methods in the construction of our large margin solution to
learning over unknown graph structures. The main differences between our approach and
the original svm is that our feature mapping is over the joint input-output space and there
are an exponential number of constraints for each training sample, however much of the
same theory and machinery can be applied to it.

Chapter 3

Linear discriminants: moments,
uncertainty and applications

In the previous chapter we introduced the support vector machine svm, a state-of-the-art
classifier, which is largely motivated by the insights provided by statistical learning theory.
We showed that the svm constructs a prediction rule, that is linear in feature space, using
a set of data points (supports) that would appear to reside on the periphery of the class-
conditional densities. Using this perspective on how the svm constructs its solution, one
could imagine that in high noise environments, such as financial markets, the solution that
it finds may struggle to generalise well on unseen examples. This could be a result of the
solution being comprised of examples that are atypical of the true underlying distributions,
and thus offer little insight into where the boundaries between the two classes reside. In
this chapter we present a different approach to binary classification. Rather than construct-
ing the predictor using a set of points that reside on the periphery of the class-conditional
densities, we present algorithms that make use of the first and second order moments of
class-conditional densities. The hope is that by using the moments of a distribution, rather
than peripheral points, we are able to find solutions that are more robust to high noise
environments.

We begin the chapter by introducing one of the oldest and best-known moment based ap-
proaches, Fisher’s discriminant analysis fda. We show that this approach is capable of
producing the Bayes optimal solution when both class-conditional densities are normally
distributed and share the same covariance matrix. However, this assumption rarely holds
true in reality and Fisher’s discriminant struggles to provide generalisation guarantees out-
side of this idyllic setting. This leads us to consider the Minimax Probability Machine mpm,
a distributional free approach for binary classification that directly minimises the worst case
probability of misclassifying future data points. The only information that is required a

28 Linear discriminants: moments, uncertainty and applications

priori is knowledge of the means and covariances of the class-conditional densities. In prac-
tice however, empirical moments have to be used and it is likely that in high noise/small
sample environments, the accuracy of these moment estimates can be poor. This can lead
to suboptimal predictors and overly confident expectations regarding the future misclassifi-
cation error rate. To address this we formulate a new version of the mpm, one that takes
into consideration the uncertainty of the empirical moments and provides guarantees on
future misclassification error rates that hold with high-probability. We observe that the in-
corporation of moment uncertainty introduces a natural regularisation component into the
optimisation scheme, where a smaller number of observations for a particular class results
in greater uncertainty regarding its distribution, thus warranting additional regularisation.
This is an often overlooked component of binary classifiers, where the class-conditional dis-
tributions are traditionally jointly regularised, ignoring the relative amount of information
that is available for each class.

The formulation of a high-probability approach to mpm’s, and the derivation of a suitable
algorithm for solving the optimisation problem, represents the main theoretical contribution
of this chapter. From a practical perspective, we evaluate the performance of the classifiers
on a range of UCI benchmark datasets, whilst also experimenting under a number of different
noise regimes. Furthermore, we present a number of experiments relating to the prediction
of financial time series, and present a general case for favouring classifiers constructed using
moments rather than supports, when predicting the movement of financial instruments.

3.1 Fisher’s discriminant analysis

The basic idea behind discriminant analysis is to find a function that is capable of accurately
discriminating between input data, X ⊆ Rn, belonging to different classes. The goal is to
find a discriminant function f : X → Rd, that evaluates f(xi) and f(xj) to be similar when
xi and xj are similar, and different otherwise. Traditionally the similarity of observations
xi and xj is measured using their class membership yi and yj , whereas the similarity of
f(xi) and f(xj) is measured using their Euclidean distance. This chapter focuses on linear
predictors for binary classification tasks, which result in discriminant functions defined by
f(x) = wT x , where w ∈ Rn. In order to perform the analysis and find the optimal w,
we must first define an evaluation criterion J that measures the discriminatory power of
the function. More formally, given some criterion J(w) and a set of constraints C on the
projection w, the discriminant analysis procedure is given by

w∗ = argmax J(w) s.t. w ∈ C.

3.1 Fisher’s discriminant analysis 29

The evaluation criterion J(w) is chosen at the practitioners discretion depending on what
characteristics they may wish to exploit in the data, or what restrictions they may want to
enforce upon the projections. For a good discussion of how to choose the evaluation crite-
rion, see [Mika et al., 2003]. Our focus here, is on the criterion used in Fisher’s discriminant
analysis fda [Fisher, 1936], namely finding a projection vector that maximises the distance
between the projected class means, whilst maintaining a small degree of variance around
these means. These two quantities, the distance between projected class means and the
projected class variances, are referred to in the literature as between class scatter and within
class scatter, respectively.

Given that we are not privy to the joint probability distribution over input and output
spaces, to construct our discriminant we must make use of a training set S = {(xi, yi)}mi=1,
of m labelled training samples. Let S1 = {xi | yi = 1} and S0 = {xi | yi = 0} denote the
training examples belonging to each class. The empirical class means µ̂1, µ̂0 and covariance
matrices Σ̂1, Σ̂0 are given by

µ̂j = 1
mj

∑
x∈Sj

x and Σ̂j = 1
mj

∑
x∈Sj

(x− µ̂j)(x− µ̂j)T for j = 0, 1,

where mj = |Sj | is the number of training samples belonging to Sj , where m1 + m0 = m.
We see that by projecting the data onto the direction w, the projected class means are given
by

µ̂j = 1
mj

∑
x∈Sj

wT x = wT µ̂j .

Similarly the projected class variances are given by

σ̂2
j = 1

mj

∑
x∈Sj

(wT x− µ̂j)2 = 1
mj

∑
x∈Sj

(wT x−wT µ̂j)2 = wT Σ̂jw.

The goal is to maximise the distance between these projected means, whilst ensuring the
variance around them remains small. Mathematically we measure a projection vector’s
ability to do this by the expression:

J(w) = (µ̂1 − µ̂0)2

m1σ̂2
1 + m0σ̂2

0
= wT (µ̂1 − µ̂0)(µ̂1 − µ̂0)T w

wT (m1Σ̂1 + m0Σ̂0)w
= wT CBw

wT CW w , (3.1)

where CB and CW represent the between-class and within-class scatter, respectively. Note
that the within-class scatter CW is a weighted combination of the variances around each
class, where the weighting depends on the relative proportions of each class in the training
sample.

30 Linear discriminants: moments, uncertainty and applications

3.1.1 Finding the solution

It is well known that the maximisation of (3.1) has a global optimum and that this can
be found by solving the generalised eigenproblem CBw = λCww, and setting w to the
eigenvector with the maximum eigenvalue. To show this, first we differentiate J(w) with
respect to w

∂J(w)
∂w = (wT CBw)CW w− (wT CW w)CBw

(wT CW w)2 = 0

=⇒ (wT CW w)CBw = (wT CBw)CW w

=⇒ CBw =
(

wT CBw
wT CW w

)
CW w. (3.2)

It is clear that (3.2) is a generalised eigenproblem where w is the eigenvector and
(

wT CBw
wT CW w

)
=

J(w) is its corresponding eigenvalue. Therefore in order to maximse J(w) we simply use
the eigenvector corresponding to the largest eigenvalue of the eigenproblem CBw = λCW w.
Alternatively given that the solution is invariant to scaling i.e. J(λw) = J(w) for λ > 0,
we can use the generalised eigenproblem to derive a simple expression for w by ignoring the
scalar constants

λCW w = CBw = (µ̂1 − µ̂0)(µ̂1 − µ̂0)T w ∝ (µ̂1 − µ̂0)

=⇒ w = C−1
W (µ̂1 − µ̂0).

Furthermore, in [Duda et al., 2012; Mika, 2002] it was shown that Fisher’s discriminant
analysis was equivalent to the problem of least squares regression when the output variables
are set to the class labels.

3.1.2 Optimality

The original goal of fda was not to directly construct a classifier but rather to project
the input data into a lower dimensional space were discrimination between classes would
become easier. Therefore it is often referred to as a supervised dimensionality reduction
technique, and shares a number of similarities with its unsupervised counterpart, principal
components analysis. Despite this, it turns out that under a specific set of conditions, the
direction found using fda is equivalent to that given by the Bayes optimal classifier i.e. the
one that minimises the expected misclassification rate over the joint probability distribution
of X × Y. At first glance it may not seem obvious that the maximisation of J(w) would
produce a solution that replicated the Bayes optimal classifier, however it turns out that
if both class-conditional densities are normally distributed and share the same covariance
structure i.e. Σ = Σ1 = Σ0, then the direction found using Fisher’s discriminant is equal to

3.1 Fisher’s discriminant analysis 31

that used in the Bayes optimal classifier, up to an arbitrary scaling factor. To see this, let
p = P (y = 1) and recall that the class conditional probabilities P (x|y = j) for a normally
distributed vector are given by

P (x|y = j) = 1
(2π)n/2|Σ| 12

exp
(
−1

2(x− µj)T Σ−1(x− µj)
)

,

where |A| refers to the determinant of the matrix A ∈ Rd×d. Bayes rule states that

P (y = 1|x) = pP (x|y = 1)
pP (x|y = 1) + (1− p)P (x|y = 0) ,

therefore if P (y = 1|x) ≥ 0.5 then the Bayes optimal classifier predicts that x belongs to
class 1, and class 0 otherwise. By comparing the log probabilities we see that log P (y =
1|x) ≥ log P (y = 0|x) is equivalent to

− 1
2(x− µ1)T Σ−1(x− µ1) + log p ≥ −1

2(x− µ0)T Σ−1(x− µ0) + log(1− p) (3.3)

=⇒ (µ1 − µ0)T Σ−1x− (µT
1 Σ−1µ1 − µT

0 Σ−1µ0) + log p− log(1− p) ≥ 0

=⇒ wT x− b ≥ 0,

and we recover the same projection vector w as that found using Fisher’s discriminant i.e.

w = Σ−1(µ1 − µ0).

Note that the bias term b for the Bayes optimal classifier is given by

b = 1
2wT (µ1 + µ0)− log p + log(1− p), (3.4)

which provides an insight on how to best use the direction found by fda as a classifier.
Therefore by estimating p using p̂ = m1

m1+m0
, along with the empirical moments µ̂j and Σ̂j ,

we can compute b accordingly, and classify points using g(x) = I[wT x− b ≥ 0].

When implementing the algorithm, Bayes optimality can only be assured if the empirical
estimates of the moments are indeed true. Given the limited size of the training sample,
the best estimates of the class means are given by their empirical counterparts, and the
best estimate of the shared covariance structure is given by a weighted combination of the
individual covariances i.e. mΣ ≈ m1Σ̂1 + m0Σ̂0 = CW . It is important to point out that
the optimality of the fda solution relies heavily on a specific set of conditions that the
class-conditional densities must satisfy. A straightforward extension to fda is quadratic
discriminant analysis, which considers the situation where the class-conditional densities are
once again normally distributed, however they are allowed to have different covariances.

32 Linear discriminants: moments, uncertainty and applications

Following a similar technique to above, it can be shown to provide Bayes optimal solution.
Given that our interest here is in linear discriminants, we refer the interested reader to
[Friedman et al., 2001] for more details.

3.2 Minimax probability machine (MPM)

So far we have discussed the case where the underlying distributions generating the data
are normal and showed that when the two classes share the same covariance structure the
direction found by Fisher’s discriminant is indeed optimal. In this section we present the
Minimax Probability Machine mpm [Lanckriet et al., 2003]; a moment based linear predictor
that directly minimises the probability of misclassification on future examples in a worst-case
setting. The only information that is required for this is prior knowledge of the class means
and covariances. No further assumptions regarding the underlying distributions is required,
and the algorithm works by minimising the maximum probability of misclassification, which
is taken with respect to all class-conditional densities with a given mean and covariance.
The use of class conditional densities and their associated error rates is similar in respect to
the methods proposed in [Marchand and Shawe-Taylor, 2002; Sokolova et al., 2002], how-
ever these methods assume that the decision boundary can be constructed using a logical
combination of a small set of data derived features, whereas this method uses the first and
second moments.

3.2.1 Formulation

We begin the formulation of the mpm by briefly mentioning the Chebyshev Inequality, a
classical result in probability theory that describes a fundamental relationship between the
moments of a random variable. The Chebyshev Inequality states that for any probability
distribution of a random variable x ∈ R, nearly all all the values are close to the mean. More
precisely, for any probability distribution of a random variable with mean µ and standard
deviation σ, the probability that x is further than v > 0 standard deviations from the mean
µ is upper bounded by 1/v2 i.e.

P{|x− µ| ≥ vσ} ≤ 1
v2 .

This concept was indirectly applied in Fisher’s discriminant where we looked to minimise the
projected variances of the classes and maximise the distances between the projected means,
however no explicit guarantees on the probability of misclassification were used and the un-
derlying distributions were assumed to be normal. The mpm is more direct and uses the
following multivariate generalisation of the Chebyshev Inequality [Bertsimas and Popescu,
2005; Marshall and Olkin, 1960] to optimise over the worst-case setting of probability dis-

3.2 Minimax probability machine (MPM) 33

tributions generating the data:

sup
x∼D

P[x ∈ J] = 1
1 + d2 where d2 = inf

x∈J
(x− µ)T Σ−1(x− µ), (3.5)

where x is a random vector, J is a given convex set, and the supremum is taken over all
distributions D for x that have mean µ and covariance Σ. This theorem states that the
maximum probability that a random vector x ∼ D belongs to a convex set J is related to
the minimum Mahalanobis distance d2 from the centre of the distribution µ to the set J .
In [Lanckriet et al., 2003], the authors showed that when J is the upper half-space defined
the separating hyperplane H(w, b) := {x | wT x = b}, this distance d2 admits a closed form
expression given by

d2 = inf
wT x≥b

(x− µ)T Σ−1(x− µ) =


(b−wTµ)2

wT Σw if wTµ < b

0 if wTµ ≥ b
. (3.6)

Returning to the problem of binary classification, let x1 and x0 be random vectors drawn
from class-conditional densities with mean and covariances given by (µ1, Σ1) and (µ0, Σ0),
respectively. The goal of a linear classifier is to find the projection vector w and bias b that
minimise the probability of future misclassification i.e. points lying on the wrong side of the
separating hyperplane H(w, b). This goal can be represented explicitly using the following
optimisation problem

max
w,b,ω

ω s.t. inf
x1∼D1

P (wT x1 ≥ b) ≥ ω

inf
x0∼D0

P (wT x0 ≤ b) ≥ ω,

where ω ∈ [0, 1] is the minimum probability that examples are labelled correctly in the
future, and Dj for j = 0, 1 are the set of distributions with moments (µj , Σj).

To see this, let our classifier predict that x belongs to class 1 if wT x ≥ b. The maximum
probability that a point drawn from D1 resides on the wrong side of this hyperplane H(w, b)
is given by

sup
x1∼D1

P (wT x1 < b) = 1
1 + d2 = 1− ω.

Therefore the minimum probability that a random vector x1 resides on the correct side of
the hyperplane is greater than ω. Using the closed form expression for the Mahalanobis
distance given in (3.6), assuming that wTµ1 > b, we derive the following statement

inf
x1∼D1

P (wT x1 ≥ b) ≥ ω ⇐⇒ −b + wTµ1 ≥ κ(ω)
√

wT Σ1w,

34 Linear discriminants: moments, uncertainty and applications

where κ(ω) =
√

ω/(1− ω), and the optimisation problem to be re-written as

max
w,b,ω

ω s.t. − b + wTµ1 ≥ κ(ω)
√

wT Σ1w

b−wTµ0 ≥ κ(ω)
√

wT Σ0w.

This allowed the authors in [Lanckriet et al., 2003] to present the following theorem con-
cerning the mpm optimisation scheme:

Theorem 6 If µ1 = µ0 then the minimax probability decision problem does not have a
meaningful solution and the worst case misclassification probability is given by 1 − ω∗ = 1.
Otherwise an optimal hyperplane H(w∗, b∗) exists and can be determined by solving the
convex optimisation problem

κ−1
∗ := min

w

√
wT Σ1w +

√
wT Σ0w s.t. wT (µ1 − µ0) = 1, (3.7)

and setting b to the value

b∗ = wT
∗ µ1 − κ∗

√
wT

∗ Σ1w∗, (3.8)

where w∗ is the optimal solution to (3.7). The optimal worst-case misclassification probability
is given by

1− ω∗ = 1
1 + κ2

∗
=

(√
wT

∗ Σ1w∗ +
√

wT
∗ Σ0w∗

)2

1 +
(√

wT
∗ Σ1w∗ +

√
wT

∗ Σ0w∗

)2 . (3.9)

If either Σ1 or Σ0 is positive definite, the optimal hyperplane is unique.

To gain a better understanding of the optimisation problem (3.7) we can refer to its dual
formulation, which provides an appealing geometrical interpretation. Assuming µ1 ̸= µ0

and at least either Σ1 or Σ0 is positive definite, the dual problem can be written as

min
κ,u,v

κ : µ1 + Σ1/2
1 u = µ0 + Σ1/2

0 v, ||u|| ≤ κ, ||v|| ≤ κ.

For a given value κ ≥ 0, we consider two ellipsoids centred around the class means whose
shape is controlled by their covariance matrices:

E1(κ) = {x1 = µ1 + Σ1/2
1 u : ||u|| ≤ κ} and E0(κ) = {x0 = µ0 + Σ1/2

0 v : ||v|| ≤ κ}.

These ellipsoids represent the set points where the Mahalanobis distance to the class means
is less than κ. Clearly as the value of κ increases these sets will intersect. For the optimal κ

3.2 Minimax probability machine (MPM) 35

the ellipsoids will be tangent to one another and the mpm hyperplane is then the common
tangent to these sets. This is shown in Figure 3.1, where we are increasing the value of κ

until the two ellipsoids are tangent to one another.

−2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

5

6

7

8

x
1

x 2

Fig. 3.1 Minimax probability machine visualisation

The authors [Lanckriet et al., 2003] showed that it was possible to solve the optimisation
(3.7) using an iterative least-squares scheme, which has a worst-case complexity O(d3). Fur-
thermore, their empirical results show that the mpm approach to classification is competitive
with the state-of-the-art svm, thus providing evidence in support of the mpm as an efficient
and effective approach for binary classification. These encouraging results resulted in in-
creased attention from the community. In [Huang et al., 2004] the authors identified an
oversight in the original mpm formulation: the assumption that the prior probability of each
class is the same. The authors showed that if the prior probabilities of the classes differed,
then it was no longer optimal to minimise a single worst-case future misclassification rate
but rather one should minimise a weighted combination of class specific worst-case misclas-
sification rates. The weights correspond to their prior class probability and this formulation
became known as the minimum error mpm me-mpm. An alternative approach for dealing
with imbalanced data was presented in [Osadchy et al., 2015], where the authors optimised
an objective that used the svm hinge loss for the less frequent class and the minimax loss for-
mulation for the abundant class. A transductive minimax probability machine was proposed
in [Huang et al., 2014], here unlabelled test points were assigned classes based upon their
ability to minimise the worst case error bound and it was shown to be especially competitive
with the transductive svm on semi-supervised learning tasks. Similar to the transductive

36 Linear discriminants: moments, uncertainty and applications

setting, in [Huang et al., 2015] the authors focus on the problem of clustering by assigning
unlabelled data to clusters in an attempt to optimise criterion defined by the mpm framework.

The solutions found by the fda and mpm are very similar in nature with both constructing
the predictor using the first and second order moments of the class-conditional densities.
To make the connection clearer, the scalar invariance of J(w) with respect to w allows
us to select an arbitrary value for the denominator in (3.1) and introduce the constraint
wT (µ̂1− µ̂0) = 1. This translates the fda into an optimisation problem that takes the same
form as the mpm. The fda assumes that both classes share the same covariance structure,
and in practice the best estimate for this is given by mΣ̂ = m1Σ̂1 + m0Σ̂0, which results in
the following optimisation problem

min
w

√
wT Σ̂w s.t. wT (µ̂1 − µ̂0) = 1.

This is equivalent to the mpm formulation if both classes have the same covariance structure.
Furthermore, if we assume that the prior probability of each class is the same then it is easy
to show that the bias term found using the mpm in 3.8 is equivalent to that implied by the
Bayes optimal solution i.e. b∗ = wT

∗ (µ1 + µ0). This allows the fda to be interpreted in
the same context as mpm, where the optimal hyperplane is determined by hyperplane that
is tangential to the initial intersection of ellipsoids having identical size and shape, that are
centered at the respective class means. In Figure 3.2 we show the difference between the
solutions found using the mpm approach of different class-conditional covariances and the
fda’s use of a pooled covariance. We see that the pooling of the covariance matrices results
in a loss of predictive power

3.2.2 Moment uncertainty

The only assumption that was made during the formulation of the mpm was that the class-
conditional means and covariances are known in advance. However in practice, the true
moments are not known and during the implementation of the algorithm their empirical
counterparts must be used instead. In [Lanckriet et al., 2003] the authors handled the use of
empirical moments by using a specific uncertainty model, which they believed to be realistic
from a statistical point of view but more importantly was numerically tractable for the
optimisation problem. The uncertainty sets were given by

X1 =
{

(µ1 − µ̂1)T Σ−1
1 (µ1 − µ̂1) ≤ ν2, ||Σ1 − Σ̂1||F ≤ ρ

}
X0 =

{
(µ0 − µ̂0)T Σ−1

0 (µ0 − µ̂0) ≤ ν2, ||Σ0 − Σ̂0||F ≤ ρ
}

,

3.2 Minimax probability machine (MPM) 37

−2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

5

6

7

8

x
1

x 2

Fig. 3.2 In this figure we show the geometrical differences of the solutions found using mpm
and fda . The green plots represent the fda ellipsoids and hyperplane, whereas the black
plots correspond to the mpm. In the mpm solution we see that the difference in the covariance
structures permits a better solution that better separates the two classes, however that the
pooling together of covariance matrices results in a sub-optimal hyperplane formed using
the fda approach.

where µ̂1, µ̂0 and Σ̂1, Σ̂0 are the nominal empirical estimates of the class means and covari-
ances, respectively. The value ν ≥ 0 controls the maximum Mahalanobis distance of the true
mean from the empirical estimate and ρ ≥ 0 controls the deviation of the true covariance
from the empirical one, where || · ||F is the Frobenius norm.

Suppose we are only uncertain about the true value of the mean (ν > 0 and ρ = 0). Using
the uncertainty set X1, the worst-case setting corresponds to the lowest possible value of the
projection of µ1 on to w1 i.e.

min
µ1:(µ1−µ̂1)T Σ−1

1 (µ1−µ̂1)≤ν2
wTµ1 = wT µ̂1 − ν

√
wT Σ1w.

This transforms the relationship given in (3.11) to

inf
x1∼X1

P (wT x1 ≥ b) ≥ ω ⇐⇒ −b + wT µ̂1 ≥ (κ(ω) + ν)
√

wT Σ1w.

Letting ν be the same for both classes, the optimisation proceeds as before in (3.7), with
the same optimal hyperplane H(w∗, b∗) and κ∗ being found. However when it comes to

1Similarly for µ0 the worst-case projection corresponds to the maximum possible value.

38 Linear discriminants: moments, uncertainty and applications

estimating the worst-case misclassification probability, in the robust version κ∗ is substituted
with κrob

∗ = κ∗ − ν , which results in a more conservative estimate

1− ω∗ = 1
1 + (κ∗ − ν)2 . (3.10)

Note that this only permits a feasible solution if κ∗ ≥ ν, however when this condition is satis-
fied, the optimal hyperplaneH(w, b) is the same as that recovered in the original formulation.

We now consider the case where there is only uncertainty regarding the covariance matrix
(ν = 0 and ρ > 0). Under the uncertainty set Xj the worst-case setting for the covariance
matrix is given by

max
Σj :||Σj−Σ̂j ||F ≤ρ

wT Σjw = wT
(
Σ̂j + ρIn

)
w,

which effectively adds a regularisation term to the empirical covariance matrix. The rela-
tionship given in (3.11) is now

inf
x1∼X1

P (wT x1 ≥ b) ≥ ω ⇐⇒ −b + wT µ̂1 ≥ (κ(ω) + ν)
√

wT
(
Σ̂1 + ρIn

)
w,

and the optimisation can proceed as in (3.7) with the inclusion of a regularisation term in
each of the empirical covariance matrices. Note that as ρ increases, reflecting the an increase
in uncertainty regarding the covariance matrices, we effectively increase the amount of reg-
ularisation making the class-conditional covariances increasingly spherical. The geometrical
interpretation of the mpm would indicate that there will be a tendency for the projection
vector w∗ to rotate towards the vector joining the means as the level of uncertainty increases,
and for the bias term to shift to the mid-way point on the line joining the class-means. Given
that the uncertainty in means in this setting doesn’t effect the hyperplane, we can interpret
the projection vector given by the difference between means as the optimal solution in the
face of high uncertainty i.e. given that our information is very weak, the difference between
the means offers the most robust solution. To include both measures of uncertainty, one
simply substitutes the covariance matrices Σj with ρ-regularised ones Σj + ρ in the original
optimisation (3.7), and use (3.10) to compute worst-case misclassification probability.

3.3 High-probability minimax probability machine (HP-MPM)

In [Lanckriet et al., 2003] a main motivation for the choice of uncertainty set was the ease in
which it could be incorporated into the original optimisation scheme. Despite this appealing
feature, what this approach failed to provide was a solid statistical explanation of why these
uncertainty sets where being used, nor did it provide guidance or insight on how best to

3.3 High-probability minimax probability machine (HP-MPM) 39

select the value of the parameters ν and ρ to reflect the uncertainty. Furthermore they failed
to take into consideration the influence that the uncertainty on the covariance matrix has
on the Mahalanobis distance between the true mean and the empirical one. In this section
we seek to address these concerns by presenting an optimisation scheme that minimises the
worst case probability of misclassification whilst taking into consideration the uncertainty
regarding the use of empirical moments. The key feature of the mpm approach is the if and
only if statement

inf
x1∼D1

P (wT x1 ≥ b) ≥ ω ⇐⇒ −b + wTµ1 ≥ κ(ω)
√

wT Σ1w. (3.11)

Given that we do not know the true moments of the distribution we have to ask ourselves,
what conditions must the empirical moments satisfy in order to be sure, with high probability,
that the true moments satisfy the condition outlined in (3.11). If we can find these conditions
that we can say, with high-probability, that the hyperplane we find will have a classification
error no worse than 1− ω.

3.3.1 HP-MPM Formulation

In this section we seek to address the shortfalls of the uncertainty sets provided in [Lanckriet
et al., 2003] and present conditions that ensure the inequality (3.11) is satisfied with high-
probability when using empirical moments. We begin by using a result presented in [Shawe-
Taylor and Cristianini, 2003] concerning the high-probability upper bounds on the deviation
of true moments (x̄, Σ) from their empirical counterparts (x̂, Σ̂): high-probability in the
sense that the probability that the true value of the moment deviates from the empirical
one by more than ϵ ∈ R is less than δ ≥ 0. They showed that the following holds true with
probability at least 1− δ:

||x̄− x̂||2 ≤
R√
m

(
2 +

√
2 log 1

δ

)
and ||Σ− Σ̂||F ≤

2R2
√

m

(
2 +

√
2 log 2

δ

)
, (3.12)

where || · || and || · ||F denote the L2 and Frobenius norms, respectively, R > 0 is the ra-
dius of the smallest sphere containing the support of X i.e. for all x ∈ X , ||x|| ≤ R, and
m is the number of observations that were used to construct the empirical moments. The
authors examined the implications of the these deviation bounds on the mpm guarantees,
showing that the high-probability worst-case estimate for the future misclassification errors
can differ significantly from that found using (3.7). Their focus was on finding what the
high-probability worst-case future misclassification rate was, given that the predictor was
constructed using the original mpm formulation (3.7). Whereas our focus is on designing an
optimisation scheme that directly minimises the high-probability bound on future misclas-
sification by taking into consideration the uncertainty in the empirical moments.

40 Linear discriminants: moments, uncertainty and applications

To do this we begin by reviewing how moment uncertainty affects the key equivalence re-
lationship given in (3.11). To simplify the analysis, we assume that the weight vector lies
within the unit-ball defined by the L2-norm i.e. ||w|| ≤ 1. We want to find a high-probability
bound on the deviation of the values in the inequality (3.11) when using empirical and true
moments in the expression.

Proposition 7 Let x̂ and Σ̂ be the empirical mean and covariance matrix of a sample of
m points drawn independently according some probability distribution D with mean x̄ and
covariance matrix Σ. The weight vector ||w|| ≤ 1 where w ̸= 0, and b ∈ R are given such
that wT x̂ ≤ b. Then if

b−wT x̂ ≥
√

κ(ω)2wT Σ̂w + T (3.13)

where

T = 4R2
√

m

(
2 +

√
2 ln 2

δ

)
+ κ(ω)2 2R2

√
m

(
2 +

√
2 ln 2

δ

)

then with probability at least 1− δ over the draw of the random sample

b−wT x̄ ≥ κ(ω)
√

wT Σw and inf
x∼D

P (wT x ≥ b) ≥ ω.

Proof To prove this we show that if

(b−wT x̂)2 − κ(ω)2wT Σ̂w ≥ T

then with probability at least 1− δ

(b−wT x̄)2 − κ(ω)2wT Σw ≥ 0.

We do this by bounding the high-probability differences in the value of the expressions on the
left hand side of the inequalities∣∣∣(b−wT x̂)2 − κ(ω)2wT Σ̂w− (b−wT x̄)2 + κ(ω)2wT Σw

∣∣∣
≤ ||x̂− x̄|| (2b + ||x̂ + x̄||) + κ(ω)2

∣∣∣wT Σ̂w−wΣw
∣∣∣

≤ ||x̂− x̄||4R + κ(ω)2||Σ̂− Σ||F .

The proof is completed by using the bounds on the empirical moments presented (3.12) with

3.3 High-probability minimax probability machine (HP-MPM) 41

δ replaced with δ/2,∣∣∣(b−wT x̂)2 − κ(ω)2wT Σ̂w− (b−wT x̄)2 + κ(ω)2wT Σw
∣∣∣

≤ 4R2
√

m

(
2 +

√
2 ln 2

δ

)
+ κ(ω)2 2R2

√
m

(
2 +

√
2 ln 2

δ

)
.

Note that the bound comes into play when we consider

(b−wT x̂)2 − κ(ω)2wT Σ̂w ≥ (b−wT x̄)2 − κ(ω)2wT Σw,

and it holds true regardless of the bound if the inequality is reversed.

To formulate the hp-mpm optimisation scheme we use each classes corresponding inequality
(3.13), where the class specific uncertainty is captured by the term Tj for j = 0, 1 with

Tj = 4R2
√

mj

(
2 +

√
2 ln 2

δ

)
+ κ(ω)2 2R2

√
mj

(
2 +

√
2 ln 2

δ

)
= 2Aj + κ(ω)2Aj ,

where

Aj = 2R2
√

mj

(
2 +

√
2 ln 2

δ

)
. (3.14)

We can drop the dependence of the optimisation on ω by noting the monotonic relationship
it has with κ(ω), and using the constraint ||w|| ≤ 1 and using the inequalities (3.13), the
minimax program becomes

max
w,b,κ

κ s.t. ||w|| ≤ 1

−b + wT x̂1 ≥
√

2A1 + κ2
(
wT Σ̂1w + A1

)
b−wT x̂0 ≥

√
2A0 + κ2

(
wT Σ̂0w + A0

)
.

Corollary 8 For j = 0, 1, let x̂j and Σ̂j be the empirical mean and covariance matrix of mj

points drawn independently from distributions Dj with true mean x̄j and covariance matrix
Σj, and let Aj be defined according to (3.14). If ||x̂1 − x̂0|| ≤

√
2A1 +

√
2A0 then the

high probability mpm decision problem does not have a meaningful solution and the worst-
case misclassification probability is given by 1 − ω∗ = 1. Otherwise an optimal hyperplane

42 Linear discriminants: moments, uncertainty and applications

H(w∗, b∗) exists and can be determined by solving the optimisation problem given by

max
w,κ

κ s.t. ||w|| ≤ 1 (3.15)

wT (x̂1 − x̂0) =
√

2A1 + κ2
(
wT Σ̂1w + A1

)
+
√

2A0 + κ2
(
wT Σ̂0w + A0

)
,

and setting b to the value

b∗ = wT
∗ x̂1 −

√
2A1 + κ2

∗

(
wT

∗ Σ̂1w∗ + A1
)

= wT
∗ x̂0 +

√
2A0 + κ2

∗

(
wT

∗ Σ̂0w∗ + A0
)
,

where w∗ and κ∗ are the optimal solutions to (3.15). Then with probability at least 1 − δ

over the draws of the random sample, the optimal worst-case misclassification probability is
given by

1− ω∗ = 1
1 + κ2

∗
.

When presented with a new input observation x′, we make our prediction according to what
side of the optimal hyperplane the point resides i.e. we predict that y′ = 1 if wT

∗ x′− b∗ ≥ 0,
and that y′ = 0 otherwise.

3.3.2 Optimisation Scheme

The optimisation problem given in (3.15) can not be solved using the same approach taken
in [Lanckriet et al., 2003] because of the unit L2-norm restriction on w, and the presence of
the uncertainty terms Aj under the square root. To solve this problem we propose the use
of an auxiliary function h(w, κ) in conjunction with an alternating update scheme over w
and κ. The auxiliary function is given by

h(w, κ) = wT (µ̂1 − µ̂0)−
√

2A1 + κ2
(
wT Σ̂1w + A1

)
−
√

2A0 + κ2
(
wT Σ̂0w + A0

)
.

Note that the class uncertainty terms require the computation of span of the data i.e. find R

such that ||x|| ≤ R for all x ∈ X . During implementation this will have to be estimated from
the training sample or can be enforced by some normalisation scheme that is independent
of the learning algorithm.

This auxiliary function will be used during the intermediate steps of the optimisation scheme,
which lead us towards the optimal solution. Note that the goal of the optimisation scheme
is to find the maximum value of κ for which there exists a w that satisfies the constraints.
In this approach, we incrementally adjust the value w to allow for an increase in the value
of κ . At convergence, we can no longer find a w that increases the value of the auxiliary

3.3 High-probability minimax probability machine (HP-MPM) 43

function. Therefore we are no longer able to increase the value of κ and we have reached the
optimal solution.

Initialisation
To initialise the optimisation, we begin with κ = 0, and find the value of w that max-
imises h(w, κ) subject to the constraints that ||w|| ≤ 1. This has a closed form solution
(x̂1 − x̂0)/||x̂1 − x̂0|| = arg max||w||≤1 h(w, 0), and provides the conditions necessary for
a meaningful solution to the high probability mpm decision problem i.e. we require that
max||w||≤1 h(w, 0) > 0 in order to be able to find a positive value of κ in the next step of the
optimisation scheme.

w-step
For non-initialisation w-steps, the goal is maximise the value of the auxiliary function by
performing gradient ascent subject to our constraint ||w|| ≤ 1. We can show that h(w, κ) is
a concave in w and therefore every local optimum will be a global optimum. Therefore we
can use standard constrained optimisation tools to solve this intermediate problem. Note
that we do not need to run these constrained optimisations to convergence, we simply need
the value of the auxiliary function to increase, in order to allow for a larger value of κ in the
next step. We view this as a constrained maximisation subject to some implicit degree of
regularisation imposed by the value of κ.

κ-step: In order to continue the optimisation, we require that the w-step results in a strictly
positive value for the auxiliary function, h(w, κ) > 0. If this is not the case then the op-
timisation has converged, and we have reached the optimal solution. If h(w, κ) > 0, we
can increase the value of κ to κ′ such that the value of the auxiliary function is zero i.e.
h(w, κ′) = 0. This can be performed using a simple line-search procedure, or by finding
the roots of a quadratic expression involving κ. Note that in order for the optimisation to
progress we must find κ′ such that κ′ > κ. To simplify the range of the line-search we observe
an upper bound on the value of κ′, namely κ′ ≤ κu = ||x̂1− x̂0||/

(√
wT Σ̂1w +

√
wT Σ̂0w

)
.

Optimal solution
We prove that the optimal solution for the weight vector w∗ will have a unit L2-norm i.e.
||w∗|| = 1. To do this suppose that ||w∗|| < 1, we know that at optimality h(w∗, κ∗) = 0
and that w′ = w∗/||w∗|| is also a feasible solution. We show that h(w′, κ∗) > 0 and that

44 Linear discriminants: moments, uncertainty and applications

Algorithm 1 hp-mpm Optimisation Scheme
Input: x̂j , Σ̂j , Aj for j = 0, 1, tolerance ϵκ > 0 and ϵw > 0
Initialise: κ = 0, w = (x̂1 − x̂0)/||x̂1 − x̂0|| and converged = false
if ||x̂1 − x̂0|| ≤

√
2A1 +

√
2A0 then

while: (not converged)
converged = true
Find by line-search κ′ ∈ [κ, κu] such that h(w, κ′) = 0
w′ = arg max

||w||≤1
h(w, κ)

if: (|κ′ − κ| > ϵκ) ∨ (h(w′, κ′) > ϵw)
then converged = false

end if
w← w′, κ← κ′

end while
end if
w∗ = w, κ∗ = κ and b∗ = wT

∗ x̂1 −
√

2A1 + κ2
∗

(
wT

∗ Σ̂1w∗ + A1
)

w∗, where ||w∗|| < 1, can not be the optimal solution. To see this observe that

√
2Aj + κ2

∗

(
w′ T Σ̂jw′ + Aj

)
=
√

2Aj + κ2
∗

(1
||w∗||2

wT
∗ Σ̂jw∗ + Aj

)
<

1
||w∗||

√
2Aj + κ2

∗

(
wT

∗ Σ̂jw∗ + Aj

)
.

Using this inequality in the auxiliary function h(w′, κ∗) we see that

h(w′, κ∗) >
1
||w∗||

h(w∗, κ∗),

where we know by the monotonicity of h(w, κ) with respect to κ, that there exists κ′ > κ∗,
satisfying the constraints in (3.15). Therefore (w∗, κ∗) can not be the optimal solution to
this problem.

Concavity of h in w
At first glance it may not be obvious that the function h(w, κ) is concave with respect to w,
however we will now show that it is indeed the case. During the w-step, we are maximising
the function h(w, κ) subject to w residing in the unit-ball. Therefore in order to be sure we
have obtained the maximum over the line search, we require that our function be concave.
In order to check the concavity of the function h the Hessian of h(w) must be negative

3.3 High-probability minimax probability machine (HP-MPM) 45

semi-definite. Recall that the derivative can be written as

∇h(w) = (µ̂1 − µ̂0)− κ2

 Σ̂1w√
2A1 + κ2(wT Σ̂1w + A1)

+ Σ̂0w√
2A0 + κ2(wT Σ̂0w + A0)

 .

To help with presentation we will break the Hessian down into class-wise parts and show
that it is indeed negative semi-definite for each class-component, and is thus negative semi-
definite in full. Dropping subscript notation, the contribution of the class-component to the
Hessian is

∇w

 Σ̂w√
2A + κ2(wT Σ̂w + A)

 = (2A + κ2(wT Σ̂w + A))Σ̂− κ2Σ̂wwT Σ̂(√
2A + κ2(wT Σ̂w + A)

)3 .

We know that the denominator is always positive, therefore we need to check whether the
matrix created on the numerator is positive semi-definite, since we are taking the negative
value of this in our Hessian of h. To see this we observe that

uT
(
(2A + κ2(wT Σ̂w + A))Σ̂− κ2Σ̂wwT Σ̂

)
u ≥ κ2

(
(wT Σ̂w)(uT Σ̂u)− (uT Σ̂w)2

)
≥ 0,

which we have obtained by using the Cauchy-Schwartz inequality, and the positiveness of A.
This proves that the Hessian of h(w, κ), with respect to w, is negative semi-definite, which
means that it is concave and therefore all local-maxima are global maxima.

3.3.3 Interpretation

In this section we discuss the interpretation the hp-mpm solution and how it compares to
the original mpm formulation. We begin by examining the uncertainty term Aj associated
with the empirical moments of each class. Clearly as the number of observations decrease
we become less confident in the empirical moment estimates and the value of uncertainty
term grows. At optimality the bias term b∗ ∈ R is given by

b∗ = wT
∗ µ̂1 −

√
2A1 + κ2

∗(wT
∗ Σ̂1w∗ + A1) = wT

∗ µ̂0 +
√

2A0 + κ2
∗(wT

∗ Σ̂0w∗ + A0).

One consequence of increasing the value of the uncertainty A1 is that we expect the hy-
perplane to shift in the direction of µ̂0. This is caused by the decrease in the bias term
since larger values of A1 fall under the negative square root term. The hp-mpm predicts
that a new observation x belongs to class 1 when wT

∗ x ≥ b. Following the movement of the
hyperplane, we now expect that the classifier is more likely to predict that a new observation
belongs to class 1. Therefore we see the hp-mpm is naturally more inclined to position the
hyperplane closer to the class that we are more confident about its empirical estimates.

46 Linear discriminants: moments, uncertainty and applications

In the original robust formulation, the uncertainty of the covariance matrices was captured
by adding a regularisation term to the diagonal of these matrices. We see that because of
the constraint ||w|| = 1, the hp-mpm approach implicitly adds a regularisation term to the
covariance matrices, where the magnitude is equal to the uncertainty term for that class i.e.

wT Σ̂jw + Aj = wT
(
Σ̂k + InAj

)
w = wT Σ̃jw

Therefore an increase in the value of A1 results in a larger amount of regularisation on the
covariance matrix Σ̂1. Returning to the geometric interpretation, this results in an increas-
ingly spherical in nature ellipsoid centred at µ̂1. This in turn causes the optimal projection
vector to rotate towards a solution dominated by the covariance of class 0, more precisely
it rotates in the direction of Σ̂−1

0 (µ̂1 − µ̂0). Intuitively we can explain this by considering
the situation where the uncertainty term A1 dominates the covariance matrix Σ̂1, therefore
small changes in the orientation of w will have very little influence on the value taken on by
wT Σ̃1w and therefore h(w, κ). Therefore the orientation of w will be more sensitive to the
shape of Σ̂0, which will cause our optimal solution to rotate in the direction of Σ̂−1

0 (µ̂1− µ̂0)
i.e. the solution becomes increasingly dominated by the shape of the other class

The original mpm fails to take into consideration the fact that empirical moments may have
been computed using only a small number of samples, these moment estimates are likely to
be erroneous and the mpm approach is therefore subject to providing unrealistic estimates
on the future misclassification rates. By taking into consideration the errors in the empiri-
cal moments we can provided a truer estimate of worst-case future misclassification errors.
Furthermore by taking into consideration the relative number of observations for each class,
and therefore the expected accuracy of the empirical moments, we are better able to position
the hyperplane in a position where we can be more confident about the likelihood of future
observations falling on either side.

We can view the original mpm as looking for the point of intersection between two ellip-
soids centered at the class means, where the shape of the ellipsoids are determined by the
covariance matrices and their size is controlled by the value of κ i.e. for j = 0, 1

Ej(κ) =
{

x = x̄j + Σ1/2
j u : ||u|| ≤ κ

}
Clearly as the size of κ increases these ellipsoids will eventually overlap. However the optimal
hyperplane is given by the common tangent to the ellipsoids at the first point of their
tangency. During our optimisation scheme, we alternate between allowing these ellipsoids,
albeit a penalised version of them, to intersect i.e. h(w, κ) = 0, and rotating w to provide

3.3 High-probability minimax probability machine (HP-MPM) 47

additional space for the ellipsoids to expand into at the next stage of the optimisation. We
can view the moment uncertainty as introducing a regularisation component to the covariance
matrices, along with a penalty regarding the location of the means. The regularised ellipsoids
we consider in the high-probability setting are given by

Êj(κ) =
{

x = x̂j + Σ̃(κ)1/2
j u : ||u|| ≤ κ, Σ̃(κ)j = Σ̂j + Id

(
Aj + 2Aj

κ2

)}
. (3.16)

Using the geometrical interpretation, we see that as the value of κ grows, the effective
regularisation on the covariance matrix decreases. This results from a relative reduction in
the role played by the mean uncertainty in the square root term. Intuitively, as we move
away from the means, with increasing values of κ, the point of origin becomes less important
and we focus more on the underlying shape of the ellipsoid. In Figure 3.3 we show how
the ellipsoids change as we increase κ up until their point of tangency. The intermediate
solutions where the auxiliary function h(w, κ) = 0, represent hyerplanes that are tangential
to the ellipsoids but where the ellipsoids are not tangential to one another.

3.3.4 Kernel Formulation

So far we have explored the notion of finding an optimal linear decision boundary. Geo-
metrically we saw that the worst-case bound on the future misclassification rate depends
on both the distance between the class means, and the shape of the ellipsoids that their
covariance matrices determine. However, it is often the case that by mapping the inputs
into some higher-dimensional feature space there is a greater degree of separation between
the two classes, and thus we should be able to reduce the worst-case future misclassification
rate. Kernel methods [Shawe-Taylor and Cristianini, 2004; Vapnik, 1998] are able to take
advantage of these higher-dimensional feature spaces without having to explicitly compute
them, and have proven a useful tool for many classification algorithms. All of the methods
that we have discussed thus far can make use of the kernel-trick. It was first shown to apply
to Fisher’s discriminant in [Mika et al., 1999], here the authors showed that by considering
moments of the class-conditional densities in high-dimensional feature spaces, the kernelised
version of fda (kfda) offered performance that was competitive with state-of-the art re-
sults. This resulted in a resurgence of interest in the use of fda for classification; [Mika
et al., 2003] examined the relationships with unsupervised techniques such as principal com-
ponent analysis (PCA), [Mika et al., 2001a,b] sought efficient implementation procedures for
the kfda and [Mika, 2002] provided thorough, in-depth analysis of kfda. The kernelisation
of the mpm algorithm was presented in the original work [Lanckriet et al., 2003], and we
closely follow their derivation to present the hp-mpm in its kernelised form.

The goal is to map the original input data to some higher dimensional feature space where

48 Linear discriminants: moments, uncertainty and applications

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

κ= 0.1
κ= 0.86

κ∗ = 1.63

x̂1

x̂0

κ= 0.1

κ∗ = 1.63

κ= 0.86

z
1

z 2

wT
∗ z = b∗

Fig. 3.3 Geometric interpretation of the high-probability mpm and the intermediate solutions
produced during the optimisation scheme. We can see that in the beginning, for small values
of κ, the penalised (regularised) covariance matrices are almost spherical. As the value of κ
increases, and we move away from the class means, the ellipsoids begin to take on a shape
increasingly determined by the sampled covariance matrix, however there still remains the
regularisation caused by the uncertainty in the value of the covariance matrix. We see that
the intermediate solutions h(w, κ) = 0 result in hyperplanes that are tangential to the each
classes ellipsoid, however these ellipsoids are only tangential to one another at the optimal
solution. In the samples used to generate this solution, m1 = 20 and m0 = 200, explaining
the larger size of the ellipsoid for class 1.

3.3 High-probability minimax probability machine (HP-MPM) 49

the data is better separated, allowing for a larger value of ω and thus obtaining a lower value
on the probability of future misclassification. To do this we introduce the feature mapping
ϕ : X → F such that the linear decision boundary in this space is given by hyperplane
H(w, b) = {ϕ(x) ∈ F : wT ϕ(x) = b}. Note that this linear decision boundary in feature
space corresponds to a non-linear decision boundary in X . The data is mapped according to

x1 → ϕ(x1) ∼ Dϕ
1

x0 → ϕ(x0) ∼ Dϕ
0 ,

where Dϕ
j for j = 0, 1 are the set of distributions with mean µϕ

j and covariance Σϕ
j . To find

the optimal hyperplane in F we follow the same optimisation problem given in (3.15), where
we substitute the original empirical moments with their feature space counterparts µ̂ϕ

j and
Σ̂ϕ

j for each class j = 0, 1. We also have to take into consideration the influence that the
mapping to the feature space has on the span of the data as this appears in the uncertainty
terms Aj for each class j, however we will omit the superscript on Aj to help improve the
clarity of the presentation. In order to make use of the kernel-trick, we have to show that
the feature mappings enter the optimisation scheme only in terms of their inner-product
⟨ϕ(x), ϕ(x′)⟩ = K(x, x′), where K : F × F is the kernel function corresponding to the fea-
ture mapping ϕ. This allows the use of high-dimensional feature spaces without having to
explicitly compute them thus making them tractable to work with.

To do this, first we have to show that any optimal solution to (3.15) must lie in the
space spanned by the input data. To prove this, suppose the optimal solution is given
by w∗ = ws + wo, where ws is the projection of w onto the span of the input data and wo is
orthogonal to the space spanned by the input data. We show that the value of wo plays no
role in our ability to satisfy the first constraint in (3.15), however it does play a part in the
unit L2-norm restriction ||w|| ≤ 1. Therefore if we removed this orthogonal component and
scaled our ws so that it resided on the unit-ball we will show that it results in an increase
in the auxiliary function, thus permitting an increase in the value of κ in the next round
of the optimisation scheme. Therefore a solution containing an orthogonal component can
never be optimal.

The empirical means and covariances are linear combinations of the input data, and it is
straightforward to show that

wT (µ̂1 − µ̂0) = wT
s (µ̂1 − µ̂0)

wT Σ̂jw = wT
s Σ̂jws.

Therefore the value of the auxiliary function evaluated at w and ws are the same i.e.

50 Linear discriminants: moments, uncertainty and applications

h(w∗, κ) = h(ws, κ). Under the assumption that the covariance matrices are positive semi-
definite, we show that the auxiliary function increases with scale i.e. h(tw, κ) ≥ h(w, κ) for
all t ≥ 1 and that the optimal solution must reside on the unit-ball ||w∗|| = 1.

h(tw, κ) = t

(
wT (µ̂1 − µ̂0)−

√
2A1

t2 + κ2
(

wT Σ̂1w + A1
t2

)
−
√

2A0
t2 + κ2

(
wT Σ̂0w + A0

t2

))

≥ t

(
wT (µ̂1 − µ̂0)−

√
2A1 + κ2

(
wT Σ̂1w + A1

)
−
√

2A0 + κ2
(
wT Σ̂0w + A0

))
= th(w, κ).

Therefore by replacing w = wa + wo with wa/||wa||, where ||wa|| ≤ 1, we see that the
value of our auxiliary function increases, thus permitting a larger value of κ at optimality.
Therefore a solution containing a component orthogonal to the span of the input data can
not be optimal and the optimal solution must be given by

w∗ =
m∑

i=1
αixi,

where αi ∈ R for all i = 1, . . . , m. To take full advantage of the kernel-trick, and avoid
having to explicitly evaluate the feature mappings, we now have to show that the feature
mappings appear in the optimisation problem only as inner-products.

The kernel matrix K is given by Kij = K(xi, xj) for all i, j = 1, . . . , m. The first m1 rows
and last m0 rows of K are denoted K1 and K0, respectively:

K =
(

K1

K0

)
.

The class row averages, lT1 and lT0 , are m-dimensional vectors given by

(
lT1
)

i
= 1

m1

m1∑
j=1

K(xj , xi) and
(
lT0
)

i
= 1

m0

m∑
j=m1+1

K(xj , xi).

We create the block-row-averaged kernel matrix L by setting the row average of K1 and K0

equal to zero by:

L =
(

K1 − 1m1lT1
K0 − 1m0lT0

)
=
(√

m1 L1
√

m0 L0

)
,

where 1m is a column vector of ones of dimension m. The empirical moment estimates in

3.4 Experiments 51

the feature space are given by

µ̂ϕ
1 = 1

m1

m1∑
i=1

ϕ(xi) and Σ̂ϕ
1 = 1

m1

m1∑
i=1

(
ϕ(xi)− µ̂ϕ

1

) (
ϕ(xi)− µ̂ϕ

1

)T

µ̂ϕ
0 = 1

m0

m∑
i=m1+1

ϕ(xi) and Σ̂ϕ
0 = 1

m0

m∑
i=m1+1

(
ϕ(xi)− µ̂ϕ

0

) (
ϕ(xi)− µ̂ϕ

0

)T

The solution is given by w = ∑m
i=1 αiϕ(xi), we see that the components of the optimisation

problem become

wT (µ̂ϕ
1 − µ̂

ϕ
0) = αT (l1 − l0) , wT Σ̂ϕ

1w = αT LT
1 L1α and wT Σ̂ϕ

0w = αT LT
0 L0α.

We saw earlier that the solution is given by w = ∑m
i=1 αiϕ(xi), and therefore the components

of the optimisation become

wT (ϕ̂1 − ϕ̂0) = αT (l1 − l0) , wT Σ̂ϕ
1w = αT LT

1 L1α and wT Σ̂ϕ
0w = αT LT

0 L0α.

This allows us to write the kernelised version of the hp-mpm as

max
α,κ

κ s.t. ||w||2 = αT Kα ≤ 1

αT (l1 − l0) =
√

2A1 + κ2 (αT LT
1 L1α+ A1

)
+
√

2A0 + κ2 (αT LT
0 L0α+ A1

)
.

The same alternating optimisation procedure can be used to find the optimal values κ∗ and
α∗, and the optimal value of the bias term is given by

b∗ = αT
∗ l1 −

√
2A1 + κ2

∗
(
αT

∗ LT
1 L1α∗ + A1

)
= αT

∗ l0 +
√

2A0 + κ2
∗
(
αT

∗ LT
0 L0α∗ + A0

)
As with the linear case, when presented with a new input observation x′, we predict that
y′ = 1 if αT

∗ kx′ − b∗ ≥ 0, where (kx′)i = k(xi, x′), and y′ = 0 otherwise. We should point
out that we have no reason to expect that the solution α∗ will be sparse i.e. many (α∗)i = 0,
and therefore the computational cost at prediction will be linear in the size of the training
sample.

3.4 Experiments

In this section we examine the performance of the proposed hp-mpm and compare it to the
original mpm, and two other popular binary classification algorithms, Fisher’s discriminant
(fda) and the support vector machine (svm). In Table 3.1 we provide a summary of the
datasets taken from the UCI repository, http://archive.ics.uci.edu/ml/, and the toy
dataset used in [Lanckriet et al., 2003], that we have used in our experiments. We have

52 Linear discriminants: moments, uncertainty and applications

included details regarding the number of observations, the dimension of the input space
and the relative class frequencies to help support our argument regarding the importance of
including information regarding the moment uncertainty into the derivation of the predictor.

All of the datasets were normalised so that each feature had zero mean and unit variance. To
handle missing values, as in the vote dataset, we simply computed the means and standard
deviations of each feature using the available data, performed standard normalisation on
them and then set the values of the missing data to zero post-normalisation.Each dataset
was randomly partitioned 50 times into training, validation and test samples, and we report
the average performance over all test samples. During the experiments we varied the size
of the training sample between 10% and 70%, in increments of 10%, of the full dataset to
investigate how the algorithms performed with various amounts of information. The size of
the validation set was fixed at 20% and the remaining data was used for testing. The goal
of these experiments was to evaluate the benefits of considering moment uncertainty in the
construction of the predictor, and to understand the relative gains that its inclusion have as
we change the number of training points.

Table 3.1 Overview of the UCI datasets used during the experiments.

Dataset Observations Features Class 1

adult 48844 123 23.93
australian 690 14 44.49

BCI 400 117 50.00
breast 682 10 64.96

diabetes 768 8 65.10
digit1 1500 241 48.93

german 1000 24 70.00
heart 920 13 44.67

ionosphere 351 32 64.10
ringnorm 7400 20 49.51

sonar 208 60 53.37
splice 3175 60 51.91

toy 120 2 50.00
twonorm 7400 20 50.04

vote 435 16 38.62

One of the main motivations of the formulation of the hp-mpm was to correct for overly
confident estimates on the worst-case future misclassification rate. This was done through
the introduction of high-probability bounds on the deviation of the true moments from the
empirical counterparts, where we set the value of δ = 0.05. However, we noticed that during
the experiments that these high-probability bounds appeared to be too restrictive in many

3.4 Experiments 53

Table 3.2 Linear experiments: we show how the performance of the classification algorithms
on the datasets vary as the amount of data used during training changes. The best perform-
ing results for each dataset and training proportion are reported in bold typeface.

Training proportion

0.1 0.2 0.3 0.4 0.5 0.6 0.7

australian

mpm 84.21 85.88 85.89 86.08 86.04 86.25 86.39
hp-mpm 85.01 86.29 86.23 86.18 86.43 86.31 86.55
svm 84.81 86.15 86.07 85.80 85.63 85.87 86.02
fda 83.85 85.66 85.92 86.13 86.20 86.60 86.87

BCI

mpm 58.30 62.25 56.55 70.81 76.49 79.74 81.55
hp-mpm 61.70 66.84 71.50 77.30 80.18 82.33 82.96
svm 60.39 66.25 70.83 74.17 75.90 78.82 79.41
fda 58.66 57.72 53.80 57.12 60.88 63.97 68.03

breast

mpm 96.20 97.04 97.10 97.22 97.22 97.33 97.23
hp-mpm 97.12 97.10 97.18 97.24 97.24 97.29 97.22
svm 96.58 96.77 96.85 96.97 97.05 97.07 97.03
fda 92.54 93.76 94.50 94.50 94.50 94.58 94.46

diabetes

mpm 72.74 74.12 75.02 75.11 74.99 74.97 74.86
hp-mpm 73.14 73.86 74.76 74.75 74.41 74.49 74.53
svm 74.40 75.97 76.30 76.29 76.48 76.55 76.74
fda 73.97 75.32 75.94 76.61 76.51 76.68 76.91

digit1

mpm 73.47 75.08 85.92 89.53 91.38 92.16 92.90
hp-mpm 92.99 93.80 94.30 94.53 94.63 94.62 94.60
svm 91.66 93.38 94.20 94.69 95.10 95.25 95.70
fda 80.09 75.77 85.82 89.35 91.42 92.17 92.83

german

mpm 68.96 70.84 71.55 72.08 72.24 72.49 72.70
hp-mpm 69.54 71.26 71.86 72.34 72.26 72.50 72.79
svm 71.66 73.82 74.55 74.99 75.51 75.82 76.03
fda 71.50 73.64 74.45 74.85 75.58 76.10 76.47

heart

mpm 78.02 79.54 80.20 80.72 81.33 81.84 82.21
hp-mpm 79.36 80.15 80.62 80.87 81.34 81.56 81.96
svm 78.77 79.62 80.36 80.98 81.29 81.69 81.97
fda 77.47 79.33 80.01 80.61 81.01 81.64 81.99

ionosphere

mpm 72.45 78.73 80.49 81.21 81.70 82.29 82.62
hp-mpm 82.18 82.93 83.35 82.88 83.18 83.39 83.11
svm 80.68 82.91 83.51 83.83 84.18 84.64 84.19
fda 68.60 74.09 76.41 78.04 79.63 80.06 80.38

ringnorm

mpm 74.43 74.70 74.88 74.93 74.94 74.94 74.86
hp-mpm 76.51 76.71 76.81 76.80 76.86 76.91 76.79
svm 76.55 76.88 76.88 77.05 77.03 77.09 77.06
fda 76.19 76.63 76.74 76.82 76.91 77.12 77.07

sonar

mpm 63.59 61.80 57.42 67.61 70.36 71.76 75.47
hp-mpm 69.88 73.84 74.71 74.93 76.71 76.01 77.41
svm 67.51 72.95 74.08 75.31 75.84 75.32 77.20
fda 62.37 59.88 55.11 64.49 68.28 70.44 73.73

splice

mpm 81.52 83.21 83.83 84.23 84.36 84.55 84.89
hp-mpm 82.15 83.31 83.87 84.20 84.35 84.67 84.80
svm 81.74 82.96 83.55 84.14 84.37 84.40 84.84
fda 81.12 82.98 83.68 84.11 84.25 84.56 84.71

toy

mpm 89.92 93.17 94.00 94.41 94.36 94.45 94.50
hp-mpm 91.16 93.32 94.22 94.57 94.32 94.50 94.89
svm 90.42 93.13 93.75 94.24 93.50 93.09 93.38
fda 86.12 90.04 91.10 93.18 92.71 93.18 93.62

twonorm

mpm 97.59 97.65 97.68 97.68 97.74 97.76 97.80
hp-mpm 97.67 97.69 97.71 97.70 97.75 97.76 97.82
svm 97.53 97.60 97.67 97.72 97.75 97.77 97.84
fda 97.53 97.63 97.67 97.67 97.73 97.74 97.81

vote

mpm 92.86 95.28 95.75 95.71 95.74 95.95 96.03
hp-mpm 94.95 95.42 95.58 95.53 95.37 95.51 95.59
svm 94.47 95.20 94.99 95.35 95.26 95.41 95.81
fda 93.37 95.51 95.97 96.00 96.17 96.40 96.19

54 Linear discriminants: moments, uncertainty and applications

settings and we were unable to generate meaningful solutions i.e. ω∗ = 0. To overcome this
deficiency we propose to use the moment uncertainty terms as a form of regularisation, and
during the experiments we use a validation procedure to choose what fraction of the true
moment uncertainty we should use. More precisely, rather than using Aj we used some frac-
tional amount Âj = νAj of the full uncertainty, where ν ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1}.
For the parameter selection process, in each training and test sample we had a distinct
validation set that was used to evaluate the performance of the predictor generated for the
particular regularisation parameter. For each of these training, validation and test sets we
evaluated the performance of the predictor (parameter) with the best validation set accuracy
on the test sample. The same method to choose the regularisation parameter for the svm
and fda , where svm’s capacity parameter was selected from C ∈ {10−3, . . . , 103}, and the
fda’s regularisation term chosen from λ ∈ {10−3, . . . , 103}. The mpm optimisation solves a
series of least-squares sub-problems and we used cross validation to choose the regularisation
parameter from {10−6, . . . , 100} in these sub-problems.

Linear experiments
In Table 3.2 we examine the performance of the linear based classification algorithms and
show how their performance varies as we change the size of the training sample used to con-
struct the predictor. As one would expect, in general the performance on the test samples
improves as more training examples are presented to the algorithm during training. However
in the sonar dataset we see a drop in the performance of the mpm and fda predictors as we
increase the fraction of the dataset used in training from 0.1 to 0.3. This can be explained
by the relatively small number of observations that were used to construct the empirical
moments, which determine each algorithms decision boundary. On the other hand we see
that the hp-mpm and the svm are relatively robust to the use of small training samples, and
we observe the benefits of the regularisation scheme implemented by the hp-mpm , and note
the benefits of constructing the decision boundary using peripheral points, as advocated by
the SVM, rather than poorly estimated empirical moments.

From Table 3.2 we can observe that when using minimal amounts of training data i.e. 10%
of the full dataset, the hp-mpm method is nearly always the top performing algorithm. As
the size of the training sample increases, the advantage of the hp-mpm begins to erode and
its performance comes in line with the original mpm . This is to be expected in the case
of large amounts of available data since we know that the hp-mpm will eventually converge
towards the original mpm solution as moment uncertainty decreases to zero.

Kernel experiments
In Table 3.3 we present the performance of the kernelised version of the algorithms. Here

3.4 Experiments 55

Table 3.3 Kernel experiments: we show how the performance of the classification algorithms
on the datasets vary as the amount of data used during training changes. The best perform-
ing results for each dataset and training proportion are reported in bold typeface.

Training proportion

0.1 0.2 0.3 0.4 0.5 0.6 0.7

australian

mpm 83.71 85.67 85.71 85.93 86.06 86.12 86.23
hp-mpm 85.06 85.91 86.16 86.01 86.15 86.25 86.49
svm 84.83 85.84 85.53 85.29 85.30 85.53 85.90
fda 79.55 81.68 82.22 82.22 81.99 82.21 83.28

BCI

mpm 59.35 62.71 69.88 73.33 75.32 76.10 77.79
hp-mpm 59.14 65.00 69.01 72.23 73.90 74.21 74.89
svm 59.73 64.65 69.40 72.56 74.07 74.36 75.79
fda 52.43 53.50 54.41 56.09 58.47 58.62 61.05

breast

mpm 96.31 97.08 97.19 97.23 97.20 97.17 97.09
hp-mpm 97.07 97.18 97.03 97.12 97.11 97.16 97.09
svm 96.52 96.76 96.89 96.84 96.91 96.84 96.67
fda 95.92 96.01 95.97 95.69 96.00 95.72 95.64

diabetes

mpm 72.50 74.25 74.95 75.08 75.09 74.88 74.98
hp-mpm 73.15 74.43 74.68 74.81 74.44 74.55 74.32
svm 74.39 75.99 76.21 76.52 76.47 76.76 76.79
fda 69.32 71.23 72.05 72.70 72.75 72.93 73.56

digit1

mpm 90.23 92.57 94.52 95.66 96.21 96.19 96.68
hp-mpm 93.73 96.01 96.84 97.23 97.46 97.43 97.58
svm 92.96 95.85 96.88 97.22 97.51 97.62 97.66
fda 91.84 94.65 95.94 96.72 97.21 97.34 97.68

german

mpm 69.99 71.24 71.75 72.06 72.37 72.35 72.49
hp-mpm 70.63 71.47 72.07 72.37 72.43 72.65 72.99
svm 71.62 73.80 74.51 74.90 75.25 75.68 76.43
fda 69.97 70.15 69.97 69.87 69.89 70.17 70.15

heart

mpm 78.07 79.66 80.32 80.78 81.14 81.75 82.32
hp-mpm 79.19 80.08 80.14 80.79 80.89 81.58 81.71
svm 78.84 79.68 80.23 80.82 81.15 81.46 81.57
fda 76.82 77.91 78.01 78.45 78.90 79.04 78.99

ionosphere

mpm 80.93 83.14 87.18 89.10 90.25 90.78 91.38
hp-mpm 91.04 93.38 93.89 94.15 94.44 94.61 94.58
svm 86.76 92.88 93.82 94.00 94.53 95.07 95.62
fda 86.92 86.47 89.31 91.12 91.98 92.67 93.62

ringnorm

mpm 97.76 97.82 97.84 97.85 97.83 97.84 97.83
hp-mpm 98.51 98.52 98.53 98.51 98.50 98.51 98.49
svm 98.47 98.56 98.56 98.57 98.55 98.54 98.55
fda 96.89 95.68 95.65 95.64 95.61 95.59 95.59

sonar

mpm 66.37 71.85 76.00 78.52 80.96 82.83 84.60
hp-mpm 70.09 76.37 78.61 81.34 84.00 84.68 86.87
svm 68.90 75.88 78.94 81.02 83.52 84.54 86.53
fda 65.66 72.90 76.81 80.16 82.84 84.63 86.80

splice

mpm 82.90 85.00 85.90 86.51 86.81 86.81 86.81
hp-mpm 85.19 87.87 89.23 89.95 90.40 90.40 90.40
svm 84.70 87.54 88.87 89.82 90.26 90.26 90.26
fda 71.25 72.49 79.97 82.46 83.87 83.87 83.87

toy

mpm 87.92 92.52 93.45 94.24 94.00 94.45 94.50
hp-mpm 91.00 93.57 94.05 94.53 94.71 94.55 95.25
svm 90.77 93.35 94.15 94.18 94.29 94.00 94.75
fda 88.08 90.39 91.70 92.29 92.57 92.45 92.62

twonorm

mpm 97.57 97.64 97.68 97.69 97.69 97.70 97.70
hp-mpm 97.72 97.74 97.76 97.77 97.77 97.77 97.76
svm 97.69 97.72 97.73 97.71 97.69 97.72 97.70
fda 97.61 97.64 97.67 97.68 97.67 97.67 97.63

vote

mpm 92.40 94.95 95.70 95.72 95.76 96.07 96.09
hp-mpm 94.91 95.51 95.72 95.84 95.80 95.88 96.00
svm 94.42 95.19 95.14 95.64 95.63 95.81 95.66
fda 92.68 94.01 94.60 94.26 94.31 94.14 93.53

56 Linear discriminants: moments, uncertainty and applications

we used the popular Gaussian kernel k(x, x′) = exp(−||x − x′||2/σ), where the width of
the kernel σ ∈ {10−3, . . . , 103} was chosen using the same validation scheme outlined ear-
lier. We see that in general each algorithm’s performance is similar to its performance in
the linear setting, however there are noticeable improvements on the ionosphere, ringnorm
and sonar datasets when using the Gaussian kernel. This suggests that these input spaces
are better separated with a non-linear decision boundary, whereas for the others a simple
linear decision boundary will suffice. In the kernelised form we see that the mpm approach
to classification , mpm or hp-mpm , is extremely competitive with the SVM, being the top
performing algorithm for a large proportion of the dataset/training set size combinations.

Table 3.4 german dataset: we evaluate the performance (classification accuracy) of selecting
the bias term for the hp-mpm according to its performance on the validation set. We see that
this simple approach to adjusting the decision boundary, represented in column bhp-mpm ,
improves the performance of the hp-mpm , correcting for its implicit assumption that classes
are equally likely, and brings its performance inline with the SVM.

Fraction mpm (%) hp-mpm (%) bhp-mpm (%) SVM(%) fda (%)

0.1 69.99 70.63 73.04 71.62 69.97
0.2 71.24 71.47 74.33 73.80 70.15
0.3 71.75 72.07 75.22 74.51 69.97
0.4 72.06 72.37 75.42 74.90 69.87
0.5 72.37 72.43 76.08 75.25 69.89
0.6 72.35 72.65 76.11 75.68 70.17
0.7 72.49 72.99 76.72 76.43 70.15

It would appear as though the validation procedure used to determine the parameters for
the kernelised form of fda failed to ensure that increased training data resulted in an im-
provement in the performance. This could be due to inappropriate values of λ used during
regularisation, however there is very little guidance in the literature on a suitable degree
of regularisation, whereas the hp-mpm has a simple range ν ∈ [0, 1] from which to choose.
Furthermore, it is straightforward to work out what maximum value of ν will result in κ > 0
i.e. the conditions for non-zero κ require ν ∈ [0, 1] to satisfy ||x̂1 − x̂0|| ≥

√
2νA1 +

√
2νA0.

Accounting for class imbalance
The mpm schemes are generally competitive with the other approaches, however they seem
to perform comparatively poorly, some 3% worse than the SVM, on the german dataset.
This weakness of the mpm was previously identified in [Huang et al., 2004], and is due to
the mpm ’s prior assumption that the prior probability of each class is the same. We know
from Table 3.1 that this is not the case for the german dataset, and that the probability
of belonging to class 1 is much higher than class 0. One could foresee the hp-mpm making

3.4 Experiments 57

this situation potentially even worse given the nature in which in constructs its solution,
and its natural bias towards placing the decision boundary closer to the mean of the class
where moment uncertainty is lower i.e. the one with more observations. This is illustrated in
Figure 3.3, where we see the hyperplane is positioned nearer to the mean of class 0 because
the training sample consists of many more observations from this class. Fortunately this is
not the case and we see that the hp-mpm ’s performance is similar to that of the mpm . This
is largely a result of the low levels of confidence in future performance i.e. small κ∗, which
results in large levels of implicit regularisation for both classes as seen in the expression for
the ellipsoids (3.16). This results in a decision boundary that is not overly biased towards
predicting that new observations belong to the minority class. A simpler explanation of its
similar performance can be given by the validation procedure that was used to determine
what degree ν of regularisation to choose i.e. more likely that a smaller value of ν was used
since it would place the decision boundary less close to the mean of the more common class,
and therefore not be overly biased towards predicting that a new observation belongs to the
less probable class.

To improve the performance of the hp-mpm on unbalanced training samples, we propose a
simple solution that adjusts the bias term used in the construction of the decision boundary.
During the training step we use the optimal weight vector w∗ found using the standard
hp-mpm algorithm, and then select the bias term to be the one that maximises the accuracy
on the training set. These weight vectors and biases are then evaluated on the validation
sample. Alternatively one could use the validation set to set the bias term, however this
could be thought of as given this a glimpse of additional training samples and therefore an
unfair advantage. Geometrically, this adjustment corresponds to a translational movement
of the hyperplane where its direction w remains the same. In the german dataset, this
corresponds to shifting the decision boundary in the direction of the mean of class 0, since
we want to increase the probability that a new observation is predicted to belong to class 1.
In Table 3.4 we show the results obtained on the german dataset by selecting the value of
the bias term, when using the Gaussian kernel. We see that this simple approach to selecting
the value of the bias term b, represented by column bhp-mpm in Table 3.4, improves the per-
formance of the hp-mpm , correcting its implicit assumption that classes are equally likely,
and brings its performance in line with the SVM. This would suggest that the direction w
found by the hp-mpm is a useful method for discriminating between classes, and the bias
term can be selected to take into consideration the relative class probabilities. However in
doing so, the worst-case error rates that are found using the hp-mpm are no longer valid
as we have repositioned the location of the separating hyperplane. In our conclusions we
discuss a possible extension to the hp-mpm that similar to the mempm suggested in [Huang
et al., 2004] can take into consideration the relative class frequencies in the construction of

58 Linear discriminants: moments, uncertainty and applications

the hyperplane.

Large dataset
We evaluate the performance of the proposed method on the relatively large adult dataset
with the results presented in Table 3.5. This table reports the performance using the linear
version of all proposed methods. We see that the bhp-mpm approach is the top perform-
ing approach up until 5,000 training examples are provided to the learning algorithm, after
which the svm becomes the top performing predictor. This supports our argument that in
the case of limited data availability the incorporation of moment uncertainty can improve the
performance of predictors. As the number of data points increases and our information of
the class-conditional distribution improves, the worst-case assumptions and the regularisa-
tion imposed by the hp-mpm , may hinder the construction of predictions, whereas the svm
is able to take advantage of better knowledge of the true periphery of the class-conditional
distributions. Note that these experiments were conducted using the primal form of the
problem and we have avoided having to find a very large dimensional dual solution. We dis-
cuss possible methods for computing sparse solutions to our hp-mpm during our conclusions
to this chapter.

Table 3.5 adult dataset lines experiment: we evaluate the performance (classification ac-
curacy) of the proposed algorithm on a large scale dataset. The number of training samples
m is varied and we observe the changes in classifier performance. We see that with a small
number of training examples the bhp-mpm tends to outperform the other approaches, with
its relative advantage deteriorating as m increases.

m mpm (%) hp-mpm (%) bhp-mpm (%) SVM(%) fda (%)

50 60.63 78.13 79.35 78.41 73.01
100 74.63 78.30 81.37 79.87 76.42
200 77.90 79.03 82.37 81.41 78.52
500 79.52 79.63 83.30 82.83 81.08
1000 80.08 80.07 83.79 83.53 82.61
5000 80.47 80.44 84.34 84.46 84.23
10000 80.56 80.52 84.49 84.65 84.43

Impact of label noise
A key motivation for this chapter was our belief that predictors constructed using the mo-
ments of a distribution would be more robust to high-noise environments than those con-
structed using peripheral points. For example, a small number of mislabelled examples could
quite significantly adjust the shape of the covariance matrix when the number of examples
is not large. To test this we re-visit the UCI datasets and examine the performance of the
algorithms under different levels of label noise, varying from 0% to 30% in increments of
5%. Label noise in this scenario refers to the random switching of the class labelling i.e.

3.4 Experiments 59

10% noise corresponds to a 10% chance that a given label will be switched. In all of the
experiments we performed 50 iterations varying the levels noise, in Figures 3.4 and 3.5 we
report the performance of the algorithms when we use 20% and 50%, respectively, of the
data during training. We follow the same cross validation procedure as in our original ex-
periments to select the required parameters for each algorithm.

In Figures 3.4 and 3.5 we see that the performance of the hp-mpm is fairly robust to the in-
troduction of noise in the label space. It performs competitively with the other algorithms,
and for many noise levels performs the best. We observe that on the breast, digit1,
heart, ringworm and twonorm datasets, the performance of the hp-mpm algorithms
degrades only marginally as the level of label noise increases. The behaviour of the fda on
these datasets except for breast is relatively similar, indicating the robustness of solutions
constructed using the moments of the class-conditional densities. However on the breast
dataset, we see that the performance of the fda algorithm improves as we increase the level
of label noise. One possible explanation for this is due to the value of the bias term b that
depends on the relative probabilities of each class. By randomly flipping labels, it is likely
that we reduce the class imbalances and this results in a better positioning of the fda hy-
perplane. The same argument may be used to explain why the performance of the hp-mpm
methods don’t decrease for this dataset.

The performance of the svm appears to be significantly more affected for large levels of label
noise, and we see a sharp drop in the performance of the svm once a certain level of noise
has been reached. The reason for this degradation could be explained by the construction of
the solution using outliers, which in this case happen to come from a different distribution
and are therefore more misleading than discriminative. In the moment based classifiers, we
would expect the label flipping to have a lesser influence on the predictor and this is evident
in the results shown in Figures 3.4 and 3.5.

Currency movement prediction
We conclude our experiments by testing the performance of the different classification algo-
rithms on predicting the daily price movement of four common currency pairs. The daily
foreign exchange (FX) data was freely downloaded from http://www.dukascopy.com, and
ranges from October 2008 to October 2014. The currency pairs that we investigated were;
EUR-GBP, EUR-USD, EUR-GBP and AUD-USD. We now describe the classification setting
used in the experiments. Let the opening price of the currency at day t be given by pt, we
represent the input space using a range of n-past log returns. For example, if n = 3, then

60 Linear discriminants: moments, uncertainty and applications

0 0.05 0.1 0.15 0.2 0.25 0.3
72

74

76

78

80

82

84

86
australian

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

australian

0 0.05 0.1 0.15 0.2 0.25 0.3
50

52

54

56

58

60

62

64

66

68
BCI

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

BCI

0 0.05 0.1 0.15 0.2 0.25 0.3
89

90

91

92

93

94

95

96

97

98
breast

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

breast

0 0.05 0.1 0.15 0.2 0.25 0.3
66

67

68

69

70

71

72

73

74

75

76
diabetes

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

diabetes

0 0.05 0.1 0.15 0.2 0.25 0.3
65

70

75

80

85

90

95
digit1

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

digit1

0 0.05 0.1 0.15 0.2 0.25 0.3
58

60

62

64

66

68

70

72

74

76
german

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

german

0 0.05 0.1 0.15 0.2 0.25 0.3
66

68

70

72

74

76

78

80

82
heart

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

heart

0 0.05 0.1 0.15 0.2 0.25 0.3
70

72

74

76

78

80

82

84
ionosphere

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

ionosphere

0 0.05 0.1 0.15 0.2 0.25 0.3
66

68

70

72

74

76

78
ringnorm

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

ringnorm

0 0.05 0.1 0.15 0.2 0.25 0.3
56

58

60

62

64

66

68

70

72
sonar

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

sonar

0 0.05 0.1 0.15 0.2 0.25 0.3
64

66

68

70

72

74

76

78

80

82

84
splice

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

splice

0 0.05 0.1 0.15 0.2 0.25 0.3
78

80

82

84

86

88

90

92

94
toy

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

toy

0 0.05 0.1 0.15 0.2 0.25 0.3
75

80

85

90

95

100
twonorm

Label Noise (%)

A
c
c
u
ra

c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

twonorm

0 0.05 0.1 0.15 0.2 0.25 0.3
82

84

86

88

90

92

94

96
vote

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

vote

Fig. 3.4 The impact that flipping training labels has on the performance of the different
classification algorithms, when training using 0.2 of the full dataset.

3.4 Experiments 61

0 0.05 0.1 0.15 0.2 0.25 0.3
72

74

76

78

80

82

84

86

88
australian

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

australian

0 0.05 0.1 0.15 0.2 0.25 0.3
50

55

60

65

70

75

80

85
BCI

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

BCI

0 0.05 0.1 0.15 0.2 0.25 0.3
90

91

92

93

94

95

96

97

98
breast

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

breast

0 0.05 0.1 0.15 0.2 0.25 0.3
68

69

70

71

72

73

74

75

76

77
diabetes

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

diabetes

0 0.05 0.1 0.15 0.2 0.25 0.3
70

75

80

85

90

95
digit1

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

digit1

0 0.05 0.1 0.15 0.2 0.25 0.3
55

60

65

70

75

80
german

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

german

0 0.05 0.1 0.15 0.2 0.25 0.3
68

70

72

74

76

78

80

82
heart

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

heart

0 0.05 0.1 0.15 0.2 0.25 0.3
72

74

76

78

80

82

84

86
ionosphere

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

ionosphere

0 0.05 0.1 0.15 0.2 0.25 0.3
66

68

70

72

74

76

78
ringnorm

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

ringnorm

0 0.05 0.1 0.15 0.2 0.25 0.3
60

62

64

66

68

70

72

74

76

78
sonar

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

sonar

0 0.05 0.1 0.15 0.2 0.25 0.3
68

70

72

74

76

78

80

82

84

86
splice

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

splice

0 0.05 0.1 0.15 0.2 0.25 0.3
89

90

91

92

93

94

95
toy

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

toy

0 0.05 0.1 0.15 0.2 0.25 0.3
75

80

85

90

95

100
twonorm

Label Noise (%)

A
c
c
u
ra

c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

twonorm

0 0.05 0.1 0.15 0.2 0.25 0.3
84

86

88

90

92

94

96

98
vote

Label Noise (%)

A
c
c
u

ra
c
y
 (

%
)

HP−MPM

bHP−MPM

SVM

FDA

vote

Fig. 3.5 The impact that flipping training labels has on the performance of the different
classification algorithms, when training using 0.5 of the full dataset.

62 Linear discriminants: moments, uncertainty and applications

the input representation xt at time t is given by

xt = [log (pt/pt−1) , log (pt−1/pt−2) , log (pt−2/pt−3)] .

Given xt, our goal is to make a prediction whether we believe the price at the next time step
will be higher than the current i.e. yt = 1 if pt+1 ≥ pt, and yt = 0 otherwise. In evaluating
the performance of the algorithms we recorded not only the accuracy of the predictions, but
also the hypothetical profit that would be made had we made a decision according to the
advice of the predictor i.e. if we predicted the price to increase from t to t + 1, then our
return rt would be the change in price over this time rt = (pt+1 − pt)/pt. Similarly if we
predicted the price would fall over this time horizon rt = (pt − pt+1)/pt.

To train the model we implement a simple sliding window procedure that uses a fixed size
number of examples (training window) to construct the predictor, which is then refreshed
after a given number of observations (test window). By updating the predictor over time
it is hoped that the predictor will be able to account for fact that the data is most likely
not identically and independently distributed. Unfortunately we are unable to use the same
validation technique that we used on the previous experiments, as it is likely that the most
recent observations are the most important to the derivation of the predictor and we cannot
make predictions based on observations in the future. Therefore in the results presented in
Figures 3.6-3.7 we have shown the performance of all of regularisation parameters for each
classification algorithm. Given the multitude of different settings for these experiments and
the limited space, we present only the results obtained when predictor is refreshed every
10 days, the input space is described using the last 5 log returns and we allow the training
window to vary between 50, 100 and 150 days.

In Figure 3.6 we present the hypothetical profits that would have been generated having
traded on the prediction of the algorithms. We see that the hp-mpm approach performs
consistently well across varying degrees of regularisation i.e. ν. It only fails to make profits
on the AUD/USD currency pair, however its returns are often considerably better than those
generated by the fda or SVM. Similarly the accuracy of the hp-mpm is consistently on par
with, if not exceeding that, of the other algorithms. On these datasets it would appear that
the moment based algorithms, fda and hp-mpm , perform better in terms of accuracy the
SVM. We believe that this is largely due to the nature in which the solutions are constructed.
The svm will construct its solutions using points that it believes to lie on the boundary of
the class-conditional distributions, whereas the moment based solutions are defined by the
mean and covariances i.e. the majority of the data, rather than the outliers. Therefore when
it comes to finding predictors in high-noise environments, the svm will be constructing its
solutions based on these outlying points rather than constructing it using the points that

3.4 Experiments 63

SVM FDA HP−MPM
−20

−10

0

10

20

30

40

50

Algorithm

P
ro

fit

EUR/USD - 50 days

SVM FDA HP−MPM
0

5

10

15

20

25

30

35

40

45

Algorithm

P
ro

fit

EUR/USD - 100 days

SVM FDA HP−MPM
0

5

10

15

20

25

30

35

Algorithm

P
ro

fit

EUR/USD - 150 days

SVM FDA HP−MPM
−15

−10

−5

0

5

10

15

20

25

30

35

Algorithm

P
ro

fit

EUR/GBP - 50 days

SVM FDA HP−MPM
−10

−5

0

5

10

15

20

25

30

35

40

Algorithm

P
ro

fit

EUR/GBP - 100 days

SVM FDA HP−MPM
−20

−10

0

10

20

30

40

Algorithm

P
ro

fit
EUR/GBP - 150 days

SVM FDA HP−MPM
−50

−40

−30

−20

−10

0

10

20

30

40

Algorithm

P
ro

fit

GBP/USD - 50 days

SVM FDA HP−MPM
−20

−10

0

10

20

30

40

Algorithm

P
ro

fit

GBP/USD - 100 days

SVM FDA HP−MPM
−40

−30

−20

−10

0

10

20

30

40

Algorithm

P
ro

fit

GBP/USD - 150 days

SVM FDA HP−MPM
−80

−70

−60

−50

−40

−30

−20

−10

0

Algorithm

P
ro

fit

AUD/USD - 50 days

SVM FDA HP−MPM
−35

−30

−25

−20

−15

−10

−5

0

5

10

Algorithm

P
ro

fit

AUD/USD - 100 days

SVM FDA HP−MPM
−50

−40

−30

−20

−10

0

10

Algorithm

P
ro

fit

AUD/USD - 150 days

Fig. 3.6 Currency experiments: profit on trading decisions advised by the different algo-
rithms. We see that the hp-mpm performs consistently well across the majority of settings
(training window and regularisation). However, all of the algorithm seem to struggle with
the AUD/USD currency pair.

64 Linear discriminants: moments, uncertainty and applications

SVM FDA HP−MPM
0

0.5

1

1.5

2

2.5

3

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

EUR/USD - 50 days

SVM FDA HP−MPM
0

0.5

1

1.5

2

2.5

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

EUR/USD - 100 days

SVM FDA HP−MPM
0

0.5

1

1.5

2

2.5

3

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

EUR/USD - 150 days

SVM FDA HP−MPM
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

EUR/GBP - 50 days

SVM FDA HP−MPM
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

EUR/GBP - 100 days

SVM FDA HP−MPM
−0.5

0

0.5

1

1.5

2

2.5

3

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

EUR/GBP - 150 days

SVM FDA HP−MPM
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

GBP/USD - 50 days

SVM FDA HP−MPM
−1.5

−1

−0.5

0

0.5

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

GBP/USD - 100 days

SVM FDA HP−MPM
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

GBP/USD - 150 days

SVM FDA HP−MPM
−1.5

−1

−0.5

0

0.5

1

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

AUD/USD - 50 days

SVM FDA HP−MPM
−1.5

−1

−0.5

0

0.5

1

1.5

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

AUD/USD - 100 days

SVM FDA HP−MPM
−1

−0.5

0

0.5

1

1.5

2

2.5

Algorithm

Im
pr

ov
em

en
t o

n
R

an
do

m

AUD/USD - 150 days

Fig. 3.7 Currency experiments: improvement of accuracy on random guessing i.e. improve-
ment over 50% correct. The hp-mpm appears to be the most consistently performing algo-
rithm and only does worse than random guessing on two particular parameterisations. The
other algorithms appear to perform quite considerably worse in terms of accuracy, with the
svm only consistently better than random for the EUR/USD currency pair.

3.5 Conclusions and future work 65

define the mass of the distribution.

3.5 Conclusions and future work

In this chapter we began by introducing alternative approaches for binary classification
that use the moments of the class-conditional distribution to construct prediction functions.
These approaches seek to construct predictors by aggregating the information contained
within the sampled examples, rather than focusing on the peripheral points. In our exami-
nation of the minimax probability machine we addressed the oversight that the worst-case
future misclassification rate depends explicitly on prior knowledge of each classes mean and
covariance matrix. In practice, these true moment values have to be substituted with their
empirical counterparts, which are finite sample estimates of their true values. Making use
of the high-probability bounds on the deviation of these estimates from their true values
[Shawe-Taylor and Cristianini, 2003], we derived a new optimisation scheme that takes into
account the moment uncertainty and directly minimises the worst-case future misclassifica-
tion rate that holds true with high-probability.

Better bounds on moments
During our experiments we observed that in many cases the level of moment uncertainty
was so large that it was unable to produce meaningful results i.e. κ∗ = 0. Therefore, at
the expense of statistical correctness, we proposed to use fractional quantities of the true
moment uncertainty as a form of regularisation. This form of regularisation, unlike most
traditional schemes, implicitly takes into consideration the relative uncertainties regarding
each class i.e. through different values of A1 and A0. During the experiments we noted that
its performance was competitive with the popular svm and fda approaches, however its ad-
vantage was most apparent when minimal amounts of training data were used to construct
the decision boundary thus providing support for this new approach to regularisation.

To improve the correctness of this approach, future work should focus on obtaining tighter
bounds on the deviation of empirical moments from their true value. It is well known that
the general concentration bounds presented in [Shawe-Taylor and Cristianini, 2003], despite
being valid, have a tendency to be overly conservative. To overcome this, in [Bertsimas
et al., 2013] the authors suggested the use of bootstrapping methods to compute alternate
thresholds, and thus drive tighter bounds on the uncertainty sets. By adopting this work
into our approach it is possible that it could lead to better, statistically correct, worst-case
guarantees, whilst also circumventing the problem of having to use a validation set in order
to choose the regularisation terms for the hp-mpm .

66 Linear discriminants: moments, uncertainty and applications

Class imbalance
During our experiments we alluded to the poor performance of the hp-mpm on imbalanced
datasets. This was partially due to the algorithms implicit belief that the prior probabilities
were equal and this was made worse by a regularisation scheme that encourages the hyper-
plane to be close to dominant class. We attempted to circumvent this problem by selecting
the positioning of the hyperplane, as given by the bias term b, using the training set accuracy
as the criterion for its selection. This arbitrary positioning of the hyperplane invalidated our
guarantees on the worst-case probability of misclassification, however it was shown to im-
prove prediction performance across a number of datasets, most notably the imbalanced ones.

The original mpm suffered from a similar problem by implicitly assuming that each class
appeared with equal probability. When this holds true, P (y = 1) = p = 0.5, it makes sense
to minimise a common worst-case error rate ω, however when the data is biased towards one
class, p ̸= 0.5, we are no longer minimising the true worst-case error-rate. Clearly if one class
has a significantly larger probability of appearing, then it makes sense to focus on minimising
the worst-case error rate for this class at the expense of additional error in the less frequent
class. This oversight was addressed in [Huang et al., 2004], where the authors presented
the minimum error minimax probability machine me-mpm. By introducing worst-case error
rates for each class, ω1 and ω0, they solved the following optimisation problem

max
w,ω1,ω0

p ω1 + (1− p) ω0 s.t. inf
x1∼D1

P
{

wT x1 ≥ b
}
≥ ω1 (3.17)

inf
x0∼D0

P
{

wT x0 ≤ b
}
≥ ω0.

The authors [Huang et al., 2004] showed that (3.17) could be solved by performing a one-
dimensional line search over ω0, where intermediate solutions where found by maximising
the value of ω1 subject to a minimum accepted value of ω0. This method is known as the
biased minimax probability machine (b-mpm) [Huang et al., 2006] and can be solved using
Fractional Programming methods. This approach is particularly useful for problems where
there is a different cost associated with each error i.e. in medical applications where there is
a more serious error in the inability to identify whether someone has a given disease, rather
than incorrectly predicting that someone has a disease. The bmpm provides a means for
controlling the maximum error rate for a particular class, and optimises the performance
over the other class subject to this constraint. On first inspection it would seem relatively
straightforward to apply the high-probability machinery that we have developed in this chap-
ter in this context. Although we would need to use an additional empirical estimate for the
relative class probabilities. If we assume with high probability the error of the prior class
probabilities is less than ϵ i.e. p ∈ [p̂− ϵ, p̂ + ϵ], there will be two extreme probabilities that
we have to consider. It is not currently clear what the implications of this estimation will

3.5 Conclusions and future work 67

have on the smoothness of the original line-search method, and whether or not we would
have to perform a line search over p in order to find the worst-case. One would hope that
it is possible to show that the worst-case occurs at one of the extrema, which would allow
us to avoid having to repeat this optimisation for many values of p. We leave this for future
research and briefly discuss the extension of the method for regularisation to the other pop-
ular minimax formulation approaches.

In [Osadchy et al., 2015], the minimax principle is used for the abundant class, which would
typically have a small degree of moment uncertainty and therefore it seems unlikely that
applying our proposed methods would be particularly beneficial in this case. For the trans-
ductive [Huang et al., 2014] and clustering based [Huang et al., 2015] minimax approaches,
the main difficulty of including moment uncertainty into the optimisation stems from the
assignment of unlabelled data to classes. This effectively allows us to have control over the
degree of uncertainty surrounding each class, and one could imagine a scenario where we
inadvertently encourage equal numbers of observations for both classes in order to mitigate
the effects of the regularisation scheme. Despite these potential difficulties, the inclusion of
moment uncertainty with existing minimax approaches remains an interesting area of re-
search.

Sparsity methods
During our discussion of the algorithm and the experiments, we briefly mentioned that we
have no reason to expect a sparse solution. Whether it be a sparse primal solution i.e. many
irrelevant dimensions, or a sparse dual solution, i.e. many zero dual variables. This makes
our algorithm unsuitable for problems where we have both a large dimension and a large
number of training points. Note that we are free to switch between the primal and dual
form when we have only either a large dimension or a large number of training points.

During the formulation of the bounds in Proposition 7 we assumed that the weight vector
w was contained within the L2 norm unit sphere, ||w|| ≤ 1. This was done to help with
the clarity of our presentation during the formulation of the bounds. We also assume this
unit norm restriction in the optimisation scheme, however we could take advantage of the
relationship between the unit L1 and L2 norms i.e. ||w|| ≤ ||w||1, and use the unit L1 norm
restriction during the optimisation, without worrying about violating the bounds satisfied in
the proposition. This holds true since we know that a weight vector w satisfying ||w||1 ≤ 1
will also satisfy ||w|| ≤ 1. It is well known [Tibshirani, 1996] that the L1 norm method
of regularisation, which we are effectively doing by limiting its norm, encourages sparsity
in the co-ordinates of the solution w. In order to solve this optimisation and handle the
difficulties associated with its non-differentiability, one would expect to borrow ideas taken

68 Linear discriminants: moments, uncertainty and applications

for the methods presented in [Tibshirani, 1996; Yuan et al., 2010]. Furthermore, it would
be interesting to understand the implications on the worst-case misclassification probability,
if we only include a proportion of the original dimensions. For example, is it fair to treat
the separability of classes with respect to different subsets of input variables? Intuitively it
seems reasonable to allow the algorithm to ignore variables that don’t have any discrimina-
tory power, however given that we work with a finite sample, we might risk disregarding a
potentially useful variable due to limited observations.

During the optimisation scheme proposed for the kernel version hp-mpm , each gradient step
involves updating each of the m dual variables in α. This is a costly operation as it requires
us to compute m gradients and check whether the constraint αT Kα ≤ 1 is satisfied. One
would hope that we could develop specialised optimisation procedures such as those used
in svms so as to allow our algorithm to scale to large scale datasets. One simple method,
similar in respect to that proposed in [Strohmann et al., 2004], would be to select a single
dual variable αk at each iteration k and update the dual solution α(k) in this direction i.e.
α(k+1) ← (1−γ)α(k) followed by α

(k+1)
k ← α

(k)
k + γ, where γ is chosen so as to maximise the

value of the auxiliary function h(α(k+1), κ). This process could be repeated until a desired
level of convergence is reached. An alternative may be to use approximate kernel methods
such as those proposed in [Drineas and Mahoney, 2005; Williams and Seeger, 2001] that
involve the use of the Nyström approximation. By implementing these methods we would
have to take into consideration an approximation error associated with the computation of
means and covariances using a subset of the training samples.

Final remarks
In this chapter we have presented a new algorithm for binary classification that uses the
first and second moments of a class conditional distribution, along with our uncertainties
regarding their values, to construct a classifier that directly minimises with high probability
the worst case future rate of misclassification. Geometrically, we saw that our classifier op-
erated in a similar manner to the original mpm , increasing ellipsoids centred at class means
until their point of intersection. The difference in our approach was that the shape of each
ellipsoid was adjusted using the uncertainty associated with that class, effectively acting as
class specific regularisation scheme.

During our experiments we noted that on many datasets, the number of observations was
insufficient to permit meaningful solutions in the minimax setting. This led to the use
of fractional amounts of the class specific regularisers, and we observed promising results
across a number of UCI datasets. The greatest performance improvements were seen when
there were only a small number of observations used and the dimension large. This may be

3.5 Conclusions and future work 69

going in the opposite direction to modern, big-data methods, however we feel it shows that
one can still perform well with only a small amount of information, and one can leverage
this uncertainty in order to make better predictions on unseen examples. We concluded
our experiments by examining the problem of predicting the movement of several different
currencies, and comparing the performance of algorithms using moments of the distribution,
versus those that use the support of the distribution, to construct predictors. Across our
experiments we saw that our hp-mpm method had the most consistent improvement over
random guessing, providing evidence support the use of this method for financial predictions.
The reason we feel that this method was able to perform consistently well across different
parameterisations is its apparent resilience to high levels of noise, and its dependence on the
shape of the underlying distributions rather than simply the peripheral points.

Chapter 4

Multi-label learning over unknown
graph structures

Machine learning has a long and successful history in solving problems where there is a single
output variable to predict. Traditionally, these approaches can be separated into classifica-
tion, where the output is a binary decision variable, and regression where the output is a
scalar quantity. These are arguably the simplest and most general learning settings, and our
understanding of what it means to learn with machines has benefited significantly from the
considerable research efforts devoted to these problems. As our expertise and understanding
of learning in these settings grows, it is natural that we consider approaches better designed
to solving real-world problems, since many of these cannot be expressed fully as a simple
regression or classification task. In this chapter we study problems where there is more than
one output variable to be predicted, which is often referred to in the literature as structured
output prediction. Here the goal is to learn a general functional dependency between an arbi-
trary input space and a complex output space of interdependent variables. The dependency
between outputs may reflect some combinatorial, hierarchical, spatial or temporal property
related to the problem domain, where being able to capture these relationships is often as
important as understanding the relationships between inputs and outputs when it comes to
constructing a function for prediction.

Structured prediction has become increasingly prevalent in machine learning research with
notable successes in fields such as computer vision, natural language processing and compu-
tational biology, to name but a few. This success is partly due to its ability to incorporate
knowledge of the structure of the output into the learning algorithm. For example, a common
problem in computer vision is assigning each pixel to a particular class (e.g. tree, cat, sky
etc.) using inputs given by raw RGB pixel values. Here the incorporation of prior knowledge
that neighbouring pixels are likely to represent the same thing is an essential component to

72 Multi-label learning over unknown graph structures

learning accurate prediction functions. However we are often faced with problems where we
have no prior knowledge of the structure between output variables and we are unable to use
hand-crafted structures to leverage these output correlations and improve our predictions.
For example, what is the relationship between the movements in price of the financial assets
that make up the stock market.

Graphical models, a popular sub-field in machine learning, provide a powerful learning frame-
work for capturing complex relationships between output variables and allows the construc-
tion of high dimensional statistical models. However, the focus here is on forming proba-
bilistic relationships between output variables, for the most part overlooking the case of how
different inputs can give rise to different output dependencies. Graphical models could be
used to estimate the correlation between different assets in the stock market and manage
the risk of a stock portfolio, however this approach fails to take into consideration exoge-
nous variables that can affect the structure within the market. If we knew the relationship
between these exogenous variables and the correlation between stocks then we could signifi-
cantly improve our portfolio management skills.

In this chapter we seek to bridge the gap in the literature between algorithms designed ex-
plicitly for learning the structure between output variables, and those for making predictions
over known structures. In particular we focus on a particular setting of multi-label learning,
where we must learn to predict the labellings of several, possibly interdependent, output
variables. When we don’t know the structure between the variables, there are two extreme
approaches that one can take. The first assumes that each output variable is independent
from one another, and the solution is to train individual predictors for each variable. The
other extreme assumes that each variable is connected to one another, resulting in what
is known as a complete output graph, which makes performing inference on the graph in-
tractable. The method that we are proposing falls somewhere in between these two, defining
the structure using a sparse combination of spanning trees. Later we show that we are able
to overcome the intractability of inference over the graph by using a collection of spanning
trees, whilst also showing that the margin obtained using these trees is at least as large as
that found using the complete graph.

We continue this chapter with a short introduction to graphical models, looking at how
inference can performed on them and examining how parameters and structures can be
learned from data. The focus turns to the case where outputs depend on an arbitrary input
and we discuss several state-of-the-art methods for structured prediction, before presenting
a new method for multi-label classification. A graph agnostic learning framework that finds
the structure that maximises the margin of the predictor. We conclude by investigating the

4.1 Graphical models 73

performance of our newly proposed method on a range of benchmark multi-label datasets
and discuss the ramifications of this approach and the possible extensions that may exist.

4.1 Graphical models

A graph G = (V, E) encodes a set of conditional independence assumptions and is defined
by a set of vertices V and edges E. Each vertex Vi ∈ V is associated with a random vari-
able Yi ∈ Yi . The space of possible outcomes is denoted Y = Y1 × Y2 × · · · × Yℓ, where
we have assumed there are ℓ vertices in the graph i.e. |V | = ℓ. We denote the realisation
of a random variable by Yi = yi, and the realisation of all vertices Y = y. Furthermore,
let YS denote a subset of random variables indexed by S ⊆ G, the realisation of random
variables belonging to this subset is denoted Ys = ys. Each edge e ∈ E consists of a pair
of vertices e = (i, j) ∈ V × V , where the existence of an edge between Vi and Vj represents
some dependency between the random variables Yi and Yj . We denote the labelling of edge
e = (i, j) ∈ E by Ye = ye ∈ Yi × Yj . A clique C ⊂ G is a fully connected subset of vertices
of G, where there exists an edge between for each pair of vertices i, j ∈ C. A maximal
clique is one that cannot be extended to include further vertices without violating the fully
connectedness property.

Graphical models can generally be divided into two categories based upon the nature of their
edges; directed graphical models and undirected graphical models. Both models are capable
of representing a family of joint probability distributions over Y, however they differ in their
factorisation and conditional independence relations. Directed graphical models are often
considered more appropriate when it is possible to attribute a directionality on the depen-
dency between variables, and thus edges. Later when it comes to learning graph structure,
we assume no prior knowledge of the relationship between random variables, which makes it
difficult to attribute the responsibility of dependencies. Therefore we will focus our efforts
on the undirected case, and refer the reader to [Barber, 2012; Heckerman, 1998; Koller and
Friedman, 2009] for further information on directed models.

Undirected graphical models are also known as Markov random fields, their name derived
from the Markov properties exhibited by the random variables defined over the graph G,
namely:

• Pairwise Markov Property: we have for all i, j ∈ V : i ̸= j∧(i, j) /∈ E : i⊥⊥j |V \{i, j}.

• Global Markov Property: we have for all disjoint set I ⊂ V, J ⊂ V, S ⊂ V with S being
a vertex-separator set of I and J in G such that I⊥⊥J |S.

where a vertex separator is a subset of nodes in V , ∧ is the logical conjunction operator,

74 Multi-label learning over unknown graph structures

A⊥⊥B says that A and B are independent of one another, A ⊂ B states that A is a subset
of B and A \B corresponds to set A minus set B. Note that it is easy to see that the global
Markov property implies the pairwise Markov property by simply taking I = {i}, J = {j}
and S = V \ {i, j}.

If a distribution of random variables satisfies the Markov properties with respect to G, and
every realisation of random variables has a positive probability i.e. P (y) > 0 for all y ∈ Y,
then the Hammersley-Clifford theorem [Besag, 1974; Hammersley and Clifford, 1971] states
that the probability distribution can be factorised over the cliques of the graph, namely

P (Y = y) = P (y) = 1
Z

∏
C∈C

hC(yC), (4.1)

where C is the set of all cliques in G, hC are non-negative factors hC : YC → R+, and Z is a
normalisation constant, which ensures a valid probability distribution i.e. 1

Z

∑
y∈Y P (y) = 1.

This is known as the partition function and is given by

Z =
∑
y∈Y

∏
C∈C

hC(yC) .

These non-negative factors hC(yC) do not correspond to probabilities but rather capture
the agreement between the configuration of random variables yC within the clique C. The
advantage of using these agreement factors within cliques is that they allow local information
to be efficiently propagated throughout the rest of the graph, taking into consideration the
conditional independencies implied by G. This propagation takes place through through the
intersection of the various cliques within the graph.

We now present some examples of graphical models, considering factorisations in terms of
the set of maximal cliques C over the graph. However later we shall make use of an over-
complete, non-maximal clique, representation of the output graph to take advantage of the
decomposability properties of our chosen kernels. In Figure 4.1 we present a complete graph,
which is defined as a simple undirected graph in which there exists an edge between every
pair of vertices. We see that there is only one maximal clique, and it is represented by
the set of all vertices, namely, C0 = V , and the subsequent factorisation contains a single
factor. In Figure 4.2 we present a graph consisting of two maximal cliques C0 = {0, 1, 2}
and C1 = {0, 2, 3}, and two factors corresponding to the labelling of the random variables
indexed by these cliques. In this graph the intra-clique information is propagated through
the labelling of nodes C0 ∩C1 = {0, 2}. In Figure 4.3 we present a tree-structured graph, an
undirected graph where any two vertices in the graph are connected by a unique sequence of
edges. The maximal cliques correspond to the edges of the graph and we have three cliques,

4.2 Inference over graphs 75

C0 = {0, 1}, C1 = {1, 2} and C2 = {2, 3} and the information is propagated through each of
the clique intersections.

Throughout this chapter we make use of the fact that a product of positive functions (4.1) can
be expressed as the exponential of a sum of functions. This representation of a probability
distribution is known as the log-linear model and is given as

P (y) = 1
Z

∏
C∈C

hC(yC) = exp
(∑

C∈C
log hC(yC)− log Z

)
.

This motivates the use of the exponential family representation

P (y|w) = exp (⟨w,ψ(y)⟩ − log Z(w)) = exp
(∑

C∈C
⟨wC ,ψC(yC)⟩ − log Z(w)

)
,

where ψ : Y → Rn are known as the sufficient statistics, w ∈ Rn are their associated
parameters and the value of the partition function Z(w) depends on the choice of model
parameters. The sufficient statistics can be represented by the concatenation of individual
clique sufficient statistics ψC(yC) where each clique’s sufficient statistic can be thought of
as a feature mapping that acts as an indicator function for a particular realisation of the
clique. The dimension of each clique’s sufficient statistic is given by |YC | and therefore the
dimension of the model is n = ∑

C∈C |YC |. The parameters wC ∈ R|YC | associated with each
clique correspond to the logarithm of the clique factors i.e. ⟨wC ,ψC(yC)⟩ = log hC(yC),
which we refer to as compatibility factors. For example, consider the tree-structured graph
given in Figure 4.3 where each random variable Yi ∈ {0, 1}. The sufficient statistic, which
we will refer to as a feature mapping, ψ(y) is given by

ψ(y) = (ψC0(yC0),ψC1(yC1),ψC2(yC2))T .

Here n = 12 corresponding to the three different cliques, each of which two random variables
and can take on four possible values i.e.

ψC(yC) = (1[yC = (0, 0)], 1[yC = (0, 1)], 1[yC = (1, 0)], 1[yC = (1, 1)])T .

4.2 Inference over graphs

Now that we have introduced some basic concepts regarding Markov random fields mrf, we
can look at how they can be used to for performing inference over given graph structures.
Assuming that we have been given the graph structure and compatibility factors, there are
two main types of inference that one may wish to perform on a graphical model;

76 Multi-label learning over unknown graph structures

Y0

Y1

Y2

Y3

V = {0, 1, 2, 3}
E = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
C = {{0, 1, 2, 3}}

P (Y = y) = 1
Z

hV (y0, y1, y2, y3)

Fig. 4.1 Complete output graph

Y0

Y1

Y2

Y3

V = {0, 1, 2, 3}
E = {(0, 1), (0, 2), (0, 3), (1, 3), (2, 3)}
C = {{0, 1, 2}, {0, 2, 3}}

P (Y = y) = 1
Z

hC0(y0, y1, y2)hC1(y0, y2, y3)

Fig. 4.2 Two-clique graph

Y0

Y1

Y2

Y3

V = {0, 1, 2, 3}
E = {(0, 1), (1, 2), (2, 3)}
C = {{0, 1}, {1, 2}, {2, 3}}

P (Y = y) = 1
Z

hC0(y0, y1)hC1(y1, y2)hC2(y2, y3)

Fig. 4.3 Tree-structured graph

4.2 Inference over graphs 77

• The computation of marginal probability distributions. Let S ⊆ V denote some subset
of variables, assuming the graph is parameterised by w, the marginal distribution
P (yS) is given by

P (yS) =
∑

y′∈Y:y′
S=yS

P (y) =
∑

y′∈Y :y′=yS

exp
(
⟨w,ψ(y′)⟩ − log Z(w)

)
.

• Finding the labelling with highest probability, which is known as the maximum a
posterior map configuration

y∗ = argmax
y∈Y

P (y|w) = argmax
y∈Y

⟨w,ψ(y)⟩ .

Worst case analysis, for computing marginals [Cooper, 1990] and finding MAP configura-
tions [Shimony, 1994], has shown that for general graphs these inference tasks are NP-hard
to solve exactly. For example, a naive method for computing the MAP configuration would
be to compute the value (ignoring the partition function) of all possible configurations and
choose the one with the highest value. Even for the simple case where each random variable
is binary, this would require 2ℓ computations, which quickly becomes intractable as the size
of the graph grows. Similarly to compute the marginal probability for a single random vari-
able, P (Yi = yi), the naive method would require the summation over 2ℓ−1 configurations
i.e. P (Yi = yi) = ∑

y′∈Y:y′
i=yi

P (y).

Fortunately there are some graph structures where exact inference can be performed in
polynomial time, for example in tree-structured graphs [Pearl, 1986], planar Ising models
[Schraudolph and Kamenetsky, 2009] and graphs where the parameters defined over cliques
exhibit submodularity [Greig et al., 1989]. Later we will perform inference on tree-structured
graphs, which are known more generally as trees. Here one can perform these inference tasks
exactly in linear time using recursive message-passing algorithms, similar in nature to the
approaches taken in dynamic programming. The algorithms used for computing the marginal
distribution and mode of the distribution work almost the same, and are referred to as sum-
product algorithm and max-product algorithm, respectively. The terms sum and max refer
to the operations undertaken as the algorithm works recursively through the tree-structure.
To perform marginal inference, the messages passed through the tree by the sum-product
algorithm are given by

mi→j(yj) ∝
∑
yi

exp

⟨wij ,ψi,j(yi, yj)⟩+
∏

s∈N(i)\j

ms→i(yi)

 ,

78 Multi-label learning over unknown graph structures

and the marginal distributions are obtained by setting

P (yi) ∝
∏

j∈N(i)
mj→i(yi) (4.2)

P (yi, yj) ∝ exp (⟨wij ,ψij(yi, yj)⟩) P (yi)P (yj)
mi→j(yj)mj→(yi)

(4.3)

For computing the MAP configuration, the messages passed through the tree by the max-
product algorithm are given by

mi→j(yj) ∝ max
yi

exp

⟨wij ,ψi,j(yi, yj)⟩+
∏

s∈N(i)\j

ms→i(yi)

 ,

and the MAP configuration of a particular node is given by

yi = argmax
yi∈Yi

∏
j∈N(i)

mj→i(yi) . (4.4)

Note that this MAP configuration is for a particular node and it is not always the case that
they correspond to the global MAP configuration. Therefore in order to compute the global
MAP labelling we must trace back through the tree conditioning on previously maximised
variables.

For general graphs, these message-passing algorithms can be implemented by converting
the graph into a clique tree structure [Robertson and Seymour, 1986] and using the junction
tree-algorithm [Lauritzen and Spiegelhalter, 1988] to perform the message-passing operations
over cliques in a similar manner. Inference is performed in time that is exponential with re-
spect to the treewidth of the graph.1 In the example graphs presented in Figures 4.1-4.3, the
tree-width of the complete graph is ℓ− 1 = 3, whereas the two-clique graph has a treewidth
2 and the tree-structured graph is obviously 1. On a graph this size, simple enumeration
is a trivial solution to these inference tasks, however as the number of nodes scales, even
just beyond 50, it becomes intractable to perform such brute force methods. When faced
with complete graphs, or highly connected graphs, approximate inference schemes are often
favoured to their more time consuming exact schemes. For example, Monte-Carlo methods
such as Gibbs sampling [Geman and Geman, 1984] and the Metropolis-Hastings [Hastings,
1970] algorithm sample from the underlying distribution P (y) to obtain estimates, or Vari-
ational methods such as Mean-field approximations convert the inference problem into an
optimisation problem [Wainwright et al., 2008]. Other popular approaches include intro-
ducing relaxations over the search spaces, these are variational approaches i.e. linear and

1The treewidth of a graph G is one less the largest clique of the chordal graph, where a chordal graph is
the result of a triangulation phase that includes there is no loop in the graph greater than length 3.

4.3 Learning over graphs 79

quadratic programming relaxations [Bertsimas and Tsitsiklis; Ravikumar and Lafferty, 2006;
Wainwright et al., 2005]. Later we shall show how to extend the algorithm for computing
the mode of a density defined over a tree, and present conditions that ensure exact inference
has been performed over a graph formed by the superposition of a collection of trees.

4.3 Learning over graphs

So far we have discussed the problem of performing inference tasks such as computing the
map labelling under the assumption that the graph structure and its parameters are known
in advance. However, we might also want to learn the parameters over a particular graph
structure, or learn the conditional independence relationships between the variables. These
tasks are referred to as parameter learning and structure learning, respectively. In this section
we discuss the case where the distribution of random variables depends on the observation
of some input variable x ∈ X . These types of graph are often referred to as a conditional
random fields (crfs) [Lafferty et al., 2001], where the distribution of random variables is
given by

P (y|x, w) = exp (⟨w,ϕ(x, y)⟩ − log Z(x, w)) ,

where ϕ : X × Y → RD is a feature map defined over the joint space of inputs and outputs
and the partition function Z(x, w) = ∑

y exp(⟨w, ϕ(x, y)⟩) depends on both the parameters
w and the input observation x ∈ X . The joint feature mapping can once again be broken
down into factors defined over cliques so that the compatibility score can be expressed as

⟨w,ϕ(x, y)⟩ =
∑
C∈C
⟨wC , ϕC(x, y)⟩

To give an example, consider the problem of labelling the pixels of an image as foreground or
background using the RGB value of the pixels as inputs. In this example, we would expect
that neighbouring pixels are likely to share the same labelling thus defining a structure over
the output that can be thought of as a grid over the image. The input values of the pixels
could represent the similarity in colour of particular pixels and thus help identify sharp
changes in colours, which could correspond to edges and are likely to indicate a change
between foreground and background.

4.3.1 Parameter Learning

We study the problem of parameter learning by using the risk minimisation principle in-
troduced earlier. We minimise the empirical risk using a dataset of input output pairs
S = {(x1, y1), . . . , (xm, ym)} and a loss function L(x, y, w). Given the expressiveness of

80 Multi-label learning over unknown graph structures

graphical models, a regularisation component Ω is often included in an attempt to prevent
overfitting and we will see later how the choice of loss functions and regularisers give rise to
familiar looking algorithms.

Maximum likelihood learning

The maximum likelihood principle is a popular approach to learning the parameters de-
fined over a given graph structure. The goal is to maximise the value of the log likelihood
expression

L(S, w) := 1
m

m∑
k=1
⟨w,ϕ(xk, yk)⟩ − log Z(xk, w) .

This approach was first presented in [Lafferty et al., 2001] where the authors introduced
the concept of conditional random fields for discriminatively training models for natural
language processing. They were able to capture the dependencies between output variables
Y using much simpler graph structures by conditioning on some input X. The loss-function
being minimised in this method is the negative log-likelihood of the conditional distribution

L(x, y, w) = − log P (y|x, w) = −⟨w,ϕ(x, y)⟩+ log Z(x, w)

The use of the exponential family implies the concavity of the objective function L(S, w)
making the optimisation amenable to gradient-based learning methods. We see that the
gradient with respect to parameters w is given by

∂L
∂w = 1

m

m∑
k=1

[
ϕ(xk, yk)− ∂

∂w log Z(xk, w)
]

.

Unfortunately the presence of the partition function results in a coupling together of all
model parameters and makes the computation of the gradient NP-hard for general graph
structures. To see this, observe that the gradient of the log partition function is given by

∂

∂w log Z(x, w) =
∑
y∈Y

ϕ(x, y)P (y|x, w) = E [ϕ(x, y)|x, w] ,

which requires inference over the expected value of the feature vectors. The gradient takes
on the intuitive form of being the difference between the empirical mean of the features and
the average expected value of the features under the conditional distributions i.e.

∂L
∂w = 1

m

m∑
k=1

ϕ(xk, yk)− 1
m

m∑
k=1

E
P (y|xk,w)

[ϕ(xk, y)]

This largely coincides with the general notion of what it means to have learned, we want

4.3 Learning over graphs 81

to find a model, parameterised by w, where the expectations under this model match what
we have seen in our data. One further difficulty associated with the gradients is that each
different input observation requires a separate inference procedure in order to compute the
conditional expectation of the sufficient statistic. However one would hope that by condi-
tioning on the input observation the inference calculations would become more tractable,
however this depends on the assumed structure. For example in [Lafferty et al., 2001], by
conditioning on the input features, the structure exhibited by the part of speech tagging
becomes a chain-structured graph, and is therefore amenable to efficient inference.

Given the difficulties associated with computing gradients, there have been a number of
methods that have been proposed in an attempt to improve learning maximum likelihood
estimates. These broadly fall into two categories; computing the gradient using approxi-
mate inference schemes, and optimising an alternative, more tractable objective function.
The approximate inference schemes that we alluded to earlier, such as loopy belief propa-
gation [Pearl, 1986; Yedidia et al., 2005] or sampling based methods, could clearly operate
in a black-box manner, providing estimates of the gradient. However a potential drawback
of these approaches is that erroneous (approximate) gradient computations can often lead
to sub-optimal solutions and result in poor rates of convergence [Koller and Friedman, 2009].

The other popular approach for dealing with the inference task involves the optimisation of an
alternative objective function that circumvents the problems associated with the partition
function and the summation over an exponentially large set of variables. For example,
the pseudo likelihood [Besag, 1977] approach conditions each variable with respect to all
others, and through Bayes rule allows the formulation of an objective function that omits
the troublesome partition function, and requires only the summation over Yi. The pseudo-
likelihood function is given by

Lpseudo(S, w) := 1
m

m∑
k=1

∑
i∈V

log P (yk,i|yk,V \i, xk, w),

where yk,V \i denotes all the variables except that corresponding the i-th vertex of the k-
th training example. The pseudo-likelihood is a consistent estimator of the true likelihood
i.e. as the number of samples m → ∞ it yields an exact solution. However in the limited
data setting, using this approach often suffers by assuming that each variables neighbours
are fully observable, and therefore when it comes to learning we are prone to ignoring the
influence of other variables that are not immediate neighbours i.e. those variables that they
are conditionally independent of given a particular set of observations.

Contrastive divergence [Hinton, 2002; Teh et al., 2003] is an another popular approach, which

82 Multi-label learning over unknown graph structures

introduces a randomly perturbed set of samples and compares the likelihood of these per-
turbed samples with those that have been observed S. This approach does not approximate
the likelihood function itself, but rather performs a stochastic estimate of the gradient. The
goal is to adjust the parameters so that the likelihood of the samples actually observed is
larger than those of that have been randomly perturbed. For each example (xk, yk) we
assume that we have a set of V randomly perturbed output labellings {yv

k}Vv=1. A simple
example of the gradient used in contrastive divergence is given by

∂LCD
∂w = 1

m

m∑
k=1

(
ϕ(xk, yk)− 1

V

V∑
v=1

ϕ(xk, yv
k)
)

,

In order to generate the contrasting samples for contrastive divergence, one must find an
efficient way of sampling yv

k from the distribution P (y|x, w), which can itself be intractable.
However, there have been some empirical results that have shown that even with a single
cycle of Markov chain Monte Carlo sampling the algorithm is capable of converging to the
maximum likelihood solution.

Large margin learning

In large margin learning approaches we move away from probabilistically modelling the
conditional distribution and focus on directly learning a function that returns the map
labelling. The prediction function used for structured svm takes the form

fw(x) := argmax
y∈Y

⟨w,ϕ(x, y)⟩ .

We no longer require that the parameters w represent a meaningful estimate of the condi-
tional distribution but rather ensure that the map estimates for the training sample inputs
corresponds to their respective outputs. From the risk minimisation point of view, the goal
of the structured svm is to find the prediction function fw that minimises the (regularised)
empirical risk functional given by

1
m

m∑
k=1

∆(yk, fw(xk)) + Ω(||fw||2) .

The loss function ∆ : Y × Y → R can be used to define a number of different structured
prediction tasks. The two we are interested in are the zero-one loss and the Hamming loss
(see [Nowozin and Lampert, 2011] for further examples):

• Zero-one loss: ∆(y, y′) = 1[y ̸= y′]. This is what is used in binary classification,
and commonly in multi-class classification. It is less frequently used in structured

4.3 Learning over graphs 83

prediction problems when there is a large output space, since it implies that small
discrepancies between outputs are punished the same as large.

• Hamming loss: ∆(y, y′) = 1
ℓ

∑ℓ
i=1 1[yi ̸= y′

i]. A popular choice when the output can
be broken down into multiple parts, where each can be judged independently whether
it is an error or not.

As with the traditional svm, we are unable to directly minimise these loss-functions due to
their non-convexity. Therefore we make use of a surrogate loss function, which is given by
the maximum margin loss function

Lmm(x, y, w) := max
y′∈Y

[
⟨w,ϕ(x, y′) + ∆(y, y′)

]
− ⟨w,ϕ(x, y)⟩ .

This acts as a convex upper bound on the loss functions and is known to act as a con-
sistent estimator of the function that minimises the underlying loss ∆ [Zhang, 2004]. The
optimisation problem for the structured svm can be written as

min
w,ξ

1
2 ||w||

2 + C
m∑

k=1
ξk (4.5)

s.t. ⟨w,ϕ(xk, yk)− ϕ(xk, y)⟩ ≥ ∆(yk, y)− ξk ∀ y ∈ Y, k = 1, . . . , m

ξk ≥ 0 ∀ k = 1, . . . m ,

where C is the regularisation term that trades off complexity with model fit. The constraints
tell us that, for each y ∈ Y, we want the score of the true labelling yk to be at least ∆(yk, y)
larger than the score evaluated at y. The presence of the slack term, ξk, allows these con-
straints to be violated and they enter into the objective function as the maximum margin
losses. The structured svm was independently developed by [Tsochantaridis et al., 2004]
and [Taskar et al., 2004], however the constraints presented in 4.5 corresponds to the margin
scaling version suggested by [Taskar et al., 2004].

In the optimisation problem given in 4.5, there are exponentially many constraints for each
training example (xk, yk) i.e. one for each y ∈ Y. This constraint can be replaced with a
single constraint by using the maximum margin loss, transforming the optimisation problem
to

min
w,ξ

1
2 ||w||

2 + C
m∑

k=1
ξk (4.6)

s.t. ⟨w,ϕ(xk, yk)⟩ ≥ max
y∈Y

[⟨w,ϕ(xk, y)⟩+ ∆(yk, y)]− ξk ∀ k = 1, . . . , m (4.7)

ξk ≥ 0 ∀ k = 1, . . . m .

84 Multi-label learning over unknown graph structures

This notion of a single maximally violating labelling (or a small set of them) for each
(xk, yk) ∈ S, makes the cutting plane algorithm a suitable candidate for solving the opti-
misation problem. The cutting plane algorithm is described in Algorithm 2. The algorithm
begins by initialising an empty set of the active constraints Ak = ∅ for each training example
and we specify the desired level of precision ϵ. The algorithm proceeds in rounds, iterating
through the training examples and checking to see if any constraints are violated. If a con-
straint is violated, it is added to the active constraint set and the quadratic program qp is
solved again. This process is repeated until no further constraints are added to A = ⋃m

k=1Ak.

In [Tsochantaridis et al., 2004] an alternative choice of constraints is proposed, which scales
the slack variables by the loss assuming a fixed margin i.e.

⟨w,ϕ(xk, yk)⟩ − ⟨w,ϕ(xk, y)⟩ ≥ 1− ξk

∆(yk, y) ∀ y ∈ Y \ yk . (4.8)

Here we have to omit the true labelling yk from the constraints to prevent division by zero.
One benefit of the slack scaling approach (4.8) is that the optimal weight vector is invariant
to the scaling of the loss function, whereas the margin scaling approach, as used in (4.7),
requires a calibration between the scaling of the feature map and the loss function. A further
disadvantage of the margin scaling approach is that it pays significant attention to outputs
with large loss, which may not be in the slightest bit confusable with the true labelling. By
constructing the prediction function using these highly unlikely values, we limit our ability to
distinguish between similar outputs. Despite these drawbacks, the margin scaling approach
has become the standard approach for structured svm, largely due to the ease in which it
can be included into the optimisation scheme.

Algorithm 2 Cutting-plane algorithm
1: Input: S = {(xk, yk)}mk=1, C > 0, ϵ > 0
2: Ak ← ∅, ξk = 0 for all k = 1, . . . , m
3: repeat
4: for k = 1, . . . , m
5: L(y) := ∆(yk, y) + ⟨w,ϕ(xk, y)− ϕ(xk, yk)⟩
6: compute ŷ = argmax y∈Y L(y) (loss augmented inference)
7: compute ξk = max {0, maxy∈Ak

L(y)}
8: if L(ŷ) > ξk + ϵ then
9: Ak ← Ak ∪ {ŷ} (constraint inclusion)

10: w← solve 4.5 using constraint set A = ⋃m
k=1Ak

11: end if
12: end for
13: until no Ak changes during an iteration

4.3 Learning over graphs 85

The two main concerns with the cutting place algorithm are the number of times a qp has
to be solved, and the exponential number of constraints that we may have to add. The
qp problem is addressed by initialising the program with the last solution, hoping that the
new solution will not be too far away and thus converge fast. To address the constraints,
it was shown in [Tsochantaridis et al., 2004] that this optimisation can be solved to an ϵ-
precision using only a polynomially sized set of constraints for each example. These features
make solving the structured svm feasible for medium sized datasets, however they can often
struggle to scale to larger datasets. To handle the size of the constraint sets associated with
larger problems, [Joachims et al., 2009] introduced a single slack version of the structured
svm, where the time complexity of the algorithm is independent of the number of training
examples and depends linearly on the desired precision and the value of the regularisation
parameter. A single slack variable ξ is used for the entire dataset, which effectively couples
together constraints across all training examples,

1
m

m∑
k=1
⟨w,ϕ(xk, yk)− ϕ(xk, y)⟩ ≥ 1

m

m∑
k=1

∆(yk, y)− ξ ∀ y ∈ Y .

The key difference in this approach is that it allows support vectors to be linear combina-
tions of training data points, leading to a smaller number of support vectors, where each is
believed to contain more information and therefore provides a more robust solution.

A number of other approaches have been presented to solve the general problem posed by the
structured svm. The first margin based approach was presented in [Collins, 2002] as a new
method for part-of-speech tagging. The algorithm is a generalisation of the original percep-
tron algorithm that is capable of dealing with problems involving structured output spaces.
The structured perceptron works in an online manner, observing an input xk and making
a prediction y∗ = argmax y∈Y⟨w,ϕ(xk, y)⟩ on the most likely output. If the prediction is
incorrect, the model is updated according to

w′ ← w + ϕ(xk, yk)− ϕ(xk, y∗) ,

which effectively increases the compatibility of the predictor with the true labelling yk and
makes it more likely for the predictor function to return the correct labelling. Recently
[Lacoste-Julien et al., 2013] presented the Frank Wolfe algorithm [Frank and Wolfe, 1956]
as a general purpose framework for analysing the convergence behaviour of a number of
online learning methods for structured svms. They derived a block-coordinate version of
the algorithm, breaking down the problem into blocks, each associated with constraints over
a particular example. One particularly nice feature of this algorithm is that it provides a
closed form expression for the optimal step-size, which avoids the problem of performing a

86 Multi-label learning over unknown graph structures

line-search or heuristic method to compute the size of the update step. A further advantage
of this approach is that the algorithm obtains a linear rate of convergence in the number of
updates made and makes use of a well-defined stopping criterion, namely an upper bound
on the duality gap.

Another popular approach to dealing with the exponentially large constraint set is to make a
polynomial sized reformulation of the problem. In [Taskar et al., 2004], the authors observed
that the dual variables associated with constraints for each example represented a density like
function over outputs conditional on the input x. This observation enables the optimisation
to be reformulated in terms of the marginal dual variables

µ(k, yi) =
∑

y′∼[yi]
αk(y′) ∀ i ∈ V, ∀ yi, k = 1, . . . , m

µ(k, yi, yj) =
∑

y′∼[yi,yj]
αk(y) ∀ (i, j) ∈ E, ∀ yi, yj , k = 1, . . . , m ,

where y′ ∼ [yi] refers to the labellings y′ ∈ Y such that y′
i = yi, similarly for y′ ∼ [yi, yj].

The use of the marginal dual variables results in a fixed number of variables and a polynomi-
ally large sized optimisation problem, however its size (quadratic in the number of examples
and edges in the graph) remains a difficult task for off-the-shelf qp solvers. Furthermore we
now have the added difficulty of ensuring that the edge variables form a legal density over
αk(y) i.e. they belong to the marginal polytope of the underlying graph structure. This
is a difficult task for general graphs, however for trees the restriction simply amounts to
ensuring that by marginalising over the edge variables, we obtain the vertex variables i.e.∑

yj
µ(k, yi, yj) = µ(k, yi). To avoid the use of standard qp solvers, an adaptation of the

SMO algorithm for svms was presented. The optimality criteria is used to select the two
most violating variables αk(y) and αk(y′), and then solves a one variable quadratic subprob-
lem for λ = α′

k(y)− αk(y) = αk(y′)− α′
k(y), the size of the update. This can be computed

in terms of the marginal dual variables.

The efficiency of the large-margin learning algorithms depend heavily on being able to quickly
solve the augmented inference problem

y∗ = argmax
y∈Y

⟨w,ϕ(xk, y)⟩+ ∆(yk, y)

Unfortunately, this can only be solved in polynomial time for a limited number of graph
structures and in many cases we may have to resort to approximate inference schemes for
evaluating constraints and finding update directions. This can lead to the usual difficulties in

4.3 Learning over graphs 87

evaluating the optimality of a solution and slow rates of convergence. However, recently there
has been some work done on examining the convergence of structural svms when exact infer-
ence is intractable [Finley and Joachims, 2008], which has offered insights on better methods
for training structured svms using approximate inference. They consider two types of ap-
proximate inference; under-generating and over-generating. The under-generating methods
such as greedy search and loopy-belief propagation, simplify the intractable prediction prob-
lem by searching only over a subset of possible labelling. Over-generating methods do the
opposite and search over a set larger than the possible labellings. For example, through
linear programming relaxations they consider real-valued outputs rather than integer valued
ones. Difficulties arise in these methods when it comes to ensuring that the distribution over
the dual variables remains a valid one.

4.3.2 Structure Learning

During parameter learning we have assumed that the underlying graph structure is known
ahead of time. The literature on structure learning for crfs is relatively sparse and more
often than not the structure used for parameter learning is constructed by hand using some
trade-off between specialist domain knowledge and the tractability of the resulting graph.
Within this literature, and the broader case of structure learning for mrfs, there are two
main approaches for learning the structure of a graph using data; the constraint based ap-
proach and the score-based approach. The constraint-based approach constructs a set of
empirical independence tests on the training sample and then searches for the graph struc-
ture that satisfies these implied relationships. The score-based approaches first define a
scoring function that measures the quality of a proposed model and then searches among
the space of possible models for the one with highest score. Our focus here is on the score-
based approaches due to their connections with the work we propose later.

When choosing the hypothesis space in which to search, one must trade off the expressivity
of a potential solution with its tractability. For example if we consider the space of tree-
structured graphs for mrfs, [Chow and Liu, 1968] showed that it was possible to find the
maximum likelihood tree in time quadratic in the number of vertices. The tree structure
that maximises the log-likelihood corresponds to the same one that maximises the sum of the
mutual information across the edges, where the mutual information between two variables
Yi and Yj is given by

I(Yi, Yj) :=
∑

yi∈Yi

∑
yj∈Yj

P (yi, yj) log
(

P (yi, yj)
P (yi)P (yj)

)

The Chow-Liu tree algorithm finds the tree-structure that maximises the likelihood of the
observed data. This is an important result that tells us we can find the tree-structure and

88 Multi-label learning over unknown graph structures

parameters that maximise the likelihood of a given data sample in only quadratic time.
Although real-world problems rarely fit into this sparse representation and tree-structured
models are likely to miss out on important, higher-order interactions between variables. Nat-
urally one would like to extend this algorithm to include the set of low tree-width graphs
[Bach and Jordan, 2001], however [Srebro, 2001] showed that it is np-hard to find the opti-
mal bounded tree-width graph structure when we consider tree-widths greater than one. In
[Bradley and Guestrin, 2010], a conditional random field variant of the Chow-Liu tree was
presented, however they alluded to the difficulties associated with computing these trees,
noting that it becomes increasingly intractable as the size of the input space increases.

Algorithm 3 Chow-Liu Tree Algorithm
1: Input: S = (y1, . . . , ym),complete graph G = (V, E)
2: for each (i, j) ∈ E
3: Compute mutual information wij = I(Yi; Yj)
4: end for
5: For graph G and edge weights w, compute maximum weighted spanning tree T
6: Return T

When considering possible score-function candidates, the likelihood function seems like an
obvious choice, however we quickly encounter the familiar problem of overfitting since the
likelihood can be arbitrarily improved by increasing the expressivity of the graph structure
permitted. Various regularisation techniques have been borrowed from traditional supervised
learning literature to address this issue; L2-norm and L1-norm regularisation, Bayesian In-
formation criteria and Laplacian approximations being popular approaches. One of the most
interesting of these approaches is arguably the use of the L1 regulariser, which has been used
in the Lasso model [Tibshirani, 1996] for regression to encourage sparsity amongst the model
parameters. This was introduced to mrfs in [Lee et al., 2006; Riezler and Vasserman, 2004],
and although proposed in [Lee et al., 2006], the first application of the block L1 regulari-
sation on conditional random fields was presented in [Schmidt et al., 2008]. The block L1

regulariser encourages sparsity across the inclusion of edges into the learned model in the
hope that it will encode a tractable graph structure. This approach avoids the need to per-
form a combinatorial approach to feature selection and guarantees to find a globally optimal
solution at convergence, however the usual difficulties associated with the calculation of the
gradient still exist in the run-up to convergence. The L1 regularisation encourages sparsity
in the model, however it does not necessarily result in tractable models. In [Meshi et al.,
2013], the authors proposed a novel regulariser, the circuit rank regulariser, for learning large
margin tree predictors. This regulariser directly penalises non-tree structures and results in
an optimisation procedure that can be solved using a convex-concave procedure.

4.3 Learning over graphs 89

The inherent difficulties associated with learning the structure from data has led to a num-
ber of studies where the underlying graph structure is approximated using a random sample
of tractable subgraphs. In [Pletscher et al., 2009] the authors used a mixture of random
spanning trees to approximate an intractable graph and use it to compute the maximum
likelihood estimate of the crf parameters. This approach benefits from the tractability of
the tree distributions, which results in efficient gradient calculations during training over
the approximated graph structure. This work is similar to the approach taken in [Meila and
Jordan, 2000] for learning a mrf using a mixture of trees model. Here, the authors assumed
that there was some hidden variable responsible for explaining some of the variability across
the data samples. The main distinction between these works is that [Pletscher et al., 2009]
focus on crfs rather than mrfs, and that the spanning trees it uses are sampled uniformly
at the beginning. In [Meila and Jordan, 2000], a fixed number of trees are used, however
during each expectation-maximisation [Dempster et al., 1977] step of the optimisation al-
gorithm, each tree is adjusted by running a Chow-Liu algorithm using a weighted training
sample. These weights represent the expected probability that an observation belongs to a
particular tree component, and the weighted observations are used to compute the required
mutual information values.

From the large margin perspective a similar approach was presented in [Su and Rousu, 2013].
A random set of graph structures is sampled and an individual predictor is trained over each
structure. The motivation behind this work was to allow the random graph structures to
capture different structural elements of the data. These relationships could efficiently be
learned by sampling from a family of tractable graph structures. These individually trained
predictors were treated as an ensemble and a number of different aggregation strategies were
proposed to maximise the accuracy of the predictor. A more theoretical approach using a
set of random spanning trees was presented in [Marchand et al., 2014]. The authors showed
that with a relatively small number of spanning trees, they were capable of obtaining a large
proportion of the margin that is achievable when learning a predictor over the complete out-
put graph. In contrast to [Su and Rousu, 2013], the parameters over these trees were trained
together. To address the inference problem associated with a non-tree structure, [Marchand
et al., 2014] performed K-best inference on each of the trees and provided conditions under
which we can be assured of exact inference over the combined structure. This work provides
the main source of inspiration for the method that we propose in the next section. The main
difference between our proposed method and that presented in [Marchand et al., 2014] is that
we consider the space of all possible spanning trees, showing that a sparse combination of
spanning trees can obtain a margin that is at least as large as that obtainable when learning
takes place over the complete graph.

90 Multi-label learning over unknown graph structures

4.4 Large margin multi-label learning on graphs

In this section we focus on the problem of multi-label learning where we must learn a function
that maps arbitrary inputs to binary outputs defined on a graph of unknown structure. We
have shown graphical models to be powerful tools for representing complex dependencies
between random variables. There was however a trade-off between the complexity of the
underlying graph structure and our ability to efficiently solve inference and learning tasks.
We saw that tree-structured graphs could solve these tasks efficiently, however they rarely
represent the relationships we see in real-world problems. In this section we adopt the
view of representing more complex graphs using a combination of spanning trees. This is
a well known approach for both inference [Wainwright et al., 2001] and parameter learning
[Marchand et al., 2014; Meila and Jordan, 2000; Pletscher et al., 2009]. However, unique
about our approach is the representation of the problem in terms of multiple kernel learning
over the set of all spanning trees, showing that we can efficiently consider exponentially
many kernels when learning a large margin predictor. The advantage of this approach is
that it is agnostic to graph structure and is capable of efficiently learning the structure
that leads to the maximum margin over the dataset. Furthermore, we show the weighted
combination of spanning trees permits tractable inference, learns a margin at least as large
as that obtainable over the complete graph and can be solved using a convex optimisation
procedure. We begin with the introduction of some notation and then proceed to discuss
various aspect of the optimisation procedure.

4.4.1 Definitions and Assumptions

We consider the general supervised learning problem between an arbitrary input space X
and a complex output space Y, which is the set of all ℓ dimensional vectors y = (y1, . . . , yℓ)
where each yi ∈ {0, 1} is a binary variable. The space of all possible outputs is of size
|Y| = 2ℓ. Each example (x, y) ∈ X ×Y is mapped to a joint feature space H by the mapping
ϕ : X × Y → H. We consider the case where the joint feature map ϕ corresponds to
the Markov random field defined by the graph G = (V, E), which has ℓ vertices and

(ℓ
2
)

undirected edges. Each vertex i corresponds to a particular output variable yi and between
each pair of output variables (yi, yj) there exists an edge (i, j) ∈ E. This is a particular
instance of a complete graph, and we will often refer to it as the complete output graph.
We assume that the feature mapping for any input-output pair (x, y) ∈ X × Y is given by

ϕ(x, y) = (ϕij(x, yi, yj))(i,j)∈G = (ρ(x)⊗ψi,j(yi, yj),)(i,j)∈G (4.9)

where ρ : X → P and ψ : Y → Ψ are feature mappings for the input and output space,
respectively, and ⊗ corresponds to the Kronecker product. Given that each output variable
yi is binary it means that each possible edge (i, j) ∈ G can take on one of four possible values

4.4 Large margin multi-label learning on graphs 91

y1

y2

y3

y4

y5

Fig. 4.4 Complete output graph: every node i ∈ {1, . . . , 5} is connected to every other
j ∈ {1, . . . , 5} \ i. There are

(ℓ
2
)

edges in total.

and the output feature mappings for a particular edge labelling (yj , yj) corresponds to

ψi,j(yi, yj) =


1[(yi, yj) = (0, 0)]
1[(yi, yj) = (0, 1)]
1[(yi, yj) = (1, 0)]
1[(yi, yj) = (1, 1)]

 and ϕi,j(x, yi, yj) = ρ(x) ⊗ψi,j(yi, yj) ,

and the joint feature vector ϕ(x, y) is given by the concatenation of all
(ℓ

2
)

individual edge
feature vectors. Given a weight vector w, the predicted output yw(x) at input x ∈ X is given
by the output y ∈ Y that maximises the score F (x, y; w) i.e. it solves the map inference
problem

yw(x) := argmax
y∈Y

F (x, y; w) where F (x, y; w) := ⟨w,ϕ(x, y)⟩ .

The weight vector w can be written as w = (wi,j)(i,j)∈G, where wi,j is the weight on feature
mapping ϕi,j(x, yi, yj). The score function F (x, y; w) represents the compatibility of labelling
y ∈ Y for input x ∈ X and represented as a sum of edge compatibilities Fi,j ,

F (x, y; w) = ⟨w,ϕ(x, y)⟩ =
∑

(i,j)∈G

⟨wi,j , ϕi,j(x, yi, yj)⟩ =
∑

(i,j)∈G

Fi,j(x, yi, yj ; wi,j).

The margin Γ(x, y; w) achieved by predictor w on input-output pair (x, y) is given by

Γ(x, y; w) := min
y′ ̸=y

[
F (x, y; w)− F (x, y′; w)

]

92 Multi-label learning over unknown graph structures

If we assume that the distribution of the output variables y conditioned on the observation
of some input x ∈ X can be modelled using the exponential family. Therefore the margin
on a particular example corresponds to the log ratio of the probabilities of the true labelling
and that of any other labelling i.e.

min
y′ ̸=y

log P (y|x, w)
P (y′|x, w) = min

y′ ̸=y

[
⟨w,ϕ(x, y)⟩ − ⟨w,ϕ(x, y′)⟩

]
= Γ(x, y; w)

and maximising the margin corresponds to maximising the difference between the probabil-
ity of the true output labelling y and any other labelling y′ ∈ Y \ y.

For any vector a, let ||a|| and ||a||1 denote its L2 and L1 norm, respectively. We assume
that we are working with a normalised joint feature map such that ||ϕ(x, y)|| = 1 for all
(x, y) ∈ X × Y and that ||ϕi,j(x, yi, yj)|| is the same for each (i, j) ∈ G. Given that we are
working with a complete graph |E| =

(ℓ
2
)

and therefore ||ϕi,j(x, yi, yj)|| =
(ℓ

2
)−1. We assume

that we have been given a labelled training set S = {(xk, yk)}mk=1, which have been sampled
identically and independently from some unknown distribution over X × Y.

4.4.2 Superposition of spanning trees

In this section we show how the score function for a complete output graph can be repre-
sented as the expectation of the scores over its spanning trees. This allows us to represent
the complete output graph using a weighted combination of spanning trees, which leads to
our large margin formulation of the predictor as a unit-L1 norm combination of spanning
trees. This work follows from the presentation given in [Marchand et al., 2014].

Suppose that we have a complete graph G of ℓ nodes representing a Markov random field.
Let S(G) represent the set of ℓℓ−2 spanning trees of G. Each spanning tree has (ℓ−1) edges,
which results in each edge appearing in a total of ℓℓ−2(ℓ− 1)/

(ℓ
2
)

= (2/ℓ)ℓℓ−2 trees in S(G).
Therefore, we can represent any function f defined using the edges of G according to

∑
T ∈S(G)

∑
(i,j)∈T

f((i, j)) = 2
ℓ

ℓℓ−2 ∑
(i,j)∈G

f((i, j))

Let T be any spanning tree of G and w any predictor, we define the projection of the w on
to tree T according to

(wT)i,j =

 wi,j if (i, j) ∈ T

0 otherwise
.

The projection of the joint feature mapping ϕ on to tree T is defined analogously. The feature

4.4 Large margin multi-label learning on graphs 93

mapping defined on each edge is assumed to have the same norm, ||ϕi,j(x, yi, yj)||2 =
(ℓ

2
)−1,

which results in projected feature mappings with norms given by

||ϕT (x, y)||2 =
∑

(i,j)∈T

||ϕi,j(x, yi, yj)||2 = ℓ− 1(ℓ
2
) = 2

ℓ
.

Lemma 9 ([Marchand et al., 2014]) Let ŵT = wT /||wT ||, ϕ̂T = ϕT /||ϕT || . Let U(G)
denote the uniform distribution of spanning trees on S(G). Then we have that

F (x, y; w) = E
T ∼U(G)

aT ⟨ŵT , ϕ̂T (x, y)⟩ where aT =
√

ℓ

2 ||wT || .

Moreover, for any w such that ||w|| = 1, we have:

E
T ∼U(G)

a2
T = 1 , and E

T ∼U(G)
aT ≤ 1 .

Let T = {T1, . . . , Tn} define a sample of n spanning trees of G, where each tree T is sampled
independently from the uniform distribution U(G) over S(G). By considering the implica-
tions of the unit L2-norm constraints on the weights aT on the trees, they considered the
unit L2-norm conical combination (W, q) of each weight W = {ŵT1 , . . . , ŵTn} realised by
the n-dimensional weight vector q = (q1, . . . , qn), where ∑n

i=1 q2
i = 1. The score function

under this conical combination (W, q) is given by

FT (x, y,W, q) = 1√
n

n∑
i=1

qi⟨ŵTi , ϕ̂Ti(x, y)⟩

By assuming that there exists some predictor w defined over the complete graph that achieves
margin of γ > 0 on all (x, y) ∈ X ×Y, [Marchand et al., 2014] showed with high probability,
there exists a conical combination (W, q) that obtains a significant proportion of this margin.
This resulted in an optimisation problem that aimed at maximising the margin obtainable
by a conical combination of a randomly sampled set of spanning trees T , and thus finding the
predictor defined over the trees T that has the best generalisation guarantee. Rather than
focusing on the implications of the unit L2-norm for weights in Lemma 9, we concentrate on
the L1-norm constraints.

By turning the expectation into a sum over all spanning trees we see that the score function
can be represented by

F (x, y; w) =
∑

T ∈S(T)
âT ⟨ŵT , ϕ̂T (x, y)⟩ ,

94 Multi-label learning over unknown graph structures

where âT =
√

ℓ
2 ||wT ||/ℓℓ−2 and ∑T ∈S(T) âT ≤ 1. This is the weighted sum of the inner prod-

ucts between weight vectors and feature vectors that have been projected onto the spanning
trees T ∈ S(G), where the weights reside within the unit L1-norm.

If we assume that there exists a predictor w obtaining γ > 0 for each (x, y) ∈ X × Y, we
observe that this can be achieved by assigning a weight âT to each spanning tree T ∈ S(G).
When we express the large margin learning problem in the dual space, we see that each
tree can be represented using a kernel, which receives a weight âT in the score function.
This particular weighting corresponds to a feasible solution for the L1-norm multiple kernel
learning (MKL) problem, however it is not necessarily the optimal one. This opens up the
possibility of finding a weighting over the set of spanning trees that achieves a margin that
is at least as large as that obtainable when learning takes place over the complete output
graph.

4.4.3 L1-Norm Multiple Kernel Learning for Spanning Trees

We consider an arbitrary set W = {ŵT }T ∈S(G) of unit L2-norm weight vectors where ŵT

operate on the unit L2-norm feature vector ϕ̂T (x, y). Rather than using a conical combina-
tion, as in [Marchand et al., 2014], we consider a convex combination of feature weights in
W realised by an ℓℓ−2-dimensional vector q = {qT }T ∈S(G). The score function is given by

F (x, y,W, q) =
∑

T ∈S(G)
qT ⟨wT ,ϕT (x, y)⟩ where

∑
T ∈S(G)

qT ≤ 1 .

We drop the assumption that the data is perfectly separable with a hard margin γ > 0 and
opt instead for the popular soft-margin approach. Following the standard soft-margin frame-
work for constructing large margin predictors [Cortes and Vapnik, 1995], the optimisation
problem is given in Definition 2.

Definition 2 Large margin learning over G

min
ξ,γ,q,W

1
2γ2 + C

γ

m∑
k=1

ξk (4.10)

s.t. min
y ̸=yk

∑
T ∈S(G)

qT ⟨ŵT , ϕ̂T (xk, yk)− ϕ̂T (xk, y)⟩ ≥ γ − ξk,

ξk ≥ 0, ∀ k,
∑
T ∈T

qT = 1, qT ≥ 0 ∀ T ∈ S(G).

Due to an arbitrary scaling of q we will always end up with a solution where the weights q
reside on the unit L1-norm ball, therefore we are able to drop the inequality on the sum of
the tree weights and replace it with an equality. By making the substitutions ζk = ξk/γ and

4.4 Large margin multi-label learning on graphs 95

vT = qT ŵT /γ in Definition 2 and observing that (∑T ∈S(G) ||vT ||)2 = 1/γ2, we see that we
can maximise the size of the margin by solving the optimisation problem in Definition 3.

Definition 3 L1-norm MKL for Spanning Trees

min
vT ,ζ

1
2

 ∑
T ∈S(G)

||vT ||

2

+ C
m∑

k=1
ζk

s.t. min
y ̸=yk

∑
T ∈S(G)

⟨vT , ϕ̂T (xk, yk)− ϕ̂T (xk, y)⟩ ≥ 1− ζk , ζk ≥ 0 ∀ k,

where vT are the weight vectors for each tree, ζk is the slack variable for example (xk, yk) and
C > 0 is the slack parameter that controls the complexity of the solution. This definition is
almost identical to the multiple kernel learning (MKL) formulation first introduced in [Bach
et al., 2004] albeit with a different set of constraints related to the structured prediction
nature of the problem. To help make our expressions clear, and as familiar as possible, we
introduce ϕ̃T (xk, yr) = ϕ̂T (xk, yk) − ϕ̂T (xk, yr) to denote the difference between the joint
feature vectors, and make a slight abuse of notation by setting wT ← vT , ξk ← ζk and
ϕT ← ϕ̂T . For the remainder of this paper we use the MKL formulation given in Definition
4 first presented in [Rakotomamonjy et al., 2008], which was shown to be equivalent to that
given in Definition 3.

Definition 4 L1-norm MKL for Spanning Trees (equivalence)

min
wT ,ξ,λ

1
2

∑
T ∈S(G)

1
λT
||wT ||2 + C

∑
k

ξk (4.11)

s.t.
∑

T ∈S(G)
λT = 1, λT ≥ 0 ∀ T ∈ S(G),

min
y ̸=yk

∑
T ∈S(G)

⟨wT , ϕ̃T (xk, y)⟩ ≥ 1− ξk, ξk ≥ 0 ∀ k. (4.12)

In this formulation we are able to use the L2-norms of the projected weight vectors by
dividing them by λT , which are the weights attributed to each tree T ∈ S(G). This has
the effect of controlling the squared norm of the weight vector assigned to tree T , which
results in a smooth and convex optimisation problem [Rakotomamonjy et al., 2008]. To see
this, consider the case where λT = 0, to obtain a finite objective function we must also
set wT to zero, otherwise ||wT ||2/λT would yield an infinite value and clearly not minimise
the expression. Similarly, if ||wT || was large we need λT also to be large to suppress the
contribution of this weight vector to the objective function. To solve this optimisation we
begin by introducing Lagrange multipliers for the constraints. Note that we substitute the
minimum inequality regarding score differences with an inequality for each labelling y ∈ Y,
which is effectively the same due to the single slack variable ξk being shared across each

96 Multi-label learning over unknown graph structures

possible labelling y ∈ Y. Furthermore, we introduce the zero-one loss function ∆(yk, y) into
our expression to make it as generic as possible. Therefore the Lagrangian is given by

L(w, ξ,α,λ,ν,µ, ω) := 1
2

∑
T ∈S(G)

1
λT
||wT ||2 + C

∑
k

ξk −
∑

k

µkξk + ω

 ∑
T ∈S(G)

λT − 1


−

∑
T ∈S(G)

νT λT −
∑
k,y

αk(y)

 ∑
T ∈S(G)

⟨wT , ϕ̃T (xk, y)⟩ −∆(yk, y) + ξk

 ,

where the dual variables αk(y) correspond to the margin based constraints for labelling
y ∈ Y on example (xk, yk). The other Lagrange multipliers µk ensures the non-negativity of
the slack variables ξk, the non-negativity of kernel weights is controlled by νT and to ensure
their unitary sum we use ω. Differentiating with respect to the primal variables we observe
that for primal optimality we require that

∂L
∂wT

= 0 ,
∂L
∂λT

= 0 and ∂L
∂ξk

= 0 , (4.13)

and as a result of this we know that

• the sum of the dual variables for each example (xk, yk) is upper bounded by the
regularisation term C,

∑
y

αk(y) = C − µk . (4.14)

• the weight vector attributed to each tree wT is given by a linear combination of the
training samples, as implied by the representer theorem, and scaled according to the
weight attached to that tree λT

wT = λT

∑
y

αk(y)ϕ̃T (xk, y) (4.15)

• the weight attributed to each tree λT relates to the norm of the corresponding tree
weight vector wT

λT = ||wT ||√
2(ω − νT)

(4.16)

The dual variables αk(y) are used throughout the construction of weight vector w, where

4.4 Large margin multi-label learning on graphs 97

αk(y) > 0 tells us that a margin of ∆(yk, y) is not obtained on that particular labelling

αk(y) > 0 =⇒
∑

T ∈S(G)
⟨wT , ϕ̃T (xk, y)⟩ = ∆(yk, y)− ξk ,

αk(y) = 0 =⇒
∑

T ∈S(G)
⟨wT , ϕ̃T (xk, y)⟩ ≥ ∆(yk, y)− ξk .

As a consequence of the optimality conditions for slack variables, we see that

ξk > 0 =⇒ µk = 0 and
∑

y
αk(y) = C .

This tells us that we have used all of the weight afforded to example (xk, yk) in order to try
and ensure the margin condition for each labelling y ∈ Y is satisfied.

Examining the optimality conditions for the kernel weights λT , we see that if a tree has
non-zero weight λT > 0 then νT = 0. When we refer to the unscaled norm of wT , we mean
its value prior to scaling by λT i.e.

||wT ||
λT

=
√∑

k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′) .

Using 4.16, we see that each tree with positive weight must have the same unscaled norm
and those with zero weight must have an unscaled norm that is less than or equal to those
with positive weight,

1
2
∑
k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′) = ω ∀ {T ∈ S(G) : λT > 0} , (4.17)

1
2
∑
k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′) ≤ ω ∀ {T ∈ S(G) : λ = 0} . (4.18)

Substituting the primal optimality conditions back into the Lagrangian it transforms into
the dual optimisation given in Definition 5. This dual problem is difficult to optimise due
to the last constraint, which involves a quadratic constraint for each kernel. This difficulty
arises before we even consider the problems associated with optimising over an exponentially
large set of kernels.

98 Multi-label learning over unknown graph structures

Definition 5 L1-norm MKL for spanning trees (dual formulation)

min
ω,α

ω −
∑
k,y

αk(y)∆(yk, y) (4.19)

s.t.
∑

y
αk(y) ≤ C ∀ k = {1, . . . , m} (4.20)

1
2
∑
k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′) ≤ ω ∀ T ∈ S(G) (4.21)

One approach to address the quadratic constraint on kernels would be to bring the ex-
pression 4.21 into the objective function [Bach et al., 2004], however this results in the
non-differentiability of the objective function. Instead we opt for an alternating optimisa-
tion scheme, which is similar to the one used in [Argyriou et al., 2008] for multi-task feature
learning. In the first step, we fix the set of spanning trees T = {T1, . . . , Tn} and weights
λ = {λT1 , . . . , λTn}, and then solve the associated structured svm problem. In the second
step we update the weights of the kernels λ in a direction that decreases the value of the
objective function, whilst keeping the dual variables α fixed. During this step we consider
the inclusion and removal of trees from T . These two steps are iterated until we reach the
required degree of convergence and the meta-algorithm is presented in Algorithm 5. To solve
the optimisation efficiently we must address two key issues; the first is the argmax problem
of finding the maximum violator and ensuring the constraints are satisfied, and the second
is the identification of kernels that have non-zero weight in the solution. We note that both
the space of all multi-labels and the space of all spanning trees are exponential in size, and
in both cases we are prevented from exhaustively enumerating over them.

4.4.4 Efficient inference and constraint satisfaction

We begin by examining the inference task that is necessary to check whether the margin
constraints in Definition 4 for the structured svm are satisfied and to predict the labelling
of an unseen test input. We assume that the set of trees T = {T1, . . . , Tn} and weights
λ = (λT1 , . . . , λTn) are fixed. The dual representation of the weight vector tells that the
score function can be written as a linear combination of scores defined over trees

F (x, y, w) =
∑
T ∈T
⟨wT ,ϕT (x, y)⟩ =

∑
T ∈T

FT (x, y, wT) =
∑
T ∈T

λT F̂T (x, y, wT),

where F̂T (x, y) = FT (x, y)/λT , is the score function evaluated on tree T when we remove
the scaling factor caused by the kernel weight λT . For each example (xk, yk) there is a
margin constraint for each possible labelling y ∈ Y. Fortunately only a single slack variable
is required for each training example and we only have to concern ourselves with searching
for the maximally violating labellings, namely the labelling y∗

k = argmax y∈Y [F (xk, y; w)+

4.4 Large margin multi-label learning on graphs 99

∆(yk, y)] .

It is well known that the exact solution to the inference problem

yT (x) = argmax
y∈Y

FT (x, y; wT) = argmax
y∈Y

F̂T (x, y; wT),

on an individual tree T ∈ S(G) can be obtained in O(ℓ) time by dynamic programming.
However, given that we are looking to find the maximum value over a weighted combination
of spanning trees, there is no guarantee that the multi-label that maximises the score of F̂T

will also be the maximiser of F . Instead it seems reasonable to expect that the top scoring
multi-label will vary across individual trees T ∈ T . To overcome this we use a variant of
the dynamic programming algorithm [Marchand et al., 2014] that finds a K-best list of top
scoring multi-labels for each tree T ∈ T .

Let YT,K = {ŷT,1, . . . , ŷT,K} represent the set of the K highest scores for F̂T (x, y; wT), with
labellings ordered in descending value such that FT (x, y1) ≥ FT (x, y2) ≥ · · · ≥ FT (x, yK).
Let YT ,K = {YT,K}T ∈T to be the set of K-best lists for T ∈ T . We now state a key lemma
that will enable us to verify if the candidate set YT ,K contains the true maximiser of F .

Lemma 10 Let y∗
K = argmax

y∈YT ,K

F (x, y; w) be the highest scoring multi-label in YT ,K . Sup-

pose that the score function of labelling y∗
K satisfies

F (x, y∗
K ; w) ≥

∑
T ∈T

λT F̂T (x, yT,K ; wT) = θx(K).

Then it follows that F (x, y∗
K ; w) = maxy∈Y F (x, y; w).

Proof Consider a multi-label y′ /∈ YT ,K . For each T ∈ S(G)

FT (x, y′; wT) = λT F̂T (x, y′; wT) ≤ λT F̂T (x, yT,K ; wT).

Therefore the score weighted and evaluated over all trees is given by

F (x, y′; w) =
∑

T ∈S(G)
λT F̂T (x, y′; wT) ≤

∑
T ∈S(G)

λT F̂ (x, yT,K ; wT) ≤ F (x, y∗
K ; w).

This lemma states that we can use any K that satisfies the criteria above and be sure that y∗
K

is the maximum scoring example on F . It does not however provide guidance in the selection

100 Multi-label learning over unknown graph structures

of the size of the K-best lists that we must construct in order to ensure exact inference has
occurred. Note that if we have been unable to satisfy the condition for exact inference we can
use θx(K) as an upper bound on the maximum score i.e. maxy∈Y F (x, y; w) ≤ θx(K). This
allows us to infer the sub-optimality of the labelling we have chosen to update our model
using, making it amenable to the techniques and analysis used in [Finley and Joachims, 2008]
for structured svms when exact inference is intractable. This upper bound also provides us
with advice on how much deeper we have to search in order to obtain exact inference, and
we can use the K-th best scores on each tree to target deeper searches on particular trees.

4.4.5 Generating trees efficiently

The second step of the alternating optimisation scheme updates tree weights in a direction
to decrease the value of the objective function given in 4.11. We consider an exponentially
large set of kernels that correspond to the set of all possible spanning trees over G. Similar
to the problem of considering constraints during the structured svm step of the optimisation
we must find an efficient way to verify whether there exists a tree that violates the conditions
for optimality outlined in 4.17 and 4.18.

In the traditional MKL setup there is a fixed set of kernels, allowing one to simply iter-
ate between updating kernel weights and solving the structured svm until the convergence
criteria is satisfied. Our problem is more difficult in that we are optimising over an ex-
ponentially large set of kernels, |S(G)| = ℓℓ−2, making it intractable to consider them all
at once. To overcome this we maintain an active set of kernels defined by the set of trees
T := {T : λT > 0}, where the inclusion and exclusion of trees to this set depends on their
violation of the conditions for optimality. During the tree weight update stage, we assume
that the structured svm has been solved and let

ω = 1
2
∑
T ∈T

λT

∑
k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′) = 1
2
∑
T ∈T

λT α
T K̃Tα .

This corresponds to the minimum norm predictor that is possible when the output graph is
represented using the particular unit L1-norm combination of spanning trees. The conditions
for optimality state that each tree with positive weight should have the same unscaled norm
4.17. This is not taken into consideration during the structured svm and it is likely that
the optimal solution will have trees T ∈ T with different norms. To correct this during
MKL with a fixed set of trees we would simply re-distribute the weight in favour of the tree
that has the largest unscaled norm given the current predictor. This corresponds to the tree
weight λT with largest gradient. When considering the set of all possible spanning trees, we

4.4 Large margin multi-label learning on graphs 101

must look for the tree T ∈ S(G) with the largest gradient. This amounts to finding

T ∗ = argmax
T ∈S(G)

∑
k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′).

By decomposing the kernel into its edge components we can write the objective as a sum
over the edge kernels,

∑
k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′) =
∑
k,y

αk(y)
(
F̂ (xk, yk)− F̂ (xk, y)

)
=
∑
k,y

∑
e∈T

αk(y)
(
F̂e(xk, ye

k)− F̂e(xk, ye)
)

.

In Algorithm 4 we show how the maximum violating tree is found. This is almost identical to
the Chow-Liu tree algorithm, the difference being the criteria on which an edge is evaluated.
The Chow-Liu tree algorithm uses the mutual information between variables to define an
edge’s importance, whereas we use the weighted margin on that edge i.e. how much more is
the edge score of the true labelling yk,e than that violating labellings i.e. ye ̸= yk,e

γe =
∑
k,y

αk(y)
(
F̂e(xk, yk,e)− F̂e(xk, ye)

)
.

Therefore we see that the search over an exponentially large set of trees can be reduced
to a simple implementation of the maximum spanning tree algorithm, and therefore has a
running time complexity of O (E log V), using weighted margins on the edges, where the
goal is to find the tree that maximises ∑e∈T γe.

Recall that a dual variable αk(y) is only non-zero when the margin criteria is not met.
This allows us to interpret the tree with maximum gradient as the one that can potentially
reduce margin violations on the training sample. Therefore the tree update scheme can be
seen as distributing weight to edges that have the capacity to discriminate between correct
and incorrect labellings.

Algorithm 4 Maximum violating tree
1: Input: S = {(xk, yk)}mk=1, complete output graph G, dual variables αk(y) and kernel

function K̃
2: for each e ∈ G
3: Compute weighted edge margin γe = ∑

k,y

∑
j,y′ αk(y)αj(y′)K̃e(xk, ye; xj , y′ e)

4: end for
5: compute maximum weighted spanning tree T over graph G with edge weights γ
6: Return T

102 Multi-label learning over unknown graph structures

4.4.6 Implementation

The algorithm used for solving the L1-norm mkl for spanning trees is presented in Algorithm
5. The optimisation procedure works by alternating between solving a structured svm, using
a fixed kernel defined by a set of weighted trees, and updating the weights attributed to each
tree T ∈ S(G). In this section we describe the key components of the optimisation scheme
and discuss how they are implemented in practice.

Algorithm 5 Algorithm to find large margin using L1-norm combination of spanning trees
1: Input: Graph G, labelled training examples S
2: Randomly sample T spanning trees
3: while not converged do
4: converged = False
5: structConv, α = Update dual variables (α, T)
6: mklConv, T = Update tree weights (α, T)
7: if structConv and mklConv then
8: converged = True
9: end if

10: end while
11: Return: α, T

Solving the structured svm

This component of the optimisation involves solving a structured svm where the kernel
has been fixed using the current set of active trees and weights. Note that the solution
of the structured svm depends heavily on the tree weightings, and it seems reasonable to
expect these weightings to fluctuate quite a lot during the start of the optimisation scheme.
Therefore we favour the speed and efficiency of the optimisation scheme over its precision,
especially when there is a large duality gap in the MKL component. For these reasons, we
apply the Frank-Wolfe algorithm [Frank and Wolfe, 1956; Lacoste-Julien et al., 2013] to the
problem of structured svm, and are similarly mindful of the relationship between the MKL
and svm component during the update of tree weights.

The Frank-Wolfe algorithm fwa [Frank and Wolfe, 1956] was designed for solving convex
optimisation problems minα∈A J(α), where the convex feasible set A is compact and the
objective function J is continuously differentiable. In our case the objective function is given
by

J(α) := 1
2
∑
k,y

∑
j,y′

αk(y)αj(y′)K̃(xk, y; xj , y′)−
∑
k,y

αk(y)∆k(y) , (4.22)

where K̃ = ∑
T ∈T λT K̃T . We consider the sparse set of dual variables α = (α1, . . . ,αm)T ,

4.4 Large margin multi-label learning on graphs 103

where each αk corresponds to the dual variables of a particular example k ∈ {1, . . . , m}.
The feasible set is given by A := A1 × · · · × Am, where Ak = {αk : ∑y∈Y αk(y) = C } for
each k = {1, . . . , m}.

The fwa is an iterative optimisation scheme that works in rounds, solving a linear ap-
proximation to the objective function J over a constrained domain A. For structural svm
[Lacoste-Julien et al., 2013], the authors highlighted that the exponential nature of the
dual variables makes it much more amenable to solving linear subproblems, rather than a
quadratic ones. At each iteration, an update direction s ∈ A is found by searching over the
feasible set to find the direction that minimises the linearisation of J at α,

s∗ = argmin
s∈A

[J(α) + ⟨s−α,∇J(α)⟩] = argmin
s∈A

⟨s−α, ∇J(α)⟩ ,

where ∇J(α) is the gradient of J . During this step the algorithm effectively computes a
linearisation of the duality gap given by

g(α) := max
s′∈A
⟨α− s′,∇J(α)⟩ = ⟨α− s∗,∇J(α)⟩ ,

since we know that the optimal objective function is bounded according to J(α∗) ≥ J(α)−
g(α). The linearisation of the J , coupled with the block-wise constraints, amounts to finding
individual search directions sk ∈ Ak for each example k ∈ {1, . . . , m}

argmin
s∈A

⟨s,∇J(α)⟩ =
∑

k

argmin
sk∈Ak

⟨sk, [∇J(α)]k⟩ ,

where [∇J(α)]k are the gradient components corresponding to αk. These search directions
sk can be found by solving the augmented inference problem

y∗
k = argmax

y∈Y
[F (xk, y) + ∆k(y)− F (xk, yk)] ,

and setting sk(y∗) = C and sk(y) = 0 for all y ̸= y∗. Note that this represents a vertex of the
feasible domain of Ak. The dual variables α are then updated using a convex combination
α← α+ β(s∗ −α) of the current solution and the search direction s∗, where the step size
β ∈ [0, 1]. The algorithm is known to converge for an arbitrary step-size β = 2/(t+2), where
t is the iteration number. However, the rate of convergence can be improved by selecting β

using a simple line search or computing the optimal step-size, which can be given in closed
form by

β = argmin
β

J(α+ β(s∗ −α)) = ⟨α− s∗,∇J(α)⟩
(s∗ −α)T K̃(s∗ −α)

, (4.23)

104 Multi-label learning over unknown graph structures

and the step-size is clipped so that β ∈ [0, 1]. Despite being a relatively efficient compu-
tation, when the number of training examples is large it is often best to use an arbitrary
update step-size and avoid these computations that are quadratic with the number of active
dual variables.

During our implementation we use the block-coordinate method proposed in [Lacoste-Julien
et al., 2013]. This method randomly selects a single example k ∈ {1, . . . , m} and minimises
the linearisation of the objective function J(α) with respect to the dual variables αk. This
approach benefits from much more friendly closed form calculations for the optimal the step-
size β and has been shown [Lacoste-Julien et al., 2013] to have similar convergence properties
to the full Frank-Wolfe approach. Parallelism aside, we believe that this approach makes a
much better use of the inference scheme, since the full Frank-Wolfe runs inference over all m

examples before updating. The violators for each example are chosen independently and do
not depend on the potential changes that may be made in other examples. It is likely that
a small change in one dual variable αk could result in a very different selection of violators
across a number of other examples, which makes it intuitive to focus on updating a single
example at a time.

During each round of the optimisation we randomly select an example k ∈ {1, . . . , m} to
update. The first step involves computing the update direction, which is found using the
augmented inference scheme

y∗ = argmax
y∈Y

[F (xk, y) + ∆k(y)] .

The search direction is then set such that sk(y∗) = C and sk(y) = 0 for all y ̸= y∗. The size
of the update step is given by

β =
C [F (xk, y∗) + ∆k(y∗)]−∑y αk(y) [F (xk, y) + ∆k(y)]

C2K̃(xk, y∗; xk, y∗)− 2C
∑

y αk(y)K(xk, y∗; xk, y) +αT
k K̃k,kαk

, (4.24)

where the step-size has been clipped so that β ∈ [0, 1]. The update to the dual variable of
example k is then given by

αk ← αk + β (sk −αk) .

Edge potentials

Edge potentials measure the contribution that a given edge labelling makes to the score
function; a measure of the compatibility of a particular edge labelling for a given input.
These are used extensively throughout the optimisation scheme, during both the inference

4.4 Large margin multi-label learning on graphs 105

procedure and the tree weight update scheme. For a given input observation x ∈ X , edge
e = (v, v′) and labelling u ∈ Yv × Yv′ , the edge potential is given by

F̂e(x, u) =
∑
k,y

αk(y) (Ke(xk, yk,e; x, u)−Ke(xk, ye; x, u))

=
∑
k,y

αk(y)k(xk, x) (1[(yk,e = u]− 1[ye = u]) ,

where Ke denotes the kernel component corresponding to edge e. Computing these edge
potentials on demand can be costly, and to avoid unnecessary overhead we maintain their
values at all times throughout the optimisation using a simple update scheme. We begin by
initialising F̂e(xk, u) = 0 for each edge e ∈ E, edge labelling u and example k = {1, . . . , m}.
To update the edge scores, suppose the dual variables associated with example (xk, yk) are
to be updated according to αk ← (1 − β)αk + βsk, where sk is everywhere non-zero apart
from the location indexed by labelling y∗, which takes on the value of C. The change in
edge potentials is simply given by

F̂e(x, u)← (1− β)F̂e(x, u) + βCk(xk, x) (1[yk,e = u]− 1[y∗
e = u]) .

To further reduce the computational burden, we observe that when the output variables are
binary, we only have to compute three out of the four possible edge scores. This is due to the
constraint imposed on the dual variables that the sum up to the regularisation parameter
C. We see that the score function can be expressed as

F̂e(x, u) =
∑
k,y

αk(y)k(xk, x) (1[yk,e = u]− 1[ye = u])

= C
∑

k

k(xk, x)1[yk,e = u]−
∑
k,y

αk(y)k(xk, x)1[ye = u] ,

and therefore the sum over all possible edge labellings is ∑u F̂e(x, u) = 0.

During the tree update component we use the edge potentials to compute the weighted edge
margins γe, and plug them into the maximum spanning tree algorithm. By maintaining these
edge potentials in memory we avoid having to recompute them for each example and possible
edge, making it relatively computationally inexpensive to find the maximally violating tree.
However, one issue is the memory requirements for storing edge potentials, which scales
linearly with the number of training points and polynomially with the number of nodes in
the graph.

106 Multi-label learning over unknown graph structures

Inference algorithm

The inference algorithm is used throughout the training stage to find the direction upon
which to update the dual variables, and during the testing stage to make predictions on
unseen test points. For the zero-one loss case the algorithm is pretty much the same during
both training and testing. The only difference being the augmentation of the score function
F (xk, y)← F (xk, y)+1 for incorrect labellings y ̸= yk. Later we will show how to efficiently
include the hamming loss into the inference algorithm using augmented edge potentials but
for now we focus on the zero-one loss case. An outline of the inference scheme is presented
in Algorithm 6. For a fixed observation x ∈ X and predefined length of K-best list, the
algorithm takes as input a set of rooted spanning trees T , a set of weightings over these
trees λT and the set of edge potentials

F̂E =
{

F̂v,v′(yv, y′
v)
}

(v,v′)∈E,yv∈Yv ,yv′ ∈Yv′
.

We have dropped the dependence of the score functions on the input as it is assumed to be
fixed and we let E denote the set of all edges (i, j) ∈ G with non-zero weight. By working
with rooted trees the edges are implicitly oriented. The direction of the edges are denoted
by v → pa(v), where pa(v) denotes the parent2 of v and the children of v are denoted by
ch(v). We denote Tv as the subtree of T rooted at v, and Tv′→v as the subtree consisting of
Tv′ plus the edge v′ → v, and node v.

The algorithm implements a variation of the standard dynamic programming algorithm for
finding map labelling on a tree, the only difference being that we maintain a list of the K

best configurations throughout the traversal of the tree and at the end we pool together the
K best labellings across trees to find the one with highest score. The dynamic programming
works through the tree in reverse order, so that the children of a node are always processed
before the parent. It maintains a sorted K best list of labellings of the subtrees Tv and Tv′→v

using the following data structures:

• Score matrix Pv, where element Pv(y, r) records the score of the r-th best multi-label
of subtree Tv when node v is labelled as y.

• Pointer matrix Cv, where element Cv(y, r) keeps track of the ranks of the child nodes
v′ ∈ ch(v) in the message matrix Mv′→v that contribute the score Pv(y, r).

• Message matrix Mv→pa(v), where element Mv→pa(v)(y′, r) records the r-th best multil-
bael of the subtree Tv→pa(v) when the label of pa(v) is y′.

2A parent node pa(v) is the node adjacent to v on the path towards the root. The children ch(v) of v are
the nodes adjacent to v on the path away from the root.

4.4 Large margin multi-label learning on graphs 107

• Configuration matrix Cv→pa(v), where element Cv→pa(v)(y′, r) traces the label and rank
(y, r) of child v that achieves Mv→pa(v)(y′, r).

When processing each node, we begin by merging the K-best lists of the children of the
node, which are stored in Mv′→v, to obtain the score matrix Pv and pointer matrix Cv. This
can be performed in amortised O(K) time per child node. Next the K-best list of Tv→pa(v)

corresponding to the all possible labels y′ of pa(v) are formed. We do this by keeping the
label of the head of the edge v → pa(v) fixed, and picking the best combination of labelling
the tail of the edge, then selecting a multi-label of Tv consistent with that label. This results
in the matrices Mv→pa(v) and Cv→pa(v), and can be performed in O(K) time. The iteration
over a tree ends when we have reached the root vroot and have updated its score Pvroot . The
multi-labels YT,K can be computed by tracing the pointers stored in Cv and Cv→pa(v). We
see that an iteration on a single tree can be performed in O(Kℓ), and therefore by repeating
this process on |T | trees it gives the algorithm a total complexity of O (|T |Kℓ).

Algorithm 6 Algorithm to obtain K best multi-labels for collection of weighted spanning
trees.

1: Input: Collection T of rooted spanning trees, active edge set E , edge scores F̂E
2: for T ∈ T do
3: Initialise Pv, Cv, Mv→pa(v), Cv→pa(v), ∀ v ∈ G
4: I = nodes indexed in post-order of tree T
5: for j = 1 : ℓ do
6: v = I(j)
7: if ch(v) ̸= ∅ then
8: Pv(y) = Pv(y) + kmax

rv ,v′∈ch(v)

(∑
v′∈ch(v) (Mv′→v(y, rv))

)
9: Cv(y) = Pv(y) + argkmax

rv ,v′∈j

(∑
v′∈ch(v) (Mv′→v(y, rv))

)
10: end if
11: Mv→pa(v)(ypa(v)) = kmax

y,r

(
Pv(y, r) + F̂v,pa(v)(y, ypa(v))

)
12: Cv→pa(v)(ypa(v)) = argkmax

y,r

(
Pv(y, r) + F̂v,pa(v)(y, ypa(v))

)
13: end for
14: Trace back with Cv and Cv→v′ to get YT,K .
15: end for
16: YT ,K = ⋃

T ∈T YT,K

17: y∗ = argmax y∈YT ,K
F (x, y, w)

18: ȳ = argmax y∈YT ,K\yk
F (x, y, w)

19: θK = ∑
T ∈T λT F̂T (x, yT,K , wT)

20: Return : y∗, ȳ, θK

Recall that Lemma 10 states that we can be assured of exact inference if the score function
satisfies a particular condition regarding the scores across the K-best list. This is not always

108 Multi-label learning over unknown graph structures

required during the learning phase and therefore during the early stages of the optimisation,
we would encourage the use of small values of K3 to get the optimisation moving in the
direction of the optimal solution. We know that progress will be made towards the optimal
solution if the duality gap is greater than zero and therefore it seems intuitive to take
advantage of these relatively cheap inference steps during the early stages. Only later when
we wish to be assured that the algorithm has converged would we suggest ramping up
the value of K to ensure exact inference has been performed on all examples. One can
also perform relatively naive updates early one by simply taking a walk along the graph
beginning at the correctly labelling and randomly flipping the labelling so as to obtain a
positive duality gap.

Tree weight updates

When making adjustments to the weights of the trees we must be weary of the fact that
current solution to the structured svm, and therefore the current set of maximum viola-
tors, depends on a fixed kernel function. By adjusting the tree weights, and the kernel, it
is possible that the maximum violators for each example can change, making the previous
structured svm solution redundant. In order to limit the oscillatory nature of our solution
path, we propose small adjustments to kernel weightings, which will hopefully lead to a more
stable optimisation procedure.

The tree weight updates depend on the gradient of the objective function given in 4.11. To
help simply our expressions, we introduce the variables υT

υT = 2
∣∣∣∣ ∂J

∂λT

∣∣∣∣ =
∑
k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′)

=
∑
e∈T

∑
k,y

∑
j,y′

αk(y)
(
F̂e(xk, yk,e)− F̂e(xk, ye)

)
=
∑
e∈T

γe ,

represent the absolute value of the gradients with respect to each tree. During the tree
weight update, Algorithm 7, we use the edge potentials to compute the weighted margins
γe for each edge in the graph. These weighted edge margins are used to compute υT for
the current trees T , and to find the maximum violating tree T ∗ i.e. the tree with largest
absolute gradient. The tree weight update can take on one of two forms and depends on
whether or not the maximally violating tree T ∗ belongs to the current active set of trees T .
Both updates however begin the same way by examining the gradients of the current set of
active trees.

3For example in our experiments, we typically tended to start with values of K < 4 until latter stages of
optimisation.

4.4 Large margin multi-label learning on graphs 109

Algorithm 7 Tree weight update
1: Input: T , T ∗,λ,α, ϵ, ν
2: let ω = ∑

T ∈T λT υT - the weighted average gradient
3: for T ∈ T do
4: if υT < ω ∩ λT < ν then
5: λT = 0 and T ← T \ T
6: end if
7: end for
8: λT ← λT /

∑
T ′∈T λT ′

9:
10: if T ∗ ∈ T then
11: for T ∈ T do
12: λ̂T = λT exp(√υT)∑

T ′∈T λT ′ exp(
√

dJT ′)

13: λT ← λT + β(λ̂T − λT)
14: end for
15: else
16: T ← T ∪ T ∗

17: λT ∗ = 1
|T |

18: for T ∈ T \ T ∗ do
19: λT ← |T |−1

|T | λT

20: end for
21: end if

A standard multiplicative update scheme would prevent weights from ever reaching zero and
excluding trees from the active set. Therefore in order to promote a sparse set of trees,
we introduce a weight threshold ν that combined with the trees gradient and the weighted
average gradient of the trees allows us to truncate the tree weight to zero and effectively
remove it from the active set. If λT < ν and υT < ω = ∑

T ∈T λT υT , then we set λT = 0 and
remove T from the active set i.e. T ← T \ T .

If the maximal gradient tree T ∗ belongs to the active set T , then we perform a multiplicative
update on these weights proportional to the magnitude of their gradient. Note that rather
than implementing the full multiplicative update as suggested in [Kloft et al., 2011], we
alluded earlier to the fact that we dampen the change of tree weights using some β ∈ (0, 1)
in an effort to stabilise the active set of trees and the set of maximally violating labels for
each example. If the tree does not belong to the active set i.e. T ∗ /∈ T then we include it
to the active set T ← T ∪ T ∗, initialise its value to λT ∗ = 1

|T | and redistribute the weight of
the other trees so that ∑T ∈T \T ∗ λT = 1− 1/|T |. Again we abstain from making large steps
in the tree weights to encourage a smooth optimisation procedure.

110 Multi-label learning over unknown graph structures

Marginal dual polytope representation for structured SVM

So far when solving the structured svm we have focused on using the dual variables associ-
ated with the margin constraints. One drawback of this approach is that we are unsure of
the total number of violators that we may require. This may result in a drain on memory
and unnecessary overheads involving the addition and removal of dual variables from our
solution. It was shown in [Tsochantaridis et al., 2004] that the number of constraints, and
therefore dual variables of the optimal solution, required does not depend on the size of
the label space |Y| but is instead polynomial with respect to both the number of training
examples m, and the inverse of the desired accuracy ϵ > 0. However given the nature of
our optimisation we would expect to go through a large number of candidate violators be-
fore converging upon the optimal solution that has a polynomial number. In this section
we review the marginal dual polytope reparameterisation, which produces a polynomial-size
problem and permits the use of kernels to efficiently address complex input spaces.

In [Taskar et al., 2004] the authors observed that the dual variables αk for each example
k ∈ {1,m} could be interpreted as a density function over Y conditioned on xk, where
the weight attached to a dual variable is proportional to our belief that we could confuse
this labelling to be the correct one i.e. P (yk = y) ∝ αk(y). In their formulation, they went
on to show that the objective could be separated into terms involving only nodes and edges,
and defined the marginal dual variables to be

µ(k, e, ue) =
∑

y
αk(y)1[ye = ue] (edge marginal)

µ(k, i, ui) =
∑

y
αk(y)1[yi = ui] (node marginal) .

Note that our kernel function is defined in terms of the edge labellings and we no longer
require the use of the node marginals. We now show how the objective function given in 4.22
can be reformulated in terms of the edge marginals. Beginning with the quadratic expression
involving the kernel, this is given by

∑
k,y

∑
j,y′

αk(y)αj(y′)
∑
T ∈T

λT K̃T (xk, y; xj , y′)

=
∑
k,y

∑
j,y′

αk(y)αj(y′)
∑
e∈E

λeK̃e(xk, ye; xj , y′
e)

=
∑
k,j

∑
e∈E

λe

∑
ue,u′

e

∑
ye=ue

∑
y′

e=u′
e

αk(y)αj(y′)K̃e(xk, ue; xj , u′
e)

=
∑
k,j

∑
e∈E

λe

∑
ue,u′

e

µ(k, e, ue)µ(j, e, u′
e)K̃(xk, ue; xj , u′

e)

4.4 Large margin multi-label learning on graphs 111

When using the zero-one loss function, we can monitor the contribution of each example
k = {1, . . . , m} to the linear term of the objective function by recording the weight lk ∈ [0, C]
that has been moved away from the correct labelling. To do this we begin by initialising lk = 0
for each k ∈ {1, . . . , m}. Then suppose we update in the direction sk, where sk(y∗) = C and
sk(y) = 0 for all y ̸= y∗, and use the step-size β ∈ [0, 1]. Then the adjustment of lk is given
by

lk ←

lk + βC if y∗ ̸= yk

lk − βC if y∗ = yk

The marginal dual reparameterisation implements the same optimisation scheme as the dual
variables, meaning that the calculations for computing edge potentials and finding update
directions are essentially the same but just have to be computed in a different manner. For
example, the edge potentials are calculated according to

F̂e(x, u) =
∑

k

∑
y

αk(y)k(xk, x) (1[yk,e = u]− 1[ye = u])

= C
∑

k

k(xk, x)1[yk,e = u]−
∑

k

k(xk, x)µ(k, e, u) .

To find the optimal update direction y∗ we can simply plug in the edge potentials, computed
using µ, into the inference algorithm. To replicate the update αk ← (1−β)αk + βsk, where
the non-zero entry in sk is indexed by labelling y∗, the marginal dual variables are updated
according to

µ(k, e, u) = (1− β)µ(k, e, u) + β1[y∗
e = u] ,

where the optimal step-size can be computed in an analogous way to 4.24. When using the
marginal dual polytope representation for our problem, the total number of variables is given
by 4m

(ℓ
2
)
. To put this into perspective, when working with the dual form, we need to keep a

record of the labellings associated with each violating example. From [Tsochantaridis et al.,
2004] we saw that the solution could be approximately solved using a polynomial number
of constraints, which upper bounds the memory requirements for the dual form. However,
given the frequent use of edge labellings, it makes sense to store the violating example as its
edge labellings rather than its output labellings. Therefore if we have an average of more
than four violators for each example then the memory requirements for the dual form exceed
those of the marginal dual polytope form.

112 Multi-label learning over unknown graph structures

Using Hamming loss function

So far we have presented a learning scheme that attempts to obtain a margin of magnitude
at least one across the set of all possible incorrect labellings. This is a difficult task since
there are 2ℓ − 1 incorrect labellings for each example, and ℓ violators that differ from the
correct labelling on only one node. If we are convinced that there should exist a large margin
solution and are focused on obtaining the exact labelling for each example then one could
argue that the zero-one loss function is the right approach to take. However with multi-label
problems, we are often willing to sacrifice some incorrectly labelled vertices if it permits a
much simpler solution. In doing so, we hope that the performance seen during training will
generalise to unseen examples.

Recall that the Hamming loss function measures the average disagreement of node labellings,
therefore the loss function for example k is given by

∆k(y) = 1
ℓ

∑
i∈V

1[yk,i ̸= yi].

During the structural learning component of our optimisation, in order to find the update
direction for example k, we must solve the augmented inference problem given by

y∗ = argmax
y∈Y

[F (xk, y) + ∆k(y)] (4.25)

where ∆k(y) is the Hamming loss function. In the previous inference task, for each tree
we computed the top K scores and incremented their score by one if they were not the
correct labelling. Unfortunately this approach cannot be taken when using the Hamming
loss since the individual edge labellings contribute to the overall loss and must be taken into
consideration when we traverse the tree. Note that this is not a special case because we are
using a combination of spanning trees but it is also the case even when we only have a single
tree upon which to perform augmented inference. We now outline how to adjust the edge
potentials to include the contribution of the Hamming loss.

Suppose we have a tree structured graph T ∈ S(G) and let n(i) denote the node degree4 of
node i ∈ V on graph T . By augmenting the edge potential of edge e and labelling u = (u, u′)
by

F̃i,j (xk, u) = F̂i,j(xk, u) + 1
ℓ

(
1[yk,i ̸= u]

n(i) + 1[yk,j ̸= u′]
n(j)

)
we are able to use our existing top-K algorithm and efficiently incorporate the Hamming

4The node degree of a node in a graph G is the number of nodes that are connected to node i

4.4 Large margin multi-label learning on graphs 113

loss function into the inference scheme.

During the K-best inference algorithm (Algorithm 6), we adjust the message passing matrices
to use F̃v,v′ rather than F̂v,v′ i.e.

Mv→pa(v)(ypa(v)) = kmax
y,r

(
Pv(y, r) + F̃v,pa(v)(yv, ypa(v))

)
By doing this we ensure that we take into consideration the full contribution to the Hamming
loss of the involved nodes when computing the intermediate K-best lists, before moving up
the tree. This small adjustment allows us to incorporate the Hamming loss into our existing
framework for performing inference, thus allowing us to efficiently solve the augmented in-
ference problem given in 4.25. Note that the augmented edge potentials are different across
trees, and we have to perform this augmentation on a tree by tree basis during inference.
Once the K-best lists have been found on each tree and we have YT ,K , we simply evaluate
the scores F (y) for each y ∈ YT ,K and then augment it with their respective Hamming loss
afterwards.

1

2

3 4

F̃3,2(y3, y2) = F̂3,2(y3, y2) + 1[y3 = 1]
1 + 1[y2 = 1]

3

F̃4,2(y4, y2) = F̂4,2(y4, y2) + 1[y4 = 1]
1 + 1[y2 = 1]

3

F̃2,1(y2, y1) = F̂2,1(y2, y1) + 1[y2 = 1]
3 + 1[y1 = 1]

1

F̃T (0, 1, 1, 0) = F̂2,1(1, 0) + F̂3,2(1, 1) + F̂4,2(0, 1) + 3 1
n(2) + 1 1

n(3)
= F̂T (0, 1, 1, 0) + ∆y(0, 1, 1, 0)

Fig. 4.5 Example tree structure showing how the augmentation of the edge potentials works,
where the correct labelling is given by y = (0, 0, 0, 0).

4.4.7 Experiments

In this section we evaluate our L1 norm spanning tree algorithm (ta) on a number of datasets
and compare its performance to a number of state-of-the-art learning algorithms. We use ten
multi-label datasets, taken from a wide range of domains including biological, chemical and
text classification. A summary of the datasets is provided in Table 4.1. The NCI60 dataset
is a panel of 60 diverse human cancer cell lines that have been used for screening compounds
relating to anticancer activity. The Fingerprint dataset (FP) uses as input molecular mass
spectra data to predict molecular substructures. The Enron dataset contains emails from
Enron employees that are categorised according to the content of the email. The Medical
dataset maps clinical free text to a number of medical based codings. The Scene dataset uses

114 Multi-label learning over unknown graph structures

image data to determine whether certain classes are present within the image. The CAL500
dataset was collected by asking humans to listen to 500 different songs and categorise them
using a survey designed capture the semantic associations between music and words. The
Yeast dataset uses information about the yeast cells to determine the localisation site of
each cell. The Emotions dataset uses a number of audio based features to determine which
emotions where being expressed in a particular song. The Circle10 and Circle50 datasets
have been synthetically generated according to the process outlined in [Bian et al., 2012].

Dataset Examples Labels Features Density
emotions 593 6 72 0.31
yeast 2417 14 103 0.30
scene 2407 6 294 0.18
enron 1702 53 1001 0.06
cal500 502 174 68 0.15
fp 490 286 490 0.17
cancer 4547 60 4547 0.18
medical 978 45 1449 0.03
circle10 1000 10 3 0.85
circle50 1000 50 3 0.71

Table 4.1 Summary statistics of the datasets used during the experiments.

For comparison, we select the following learning models to compare to our newly proposed
ta0/1 and taham models, which have been trained using the zero-one loss function and the
Hamming loss function, respectively. The svm is used as a single target classifier, where
each node is optimised and predicted independently. Multitask feature learning (mtl) [Ar-
gyriou et al., 2008] is a multi-label classifier that assumes that the label specific functions
are related such that they share a small subset of features. Max-margin conditional random
fields (mmcrf) [Rousu et al., 2007] is a multi-label classifier that uses the structure of the
output graph that connects multiple labels and uses the loopy belief propagation algorithm
for approximate inference on the general graph. Maximum average marginal aggregation
(mam) [Su and Rousu, 2013] is a multi-label ensemble model that trains a set of random
tree based learners separately and performs the final approximate inference on a union graph
of the edge potential functions of the trees. Finally, we evaluate the L2-random spanning
tree (rta) [Marchand et al., 2014] algorithm, which uses a fixed random sample of spanning
trees and learns a large margin predictor. We train this algorithm using both the zero-one
loss rta0/1 and Hamming loss functions, rtaham, just as we do for the ta methods.

We use 5-fold cross validation to select the model parameters and compute the results. The
margin slack parameter C is evaluated over the set {0.01, 0.1, 1, 10, 100, 1000} and the num-
ber of initial trees T is tested over {5, 10, 20, 40}. Each method is presented with the same

4.4 Large margin multi-label learning on graphs 115

Dataset 0/1 Loss (%)
svm mtl mmcrf mam rta0/1 rtaham ta0/1 taham

Emotions 77.8 74.5 71.3 69.6 69.5 66.3 68.4 67.2
Yeast 85.9 88.7 93.0 86.0 83.6 77.7 81.9 77.3
Scene 47.2 55.2 72.2 94.6 29.6 30.2 27.5 29.7
Enron 99.6 99.6 92.7 87.9 88.2 87.7 89.4 87.1
Cal500 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

FP 99.0 100.0 99.6 99.6 96.7 98.0 97.6 97.5
NCI60 56.9 53.0 63.1 60.0 50.7 52.9 50.3 51.6

Medical 91.8 91.8 63.8 63.1 29.1 36.7 28.3 31.8
Circle10 28.9 33.2 20.3 17.7 3.7 4.0 3.5 3.3
Circle50 69.8 72.3 38.8 46.2 68.4 52.8 48.5 46.1

Table 4.2 Prediction performance of each algorithm in terms of 0/1 loss. The best performing
algorithm is highlighted with boldface, the second best is in italic.

Dataset Microlabel Loss (%)
svm mtl mmcrf mam rta0/1 rtaham ta0/1 taham

Emotions 22.4 20.2 20.1 19.5 21.9 18.8 21.4 19.7
Yeast 20.0 20.7 21.7 20.1 23.7 19.8 22.8 19.3
Scene 9.8 11.6 18.4 17.0 8.9 8.8 8.3 8.5
Enron 6.4 6.5 6.2 5.0 5.7 5.3 5.7 4.7
Cal500 13.7 13.8 13.7 13.7 23.0 13.8 15.8 13.3

FP 10.3 17.3 10.5 10.5 10.3 10.7 10.3 9.8
NCI60 15.3 16.0 14.6 14.3 16.3 14.9 16.3 13.3

Medical 2.6 2.6 2.1 2.1 1.0 2.1 0.9 1.1
Circle10 4.7 6.3 2.6 2.5 0.6 0.6 0.6 0.5
Circle50 5.7 6.2 1.5 2.1 6.1 3.8 4.2 2.1

Table 4.3 Prediction performance of each algorithm in terms of microlabel loss. The best
performing algorithm is highlighted with boldface, the second best is in italic.

initial set of trees T where rta maintains an equal weighting for each tree and ta, adjusts
weights whilst adding and removing trees according to a criteria defined by the violation of
the KKT conditions for optimality. For each dataset we use a linear kernel for the input
space and the size of our K-best list is restricted by the number of labels in that particu-
lar dataset. We report both the multi-label and micro-label losses, where multi-label loss
indicates whether or not the correct labelling was predicted i.e. yw(xk) = yk, and the micro-
label accuracy measures fraction of incorrectly labelled output nodes i.e. the Hamming loss.

In Tables 4.2 and 4.3 we show the zero-one and micro-label loss, respectively, obtained by
the different learning algorithms on our datasets. We observe that when training using the
zero-one loss, the performance of the spanning tree approaches are in general inferior to

116 Multi-label learning over unknown graph structures

those trained using the Hamming loss. This would indicate that the algorithms struggle to
find a fixed large margin that holds true for all possible violators. This is not very surprising
given the exponential number of violators that the condition has to be satisfied for. The
exceptions to this are the scene and medical datasets, which would suggest they are more
amenable to large margin analysis. For example, in the scene dataset it is very likely that
an image will contain one of a fixed set of category combinations, and it may be more of
a multiclass task rather than multi-label. It would appear that minimising the Hamming
loss allows the algorithms to focus on directing the predictor towards a solution in the right
region, where it can trade off small Hamming losses with a smoother solution, and in general
better performance in terms of both zero-one and Hamming loss. We are a little disheartened
by the poor performance of the zero-loss function formulation of the ta algorithm on several
of the datasets, however we saw in the last chapter that the svm struggled on difficult tasks
where there was no margin, and it would appear this multi-label extension also struggles
on datasets where there is no clear separation between the true labelling and all possible
violators.

These early experiments go some way to supporting the use of this approach to multi-label
classification over unknown graph structures, however there is still much work that can be
done to improve both the performance across these datasets and the general functionality of
the algorithm. We touch briefly on the latter towards the end of this chapter but for now we
just want to point out that the limited performance improvements that we see may be par-
tially due to the datasets that we are using, and that they may not be particularly conducive
to the methods we are proposing. A similar result was seen in the early days of multiple
kernel learning, where the performance improvements were limited until it was used on the
correct datasets. We hope that further research will allow these datasets to be found, and
the algorithm can take advantage of its ability to find the margin maximising graph structure.

Stock market example
We apply our learning framework to the problem of predicting the joint movement of a set
of 13 large cap stocks from the S&P 500, which represent a range of different market sectors.
Our goal is to simultaneously uncover and exploit the relationships between the movements
of stocks, and identify the most likely joint price movement. For example if we are confi-
dent that the price of IBM will go up and there is a strong correlation between IBM and
Microsoft, then it should influence the likelihood that the price of Microsoft will also in-
crease. The weights attributed to edges can be thought of as an alternative measure of stock
correlation. Traditional approaches to making portfolio decisions use the covariance matrix
between assets to form diversified portfolios. Our approach effectively encodes dependencies
between stocks, and it can be interpreted as some form of conditional covariance function.

4.4 Large margin multi-label learning on graphs 117

Here the strengths of the relationships between stocks is dependent on some input variable
that captures specific characteristics of the current market setting.

We use daily price data ranging from January 2012 to December 2014. Let pt,i be the open-
ing price of the i-th stock at time t, and let δt,i = pt,i − pt−1,i be the change in price from
time t− 1 to t. The output vector at time t is given by yt ∈ {0, 1}13, where each co-ordinate
yt,i is an indicator function for stock i, indicating whether the price of stock i increases over
the coming time period i.e. yt,i = I[δt+1,i ≥ 0]. We use a simple representation for the
input space, which corresponds to whether the current opening price is higher or lower than
yesterday’s opening i.e. xt,i = sign(δt,i). These price changes are combined to give the input
observation xt, and we make use of a linear kernel to represent the similarities between input
observations.

The time series nature of the data means that it is not amenable to use of cross-validation
approaches for optimising model parameters. Instead we propose a very simple method,
which borrows inspiration from the field known as learning from expert advice [Cesa-Bianchi
and Lugosi, 2006]. We let each parameterisation (C, T) correspond to a particular expert
indexed by j. The exponential weights algorithm commonly used throughout the field of
learning with expert advice is given by Algorithm 8. The algorithm begins by initialising
each expert j with a weight vj proportional to its performance on the training sample. At
each time step t, the predictions ŷt,j of each expert j are weighted according to vj to form
an overall prediction for time t given by ŷt,i = 1[∑P

j=1 vj ŷt,i,j ≥ 0] , where ŷt,i,j corresponds
to the j-th expert’s prediction of stock i at time t. Based upon the performance of the pre-
diction, the weight of each expert is updated and the process repeated until the end. In the
structured prediction task, we measure the performance of an algorithm using the Hamming
loss. The idea behind this very vanilla approach is to ensure that we do almost as well as
the best predictor in hindsight, however more complicated variants could be investigated if
we were to use the algorithms proposed in [Herbster and Warmuth, 1998] for tracking the
best expert i.e. in this setting the best parameterisation is allowed to change over time.
However, the goal here is not to evaluate methods for time series prediction but rather as-
sess whether or not this approach to predicting the movement of a portfolio has any potential.

To compare the performance of our algorithm, for each stock we train an svm classifier
using a variety of parameterisations and combine them together using the expert weighting
framework to form a prediction on the test sample. These individual stock predictions are
then combined to give the overall prediction at each time step. Note that each stock has
been trained individually using an svm and individually handled using the expert learning
framework. We present both the results of training the svm using the combined input space

118 Multi-label learning over unknown graph structures

Algorithm 8 Expert learning over model parameterisations
1: Input: learning rate α > 0, different parameterisations (C, T) indexed by j = 1, . . . , P ,

hamming losses Lj = ∑m
k=1 Lj,k on the training sample.

2: Initialise weights vj = exp(−αLj)/∑k exp(−αLk)
3: for t = 1, . . . T do
4: ŷt,i = 1[∑P

j=1 vj ŷt,i,j ≥ 0]
5: vj ← vj exp(−αLj,k+t) for each j = 1, . . . , P
6: vj ← vj/

∑P
p=1 vp for each j = 1, . . . , P

7: end for

xt (svmJ), and training each stock using only its own observations xt,i (svmI), once again
we use the linear kernel to measure the similarities between observations.

In Table 4.4 we present the results obtained from the stock market experiments. Along
with the microlabel and 0/1 loss, we present the hypothetical return that would have
been obtained if we would have followed the investment decision implied from the expert
learning algorithms prediction. The return on an investment at time t is given by rt =
100∑ℓ

i=1 ŷt,iδt+1/pt There is one free parameter in this version of the expert learning algo-
rithm, the learning rate α, and we present results for a range of α ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1}.
From the results we see that our proposed L1-norm tree approximation method is the top
performing method across the three different measures on all but one choice of parame-
terisation of the learning algorithm. We see that the random spanning tree structure fairs
unfavourably to both the ta method and the independent svm methods. One possible expla-
nation for its poor performance is due to the arbitrary dependencies that we force between
pairs of stocks, which hinders rather than helps the performance of the predictor. The svm
methods treat each stock independently and will not suffer from this setback, and the de-
pendency structure is learned in the ta method to maximise the margin that is possible on
the training sample.

This preliminary experiment would support the idea that the structure implied by a large
margin predictor can be leveraged to make predictions capable of outperforming machine
learning methods that use either random dependencies, rta, or assume independence svm,
between the stocks. In future work one can expect to see further performance improvements
if we experiment with a variety of input space representations. For example, rather than
sharing a single input kernel over the entire graph, we could breakdown the input kernel
over the edges themselves. This would come with additional computational and memory
requirements, since during training we would have to replace a separate kernel of size m×m

with a separate one over each of the |E| edges.

4.4 Large margin multi-label learning on graphs 119

Alpha Microlabel Loss (%) 0/1 Loss (%) Return (%)
rta ta svmJ svmI rta ta svmJ svmI rta ta svmJ svmI

0.01 98.6 98.0 100.0 99.7 50.0 48.3 48.6 49.6 5.1 138.1 109.6 -29.2
0.05 98.6 98.0 100.0 99.7 49.9 48.4 49.1 49.0 4.0 139.1 91.7 16.4
0.10 98.9 98.0 100.0 99.7 50.3 48.1 48.6 49.0 -14.7 142.6 88.7 -15.2
0.20 98.6 98.0 100.0 100.0 50.0 48.4 48.5 49.1 -6.3 127.3 115.7 -12.2
0.50 98.6 98.9 100.0 100.0 49.4 48.0 48.8 48.6 20.8 151.3 70.5 43.4
1.00 98.6 99.2 100.0 100.0 49.2 48.4 48.9 48.5 43.6 131.3 58.8 54.3

Table 4.4 Comparison of algorithm performance on stock market dataset in terms of micro-
label loss, 0/1 loss and percentage return of an investment strategy following this advice.
The best performing algorithm for each evaluation criteria is highlighted with boldface, the
second best is in italic.

4.4.8 Extensions

In this section we examine a number of extensions that can be made to the original formula-
tion of our learning algorithm. One of these extensions is similar to the use of the marginal
dual polytope and focuses on reparameterising the weights on an exponentially large num-
ber of trees, to weights over a polynomial number of edges. We also present a heuristic
for guiding the inference scheme on an example basis, and adapt the edge potentials to ef-
ficiently perform augmented inference using the Hamming loss function and include unary
(label specific) potentials.

Augmenting edge potentials and inference

In our discussions thus far we have focused on constructing functions using edge potentials,
however in the original crfs [Lafferty et al., 2001], there were explicit terms for the contri-
bution of individual nodes to the overall compatibility of a labelling i.e. the score function
would be represented by

F (x, y) =
∑
i∈V

Fi(x, yi) +
∑

(i,j)∈G

Fi,j(x, yi, yj) .

These node potentials are given by

Fi(x, u) =
∑
k,y

αk(y)k(xk, x) (1[yk,i = u]− 1[yi = u])

To incorporate the unary potentials into the inference scheme, we would simply follow the
same process as we did to incorporate an incorrect node labelling during the Hamming loss
variant of the optimisation. Namely for a given tree T where n(i) defines the node degree
of node i on T , the augmented edge potentials F̃i,j for example k and labelling u = (ui, uj)

120 Multi-label learning over unknown graph structures

are given by

F̃i,j(xk, u) = F̂ (xk, u) +
(

Fi(xk, ui)
n(i) + Fj(xk, uj)

n(j)

)

Intermediate tree gradients

The alternating optimisation scheme means that there is quite a bit of back and forth
between updating dual variables and updating tree weights. It is reasonable to expect that
the progress made during violator updates may be eroded by the update of tree weights, and
vice versa. In our current setting, we run the fw scheme for a fixed number of steps and
then perform a tree weight update step. Upon closer inspection one can observe that the
changes to the tree gradients are computed as a by-product of the fw update scheme, and
we therefore have access to this gradients throughout the fw scheme. To see this observe
that a particular the T ∈ T , the gradient is given by

dJT = 1
2
∑
k,y

∑
j,y′

αk(y)αj(y′)K̃T (xk, y; xj , y′)

= 1
2
∑

e

∑
k,y

∑
j,y′

αk(y)αj(y′)K̃e(xk, y; xj , y′) =
∑

e

dJe ,

where dJe are the gradients with respect to a particular edge e ∈ E. For a given edge e ∈ E,
the change in its gradient caused by the update of α← α+ β(s−α) is given by

dJe ← dJe + 1
2β2(s−α)T K̃e(s−α) + β(s−α)T K̃eα .

We observe that these terms are required to compute the step size β in 4.23. Therefore one
could simply track the value of the edge gradients, adjusting them when we update the dual
variables, and then make small adjustments to the weights on each tree according to the
mkl scheme. Although this doesn’t directly consider the whole space of possible kernels like
the full MKL step, we only use the currently active trees, one would imagine that it would
make some progress towards shifting the weight in the direction of the optimal solution.

Trees for inference

We have shown that a unit L1-norm combination of spanning trees produces a large margin
predictor. The combination of spanning trees gives rise to a score function that can be
represented using the active edges in the graph

F (x, y) =
∑
T

λT F̂T (x, y) =
∑

e

λeF̂e(x, ye) =
∑

(i,j)∈E
Fe(x, ye),

4.4 Large margin multi-label learning on graphs 121

where Fe(x, u) = λeF̂e(x, u) are the scaled edges scores. We observe that edges not present
in the spanning trees have zero weight and have no contribution to the score function, there-
fore Fi,j = 0 for all (i, j) /∈ E .

When it comes to inference we are looking to find the largest scoring labelling, and we have
done this by performing inference over the trees that were used to construct the predictor.
We will show that we are not restricted to performing inference over a fixed set of spanning
trees and we can provide conditions under which we are sure of exact inference when using
an alternative set of spanning trees.

To see this, let T denote the set of spanning trees used by the predictor and the let the set of
active edges be denoted by E . We can split the active set of edges into two disjoint subsets
E1 and E0 where E = E1 ∪ E0 and E1 ∩ E0 = ∅. The score function can be represented by

F =
∑
e∈E

Fe =
∑
e∈E1

Fe +
∑
e∈E0

Fe.

We will refer to E0 as the residual edge set, and assume that E1 is an edge set representing
the union of a set spanning trees T1. The contribution of the residual edge set to the score
function is upper bounded by

ν =
∑
e∈E0

max
u

Fe(u)

Let T1 be the set of spanning trees that define edge set E1, we will show that by using the
K-best inference scheme we can present conditions showing that exact inference has been
performed.

Lemma 11 Let y∗ = argmax y∈YT1,K
F (y) be the top scoring multi-label from the set YT1,K

and let ν = ∑
e∈E0 maxu Fe(u). If

F (y∗) ≥
∑

T ∈T1

FT (yT,K) + ν ,

then y∗ = argmax y∈Y F (y).
Proof Suppose there exists a multi-label y /∈ YT1,K where F (y) > F (y∗) then

F (y) =
∑
e∈E

Fe(y) =
∑

T ∈T1

FT (y) +
∑
e∈E0

Fe(y) ≤
∑

T ∈T1

Fe(y) + ν

≤
∑

T ∈T1

FT (yT,K) + ν.

Therefore we see that F (y) ≤ F (y∗) and that y∗ = argmax y∈Y F (y).

122 Multi-label learning over unknown graph structures

The question we must ask is how best to generate the set of trees T1 so that we can be
assured of exact inference with the smallest possible amount of computational effort. One
intuitive method for achieving this is to think of the residual ν as a penalty for not including
edges E0 into the inference scheme. This is the maximum contribution to the score function
unaccounted for due to the exclusion of the edges E0. We can set about minimising the value
of ν by repeatedly sampling trees from S(G) in a greedy manner. To do this we assign each
edge in the graph a weight ωi,j = maxu Fi,j(u), which corresponds to its contribution to the
residual ν. We can then use a maximum spanning tree algorithm to compute the tree that
minimises the value of ν. We set the value of the weights present in the sampled tree T to
zero i.e. ωi,j = 0 if (i, j) ∈ T and repeat this process until the value of ν reaches a given
threshold. An alternative approach would be to apply a halving algorithm to the weights
over the graph. One would imagine that this more moderate approach to edge removal
would allow the discriminative edges to be present in in more of the spanning trees, and
thus help during the inference stage to focus on important edges. Note that this process of
generating trees for inference is likely to be different across examples k ∈ {1, . . . , m}. This
approach addresses the difficulties associated with performing inference using a fixed set of
trees, where the discriminative power of these trees is likely to vary across training examples.
It is reasonable to expect that edges will have a different level of importance across examples
i.e. some edges will be particularly discriminative for some examples and not for others. We
see that this method focuses on ensuring that we have the maximum possible scoring edges
included in our search phase.

Implicit tree learning

In the last section we provided conditions showing that it was possible to perform exact
inference using an arbitrary set of spanning trees. This showed that we were able to use
trees that were different from the ones explicitly used to construct the predictor and pre-
sented a simple heuristic for selecting trees for inference. Following on from this, we now
view the problem of assigning weight to the trees used in the construction of the predictor,
and present a tree-free method for learning. In our method we propose to forget about
maintaining an explicit set of trees with non-zero weight during learning but rather think
of it along the same lines as the marginal dual polytope. In the context of trees, we simply
maintain a weight attributed to each possible edge, where the weight represents the sum of
the weights of all trees that have this edge present.

Rather than maintaining weights for an exponentially large set of possible trees we can sum-

4.5 Summary 123

marise this information into
(ℓ

2
)

weights defined over edges, where λe = ∑
T ∈S(G) λT1[e ∈ T].

During the MKL update step we proceed as before, computing the tree using the maximum
spanning tree principle, and shift the distribution of tree weights in the direction of the
edges present in this tree. These conditional gradient steps ensure that we remain in the
polytope defined by the unit L1 norm combination of spanning trees. And by leveraging the
inference scheme that we discussed in previous section, we no longer have to worry about
maintaining knowledge of the trees that have non-zero weight in the ensemble as we are still
able to perform inference using knowledge of the edge weights.

Be revisiting the condition for ϵ-optimality during multiple kernel learning, we see that the
expression can be represented in terms of weighted edge margins γe and further reduced
to involve total edge weightings λe. To see this let ω∗ = maxT ∈S(G) υT be the maximum
gradient with respect to a tree weighting, we see that

ω∗ −
∑
T ∈T

λT υT = ω∗ −
∑
T ∈T

λT

∑
e∈T

γe = ω∗ −
∑
e∈E

λe γe < ϵ .

Combining this reparameterisation of tree weights with the trees for inference scheme we
see that we are capable of running the optimisation scheme without explicitly maintaining a
fixed set of trees. Instead we generate trees when required for inference and summarise the
tree weightings by maintaining a distribution of weights over edges.

4.5 Summary

In this chapter we discussed the use of graphical models for inference and learning, in par-
ticular we addressed the problem of large margin learning for multi-label output spaces. We
presented a new method of multi-label learning that was agnostic to output graph structure
and sought to bridge the gap between methods for parameter and structure learning. The
goal of our algorithm is to simultaneously learn the intrinsic structure of the dataset whilst
finding a large margin predictor on it. The solution was formulated as a multiple kernel
learning problem where we assigned weights to spanning trees, which were then combined
to given the overall graph structure.

To address the difficulties of inference on highly-connected graphs, we presented a Lemma
that provided conditions to ensure exact inference had been performed on the graph com-
posed of a combination of spanning trees, and that this could be performed in O (|T |Kℓ)
time. Later we presented insights on how in this inference scheme can be developed in the
future to use arbitrary trees and input dependent trees. We hope that these extensions
should allow exact inference to be guaranteed using a smaller K-best list. The multiple

124 Multi-label learning over unknown graph structures

kernel learning framework was used to find the combination of spanning trees, thus graph
structure, that maximised the margin on the training dataset. To the best of our knowl-
edge this is the first such approach that connects multiple kernel learning with structure
learning on graphical models. Furthermore, given that we were able to consider the space
of exponentially many trees, in O (E log V) time, via the maximum spanning tree algorithm
on edge potentials makes this approach particularly interesting from both a graphical model
perspective and wider multiple kernel learning approaches such as those used in [Bach, 2008]
for group lasso.

Using a number of benchmark datasets we compared the performance of our new approach
to several popular methods from the literature. In general we saw a small degree of im-
provement when using our structured learning approach, with the hamming loss variant
performing on average better than the zero-one loss approach. We put this improvement
down to the difficult obtaining a large margin on all exponentially many violators, which
made it difficult for the algorithm to find smooth solutions that generalised well. When
testing on the prediction of stock price movements, we saw the graph agnostic approach
outperformed other methods, where structure was either assumed or ignored, in terms of
both accuracy and return on the implied trading strategy. These preliminary results are
somewhat encouraging, however we still believe the best of this approach is still to come.
From a practical point of view, given that the alternating optimisation scheme uses adapta-
tions of well known algorithms, Frank-Wolfe, dynamic programming and minimum spanning
tree algorithms, one would expect it to be able to scale to much larger datasets than those
that have been tested here.

We present this work at a time where deep learning largely dominates the machine learning
research agenda, making considerable advances in fields such as image and speech recog-
nition where the deep architectures are capable of learning complex relationships between
variables. However, the cost of these architectures is a lack of transparency in the function
that has been learned. We offer an alternative learning scheme, one that can explicitly learn
relationships between output variables in an intuitive way through the combination of trees
that capture relationships. We hope that the discussions we have outlined regarding future
work will encourage researchers to pursue this line of research. This should lead to efficiency
improvements in the implementation of the algorithm, enabling its application to larger real
world graph structures where its agnostic approach may have considerable advantages to
static counterparts.

Chapter 5

Final remarks

In this thesis we presented new methods that aim to make the best use of the data that is
available. We began by considering the problem of binary classification for datasets where
there are only a small number of observations. To aid with the design of our predictor, we
incorporated the uncertainty of the empirical moments into an optimisation scheme that
minimises the worst case future misclassification rate. Intuitively we saw that as the number
of observations for a particular class increased, our confidence in the value of sampled mo-
ments grew, which allowed them to have a greater influence on the shape of the discriminant.
We likened this approach to an implicit regularisation scheme that took into consideration
the relative amount of information we have for each class.

Experimentally this new approach favoured well against popular methods, such as support
vector machines and Fisher’s discriminant, on a wide range of benchmark datasets. Further-
more we examined the performance of a number of classifiers in predicting the directional
movement of foreign exchange rates using the relationship between the current price and
past prices. For this problem, we saw that moment based approaches generally outper-
formed their support vector counterparts. We attributed this partly to the noisy market
signal and also to the ability of moment based approaches to summarise the information
rather than constructing solutions on the basis of the outliers.

We discussed several extensions to the initial hp-mpm that could be the focus of future
research. One of the most straightforward was the incorporation of the class probabilities
into the optimisation scheme. This would build upon the work done on minimum error
probability error machines [Huang et al., 2004], but should also be able to take advantage of
the methods we outlined earlier. A more challenging direction would be the design of an effi-
cient algorithm for constructing a solution using only a subset of the input variables and an
examination of the consequences on generalisation guarantees. Further work should consider
how we employee kernel-based methods, which become computationally challenging as the

126 Final remarks

number of samples increase. Our approach sought to overcome difficulties with small sample
sizes but it could also be used to penalise classes when we use a sparse selection of examples
to make kernel approximations i.e. use the approximation residuals as the regularisers.

In the second half of this thesis we presented novel methods for multi-label classification. For
this problem we have to learn a mapping between an arbitrary input variable to the labelling
of output nodes on a graph. If we know the exact relationship between these output variables
then it clearly makes the prediction problem easier; however, seldom in the real world is this
the case and we must infer structural relationships from the data that we have observed.
We presented a new approach that simultaneously learns a large margin predictor whilst
uncovering the intrinsic structure of the dataset. The alternating optimisation procedure
iterates between finding a large margin predictor for a fixed output structure and improving
the structure to increase the margin potential. The output structure was represented using
a linear combination of spanning trees, where each tree was given a weight and edge weights
were given by the superposition of the spanning trees. We showed that using a linear com-
bination of spanning trees, it was possible to obtain a margin that is at least as large as that
when using the complete output graph. We cast this as an optimisation problem in terms
of multiple kernel learning, where each spanning tree defined a kernel and our goal was to
find the optimal combination of these kernels. Despite there being exponentially many trees
to choose from, we showed that the direction of steepest descent i.e. the tree maximally
violating mkl optimality conditions, could be found using a simple implementation of the
maximum spanning tree algorithm.

The tree based representation of the output structure also allowed us to address the prob-
lem of exact inference i.e. finding the most likely output labelling for a particular input.
We presented conditions that guaranteed exact inference using our weighted combination
of spanning trees. This involved a K-best dynamic programming scheme over each of the
weighted trees, and it was used during both learning, to find update directions, and pre-
diction, to find most likely labelling. The need for exact inference wasn’t so great during
learning, especially in the early stages, since we only needed to find update directions so
the size of K could typically remain small. During prediction we systematically increased
the value of K until exact inference guarantees had been satisfied or we reached a specific
threshold but unfortunately we were unable to provide guarantees of the maximum depth one
would have to go to in order to be assured of high-probability exact inference. We discussed
several methods to improve the inference scheme, a simple one being to vary K according
to the weight of the tree so that more time is spent searching on trees that contribute most
to the overall score function of the ensemble of trees. Another approach showed that it was
possible to perform exact inference using a set of input dependent spanning trees, however

127

an additional residual penalty had to paid.

We compared the performance of this new approach to a number of multi-label learning meth-
ods, including independently trained svms and a random variant of our approach [Marchand
et al., 2014]. In general our method performed on par with these existing approaches, seeing
marginal improvements across a number datasets. However we believe that we have only
scratched the surface of the relative benefits of this approach and that this is largely due to
its current algorithmic implementation, which prevented us from trying it on larger output
graphs and datasets.

References

A Aizerman, Emmanuel M Braverman, and LI Rozoner. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and remote control,
25:821–837, 1964.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243–272, 2008.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathe-
matical society, 68(3):337–404, 1950.

Francis R Bach. Consistency of the group lasso and multiple kernel learning. Journal of
Machine Learning Research, 9(Jun):1179–1225, 2008.

Francis R Bach and Michael I Jordan. Thin junction trees. In Advances in Neural Information
Processing Systems, pages 569–576, 2001.

Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning, conic
duality, and the smo algorithm. In Proceedings of the twenty-first international conference
on Machine learning, page 6. ACM, 2004.

David Barber. Bayesian reasoning and machine learning. Cambridge University Press, 2012.

Dimitris Bertsimas and Ioana Popescu. Optimal inequalities in probability theory: A convex
optimization approach. SIAM Journal on Optimization, 15(3):780–804, 2005.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.

Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus. Data-driven robust optimization.
arXiv preprint arXiv:1401.0212, 2013.

Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of
the Royal Statistical Society. Series B (Methodological), pages 192–236, 1974.

Julian Besag. Efficiency of pseudolikelihood estimation for simple gaussian fields. Biometrika,
pages 616–618, 1977.

Wei Bian, Bo Xie, and Dacheng Tao. Corrlog: Correlated logistic models for joint prediction
of multiple labels. In International Conference on Artificial Intelligence and Statistics,
pages 109–117, 2012.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 144–152. ACM, 1992.

130 References

Joseph K Bradley and Carlos Guestrin. Learning tree conditional random fields. In Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-10), pages
127–134, 2010.

Murray Campbell, A Joseph Hoane, and Feng-hsiung Hsu. Deep blue. Artificial intelligence,
134(1-2):57–83, 2002.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge uni-
versity press, 2006.

C Chow and C Liu. Approximating discrete probability distributions with dependence trees.
IEEE transactions on Information Theory, 14(3):462–467, 1968.

Michael Collins. Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the ACL-02 conference on
Empirical methods in natural language processing-Volume 10, pages 1–8. Association for
Computational Linguistics, 2002.

Gregory F Cooper. The computational complexity of probabilistic inference using bayesian
belief networks. Artificial intelligence, 42(2-3):393–405, 1990.

Corinna Cortes and Vladimir N Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995.

Simon Cousins and John Shawe-Taylor. High-probability minimax probability machines.
Machine Learning, 106(6):863–886, 2017.

Simon Cousins, John Shawe-Taylor, Mario Marchand, Juho Rousu, and Hongyu Su. Multiple
kernel learning for prediction on unknown graph structures.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the royal statistical society. Series B
(methodological), pages 1–38, 1977.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

Petros Drineas and Michael Mahoney. On the nyström method for approximating a gram
matrix for improved kernel-based learning. Journal of Machine Learning Research, 6(Dec):
2153–2175, 2005.

Harris Drucker, Chris Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik. Support
vector regression machines. Advances in neural information processing systems, pages
155–161, 1997.

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley &
Sons, 2012.

David A Ferrucci. Introduction to “this is watson”. IBM Journal of Research and Develop-
ment, 56(3.4):1–1, 2012.

Thomas Finley and Thorsten Joachims. Training structural svms when exact inference is
intractable. In Proceedings of the 25th international conference on Machine learning, pages
304–311. ACM, 2008.

References 131

R.A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Human
Genetics, 7(2):179–188, 1936.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1.
Springer Series in Statistics, 2001.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and machine in-
telligence, (6):721–741, 1984.

Dorothy M Greig, Bruce T Porteous, and Allan H Seheult. Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society. Series B (Method-
ological), pages 271–279, 1989.

Johan Hammersley and Peter Clifford. Markov fields on finite graphs and lattices. 1971.

W Keith Hastings. Monte carlo sampling methods using markov chains and their applica-
tions. Biometrika, 57(1):97–109, 1970.

David Heckerman. A tutorial on learning with bayesian networks. In Learning in graphical
models, pages 301–354. Springer, 1998.

Mark Herbster and Manfred K Warmuth. Tracking the best expert. Machine Learning, 32
(2):151–178, 1998.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence.
Neural computation, 14(8):1771–1800, 2002.

Gao Huang, Shiji Song, Zhixiang Eddie Xu, and Kilian Weinberger. Transductive minimax
probability machine. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 579–594. Springer, 2014.

Gao Huang, Jianwen Zhang, Shiji Song, and Zheng Chen. Maximin separation probability
clustering. In AAAI, pages 2680–2686, 2015.

Kaizhu Huang, Haiqin Yang, Irwin King, Michael R Lyu, and Laiwan Chan. The minimum
error minimax probability machine. The Journal of Machine Learning Research, 5:1253–
1286, 2004.

Kaizhu Huang, Haiqin Yang, Irwin King, and Michael R Lyu. Imbalanced learning with a
biased minimax probability machine. Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 36(4):913–923, 2006.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of
structural svms. Machine Learning, 77(1):27–59, 2009.

Marius Kloft, Ulf Brefeld, Sören Sonnenburg, and Alexander Zien. Lp-norm multiple kernel
learning. Journal of Machine Learning Research, 12(Mar):953–997, 2011.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
2009.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher. Block-coordinate
frank-wolfe optimization for structural svms. pages 53–61, 2013.

132 References

John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. 2001.

G.R.G. Lanckriet, L.E. Ghaoui, C. Bhattacharyya, and M.I. Jordan. A robust minimax
approach to classification. The Journal of Machine Learning Research, 3:555–582, 2003.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of the Royal Statis-
tical Society. Series B (Methodological), pages 157–224, 1988.

Su-In Lee, Varun Ganapathi, and Daphne Koller. Efficient structure learning of markov
networks using l_1-regularization. In Advances in neural Information processing systems,
pages 817–824, 2006.

Mario Marchand and John Shawe-Taylor. The set covering machine. Journal of Machine
Learning Research, 3(Dec):723–746, 2002.

Mario Marchand, Su Hongyu, Emilie Morvant, Johu Rousu, and John Shawe-Taylor. Mul-
tilabel structured output learning with random spanning trees of max-margin markov
networks. In Proceedings of Neural Information Processing Systems (NIPS), 2014.

A.W. Marshall and I. Olkin. Multivariate chebyshev inequalities. The Annals of Mathemat-
ical Statistics, 31(4):1001–1014, 1960.

Marina Meila and Michael I Jordan. Learning with mixtures of trees. Journal of Machine
Learning Research, 1(Oct):1–48, 2000.

Ofer Meshi, Elad Eban, Gal Elidan, and Amir Globerson. Learning max-margin tree pre-
dictors. In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial In-
telligence, UAI 2013, Bellevue, WA, USA, August 11-15, 2013, 2013.

Sebastian Mika. Kernel fisher discriminants. PhD thesis, Universitätsbibliothek, 2002.

Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard Scholkopf, and KR Mullers. Fisher
discriminant analysis with kernels. In Neural Networks for Signal Processing IX, 1999.
Proceedings of the 1999 IEEE Signal Processing Society Workshop. IEEE, 1999.

Sebastian Mika, Gunnar Rätsch, and Klaus-Robert Müller. A mathematical programming
approach to the kernel fisher algorithm. Advances in Neural Information Processing Sys-
tems, 2001a.

Sebastian Mika, Alexander Smola, and Bernhard Schölkopf. An improved training algorithm
for kernel fisher discriminants. In proceedings AISTATS 2001, pages 98–104, 2001b.

Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex Smola, and Klaus-
Robert Müller. Constructing descriptive and discriminative nonlinear features: Rayleigh
coefficients in kernel feature spaces. 2003. doi: 10.1.1.10.2471.

Marvin Minsky and Seymour Papert. Perceptrons. MIT press, 1988.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

Sebastian Nowozin and Christoph H Lampert. Structured learning and prediction in com-
puter vision. Foundations and Trends® in Computer Graphics and Vision, 6(3–4):185–365,
2011.

References 133

Margarita Osadchy, Tamir Hazan, and Daniel Keren. K-hyperplane hinge-minimax classifier.
In Proceedings of the 32nd International Conference on Machine Learning (ICML-15),
pages 1558–1566, 2015.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Morgan Kaufmann, 1986.

Patrick Pletscher, Cheng Soon Ong, and Joachim M Buhmann. Spanning tree approxima-
tions for conditional random fields. In AISTATS, pages 408–415, 2009.

Alain Rakotomamonjy, Francis Bach, Stéphane Canu, Yves Grandvalet, et al. SimpleMKL.
Journal of Machine Learning Research, 9:2491–2521, 2008.

Pradeep Ravikumar and John Lafferty. Quadratic programming relaxations for metric la-
beling and markov random field map estimation. In Proceedings of the 23rd international
conference on Machine learning, pages 737–744. ACM, 2006.

Stefan Riezler and Alexander Vasserman. Incremental feature selection and l1 regularization
for relaxed maximum-entropy modeling. In EMNLP, pages 174–181. Citeseer, 2004.

Neil Robertson and Paul Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

Frank Rosenblatt. The perceptron: A probabilistic model for information storage and orga-
nization in the brain. Psychological review, 65(6):386, 1958.

Juho Rousu, Craig Saunders, Sandor Szedmak, and John Shawe-Taylor. Efficient algorithms
for max-margin structured classification. 2007.

Arthur Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of research and development, 3(3):210–229, 1959.

Mark W Schmidt, Kevin P Murphy, Glenn Fung, and Rómer Rosales. Structure learning in
random fields for heart motion abnormality detection. In CVPR, volume 1, page 2, 2008.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. Estimating the support of a high-dimensional distribution. Neural com-
putation, pages 1443–1471, 2001.

Nicol Schraudolph and Dmitry Kamenetsky. Efficient exact inference in planar ising models.
In Advances in Neural Information Processing Systems, pages 1417–1424, 2009.

John Shawe-Taylor and Nello Cristianini. Estimating the moments of a random vector with
applications. In Proceedings of GRETSI 2003 Conference, 2003.

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

Solomon Eyal Shimony. Finding maps for belief networks is np-hard. Artificial Intelligence,
68(2):399–410, 1994.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of Go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016.

134 References

Marina Sokolova, Mario Marchand, Nathalie Japkowicz, and John Shawe-Taylor. The deci-
sion list machine. In Advances in Neural Information Processing Systems, pages 921–928,
2002.

Nathan Srebro. Maximum likelihood bounded tree-width markov networks. In Proceedings of
the Seventeenth conference on Uncertainty in artificial intelligence, pages 504–511. Morgan
Kaufmann Publishers Inc., 2001.

Thomas Strohmann, Andrei Belitski, Gregory Grudic, and Dennis DeCoste. Sparse greedy
minimax probability machine classification. Advances in Neural Information Processing
Systems, 16, 2004.

Hongyu Su and Juho Rousu. Multilabel classification through random graph ensembles. In
Asian Conference on Machine Learning, pages 404–418, 2013.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. Advances
in neural information processing systems, 16:25, 2004.

Yee Whye Teh, Max Welling, Simon Osindero, and Geoffrey E Hinton. Energy-based models
for sparse overcomplete representations. Journal of Machine Learning Research, 4(Dec):
1235–1260, 2003.

Gerald Tesauro. Temporal difference learning and TD-gammon. Communications of the
ACM, 38(3):58–68, 1995.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In Proceedings
of the twenty-first international conference on Machine learning, page 104. ACM, 2004.

Vladimir N Vapnik. Statistical learning theory, volume 2. Wiley New York, 1998.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequen-
cies of events to their probabilities. Rep. Academy Sci. USSR, 1968.

Vladimir N Vapnik and A Ya Chervonenkis. Theory of Pattern Recognition [in Russian].
Nauka, 1974.

Vladimir N Vapnik and A Ya Chervonenkis. The necessary and sufficient conditions for
consistency of the method of empirical risk minimization. Pattern Recognition and Image
Analysis 1, pages 284–305, 1991.

Grace Wahba. Spline models for observational data. SIAM, 1990.

Martin J Wainwright, Tommi Jaakkola, and Alan S Willsky. Tree-based reparameterization
for approximate inference on loopy graphs. In Advances in neural information processing
systems, pages 1001–1008, 2001.

Martin J Wainwright, Tommi S Jaakkola, and Alan S Willsky. Map estimation via agreement
on trees: message-passing and linear programming. IEEE transactions on information
theory, 51(11):3697–3717, 2005.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

References 135

Chris Williams and Matthias Seeger. Using the nystroem method to speed up kernel ma-
chines. Advances in Neural Information Processing Systems 13, 2001.

Ronald J. Williams and Geoffrey E. Hinton. Learning representations by back-propagating
errors. Nature, 323(6088):533–538, 1986.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

Jonathan S Yedidia, William T Freeman, and Yair Weiss. Constructing free-energy approxi-
mations and generalized belief propagation algorithms. IEEE Transactions on Information
Theory, 51(7):2282–2312, 2005.

Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of opti-
mization methods and software for large-scale l1-regularized linear classification. Journal
of Machine Learning Research, 11(Nov):3183–3234, 2010.

Tong Zhang. Statistical behavior and consistency of classification methods based on convex
risk minimization. Annals of Statistics, pages 56–85, 2004.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 History
	1.2 Thesis organisation

	2 Machine Learning
	2.1 Learning framework
	2.2 From theory to practice: the support vector machine
	2.3 Kernel methods
	2.4 Summary

	3 Linear discriminants: moments, uncertainty and applications
	3.1 Fisher's discriminant analysis
	3.2 Minimax probability machine (MPM)
	3.3 High-probability minimax probability machine (HP-MPM)
	3.4 Experiments
	3.5 Conclusions and future work

	4 Multi-label learning over unknown graph structures
	4.1 Graphical models
	4.2 Inference over graphs
	4.3 Learning over graphs
	4.4 Large margin multi-label learning on graphs
	4.5 Summary

	5 Final remarks
	References

