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Abstract

This work addresses the optimal management of a system through a two-stage

stochastic Non-Linear Programming (NLP) formulation. This approach uses a scenario-based

mathematical formulation to tackle uncertain information. Accurate representation of

uncertainty usually involves increased number of scenarios, which may result in large-scale

optimisation models. Thus, the proposed formulation aims to reduce the number of scenarios

through a sensitivity analysis approach. The proposed model investigates the use of scenario

reduction techniques to reduce computational requirements while maintaining good quality of

the final optimal solution.
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1. Introduction

Generally, processes are dynamic, and therefore, different kinds of unexpected events

may occur quite frequently. These disturbances may modify the operating conditions, such as

the nominal schedule of a production plant or the planning requirements of a supply chain. The

incorporation of uncertainty can be critical to ensure the generation of feasible solutions of

good quality and practical interest in the decision making.

Thus, some approaches are based on the consideration of a finite number of scenarios

representing the uncertainty distribution by discretising the probability of those scenarios, such

as the stochastic programming. In this kind of formulation, the obtained solution is generated by

satisfying all the considered scenarios. This is an advantage of this formulation since the results

are feasible for all the selected scenarios. On the other hand, the obtained solutions may result

in being too conservative, because the model must consider all the possibilities. This technique

has been used to consider different sources of uncertainty, such as uncertainty in demand,

supply of raw materials and processing times (Shapiro et al., 2013), and applied to supply chain

management (Schildbach and Morari, 2016) and energy systems (Silvente et al., 2018), among

other examples.

Note that the size of the mathematical formulation increases when large number of

scenarios are considered. This may result in intractable problems due to the limitation of the

computational resources or in large computational times to reach a solution. Hence, an

approximation to reduce the large number of scenarios is to find a subset of scenarios that

represents the original uncertainty distribution. Thus, scenario reduction techniques are based
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on selecting representative scenarios and re-assign new probabilities to those scenarios that

better represents the original large number of scenarios, in order to reduce the computational

effort while maintaining the quality of the solutions as much as possible.

Despite the importance of this topic, it has received limited attention in the literature.

Note that scenario reduction techniques can be applied to different areas of interest, such as

supply chains (Paulo et al., 2017), electrical markets (Dupačová et al., 2003) hydro-thermal

power systems (de Oliveira et al., 2010) and maintenance of units (Qian and Tang, 2017).

In the area of scenario reduction, different heuristic algorithms have been developed.

For example, Dupačová et al. (2003) developed a forward reduction and backward selection

methodology to decrease the size of the scenario tree. This avoids solving the combinational

optimisation problem. Posteriorly, Heitsch and Römisch (2003) extended both forward and

backward methodologies in order to improve the scenario reduction performance. Also, Heitsch

and Römisch (2007) improved the previous scenario reduction procedures by considering

Fortet-Mourier metrics as an alternative of their upper bounds. This work was extended by

relying some on stability performance (Heitsch and Römisch, 2009).

One of the scenario reduction methods is the transportation distance-based scenario

reduction, which aims at minimising the probabilistic distance between the original and the

reduced selected input scenario distribution (Karuppiah et al., 2010). Moreover, Li and Floudas

(2014) developed a Mixed Integer Linear Programming (MILP) for reducing the number of

scenarios, by minimising the transportation distance in order to obtain a selected number of

scenarios that represents the original scenarios. This methodology also takes into account not

only the input performance but also the output performance. The methodology developed by Li

and Floudas (2014) is limited by the dimensions of the problem. This method can be applied

only to reasonably small formulations, approximately up to 5,000 scenarios. More recently, Li

and Floudas (2016) proposed a Linear Programming (LP) scenario reduction method, to tackle

the reduction from a very large net of scenarios, where the transportation distance between the

original scenario and the reduced scenario subset constitutes the measure to update the

scenario selection. Moreover, Li and Li (2016) proposed a linear programming-based scenario

reduction, applied to chance constrained optimisation problems. Also, Kovacevic and Pichler

(2015) developed a scenario tree reduction technique for linear discrete time formulations for

stochastic problems, reducing the difference between an original scenario tree and a reduced

one.

Other works are based on clustering techniques for scenario tree reduction. For

example, Latorre et al. (2007) proposed a formulation considering two phases. In the first

phase, the number of scenarios was reduced. In the second phase, clustering was performed to

reach the desirable number of scenarios, by considering the most representative ones.

Posteriorly, Beraldi and Bruni (2014) presented a clustering approach addressing the scenario

tree reduction for multi-stage stochastic formulations. More recently, Chen and Yan (2018)

presented a scenario tree reduction formulation throughout clustering tree nodes considering

different time periods. The main idea is to cluster nodes with the same parent node into a

smaller number of nodes. The proposed algorithm aims at minimising the distance between the

initial scenario tree and the reduced tree.

Furthermore, a tool addressing the scenario reduction in stochastic formulations is also

available in GAMS. This tool is known as SCENRED (GAMS/SCENRED Documentation), which

was extended to SCENRED2 (GAMS/SCENRED2 Documentation). The aim of these algorithms is
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to provide a reduced scenario subset and to designate new probabilities to the conserved

scenarios that comprise the new reduced scenario tree. The reduction algorithm considers a

probability distance of the initial and the reduced probability metric, taking into account both

scenario probabilities and distances of scenario values. Therefore, removal takes place if

scenarios are in neighboured or have minor probabilities. The SCENRED tool was recently

applied by Silvente et al. (2017) to optimally manage a microgrid, in order to reduce the

uncertainty in the heat demand over different time periods.

This work is focused on the reduction of scenarios by evaluating the sensitivity of the

uncertainty. While the earlier described works take into account the difference between the

original and the new reduced scenario tree, the novel proposed methodology takes into account

the outcomes of the model by considering the sensitivity of the uncertainty. This novel approach

can be applied to linear and non-linear models. However, this methodology is tested in non-

linear formulations, since authors consider that the reduction of scenarios in linear models has

received adequate attention, but not the non-linear models. The proposed formulation is limited

to a single uncertain parameter. Multiple sources of uncertainty may require further research.

The aim of this methodology is to exploit the new scenario reduction technique through

a sensitivity approach to reduce the size of the original scenario tree, in order to obtain a good

and practical solution while reducing the computational effort to reach the optimal solution. The

methodology is presented through two illustrative Non-Linear Programming (NLP)-based

examples, in order to analyse how the optimal solution is affected by the reduction of scenarios

and how the computational time decreases. The novel proposed methodology, is going to be

referred as RedOpt, denoting optimising by reducing nodes.

This novel methodology proposes to remove nodes according to the analysis and

evaluation of the sensitivity associated with the problem under study. Accordingly, nodes with

small sensitivity are removed, while nodes with bigger sensitivity are conserved in the scenario

tree. This iterative procedure has been applied to remove nodes sequentially with low

sensitivity, reducing the full scenario tree. In our proposed examples (see section 3), the original

problem is reduced, for example, considering only the first time periods. Then, this problem is

extended by introducing more nodes (i.e., nodes corresponding to the following time periods)

once some previous nodes have been removed after analysis their sensitivity. Note that the

candidate nodes to be removed are those with low sensitivity. So, the sensitivity of the children

nodes will also be low. By removing these nodes with low sensitivity, the computational time to

perform this analysis is reduced compared with other analysis considering the full stochastic

formulation.

This paper is organised as follows. Section 1 has described the main recent advances in

the area of scenario reduction. The algorithm to reduce the scenarios by applying the RedOpt

approach based on a sensitivity analysis is described in Section 2. Multiple scenarios and the

scenario reduction procedure are considered. Thus, a two-stage stochastic NLP formulation is

proposed. The effectiveness of the scenario reduction is evaluated through two examples in

Section 3. The obtained results are displayed and discussed in Section 4. Finally, concluding

remarks are presented in Section 5.
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2. RedOpt: Sensitivity analysis approach

Sensitivity methods play a significant role in uncertainty analysis, and therefore, in the

decision making, including linear problems (Gal, 1975) and non-linear problems (Fiacco, 1990).

Local sensitivity analysis is focused on the study related to how variations in the output of a

model can be apportioned and how the given model depends upon the input information. Thus,

marginal values associated with a variable can be defined as the variation in the value of an

objective function if the aforementioned variable changes its value by one unit. Mathematically,

the marginal value can be defined as follows, where ܼ denotes the objective function, and ߠ the

uncertainty.

ܯ ݎܽ݃ ݅݊ ݈ܽ �ܸ ݈ܽ ൌ݁ݑ
ܼ݀

ߠ݀

The study of the sensitivity of the model allows creating local maps, used to obtain the

objective function as a function of uncertain parameters, considering the local response of the

system to variations in the inputs, as well as to reduce the number of scenarios to be considered,

while maintaining the quality of the solution and reducing the computational effort.

Consider ߠ as an uncertain parameter of the mathematical formulation. Thus, a general

parametric NLP minimisation (or maximisation) problem can be defined as follows (Dua and

Pistikopoulos, 1998; Pistikopoulos et al., 2012):

(ߠ)ܼ = min
௫

(ߠ,ݔ݂)

݆ܾݑݏ ݁ܿ ݋ݐݐ
ℎ(ݔǡߠ) = 0
�݃ (ߠǡݔ) ≤ 0
∋ݔ ℜ௡

ߠ ∈ ℜ௠

(1)

According to this general formulation, ߠ is a vector of parameters and ݔ is a vector of the

decision variables belonging to convex sets ߆ and ܺ respectively, and ,(ߠǡݔ݂) (ߠǡݔ)݃ and ℎ(ݔǡߠ)

denote nonlinear functions. Although this general formulation, our study is going to be focused

only on a single uncertain parameter.

In addition, the uncertain parameters may be discretised into a finite number of

scenarios, thus resulting in a multi-stochastic parametric formulation. A general two-stage

stochastic parametric NLP minimisation can be defined as shown in expression (2) (Karuppiah

et al., 2010).

(ߠ)ܼ = min
௫
൥݂ ଴(݀) + ෍ ௦݌ ௦݂(ݔ௦,ߠ௦)

௦

൩

݆ܾݑݏ ݁ܿ ݋ݐ�ݐ
ℎ௦(݀ǡݔ௦ǡߠ௦) = 0
�݃ ௦(݀ǡݔ௦ǡߠ௦) ≤ 0

݀ א ܦ
∋ݔ ܺ ⊆ ℜ௡

ߠ ∈ ߆ ⊆ ℜ௠

(2)



5

Note that ߠ is a vector of parameters and ݔ is a vector of the decision variables belonging

to convex sets ߆ and ܺ respectively, and ݂଴(݀), ௦݂(ݔ௦,ߠ௦), ௦݃( (௦ߠ,௦ݔ݀, and ℎݏ( (ݏߠ,ݏݔ݀, denote

nonlinear functions. Notice that )ݏ݃ (ݏߠ,ݏݔ݀, and ℎݏ( (ݏߠ,ݏݔ݀, include both first and second stage

constraints. Also, ∋ݏ ܵ denotes a single scenario in the stochastic formulation. Furthermore, ݀

represents the set of the first stage decision variables and ݏݔ the second stage variables. Also, ௦݌
indicates the probability associated with scenario ∋ݏ .ܵ

Notice that equation (1) represents a general parametric optimisation formulation,

depending on andݔ .ߠ On the other hand, equation (2) denotes a two-stage parametric problem.

So, in other words, equation (2) extends the equation presented in (1) by using a stochastic

approach including multiple scenarios. Also, notice that as a difference of equation (2), there is

no ݀ in equation (1), since it is a single-stage formulation. While (ߠ,ݔ݂) is used in equation (1),

݂଴(݀) is used in equation (2), where ݀ denotes the first-stage decisions, and ௦݂(ݔ௦,ߠ௦) contains

only second stage constraints.

The simultaneous consideration of all uncertain sources defines the scenario tree. As

illustrative example, Figure 1 shows the scenario tree associated with one source of uncertainty

that affects different periods of time, considering three uncertain levels.

Figure 1. Generic scenario tree representation.

This generic scenario tree is built considering three levels for the uncertain parameter.

In this figure, three time intervals are taken into account. The information in the first time

interval is considered as certain. This corresponds to the root of the scenario tree. This node ݊ ∈

ܰ is the parent of nodes ݊݌ ߳ܰ in the second time interval. These nodes are known as children

nodes. Nodes corresponding to last time interval are known as leaves. Note that different levels

and different time intervals can be considered.

Thus, each node is assigned to each time period, defining the subset ݊߳ܶ ܰ௧, denoting the

nodes that are active at each time interval. Figure 1 may help to explain this subset. For

example, the node ݊0 is active only at time ;1ݐ nodes ݊1, ݊2 and ݊3 are active only at time ;2ݐ

and nodes ݊4 to ݊12 are active only at time .3ݐ
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Scenario 9
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n7
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Also, the corresponding scenario tree ݎ݁ݐ ௡݁,௣௡ is defined, where ݊ denotes a child node

and ݊݌ denotes a parent node. The different uncertain levels ܮ݈߳ define the uncertain level.

Thus, a set node ݈߳ ܮܰ ௡ is considered to assign each uncertain level t݈o each node .݊ Once again,

Figure 1 helps to a better description of this subset. In this figure, three uncertain levels have

been considered. In particular, low, medium and high values of the uncertain parameter have

been taken into account. This corresponds to 1݈, 2݈ and 3݈, respectively. So, in Figure 1, nodes

݊1, ݊4, ݊7 and ݊10 have associated low value in the uncertain parameter. Thus, nodes ݊1, ݊4, ݊7

and ݊10 are active only for the uncertain level 1݈. In the same way, nodes ݊2, ݊5, ݊8 and ݊11 are

active only for the uncertain level 2݈, and nodes ݊3, ݊6, ݊9 and ݊12 are active only for the

uncertain level 3݈.

Therefore, the number of nodes and scenarios (i.e., leaf nodes) grows exponentially

when more time periods are considered. Table 1 displays the number of nodes and scenarios for

different time periods when the same structure as shown in Figure 1 is considered:

Table 1. Number of nodes and scenarios for different time periods, for one uncertain parameter with three levels of
uncertainty

Number of time intervals Number of nodes Number of scenarios
1 1 1
2 4 3
3 13 9
4 40 27
5 121 81
6 364 243
7 1,093 729
8 3,280 2,187
9 9,841 6,561

10 29,524 19,683
11 88,573 59,049
12 265,720 177,147
13 797,161 531,441
14 2,391,484 1,594,323

The following expressions aim to determine the probability of each node at each time

period. This considers the probability at each uncertain level, time period and the parent nodes.

So, each uncertain level ݈at each time interval hasݐ associated a probability ܾ݋ݎ݌ .௟,௧ܮ Thus,

equation (3) determines the probability of a node without considering the probability of

previous nodes in the scenario tree, ݀݌ݐݏ ௡,௧atݐܽ each time ݐ߳ ܪܶ . The probability ܾ݋ݎ݌ ௡,௧of node

݊ at time ݐ is given by the probability in the previous nodes, as calculated in equation (4).

Furthermore, equation (5) is used to introduce the uncertain parameter .௡,௧ߠ Particularly, the

variation of a nominal parameter ܸ ௟,௧ݎܽ at each uncertain level ݈at each time isݐ assigned to each

node ݊ at each time .ݐ This term will be used to affect the value of a deterministic parameter.

Further information can be found in the Examples section. For instance, in equation (6), the

demand ݉݁ܦ ௧ is affected by the variability .௡,௧ߠ

݀݌ݐݏ ௡,௧ݐܽ = ܾ݋ݎ݌ ௟,௧ܮ ݐ߳∀ ܪܶ ,݊߳ܰ ,݊߳ܶ ܰ௧, ݊݌ ߳ܶ ܰ௧ି ଵ,݊ ݎ݁ݐ߳ ௡݁,௣௡, ,ܮ݈߳ ݈߳ ܮܰ ௡ (3)

ܾ݋ݎ݌ ௡,௧ = ݀݌ݐݏ ௡,௧ݐܽ ∙ ܾ݋ݎ݌ ௣௡,௧ି ଵ ݐ߳∀ ܪܶ <ݐ, 1,݊߳ܶ ܰ௧, ݊݌ ߳ܶ ܰ௧ି ଵ,݊ ݎ݁ݐ߳ ௡݁,௣௡ (4)
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௡,௧ߠ = ܸ ݎ݈ܽ ݐ, ݐ߳∀ ܪܶ ,݊߳ܰ ,݊߳ܶ ܰ௧, ݊݌ ߳ܶ ܰ௣௡,௧ି ଵ,݊ ݎ݁ݐ߳ ௡݁,௣௡, ,ܮ݈߳ ݈߳ ܮܰ ௡ (5)

After reducing the original scenario tree, the probabilities will change. The probabilities

in the new scenario tree are defined by ܾ݋ݎ݌ݏ ௡,௧. Initially, the values of ܾ݋ݎ݌ ௡,௧and ܾ݋ݎ݌ݏ ௡,௧are

equivalent.

2.1. Strategies for the removal of nodes

There are different strategies for the removal of nodes. In the next figure, we assume

that the root plus the first time interval has been solved (nodes ݊0, ݊1, ݊2 and ݊3). After the

evaluation of the sensitivity analysis, let us assume that the lower sensitivity corresponds to

node ݊1. Figure 2 highlights (blue dotted line) node ݊1 and children nodes of ݊1 (݊4, ݊5, ݊6).

Figure 2. Scenario tree representation, where node 1݊ has less sensitivity.

One strategy is to remove the node with lower sensitivity, as well as the children nodes

associated with this parent node. In our case, this corresponds to remove the parent node ݊1

and his children ݊4, ݊5 and ݊6. The probability to nodes ݊2 and ݊3 have to be re-assigned. The

total number of scenarios is reduced from 9 to 6. Figure 3 details the new scenario tree. Re-

assignment of probabilities is required, due to this removal. Following the example given by

Figure 3, if node ݊1 is removed, then nodes ݊2 and ݊3 are conserved in the scenario tree. As a

result, the re-assigned probability of node ݊2 corresponds to the original probability for node

݊2 divided by the summation of the original probabilities of nodes ݊2 and ݊3, which are the

conserved nodes. The same procedure is applied for node ݊3.

n0 n2

n1 n5

n4

n6

n8

n7

n9

n3 n11

n10

n12

Leaves
t1 t2 t3

Root
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Figure 3. Scenario tree representation when node 1݊ is removed.

The same figure is obtained if the behaviour of nodes ݊1 and ݊2 is the same. This is

given if both are in the same critical region (i.e., both nodes have the same sensitivity). Then, the

probabilities of ݊1 are aggregated to node ݊2. Since this point, n1 is removed, and only n2 is

taken into account, aggregating the probability of ݊1 to ݊2. This strategy is called nodes

aggregation. Note that the probability of the removed node is added to the conserved node with

the same behaviour. Considering again the figure 3 of the manuscript, node ݊1 is removed and

node ݊2 has the same behaviour than node n1 (i.e., same sensitivity). Thus, the new probability

of node ݊2 will be the summation of the original probabilities of nodes ݊1 and ݊2. The

probability of node ݊3 is not affected.

Another strategy is to consider all nodes (݊1, ݊2 and ݊3), without removing nodes at

this point. However, no branching is considered from the node with lower sensitivity, ݊1,

applying the cluster strategy. This is useful when a node has a low probability, but we want to

keep this solution because the value of the solution may be highly affected. Re-assignment of

probabilities is not required since there is no removal from parent nodes. For example, this

situation describes a node with a remote probability but with high impact in the objective

function. Figure 4 details the new scenario tree, in which ݊1, ݊2 and ݊3 have been conserved.

However, no branching was considered after node ݊1 in its branch. In other words, only the

intermediate solutions were considered after this node, so nodes ݊4 and ݊6 were removed,

conserving only node ݊5. Notice that for this strategy no re-assignment is required. Considering

figure 4, the probability of nodes ݊1, ݊2 and ݊3 are not modified. However, the probability of

children nodes of node ݊1 (the node in which the cluster strategy is applied) is the same than

the probability of the parent node. For example, the probability of node ݊5 will be the same than

the probability for ݊1.

n0 n2 n8

n7

n9

n3 n11

n10

n12

Leaves
t1 t2 t3

Root
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Figure 4. Scenario tree representation when clustering to node ͳ݊ is applied.

2.2. Metrics for the removal of nodes

Different metrics can be applied as criteria for the removal of nodes. One is the relative

difference between the sensitivity of one node in comparison with other nodes. This is given by

the division of the sensitivity of a node ௡ǡ௧ܯߠ and the sensitivity of other nodes ܯߠ ௡ᇲǡ௧.

According to equation (6), if the value of this division is lower than a pre-established number

ܯ ܯߠݔܽ , the rejection can take place, and not otherwise. This ratio should be calculated with

absolute value, to consider uncertainty that both increases and decreases the value of the

objective function.

ቤ
௡,௧ܯߠ

ܯߠ ௡ᇲ,௧
ቤ< ܯ ܯߠݔܽ ݐ߳∀ ܪܶ ,݊߳ܰ ,݊ᇱ߳ܰ ,݊߳ܶ ܰ௧,݊ᇱ߳ܶ ܰ௧,݊ᇱ≠ ݊ (6)

Notice that the value of the marginal value takes into account the probability associated

with each node. So, we have also to evaluate the value of the marginal value without considering

the probability. Then, ߠ ௡ܲǡ௧ parameter is defined in equation (7). A second criterion is the

relative difference between the sensitivity of one node in comparison with other nodes, without

considering the probability. This is given by the division of the sensitivity of a node ߠ ௡ܲǡ௧ and

the sensitivity of other nodes ,௡ᇲǡ௧ܲߠ non-taking into account the probability. According to

equation (8), if the value of this division is lower than a pre-established number ܯ ,ܲߠݔܽ the

rejection can take place, and not otherwise.

ߠ ௡ܲ,௧ =
௡,௧ܯߠ

ܾ݋ݎ݌ ௡,௧
ݐ߳∀ ܪܶ ,݊߳ܰ ,݊߳ܶ ܰ௧ (7)

ቤ
ߠ ௡ܲ,௧

௡ᇲ,௧ܲߠ
ቤ< ܯ ܲߠݔܽ ݐ߳∀ ܪܶ ,݊߳ܰ ,݊ᇱ߳ܰ ,݊߳ܶ ܰ௧,݊ᇱ߳ܶ ܰ௧,݊ᇱ≠ ݊ (8)

n0 n2

n1 n5

n8

n7

n9

n3 n11

n10

n12

Leaves
t1 t2 t3

Root
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It is worthy to mention that ܯ ܯߠݔܽ and ܯ ܲߠݔܽ are used to determine the conserved

nodes and the nodes to be removed as well. The number of conserved scenarios depends on the

pre-established ܯ ܯߠݔܽ and ܯ ܲߠݔܽ parameters, which values are between 0 and 1. Zero means

that all scenarios can be removed, while if the value is 1 no removal takes place.

These two parameters ܯ) ܯߠݔܽ and ܯ (ܲߠݔܽ are initially defined by the user. Notice that

the effect of these parameters can be compared with the effect of the tolerance set by the user

when using a typical/commercial numerical solver, where higher values offer lower accuracy

but faster convergence and vice versa. In this particular case, large values of ܯ ܯߠݔܽ and

ܯ ܲߠݔܽ (i.e., close to one) involve better quality solution since less scenarios are candidates to

be removed, but this requires more computational time to reach the optimal solution. On the

other side, lower values (i.e., close to zero) imply lower effort to solve the NLP problem, because

less scenarios are conserved in the final scenario tree. In this manuscript, only pre-established

values of ܯ ܯߠݔܽ and ܯ ܲߠݔܽ have been considered, since the objective of this work aims to

present a novel formulation to reduce the number of scenarios in a non-linear formulation.

2.3. RedOpt algorithm

The iterative procedure to solve the RedOpt approach is detailed next:

1. Formulate the mathematical model, including ௡,௧ߠ as uncertain parameter. Find two

mathematical models in this manuscript, in section 3. The first model comprises equations

(9)-(15) whereas the second embraces equations (16)-(27). Define the nodes and the

scenario tree. Apply different values in each node for the uncertain parameter.

2. The mathematical model should be solved iteratively. Firstly, consider time intervals

corresponding to the root plus one time interval. Considering the scenario tree in the

previous figure, this corresponds to time periods 1ݐ and .2ݐ

3. Solve the mathematical model and evaluate the sensitivity (i.e., marginal values) of variable

.௡,௧ߠ Evaluate the sensitivity of the model:

a) If the sensitivity of one node ௡,௧ܯߠ is too low when compared with other nodes,

ฬ
ఏெ ೙,೟

ఏெ ೙ᇲ,೟

ฬ< ܯ ܯߠݔܽ :

i) Nodes removal: If the sensitivity without considering probability ߠ ௡ܲ,௧ is still low,

delete this node and the children nodes. Also, re-assignment of probabilities for

the conserved nodes is required (see Figure 3).

ii) Cluster of nodes: If the sensitivity without probability ߠ ௡ܲ,௧ is not low, this means

that this corresponds to a probable remote node. However, this node has to be

considered, because although its probability is too low, the objective function is

highly affected by this node. After this point, no branching is considered for this

node. Re-assignment of probabilities is not required since there is no removal of

nodes in the iteration (See Figure 4).

iii) However, if the sensitivity without probability for two nodes has the same value,

go to step (b-iii).

b) If the sensitivity of one node ௡,௧ܯߠ is not low when compared with other nodes, then:
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iii) Nodes aggregation: If two nodes have associated the same sensitivity without

probability, this means that these two nodes are located in the same critical

region. Thus, one of them can be removed, because both nodes have the same

behaviour. Consequently, the node with lower probability is removed. There is no

re-assignment of probabilities, but the probability of the removed nodes should be

assigned to the conserved node with the same sensitivity without probability.

iv) If the considered nodes have different values for the sensitivity without

probability, all of them should be considered. Thus, there is no removal of nodes.

4. Add another time interval to the current selection and repeat the procedure until the last

optimisation period, which corresponds to the leaf nodes. If there are no more time

intervals, stop.

Figure 5 displays a graphical algorithm for a better understanding:

Figure 5. Generic algorithm for the RedOpt approach.

3. Examples

Two motivating examples are proposed to analyse how the reduction of scenarios

affects the optimal solution. Thus, two examples of the GAMS library have been selected.

3.1. Optimal pricing and extraction for the OPEC

The first example is an NLP that tries to manage the optimal pricing and extraction for

the Organisation of the Petroleum Exporting Countries (OPEC), (Pindyck, 1978). This

deterministic problem (GAMS library, Optimal Pricing and Extraction for OPEC problem) has
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been transformed into a stochastic model, considering different scenarios. Notice that

uncertainty has been taken into account through the introduction of ,௡ǡ௧ߠ which is the variation

from the nominal conditions. In this example, this variation affects the overall demand.

Consequently, equation (9) includes this term .௡ǡ௧ߠ Further information of this mathematical

model can be found in Pindyck, (1978). Equation (9) determines the total demand .௡ǡ௧ܦܶ The

non-linear equation (10) establishes the supply of oil by non-OPEC countries, ௡ܵǡ௧. Constraint

(11) is the accounting equation to determine the cumulative supply by non-OPEC countries,

ܥ ௡ܵǡ௧. Equation (12) is used to determine the demand equation for OPEC countries, .௡ǡ௧ܦ

Constraint (13) establishes the balance equation to determine the OPEC reserves, ܴ௡ǡ௧. Equation

(14) determines the yearly objective function, which are the revenues ܴ .௡ǡ௧ݒ݁ The objective of

this problem is to maximise the profit ,ܼ given by equation (15).

Thus, the stochastic model is defined as follows in equations (9)-(15).

௡,௧ܦܶ = 0.87 ∙ ௣௡,௧ିܦܶ ଵ− 0.13 ∙ ௡ܲ,௧+ ݉݁ܦ ௧+ ௡,௧ߠ ݐ߳∀ ܪܶ ,݊߳ܵ ܰ , ݊݌ ߳ܵ ܰ ,݊߳ܶ ܰ௧, ݊݌ ߳ܶ ܰ௧ି ଵ,݊ ݎ݁ݐ߳ ௡݁,௣௡ (9)

௡ܵ,௧ = 0.75 ∙ ௣ܵ௡,௧ି ଵ + ൫1.1 + 0.1 ∙ ௡ܲ,௧൯∙ 1.02ି஼ௌ೙,೟ ଻⁄ ݐ߳∀ ܪܶ ,݊߳ܵ ܰ , ݊݌ ߳ܵ ܰ ,݊߳ܶ ܰ௧, ݊݌ ߳ܶ ܰ௧ି ଵ,݊ ݎ݁ݐ߳ ௡݁,௣௡ (10)

ܥ ௡ܵ,௧ = ܥ ௣ܵ௡,௧ି ଵ + ௡ܵ,௧ ݐ߳∀ ܪܶ ,݊߳ܵ ܰ , ݊݌ ߳ܵ ܰ ,݊߳ܶ ܰ௧, ݊݌ ߳ܶ ܰ௧ି ଵ,݊ ݎ݁ݐ߳ ௡݁,௣௡ (11)

௡,௧ܦ = −௡,௧ܦܶ ௡ܵ,௧ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧,݊߳ܵ ܰ (12)

ܴ௡,௧ = ܴ௣௡,௧ି ଵ− ௡,௧ܦ ݐ߳∀ ܪܶ ,݊߳ܵ ܰ , ݊݌ ߳ܵ ܰ ,݊߳ܶ ܰ௧, ݊݌ ߳ܶ ܰ௧ି ଵ,݊ ݎ݁ݐ߳ ௡݁,௣௡ (13)

ܴ ௡,௧ݒ݁ = ௡,௧ܦ ∙ ቆ ௡ܲ,௧−
250

ܴ௡,௧
ቇ− ௡,௧ܦ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧,݊߳ܵ ܰ (14)

ܼ = ෍ ෍ ܾ݋ݎ݌ݏ ௡,௧ ∙ ܴ ௡,௧ݒ݁ ∙ 1.05ଵି ೟்

௧
௧ఢ் ு

௡
௡ఢ் ே೟
௡ఢௌே

(15)

Next, all data used to solve this mathematical model is displayed. Table 2 shows the

deterministic demand at each time period. Uncertainty in the demand is managed by

considering three different demand levels at each time period. These three levels correspond to

low, medium and high demand levels. The probability associated with each demand level

ܾ݋ݎ݌ ௟ǡ௧ܮ and the variations from the nominal demand ܸ ௟ǡ௧ݎܽ and the demand for each demand

are displayed in Table 2.

Table 2. Data for example 1.

Time
Deterministic

demand, ݉݁ܦ ௧

1݈ = Low demand 2݈ = Medium demand 3݈ =High demand
ܾ݋ݎ݌ ௟,௧ܮ ܸ ௟,௧ݎܽ ܾ݋ݎ݌ ௟,௧ܮ ܸ ௟,௧ݎܽ ܾ݋ݎ݌ ௟,௧ܮ ܸ ௟,௧ݎܽ

1ݐ 3.300 0 100 0 0
2ݐ 3.334 11 -0.3334 45 0 44 0.3334
3ݐ 3.370 16 -0.3370 50 0 34 0.3370
4ݐ 3.405 29 -0.3405 15 0 56 0.3405
5ݐ 3.441 36 -0.3441 36 0 28 0.3441
6ݐ 3.478 43 -0.3478 19 0 38 0.3478
7ݐ 3.515 29 -0.3478 39 0 32 0.3478
8ݐ 3.553 19 -0.3515 53 0 28 0.3515
9ݐ 3.591 26 -0.3553 49 0 25 0.3553
10ݐ 3.630 30 -0.3591 39 0 31 0.3591
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11ݐ 3.669 40 -0.3630 38 0 22 0.3630
12ݐ 3.709 21 -0.3669 46 0 33 0.3669
13ݐ 3.750 37 -0.3709 28 0 35 0.3709

Furthermore, Table 3 displays the initial values for some variables, describing the initial

status of the case under study. This corresponds to the value of the variables for the first node

and the first time period.

Table 3. Initial values for example 1.

Variable Initial value
௡ୀ଴,௧ୀଵܦܶ 18.0

௡ܵୀ଴,௧ୀଵ 6.5
ܴ௡ୀ଴,௧ୀଵ 500
ܥ ௡ܵୀ଴,௧ୀଵ 0.0

The values of ܯ ܯߠݔܽ and ܯ ܲߠݔܽ have been pre-established to determine and analyse

the conserved nodes constituting the final scenario tree. The selected values are 0.9 and 0.6 for

ܯ ܯߠݔܽ and ܯ ,ܲߠݔܽ respectively. The nomenclature used to formulate this mathematical model

is shown below:

Parameter
݉݁ܦ ௧ demand at time ݐ

௧ܶ time period ݐ

Continuous and positive variables
ܥ ௡ܵ,௧ cumulative supply by non-OPEC countries in node ݊ at time ݐ
௡,௧ܦ demand for OPEC-oil in node ݊ at time ݐ

௡ܲ,௧ world price of oil in node ݊ at time ݐ

ܴ௡,௧ OPEC reserves in node ݊ at time ݐ

ܴ ௡,௧ݒ݁ revenues in node ݊ at time ݐ

௡ܵ,௧ supply of oil by non-OPEC countries in node ݊ at time ݐ
ܶ ௡݀,௧ total demand for oil in node ݊ at time ݐ

Variables
ܼ profit (objective function)

3.2. Household optimisation problem

The second example is also an NLP that tries to manage the household optimisation

(Fair, 1984). This deterministic problem (GAMS library, Household optimisation problem) has

been transformed into a stochastic model, considering different uncertain scenarios. Note that

uncertainty has been considered by implementing ,௡ǡ௧ߠ which is the variation from the nominal

conditions. In this example, this variation affects the price. Thereby, equations (21) and (25)

include this term .௡ǡ௧ߠ Further information of this mathematical model can be found in Fair,

(1984). The stochastic model is defined as follows in equations (16)-(27). Constraint (16) is

applied to determine the utility function factor, ܷ݂ܽ .௧ݐܿ Equation (17) delimits the maximum

value of the labour supplied for node ݊ at time ,ݐ .௡ǡ௧ܨ The non-linear equation (18) determines

the utility at each period, ܷ௡ǡ௧. Constraints (19) and (20) calculate the incomes before and after
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taxes, ௡ܻǡ௧ and ܶ ,௡ǡ௧ݔܽ respectively. Equation (21) and (22) constitutes savings and the budget

constraint, respectively. The non-linear equation (23) is used to determine the time spent on

money holdings, .௡ǡ௧ܤ Constraint (24) constitutes the terminal condition for assets, .௡ǡ௧ܣ

Equations (25) and (26) are the domain constraints on time money and utility, respectively. The

objective is to maximise objective ,ܼ given by equation (27).

ܷ݂ܽ ௧ݐܿ = l ೟்ି ଵ ݐ߳∀ ܪܶ (16)

≥௡,௧ܨ ௧ܨ
௠ ௔௫ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧ (17)

ܷ௡,௧ = ቀߙ ∙ ௡,௧ܥ
ିఉ + (1 − (ߙ ∙ ൫ܶ ܪ − −௡,௧ܨ ௡,௧൯ܤ

ିఉ
ቁ

ି଴.଴ଵ
ఉ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧ (18)

௡ܻ,௧ = ߱ ∙ +௡,௧ܨ ߩ ∙ ௡,௧ܣ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧ (19)

ܶ ௡,௧ݔܽ = ߜ ∙ ௡ܻ,௧ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧ (20)

௡ܵ,௧ = ௡ܻ,௧− ܶ −௡,௧ݔܽ ൫ܲ ݎ݅ ܿ݁ ௧+ ∙௡,௧൯ߠ ௡,௧ܥ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧ (21)

௡ܵ,௧ = −௡,௧ܣ ௣௡,௧ିܣ ଵ + −௡,௧ܯ ௣௡,௧ିܯ ଵ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧,݊ ݎ݁ݐ߳ ௡݁,௣௡, ݊݌ ߳ܶ ܰ௧ି ଵ (22)

௡,௧ܤ ∙ ൫ܯ௡,௧− ଵߛ ∙ ܲ݃ ∙ =௡,௧൯ܥ ଶߛ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧ (23)

+௡,௧ܣ ௡,௧ܯ = ܯܣ ݐ߳∀ ܪܶ =ݐ, ,ܶ݊߳ܶ ܰ௧ (24)

1.01 ∙ ଵߛ ∙ ൫ܲ ݎ݅ ܿ݁ ௧+ ∙௡,௧൯ߠ ≥௡,௧ܥ ௡,௧ܯ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧ (25)

+௡,௧ܨ ≥௡,௧ܤ 0.9 ∙ ܪܶ ݐ߳∀ ܪܶ ,݊߳ܶ ܰ௧ (26)

ܼ = ෑ ෍ ܾ݋ݎ݌ݏ ௡,௧ ∙ ܷ௡,௧ ∙ ܷ݂ܽ ௧ݐܿ
௡

௡ఢ் ே೟
௧

௧ఢ் ு

(27)

Data used to solve this mathematical model is shown in Table 4, including the

deterministic price at each time period, ݎ݅ܲ ܿ݁ ௧, and the uncertain parameters to be managed,

such as the probability of each price level ܾ݋ݎ݌ ௟ǡ௧ܮ and the variations from the nominal price

ܸ ௟ǡ௧ݎܽ for the three considered uncertain levels (low, medium and high price levels).

Table 4. Data for example 2.

Time Price, ݎ݅ܲ ܿ݁ ௧
1݈ = Low price 2݈ = Medium price 3݈ =High price

ܾ݋ݎ݌ ௟,௧ܮ ܸ ௟,௧ݎܽ ܾ݋ݎ݌ ௟,௧ܮ ܸ ௟,௧ݎܽ ܾ݋ݎ݌ ௟,௧ܮ ܸ ௟,௧ݎܽ
1ݐ 1.0 0 100 0 0
2ݐ 1.0 11 -0.1 45 0 44 0.1
3ݐ 1.0 16 -0.1 50 0 34 0.1
4ݐ 1.0 29 -0.1 15 0 56 0.1
5ݐ 1.0 36 -0.1 36 0 28 0.1
6ݐ 1.0 43 -0.1 19 0 38 0.1
7ݐ 1.0 29 -0.1 39 0 32 0.1
8ݐ 1.0 19 -0.1 53 0 28 0.1
9ݐ 1.0 26 -0.1 49 0 25 0.1
10ݐ 1.0 30 -0.1 39 0 31 0.1
11ݐ 1.0 40 -0.1 38 0 22 0.1
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Also, Table 5 displays the input parameters used to solve the presented mathematical

formulation:

Table 5. Input parameter values for example 2.

Parameter Value
ܯܣ 1100
௧ܨ
௠ ௔௫ 400
ܪܶ 1004.72
ߙ 0.5
ߚ -0.5
ଵߛ 0.255905
ଶߛ 1.0
ߜ 0.2
l 0.944
ߩ 0.07
߱ 1.0

Finally, the values of ܯ ܯߠݔܽ and ܯ ܲߠݔܽ have been pre-established to determine and

analyse the conserved nodes constituting the final scenario tree. The selected values are 0.5 and

0.7 for ܯ ܯߠݔܽ and ܯ ,ܲߠݔܽ respectively.

The nomenclature used to formulate this mathematical model is shown below:

Parameter
ܯܣ terminal assets target
௧ܨ
௠ ௔௫ maximum labour available

ݎ݅ܲ ܿ݁ ௧ price of goods at time period ݐ
ܪܶ total number of hours in the period

௧ܶ time period ݐ
ܷ݂ܽ ௧ݐܿ utility function factor
ߙ distribution coefficient
ߚ elasticity coefficient
ଵߛ coefficient 1 in money holding function
ଶߛ coefficient 2 in money holding function
ߜ income tax rate
l discount rate
ߩ one period interest rate
߱ wage rate

Continuous and positive variables
௡,௧ܣ assets in node ݊ at time ݐ
௡,௧ܤ time spent on money holdings in node ݊ at time ݐ
௡,௧ܥ consumption in node ݊ at time ݐ

௡,௧ܨ labour supplied in node ݊ at time ݐ

௡,௧ܯ revenues in node ݊ at time ݐ

௡ܵ,௧ saving in node ݊ at time ݐ
ܶ ௡,௧ݔܽ net taxes paid in node ݊ at time ݐ
ܷ௡,௧ utilities in node ݊ at time ݐ

௡ܻ,௧ incomes in node ݊ at time ݐ

Variables
ܼ objective variable
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4. Results and discussion

The resulting NLP models have been implemented in GAMS 24.7 and solved using

CONOPT 3.17. Note that GAMS allows the user to evaluate the sensitivity of a model by

evaluating the marginal value of a variable, such as .௡,௧ߠ

This section presents the results of the following situations:

 The full stochastic case (non-scenarios techniques applied).

 The stochastic model applying RedOpt, to reduce the number of scenarios.

 The stochastic case applying SCENRED/GAMS.

The proposed examples have been solved considering different time intervals.

According to the considered time intervals, the number of scenarios will vary. In other words,

the more time intervals, the more scenarios (see Table 1). Therefore, the computational time to

reach the optimal solution increases when more time intervals (more scenarios) are taken into

account. Thus, different time horizons have been considered to evaluate how the reduction of

scenarios considering different time intervals affects the value of the objective function. Table 6

displays the optimal results, computation effort and the number of conserved scenarios for

example 1, and these results have been compared with the full stochastic problem.

Furthermore, Table 7 includes the model statistics for this example for the different time

horizons. As expected, the number of equations and variables when the RedOpt approach (i.e.,

sensitivity analysis approach) is applied decreases. Furthermore, the model was solved also

considering 13 time intervals. However, the model could not be solved due to lack of memory of

the computer.

According to the observed results, the quality of the solution has not been highly

affected (<2%) by the RedOpt approach for reducing the number of scenarios. This technique

has reduced the number of scenarios by approximately 50%. Particularly, cluster technique has

been applied for the first two iterations (i.e., time periods 2ݐ and .(3ݐ This is because the

sensitivity ௡,௧ܯߠ of two nodes, ݊1 and ݊10, has associated a low value. However, the objective

function may be highly affected, since the sensitivity without considering probability, ߠ ௡ܲ,௧, has

not associated a reduced value compared with the remaining nodes. For the rest of iterations,

the removal of nodes is applied, re-assigning probabilities to the remaining nodes. This is

because there are nodes with low sensitivity, and the removal can take place without a big

impact on the optimal value.

Furthermore, although the RedOpt approach offers a good quality solution, the

computational time is bigger for =ݐ 10 and =ݐ 11 when compared with the full stochastic

model. This is explained because, for reduced time intervals, the computational time required

for solving all iterations is bigger than for solving the full stochastic problem. In other words,

this was due to the time spent on analysing the sensitivity and posteriorly removing/clustering

nodes at each iteration. Another explanation is that the model is not highly non-linear, what

means that the model can be solved faster than highly non-linear models. The second example is

highly non-linear, and for all time intervals, the RedOpt approach is faster. This explains why

for reduced time intervals, the CPU time required for solving the model is higher when iterating

instead of solving the full NLP. Note that no solution was found in 100,000 CPU seconds for both
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the full stochastic case and for RedOpt when more than 13 time intervals are considered, due to

the size of the NLP problem.

Table 6. Optimal solution, computational time and number of conserved scenarios for the example 1 considering
different time intervals. The symbol ** denotes that no solution was found.

Time
horizon

Approach
Optimal solution

(m.u.)
Computational time

(CPU, s)
Conserved scenarios

=ݐ 10
Stochastic 743.6 55.6 19,683
RedOpt 743.9 (+0.4%) 255.8 9,841 (49.99%)
SCENRED 721.3 (-3.9%) 10,000 9,841 (49.99%)

=ݐ 11
Stochastic 803.4 650.7 59,049
RedOpt 818.4 (+1.8%) 1,274.6 29,527 (50.00%)
SCENRED ** ** **

=ݐ 12
Stochastic 864.7 8,814.7 177,147
RedOpt 849.4 (-1.8%) 5,214.2 (-40.8%) 88,576 (50.01%)
SCENRED ** ** **

=ݐ 13
Stochastic 923.5 59,661.3 531,441
RedOpt 906.8 (-1.8%) 36,317.4 (-39.1%) 265,723 (50.00%)
SCENRED ** ** **

Table 7. Model statistics for the example 1.

Time horizon
Stochastic model RedOpt

Equations Variables Equations Variables
=ݐ 10 177,139 206,666 88,705 118,277
=ݐ 11 531,433 620,009 265,867 354,493
=ݐ 12 1,594,315 1,860,038 882,649 1,176,869
=ݐ 13 4,782,961 5,580,125 2,391,661 3,188,885

Moreover, the tool SCENRED and SCENRED2 provided by GAMS has been applied. For

10 time intervals, the model was solved, but spending an unaffordable computational time. For

more time intervals, the tool SCENRED was not able to find the optimal solution (i.e., solution

not found), which is denoted by ** in Table 6. This is due to a lack of memory, since this tool is

not suitable for very large number of scenarios. Thus, SCENRED and SCENRED2 techniques are

computationally intractable and not able to be solved when more time intervals are considered.

Figure 6 plots the optimal results and the computational time to solve the proposed

problem.
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Figure 6. Results for the example 1.

Also, the RedOpt methodology to reduce the number of scenarios has been applied to

the second example. Analogously, SCENRED/GAMS has been tested. As in the first example, this

tool is computationally intractable and not able to solve the problem. The SCENRED tool can be

customised by the user by specifying the number of conserved scenarios. In this case, for a fair

comparison of the obtained results through RedOpt and SCENRED, the RedOpt was firstly used.

Once the problem was solved, the number of conserved scenarios were determined. Then, this

value was inputted in SCENRED as input parameters, in order to analyse the same results using

the same number of conserved scenarios.

Table 8 presents the results for the second example. As in the first example, good quality

results are obtained, since the value of the objective value is altered by less than 4%. However,

the computational time decreases drastically for all considered time horizons. This is explained

because the model is highly non-linear, and the reduction of scenarios involves a high reduction

in the computational effort to reach the optimal solution.

The reduction of scenarios was carried out by clustering nodes in the second iteration (a

node has low probability but affects highly the value of the solution), nodes aggregation (two

nodes have the same behaviour and are merged) and nodes removal (a node has low sensitivity

and can be removed).

Moreover, Table 9 shows the model statistics for this example, whereas Figure 7

displays the optimal results and the computational time to solve the second illustrative example.

Table 8. Optimal solution, computational time and number of conserved scenarios for the example 2 considering
different time intervals. The symbol ** denotes that no solution was found.

Time
horizon

Approach
Optimal solution

(m.u.)
Computational time

(CPU, s)
Conserved scenarios

=ݐ 7
Stochastic 3,691.3 137.4 729
RedOpt 3,643.9 (-1.3%) 25.4 (-81.5%) 366 (50.02%)
SCENRED 3,688.1 39.0 366 (50.02%)

=ݐ 8 Stochastic 11,241.1 1,125.5 2,187
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RedOpt 11,123.7 (-1.1%) 456.0 (-59.5%) 1,095 (50.01%)
SCENRED 11,241.9 543.2 1,095 (50.01%)

=ݐ 9
Stochastic 32,259.4 6,279.7 6,561
RedOpt 31,936.6 (-1.0%) 3,330.4 (-47.0%) 3,281 (50.01%)
SCENRED 32,257.8 3,897.4 3,281 (50.01%)

=ݐ 10
Stochastic 87,240.6 38,906.0 19,683
RedOpt 86,291.3 (-1.1%) 18,822.5 (-51.6%) 9,843 (50.00%)
SCENRED 87,088.9 22,934.9 9,843 (50.00%)

=ݐ 11
Stochastic 213,611.7 100,057.0 59,049
RedOpt 221,892.5 (+3.7%) 47,131.4 (-52.9%) 29,526 (50.00%)
SCENRED ** ** **

Table 9. Model statistics for the example 2.

Time horizon
Stochastic model RedOpt

Equations Variables Equations Variables
=ݐ 7 9,473 9,838 4,815 5,560
=ݐ 8 28,428 29,522 14,305 16,511
=ݐ 9 85,291 88,572 42,749 49,332
=ݐ 10 255,878 265,720 128,055 147,763
=ݐ 11 767,637 797,162 383,947 443,024

Figure 7. Results for the example 2.

5. Concluding remarks

This paper proposes a sensitivity analysis approach, called RedOpt, for the scenario

reduction in two-stage stochastic NLP formulations. Accurate representation of uncertainty may

require much larger number of scenarios rendering the resulting optimisation model
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computationally intractable. Here, the RedOpt approach for the scenario reduction has been

used to deal with uncertainty.

The obtained results have demonstrated that this novel procedure can be used

efficiently to reduce the number of scenarios while obtaining good quality results with reduced

computational requirements. This formulation has been tested in 2 examples, reducing the

computational time by 40% and 52% for examples 1 and 2 respectively, while reducing the

conserved scenarios by 50% approximately. Moreover, good quality solutions have been

obtained by using RedOpt, since the optimal value has been altered only by 2% and 4% for

examples 1 and 2 respectively when compared with the stochastic model. Thus, RedOpt is able

to reduce the computational time to reach the optimal solution while maintaining valuable

quality results.

Further work will focus on applying this methodology to industrial problems,

considering different sources of uncertainty, as well as to extend the current approach to Mixed

Integer NLP.

Nomenclature

Indexes and sets

݊ ∈ ܰ nodes
݈∈ ܮ uncertain parameter level
∋ݐ ܪܶ time intervals to be considered
݊݌ ∈ ܰ Subset of parent nodes ݊݌
݊ ∈ ܵܰ Subset of nodes ݊ in the reduced scenario tree ܵܰ
݊ ∈ ܶܰ௧ Subset of nodes ݊ included in the time intervals definingݐ the tree node mapping
݈∈ ܮܰ ௡ Subset of uncertain levels i݈n each node ݊
ݎ݁ݐ ௡݁,௣௡ Subset of nodes ݊ and parent nodes ݊݌ defining the scenario tree

Parameters

ܯ ܯߠݔܽ Maximum relative difference between marginal values of ௡,௧ߠ in node ݊ at time ݐ

ܯ ܲߠݔܽ Maximum relative difference between marginal values of ௡,௧ߠ in node ݊ at time ݐ

without considering probability
ܾ݋ݎ݌ ௡,௧ Probability of node ݊ in the original scenario tree at time interval ݐ
ܾ݋ݎ݌ݏ ௡,௧ Probability of node ݊ in the reduced scenario tree at time interval ݐ
௡,௧ߠ Uncertainty parameter in node ݊ at time ݐ

௡,௧ܯߠ Marginal value of ௡,௧ߠ in node ݊ at time ݐ

ߠ ௡ܲ,௧ Marginal value of ௡,௧ߠ in node ݊ at time withoutݐ considering probability
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