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Abstract 

 

Introduction: Intensive exercise of elite athletes can lead to physiological changes in the 
cardiovascular system in response to increased stroke volume and blood pressure, known 
collectively as cardiovascular demand (CD). This study aims to compare metabolic differences in 
elite athletes with high versus low-moderate CD and to identify the potential metabolic pathways 
underlying these differences. 

Methods: Metabolic profiling of serum samples from 495 elite athletes from different sports 
disciplines (118 high CD and 377 low-moderate CD athletes) who participated in national or 
international sports events and tested negative for doping abuse at anti-doping laboratories was 
performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-
performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial 
least squares discriminant analysis. Differences in metabolic levels between high and low-
moderate CD were assessed by univariate linear models. Gaussian graphical modelling (GGM) 
was constructed to identify metabolic networks based on their partial correlations. 

Results: Metabolomics analysis revealed 112 novel metabolites that changed significantly with 
increased CD. Whereas diacylglycerols (DAGs) containing oleic acid were higher in low-moderate 
CD, DAGs containing arachidonic were enriched in high CD together with branched chain amino 
acids, plasminogens, phosphatidylcholines (PC) and phosphatidylethanolamines (PE), potentially 
marking increased risk of cardiovascular disease in the high CD group. Gamma glutamyl amino 

acids and glutathione metabolism were increased in low-moderate CD group, suggesting more 
efficient oxidative stress scavenging mechanisms than the high CD group. Additionally, various 
monohydroxy fatty acids and acyl-carnitines were too increased in low-moderate CD, reflecting 
increased fatty acid oxidation. GGM sub-networks identified 6 subnetworks that captured the 
major metabolic pathways perturbed in relation to differences in CD including fatty acids beta 
oxidation and oxidative stress. 

Conclusion: This data provides evidence that athletes with different CD exhibit a distinct 
metabolic profile that reflects energy generation and oxidative stress and potentially places the 
high CD group at higher risk of cardiovascular disease. Replication studies are warranted to 
confirm these metabolic differences in independent data sets, aiming ultimately for identification 
of individual biomarkers for assessing health, performance and recovery of elite athletes with 
different CD.  
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Introduction 

Athletes competing in national or international sport events are considered elite athletes [1]. Their 
intensive physical training is associated with electrical, structural and functional myocardial 
adaptations that help improve their sport’s performance [2, 3]. The type and intensity of their 
respective sport disciplines determine the metabolic demands for their local and systemic blood 
flow, whereas the duration of training causes regulatory disturbances and constraints in their 
cardiovascular function over time [4]. In response to aerobic exercise, for example, the 
cardiovascular system could reach up to 80% of maximum cardiac output in order to meet the need 
to deliver oxygen to the exercising body organs while regulating the mean arterial pressure [5, 6].  
 
Information related to peak static (maximal voluntary contraction, MVC) and dynamic (maximal 
oxygen uptake, MaxO2) components achieved during competition for athletes from different 
sporting disciplines are used to classify them into various classes of cardiovascular demand [7]. 
The increasing dynamic component results in a greater cardiac output whereas the increasing static 
component results in an elevated blood pressure load. Accordingly, total cardiovascular demand 
(CD) that comprises both cardiac output and blood pressure is used to classify sports into five sport 
groups that range from low static/low dynamic (such as golf and rifley) to high static/high dynamic 
(such as boxing and cycling) [7]. Despite multiple physiological studies describing cardiac output 
and blood pressure of different groups of athletes [8], a more comprehensive monitoring of blood 
metabolic biomarkers may provide valuable insight into the physiological and pathophysiological 
alterations underlying athletes performance and health.  
 
Metabolomics presents a comprehensive approach for detecting metabolic changes in response to 
dietary, lifestyle and environmental factors [9], including profiles associated with performance, 
fatigue and health issues [10, 11]. Previous non-targeted metabolomics studies revealed metabolic 
alterations in response to exercise [10, 12, 13], including changes in glucose, lipid, amino acid and 
energy metabolites [10, 13], marking adenosine triphosphate (ATP) synthesis and beta-oxidation 
of fatty acids [12] as well as elevation in plasma lactate [14, 15] and adenine breakdown products 
[16]. Components of tricarboxylic acid (TCA) cycle were also changed in response to aerobic 
energy production in skeletal muscle biopsies [17, 18]. We have recently shown in a pilot study of 
191 elite athletes that high-power and high-endurance elite sports exhibit a distinct metabolic 
profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress and energy-related 
metabolites [19]. 
 
Despite multiple studies focusing on the impact of exercise on athletes’ metabolomics, profiling 
of metabolic changes in elite athletes from various sport disciplines characterized by different CD 
would provide deeper insight into their physiological state and cardiovascular adaptation in 
response to their respective sports [11]. Assessment of these changes would provide valuable 
measures of the current physical status of the athletes and their adaptation to training. This could 
intern help in directing their future training programs and preventing potential disorders associated 
with excessive exercise as well as improving their overall performance.  This study aims to utilize 
a non-targeted metabolomics profiling to identify changes in metabolites with increased CD in 
athletes belonging to different sport disciplines. 
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Methods 
 
Study design 
 
Four hundred ninety six elite athletes (87% males, 13% females) from different sports disciplines, 
who participated in national or international sports events and tested negative for doping 
substances at anti-doping laboratories in Qatar and Italy, were included in this study in accordance 
with the World Medical Association Declaration of Helsinki. All protocols were approved by the 
Institutional Research Board of anti-doping lab Qatar (F2014000009).  There was no evidence of 
population stratification in sport groups based on athletes’ ethnicities (85% Europeans, 10% 
Americans and 5% Africans). Spare serum samples, collected for anti-doping human growth 
hormone tests, were used for metabolomics studies as described previously [19]. Accordingly, 
only information related to sport type, ethnic group and gender were available for researchers. 
Total CD was used to classify sports into two groups (low-moderate CD (n=377), shown in white 
in Table 1, versus high CD (n=118), shown in grey in Table 1.  
 
Table 1. Classification of study participants. 
 

Distribution of elite athletes in various categories based on sport type-associated peak dynamic 
(maximal oxygen uptake percentage; VO2) and peak static (maximal voluntary muscle contraction 
percentage; MVC) components achieved during competition as described previously [7]. The 
number and gender (M for males and F for females) of participants in each group are also indicated. 
Sports types were further categorized into two classes based on CD (high in grey and low in white) 
that were used in the statistical analysis.  
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5 
 

Metabolomics  
 
Metabolomics profiling was performed using validated protocols at Metabolon, Durham, NC, 
USA, which utilized Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a 
Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated 
electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass 
resolution.  
 
Sample preparation  
 
Upon delivery, sample inventories were confirmed and samples were stored at -80oC until time of 
processing. Sample preparation was performed using automated MicroLab STAR® system 
(Hamilton Company).  Recovery standards were added prior to the first step in the extraction 
process for QC purposes.  Proteins were precipitated in methanol under vigorous shaking for 2 
min (Glen Mills GenoGrinder 2000), followed by centrifugation to remove proteins, dissociate 
small molecules that are either bound to proteins or trapped in the precipitated protein matrix and 
to recover chemically diverse metabolites,  The resulting extract was divided into five fractions: 
two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion 
mode electrospray ionization (ESI) (for detection of positive early and positive late fractions), one 
for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-
MS/MS with negative ion mode ESI (for the detection of the polar compounds), and one sample 
was reserved for backup. Samples were placed briefly on a TurboVap® (Zymark) to remove the 
organic solvent.  The sample extracts were stored overnight under nitrogen before preparation for 
analysis.  
 
Quality control (QC) 
 
Several controls were analyzed together with the tested samples. These included a pooled matrix 
generated by taking a small volume of each experimental sample served as a technical replicate 
throughout the data set. Extracted water samples were used as blanks. Additionally, a cocktail of 
QC standards that were carefully chosen not to interfere with the measurement of endogenous 
compounds were spiked into every analyzed sample, allowing instrument performance monitoring 
and aiding chromatographic alignment.  Instrument variability was determined by calculating the 
median relative standard deviation (RSD) for the standards that were added to each sample prior 
to injection into the mass spectrometers.  Overall process variability was determined by calculating 
the median RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% 
of the pooled matrix samples.  Experimental samples were randomized across the platform and 
run with QC samples that were spaced evenly among the injections. 
 
Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-
MS/MS) 
 
The dried sample extract was reconstituted in solvents specific to each of the four methods. Each 
reconstitution solvent contained a series of standards at fixed concentrations to ensure injection 
and chromatographic consistency.  One aliquot was analyzed using acidic positive ion conditions, 
chromatographically optimized for more hydrophilic compounds. In this method, the extract was 
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gradient eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water 
and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid 
(FA).  Another aliquot was also analyzed using acidic positive ion conditions, however it was 
chromatographically optimized for more hydrophobic compounds.  In this method, the extract was 
gradient eluted from the same mentioned C18 column using methanol, acetonitrile, water, 0.05% 
PFPA and 0.01% FA and was operated at an overall higher organic content.  Another aliquot was 
analyzed using basic negative ion optimized conditions using a separate dedicated C18 
column.  The basic extracts were gradient eluted from the column using methanol and water, 
however with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed via 
negative ionization following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 
mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 10mM Ammonium 
Formate, pH 10.8. The MS analysis alternated between MS and data-dependent MS/MS scans 
using dynamic exclusion.  The scan range varied slighted between methods but covered 70-1000 
m/z.  Raw data files are archived and extracted as described below. 
 
Data extraction and compound identification 
 
Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware and 
software.  These systems are built on a web-service platform utilizing Microsoft’s NET 
technologies, which run on high-performance application servers and fiber-channel storage arrays 
in clusters to provide active failover and load-balancing.  Compounds were identified by 
comparison to library entries of purified standards or recurrent unknown entities.  Metabolon 
maintains a library based on authenticated standards that contains the retention time/index (RI), 
mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all 
molecules present in the library.  Furthermore, biochemical identifications are based on three 
criteria: the correct retention time/index to the authentic standard, the correct m/z within 10ppm 
of the authentic standard and the correct fragmentation spectrum (MS/MS) to the standard.  The 
MS/MS scores are based on a comparison of the ions present in the experimental spectrum to the 
ions present in the library spectrum.  While there may be similarities between these molecules 
based on one of these factors, the use of all three data points can be utilized to distinguish and 
differentiate biochemicals.  More than 3300 commercially available purified standard compounds 
have been acquired and registered into Laboratory Information Management System (LIMS) for 
analysis on all platforms for determination of their analytical characteristics. Metabolon data 
analysts use proprietary visualization and interpretation software to confirm the consistency of 
peak identification among the various samples.  Library matches for each compound were checked 
for each sample and corrected if necessary. Metabolon classified known metabolites by “super-
pathway”, representing chemical classes, and “sub-pathway”, corresponding to the specific role of 
a compound in metabolism, on the basis of the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways [20]. 
 
Statistical analysis of metabolomics data 

Metabolomics data were log-transformed to ensure normality. Batch correction was performed by 
Metabolon by rescaling each metabolite’s median to 1. Principle component analysis (PCA) was 

performed to obtain a global view of the data using a multivariate analysis. Orthogonal partial least 
square discriminant analysis (OPLS-DA) was used to detect components that best distinguish 
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between predefined groups of samples whilst separating the orthogonal components which do not 
differentiate between these groups. In this study, OPLS-DA was used to compare elite athletes 
with low-moderate versus high CD. Both PCA and OPLS-DA were run using SIMCA 14 with a 
threshold percentage of missing metabolite values of less than 50% (A default metabolite-wise 
metabolite missingness threshold). There was no evidence of population stratifications in sport 
groups. Linear models for association analysis were run using the R statistical package (version 

2.14, www.r-project.org/). A model incorporating CD as a categorical variable with two levels 
(low-moderate & high) was used after correcting for covariates including gender, hemolysis levels 
(determined visually by Metabolon) and ethnic groups. A stringent Bonferroni level of significance 
of p < = 0.05/751 = 6.6 x 10-5 was used to infer association. Gaussian graphical modelling (GGM) 
was used to identify correlated metabolites, leading potentially to unbiased reconstruction of 
metabolic reactions as previously reported [21].  

Results 

Non-targeted metabolomics was applied to compare the metabolic signature of elite athletes with 
low-moderate versus high CD. Analysis detected 751 known metabolites (Supplemental Table 1), 
among which 112 were found significantly different between the two groups (p<6.6 x 10-5), 
including 57 lipids, 25 amino acids, 12 peptides, 8 xenobiotics, 5 nucleotides, 3 carbohydrates and 
2 cofactors and vitamins (Table 2). Considering hits sub-pathways, predominant changes between 
the two CD groups included diacylglycerols, fatty acid metabolism (acyl Carnitine), gamma-
glutamyl amino acid, lysopho and phospholipids among others. 

Table 2. Metabolites differentiating between athletes belonging to low-moderate versus high 
cardiovascular demand groups (Bonferroni significance).   

Metabolite SUB_PATHWAY Change p-value Bonferroni 
p value 

Aspartate Alanine and Aspartate Metabolism -0.8 1.14E-11 8.58E-09 
N-acetylglucosamine/n-acetylgalactosamine Aminosugar Metabolism -0.8 3.40E-12 2.55E-09 

N-acetylneuraminate Aminosugar Metabolism -0.7 9.82E-09 7.38E-06 
O-methylcatechol Sulfate Benzoate Metabolism -0.5 5.09E-05 3.82E-02 

Carnitine Carnitine Metabolism 0.5 2.68E-06 2.01E-03 
Lactosyl-n-palmitoyl-sphingosine (D18:1/16:0) Ceramides -0.6 8.50E-07 6.39E-04 
Glycosyl-n-(2-hydroxynervonoyl)-sphingosine Ceramides -0.5 9.16E-06 6.88E-03 

4-hydroxychlorothalonil Chemical 0.6 2.51E-07 1.89E-04 
Cortisol Corticosteroids 0.6 5.99E-08 4.50E-05 
Creatine Creatine Metabolism 0.5 3.07E-06 2.30E-03 

Palmitoyl-oleoyl-glycerol (16:0/18:1) [2] Diacylglycerol -0.6 2.62E-06 1.97E-03 
Linoleoyl-arachidonoyl-glycerol (18:2/20:4) [1] Diacylglycerol 0.5 3.73E-06 2.80E-03 

Oleoyl-oleoyl-glycerol (18:1/18:1)  [1] Diacylglycerol -0.5 9.38E-06 7.05E-03 
Palmitoyl-arachidonoyl-glycerol (16:0/20:4) [2] Diacylglycerol 0.6 1.17E-05 8.78E-03 

Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] Diacylglycerol -0.5 1.38E-05 1.04E-02 
Oleoyl-oleoyl-glycerol (18:1/18:1) [2] Diacylglycerol -0.5 1.72E-05 1.29E-02 

Palmitoleoyl-arachidonoyl-glycerol (16:1/20:4) [2] Diacylglycerol 0.6 3.82E-05 2.87E-02 
Oleoyl-linoleoyl-glycerol (18:1/18:2) [1] Diacylglycerol -0.5 5.66E-05 4.25E-02 

N-acetylcarnosine Dipeptide Derivative -0.4 3.52E-05 2.64E-02 
Leukotriene B4 Eicosanoid -0.6 9.75E-07 7.32E-04 

5-hete Eicosanoid -0.6 4.21E-06 3.16E-03 
Leukotriene B5 Eicosanoid -0.5 5.71E-06 4.29E-03 

12-hete Eicosanoid -0.5 6.10E-05 4.58E-02 
N-oleoyltaurine Endocannabinoid -0.5 1.03E-05 7.72E-03 
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Oleoylcarnitine (C18:1) Fatty Acid Metabolism(Acyl Carnitine) -0.7 1.86E-09 1.39E-06 
Ximenoylcarnitine (C26:1) Fatty Acid Metabolism(Acyl Carnitine) -0.6 1.21E-08 9.09E-06 

Myristoleoylcarnitine (C14:1) Fatty Acid Metabolism(Acyl Carnitine) -0.6 1.35E-08 1.01E-05 
Palmitoleoylcarnitine (C16:1) Fatty Acid Metabolism(Acyl Carnitine) -0.6 6.50E-08 4.88E-05 
Eicosenoylcarnitine (C20:1) Fatty Acid Metabolism(Acyl Carnitine) -0.6 3.23E-07 2.43E-04 

Laurylcarnitine (C12) Fatty Acid Metabolism(Acyl Carnitine) -0.5 7.16E-06 5.38E-03 
Linoleoylcarnitine (C18:2) Fatty Acid Metabolism(Acyl Carnitine) -0.5 9.83E-06 7.38E-03 
Decanoylcarnitine (C10) Fatty Acid Metabolism(Acyl Carnitine) -0.5 1.67E-05 1.25E-02 
Adipoylcarnitine (C6-dc) Fatty Acid Metabolism(Acyl Carnitine) -0.5 2.25E-05 1.69E-02 

14-hdohe/17-hdohe Fatty Acid, Monohydroxy -0.8 4.35E-13 3.27E-10 
13-hode + 9-hode Fatty Acid, Monohydroxy -0.7 1.89E-10 1.42E-07 

4-hdohe Fatty Acid, Monohydroxy -0.7 2.84E-08 2.14E-05 
Carotene Diol (1) Food Component/Plant 0.7 4.51E-10 3.38E-07 
Carotene Diol (2) Food Component/Plant 0.7 1.34E-09 1.01E-06 

Ergothioneine Food Component/Plant 0.6 1.96E-06 1.47E-03 
Eugenol Sulfate Food Component/Plant -0.5 1.70E-05 1.28E-02 

Gamma-glutamylglutamate Gamma-glutamyl Amino Acid -0.8 4.90E-13 3.68E-10 
Gamma-glutamylphenylalanine Gamma-glutamyl Amino Acid -0.8 2.70E-11 2.03E-08 

Gamma-glutamylvaline Gamma-glutamyl Amino Acid -0.6 4.41E-08 3.31E-05 
Gamma-glutamyltyrosine Gamma-glutamyl Amino Acid -0.6 4.75E-08 3.57E-05 

Gamma-glutamyltryptophan Gamma-glutamyl Amino Acid -0.6 3.95E-07 2.97E-04 
Gamma-glutamylisoleucine Gamma-glutamyl Amino Acid -0.6 4.47E-07 3.36E-04 

Gamma-glutamylleucine Gamma-glutamyl Amino Acid -0.5 2.50E-06 1.88E-03 
Gamma-glutamylthreonine Gamma-glutamyl Amino Acid -0.5 4.05E-06 3.04E-03 

Gamma-glutamyl-epsilon-lysine Gamma-glutamyl Amino Acid -0.5 9.10E-06 6.84E-03 
Gamma-glutamylhistidine Gamma-glutamyl Amino Acid -0.5 3.55E-05 2.66E-02 

Gamma-glutamylglutamine Gamma-glutamyl Amino Acid 0.5 3.65E-05 2.74E-02 
Glutamate Glutamate Metabolism -0.8 1.47E-13 1.11E-10 
Glutamine Glutamate Metabolism 0.6 1.80E-06 1.35E-03 

Beta-citrylglutamate Glutamate Metabolism -0.5 3.09E-05 2.32E-02 
5-oxoproline Glutathione Metabolism -0.9 2.19E-16 1.65E-13 

Serine Glycine, Serine and Threonine Metabolism -0.6 1.94E-08 1.45E-05 
N-acetylthreonine Glycine, Serine and Threonine Metabolism -0.6 1.24E-06 9.32E-04 

N-acetylserine Glycine, Serine and Threonine Metabolism -0.5 5.70E-06 4.28E-03 
Glycerate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 
-0.6 

1.78E-08 1.33E-05 

Imidazole Lactate Histidine Metabolism 0.8 6.22E-13 4.67E-10 
1-methylimidazoleacetate Histidine Metabolism -0.5 9.57E-06 7.19E-03 
3-methyl-2-oxobutyrate Leucine, Isoleucine and Valine Metabolism 0.9 8.42E-16 6.33E-13 

4-methyl-2-oxopentanoate Leucine, Isoleucine and Valine Metabolism 0.9 1.27E-15 9.57E-13 
3-methyl-2-oxovalerate Leucine, Isoleucine and Valine Metabolism 0.8 6.96E-12 5.23E-09 

Isovalerate Leucine, Isoleucine and Valine Metabolism -0.6 2.63E-07 1.97E-04 
N6,n6,n6-trimethyllysine Lysine Metabolism -0.6 1.25E-06 9.39E-04 
1-linolenoyl-gpc (18:3) Lysophospholipid 0.7 6.38E-09 4.79E-06 
1-palmitoyl-gpa (16:0) Lysophospholipid -0.6 1.05E-07 7.87E-05 

1-arachidonoyl-gpa (20:4) Lysophospholipid -0.6 1.98E-07 1.48E-04 
1-oleoyl-gpa (18:1) Lysophospholipid -0.6 2.37E-07 1.78E-04 

1-linoleoyl-gpi (18:2) Lysophospholipid 0.5 1.87E-05 1.40E-02 
1-(1-enyl-palmitoyl)-gpc (P-16:0) Lysoplasmalogen -0.6 3.16E-08 2.37E-05 

1-(1-enyl-oleoyl)-gpe (P-18:1) Lysoplasmalogen -0.5 1.50E-05 1.12E-02 
Caproate (6:0) Medium Chain Fatty Acid -0.5 1.39E-05 1.04E-02 

Methionine Sulfoxide Methionine, Cysteine, SAM and Taurine 
Metabolism 

-0.8 
1.60E-13 1.20E-10 

N-acetylmethionine Sulfoxide Methionine, Cysteine, SAM and Taurine 
Metabolism 

-0.8 
2.73E-13 2.05E-10 

N-formylmethionine Methionine, Cysteine, SAM and Taurine 
Metabolism 

0.6 
5.90E-07 4.43E-04 

Cysteine Sulfinic Acid Methionine, Cysteine, SAM and Taurine 
Metabolism 

-0.5 
9.83E-06 7.39E-03 
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1-myristoyl-2-arachidonoyl-gpc (14:0/20:4) Phosphatidylcholine (PC) 0.9 2.27E-15 1.70E-12 
1-linoleoyl-2-arachidonoyl-gpc (18:2/20:4n6) Phosphatidylcholine (PC) 0.8 1.88E-12 1.41E-09 

1-myristoyl-2-palmitoyl-gpc (14:0/16:0) Phosphatidylcholine (PC) 0.7 4.62E-10 3.47E-07 
1-palmitoyl-2-palmitoleoyl-gpc (16:0/16:1) Phosphatidylcholine (PC) 0.7 1.11E-09 8.35E-07 
1-palmitoleoyl-2-linolenoyl-gpc (16:1/18:3) Phosphatidylcholine (PC) 0.8 3.27E-07 2.46E-04 

1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6) Phosphatidylcholine (PC) 0.6 9.99E-07 7.50E-04 
1,2-dilinoleoyl-gpc (18:2/18:2) Phosphatidylcholine (PC) 0.5 3.40E-05 2.55E-02 

1-palmitoyl-2-arachidonoyl-gpe (16:0/20:4) Phosphatidylethanolamine (PE) 0.6 9.38E-08 7.04E-05 
1-stearoyl-2-arachidonoyl-gpe (18:0/20:4) Phosphatidylethanolamine (PE) 0.5 9.06E-06 6.80E-03 
1-palmitoyl-2-linoleoyl-gpe (16:0/18:2) Phosphatidylethanolamine (PE) 0.5 1.07E-05 8.02E-03 

1-palmitoyl-2-oleoyl-gpe (16:0/18:1) Phosphatidylethanolamine (PE) 0.5 1.60E-05 1.20E-02 
1-palmitoyl-2-docosahexaenoyl-gpe (16:0/22:6) Phosphatidylethanolamine (PE) 0.5 3.77E-05 2.83E-02 

Choline Phospholipid Metabolism -0.7 1.77E-09 1.33E-06 
1-(1-enyl-palmitoyl)-2-oleoyl-gpe (P-16:0/18:1) Plasmalogen 0.6 8.17E-08 6.14E-05 
1-(1-enyl-stearoyl)-2-linoleoyl-gpe (P-18:0/18:2) Plasmalogen 0.5 5.27E-06 3.96E-03 

1-(1-enyl-palmitoyl)-2-arachidonoyl-gpe (P-
16:0/20:4) 

Plasmalogen 
0.5 

6.36E-05 4.78E-02 

5alpha-pregnan-3beta,20beta-diol Monosulfate (1) Progestin Steroids -0.5 5.60E-05 4.20E-02 
Allantoin Purine Metabolism, 

(Hypo)Xanthine/Inosine 
-0.5 

3.05E-06 2.29E-03 

N1-methyladenosine Purine Metabolism, Adenine containing 0.6 9.81E-07 7.36E-04 
Adenine Purine Metabolism, Adenine containing 0.5 4.49E-06 3.37E-03 
Orotate Pyrimidine Metabolism, Orotate containing -0.5 4.99E-06 3.75E-03 

Orotidine Pyrimidine Metabolism, Orotate containing -0.4 4.18E-05 3.14E-02 
Sphingosine 1-phosphate Sphingolipid Metabolism -0.6 2.50E-07 1.88E-04 
Sphinganine-1-phosphate Sphingolipid Metabolism -0.5 3.17E-05 2.38E-02 

4-cholesten-3-one Sterol -0.6 1.73E-07 1.30E-04 
Alpha-tocopherol Tocopherol Metabolism 0.5 1.32E-05 9.89E-03 

Serotonin Tryptophan Metabolism 0.6 5.29E-08 3.97E-05 
N-formylphenylalanine Tyrosine Metabolism -0.5 3.14E-05 2.36E-02 

2-oxoarginine Urea cycle; Arginine and Proline 
Metabolism 

0.7 
7.27E-11 5.46E-08 

Ornithine Urea cycle; Arginine and Proline 
Metabolism 

-0.6 
6.34E-08 4.76E-05 

Proline Urea cycle; Arginine and Proline 
Metabolism 

-0.5 
8.23E-06 6.18E-03 

Retinol (Vitamin A) Vitamin A Metabolism 0.8 1.09E-13 8.21E-11 
3,7-dimethylurate Xanthine Metabolism 0.5 3.28E-05 2.46E-02 
3-methylxanthine Xanthine Metabolism 0.5 5.76E-05 4.33E-02 

 

An OPLS-DA comparing low-moderate versus high CD classes was performed. The statistical 
model revealed well-explained variance and predictability and the diagnostic performance assessed by 
leave-one-out analysis exhibited 97.9% sensitivity and 87.8% specificity.  The model revealed one 
class-discriminatory component accounting for 71% of the variation in the data due to increased 
CD (R-squared-Y = 0.71, Q-squared = 0.52) (Fig. 2a). The corresponding loading score, shown in 
Fig. 2b, identified diacylglycerols, gamma glutamyl amino acids, monohydroxy fatty acids, 
leucine, isoleucine and valine metabolites, PC and PE as the main metabolites that provide a clear 
separation between low-medium vs high CD.  
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Figure 1. OPLS-DA model comparing low-moderate vs high cardiovascular demand (CD) classes 
of elite athletes. A. A score plot showing the class-discriminatory component (x-axis) versus 
orthogonal component (y-axis). B. The corresponding loading plot showing a clustering of PC and 
PE at the high end of CD opposed by a clustering of diacylglycerols fatty acids (acyl carnitines) 
and gamma-glutamyl amino acids at the negative end. 
 

GGM networks were constructed using all 751 metabolites, resulting in 60 subnetworks containing 
>2 metabolites with an overall 600 edges connecting 604 metabolites (nodes) as shown in 
supplementary Figure 1. The identified subnetworks were filtered for metabolites associated with 
CD at (p<0.05), resulting in 11 subnetworks containing >2 Bonferroni significant metabolites. Six 
subnetworks that captured the major metabolic pathways perturbed in relation to CD were selected 
(Fig 2), including phosphatidyls (cholines and ethanol amines) (Fig 2A), eicosanoids (Fig 2B), 
Carnitine metabolism (Fig 2C), Gamma glutamyl amino acids and their link to glutamate (Fig 2D), 
corticol metabolism (Fig 2E), energy metabolites including creatine and TCA (Fig 2F). 
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Figure 2: Six GGM subnetworks indicate metabolic networks that varied significantly between 
athletes belonging to low-moderate vs high CD groups. Changes are represented by nodes with 
sizes proportional to – (log p value) (larger nodes indicate more significant association with CD 
group). phosphatidyls including cholines and ethanol amines (A), ecasinoids (B), carnitine 
metabolism (C), gamma glutamyl aminoacids and their link to glutamate (D), corticol metabolism 
(E), energy metabolites including creatine and tricarboxilic acid cycle (F). Red color indicates that 

high CD has higher metabolite levels, and green indicates that low-moderate CD has higher 
metabolite levels. 

 

Thirty two metabolites representing different sub-pathways that significantly changed between 
the two CD groups were projected on the heatmap in Fig 3. The heatmap gives a snapshot 
summary of the actual intensities of these metabolites after correcting for confounders in the 
linear model described earlier. Samples were ordered by CD groups into high CD, low-moderate 

CD 1 and low-moderate CD 2. Whereas the former two groups showed similar intensities of 
metabolites, the latter group was clearly different, suggesting a presence of a group of athletes 
with the low-moderate CD group exhibiting a similar metabolic profile of the high CD group 
than their own low-moderate CD group. 
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Figure 3. Heatmap of metabolites significantly associated with CD from the linear model 
association analysis (x-axis). Samples on y-axis were ordered by sports group (high CD, low-
moderate CD1, low-moderate CD2). The color code denotes z-scaled values of metabolites after 
correction of confounders (red represents an increase in high CD, green represents a decrease in 
high CD). 
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Discussion  

The intensive exercise of elite athletes can cause physiological adaptation of the cardiovascular 
system leading to increased stroke volume and blood pressure in order to enhance performance. 
Metabolomics profiling of elite athletes with different CD could provide vital information about 
their systemic metabolic changes with impact on health and performance [4]. In this study, a non-
targeted metabolic profiling of elite athletes who participated in national or international sports 
events was performed, followed by comparison of metabolic signatures between athletes who 
belong to a low-moderate CD group versus those who belong to a high CD group. Despite limited 
information about the participants, the emerging data revealed significant differences in metabolite 
levels between the two studied groups including differences in energy utilization, oxidative stress 
scavenging mechanisms, and membrane dynamics. Metabolic changes in high CD group may 
suggest increased cardiovascular risk, potentially due to exercise-induced left ventricular 
hypertrophy and increased blood pressure [22]. 
 
Metabolites increased in athletes with high CD 
 
Forty metabolites showed higher levels in athletes with high CD compared to their low-moderate 
CD counterpart. Among the elevated energy-related metabolites in the high CD group was adenine, 
the building block of ATP used in cellular metabolism as the main source of energy. Creatine was 
also increased in the high CD group. It plays a critical role in ATP recycling primarily in muscles 
via donation of phosphate groups to adenosine diphosphate (ADP). Creatine also acts as a pH 
buffer in skeletal muscle tissues [23], therefore it is expected to be elevated with intensive training 
associated with increased CD. Interestingly, levels of imidazole lactate were positively correlated 
with levels of creatine as indicated in the GGM subnetworks, perhaps reflecting increased 
accumulation of lactate in exercising muscle. Lactate is also used in energy generation through its 
oxidation  to pyruvate by well-oxygenated muscle and heart cells, followed by re-entry into 
tricarboxylic acid (TCA) cycle [24]. Glutamine was also increased in high CD group. It is mostly 
synthesized in the muscle tissue, accounting for 90% of all synthesized glutamine, where it can 
serve as a source of cellular energy next to glucose [25].  Carnitine was also increased in the high 
CD group.  It is mostly accumulated in exercising skeletal muscles where it acts as a transporter 
of long-chain fatty acids into the mitochondria to be oxidized and produce energy [26]. 
 
In addition to energy-related metabolites, specific signaling molecules were increased in high CD 
group. Among these, three different diacylglycerols containing arachidonic acid (C20:4) were 
elevated in athletes with high CD including linoleoyl-arachidonoyl-glycerol, palmitoyl-
arachidonoyl-glycerol and palmitoleoyl-arachidonoyl-glycerol. Skeletal muscle is an active site of 
arachidonic acid retention, accounting for 10-20% of the phospholipid fatty acid content on 
average [27]. In addition to its important function as a second messenger involved in regulating 
various signaling enzymes  (PLC-γ, PLC-δ, and PKC-α/β/γ), arachachionic acid plays a critical 
role as an inflammatory intermediate [27].    
 
Plasmologens were too found to be increased in high CD athletes compared to low-moderate 
counterparts. They represent up to 20% of the total phospholipid mass in humans and ≥ 50% of 

the ethanol amines fraction in the brain, heart, neutrophils and eosinophils [28]. They play key 
roles as signaling molecules and modulators of membrane dynamics, providing unique structural 

https://en.wikipedia.org/wiki/Pyruvate
https://en.wikipedia.org/wiki/Muscle
https://en.wikipedia.org/wiki/Glucose
https://en.wikipedia.org/wiki/Mitochondrion
https://en.wikipedia.org/wiki/Phospholipase_C
https://en.wikipedia.org/wiki/Protein_kinase_C
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propertie, mediating various signaling processes and guarding membrane lipids from oxidation 
[28]. GGM subnetworks revealed positive correlations among various plasmologens, GPEs and 
GPCs, confirming the biochemical relationship among these various phosphatides.  

Cortisol was also increased in high CD. It belongs to the glucocorticoid class of hormones released 
in response to stress and low blood glucose. It plays important roles in stimulating gluconeogenesis 
to increase blood sugar [29], immunomodulation and metabolism of fat, protein, and carbohydrates 
[30]. Cortisol is also essential for maintenance of normal blood pressure and in excess can cause 
hypertension [31]. Therefore, the elevated cortisol in high CD athletes could reflect their response 
to increased stress and low blood glucose, causing increased blood pressure in this group of 
athletes. GGM subnetworks reveal a positive correlation between cortisol and other steroids 
including pregnenolone, an intermediate in the biosynthesis of most of the steroid hormones, 
suggesting increased steroid biosynthesis shown previously in endurance athletes [19]. 
 
An increase in branched chain amino acids (BCAAs, leucine, isoleucine and valine) metabolites 
was also evident in the high CD group of athletes as manifested by elevated levels of 3-methyl-2-
oxovalerate, 3-methyl-2-oxobutyrate and 4-methyl-2-oxopentanoate. Exercise promotes energy 
expenditure and promotes oxidation of BCAAs that play an important role as substrates to TCA 
intermediates and gluconeogenesis [32]. Leucine also plays a role as a regulator of intracellular 
signaling pathway, promoting muscle-protein synthesis in vivo [33]. 
 
 
Metabolites increased in low-moderate CD group of athletes 
 
Seventy metabolites showed higher levels in athletes belonging to the low-moderate CD group 
compared to their counterparts in the high CD group, including metabolites marking energy 
generation, oxidative stress and sterol biosynthesis.  
 
Elevation in a number of diacylglycerols, fatty acid-carnitines and acylated carnitines suggest 
enhanced hydrolysis of diacylglycerols, followed by transfer of fatty acids inside the cells for 
oxidation and energy production [34]. These changes suggest that low-moderate CD athletes 
exhibit a higher beta oxidation of fatty acids for energy generation, thus a greater potential to 
activate lipolysis during exercise than their counterpart in the high CD group. Additionally, 
accumulation of acylated carnitine may reflect a superior exercise recovery than athletes in the 
high CD group as carnitine can lower plasma lactate and prolonged exhaustion [35]. Interestingly, 
four DAGs containing oleic acid, C18:1 (arachidonic acid precursor) were increased in this group 
(Table 2). The hypotensive effect of oleic acid may partially explain its increase in this group that 
is characterized by lower blood pressure [36]. Additionally, eicosanoids (products of arachidonic 
acid) were too increased in athletes with low-moderate CD including 5 & 12 HETE and 
Leukotriene B4 and B5. Eicosanoids play a crucial role in various physiological and pathological 
processes such as immunomodulation and platelet aggregation [37, 38].    
 
Other metabolites were higher in low CD group including glutamate, beta-citrylglutamate, gamma 
glutamyl amino acids and 5-oxoproline, a metabolite of glutathione cycle, suggesting enhanced 
anti-oxidative stress scavenging mechanism in this group of athletes [39]. Indeed GGM 
subnetworks showed a strong positive correlation between glutamate gamma glutamylglutamate 

https://en.wikipedia.org/wiki/Glucocorticoid
https://en.wikipedia.org/wiki/Steroid_hormone
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and among various gamma glutamyl amino acids, suggesting a biochemical and functional 
relationship. 
 
Risk of cardiovascular disease 
 

Although exercise is generally known to improve well-being, it can also increase the risk of heart 
disease including arrhythmias, myocardial infarction, aortic dissection and sudden cardiac arrest 
[40]. Elevations in several metabolites associated with high CD including BCAAs, PC, and PE 
may also suggest an increased risk of cardiovascular disease among athletes who belong to this 
group. Whereas BCAAs were previously correlated with increased risk of cardiovascular disease 
[41], PC were shown to be associated with increased cardiovascular mortality independent of 
traditional risk factors [42]. PE (precursors of PC) were too shown previously to be among the 
strongest predictive lipid species for risk of cardiovascular disease [43]. Whether these 
associations are truly predictive of increased risk of cardiovascular disease or just a reflection of 

differences in exercise and dietary requirement in high CD athletes compared to their low-
moderate counterpart remains to be investigated. However, it is plausible to assume that high CD 
athletes could manifest markers of higher risk of cardiovascular disease due to their intensive 
physical training that is associated with electrical, structural and functional myocardial adaptations 
[2, 3]. 

Study limitations 

A batch effect related to sample collection from multiple sites was unavoidable. Sources of batch 
effect include process and time (IN or OUT of competition) of blood collection and duration of 
transportation and storage, potentially influencing metabolic profiling of collected samples [44, 
45]. In spite of these potential confounders, significant metabolic signatures were found 
following correction for known confounding factors such as hemolysis level and ethnicity. 
The limited information about participating athletes such as their age, BMI, dietary intake 
and training regiments has too potentially reduced the power to identify associated 
metabolites. However the generally young age of elite athletes in addition to their diverse sports 
disciplines may have reduced the impact of their confounding effects. Additionally, the lack of 
information related to athletes who belong to team sports with respect to their roles was another 
limitation.  In soccer for example, defenders, mid-fielders and strikers vary in their cardiovascular 
demand due to their intensity of exercise and style of playing such as change of direction known 
to elicit greater metabolic and cardiovascular demands compared to straight line running at the 
same mean speed [46, 47]. This may explain the presence of a low-moderate CD group (moderate 
CD 1) that shows similar metabolic pattern to the high CD group in Fig 3. This group is mainly 
composed of soccer players, some of whom potentially exhibit similar exercise patterns and 
playing style to those who belong to high CD group. Finally, variations in dietary intake between 
the studied groups such as supplements, medications, and other ergogenics, may have affected 
their metabolic profile [48]. These differences are challenging to account for as they vary among 
athletes and are not usually disclosed. Taking all these limitations on board, our data require further 
confirmation and validation in other sport groups. 

Conclusion 
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Findings of this study present a snapshot summarizing differences between two groups of elite 
athletes with different cardiovascular demand. These metabolic differences were mostly related to 
source of energy, mechanisms for scavenging oxidative stress and membrane dynamics. The data 
also suggest an increased cardiovascular risk in the high CD group compared to their low-moderate 
counterpart. Replication studies are needed to confirm these metabolic differences in independent 
data set, aiming for discovery of biomarkers for assessing health, performance, and recovery of 

elite athletes. Such biomarkers could be used as early signs of extreme trainability related to elite 
athletic performance with potential applications in guiding future training programs, avoiding 
potential disorders associated with excessive training as well as improving their overall 
performance.  
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