This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JERM.2019.2914402, IEEE Journal
of Electromagnetics, RF and Microwaves in Medicine and Biology

IEEE JOURNAL OF ELECTROMAGNETICS, RF AND MICROWAVES IN MEDICINE AND BIOLOGY 1

Determining the Position and Orientation of
In-body Medical Instruments Using Near-Field
Magnetic Field Mapping

Vedat Cavlu and Paul Brennan

Abstract—There is a increasing demand for localizing medical implants in-body, such as wireless capsule endoscope (WCE) and
Nasogastric tube (NGT). Some studies have been conducted to solve this issue using either permanent magnets, static current sources
or RF fields. The permanent magnet fails due to low power, and static current source requires relatively high power source. The RF
field source requires high frequencies to get enough precision, which undergoes high attenuation in the body. At low frequency, when
the distance between the source and the receiver array is shorter than the wavelength, the far field assumption fails for localization
methods. Therefore, we propose a novel method of mapping the magnetic field vector in the near field region, with which wavelength
independent localization is done. We did extensive MATLAB and CST Microwave simulations followed by practical experiments.
The proposed method has achieved localization accuracy of less than 1 cm in Y-Z plane, 2 cm in depth (in X-axis) and the maximum
orientation error remained 10° in 3-D.

Keywords—Nasogastric Tube (NGT), Wireless Capsule Endoscope (WCE), Magnetic Field Mapping (MFM), Near Field, Source

Plane (SP), Local Maxima (x; and x2), In-body Medical Instruments (IBMI).

I. INTRODUCTION

In-body medical instruments (IBMI) help doctors and other
clinicians to diagnose the illnesses of patients or provide the
means to feed patients unable to eat normally [1], [2]. For
example, the Wirelss capsule endoscope (WCE) is used for
examining and inspecting the interior of the gastrointestinal
(GD) tract and the Nasogastric (NGT) is used to feed patient
with the nutrition that they need while they are unable to eat.
Tracking and verifying the position of the NGT can be used to
ensure it has been inserted correctly into the stomach, avoiding
accidental insertion into the lungs, larynx, trachea or brain
[3]. High precision tracking is more important for the WCE,
allowing surgeons to determine the location of abnormalities
within the GI tract when conducting surgery [4].

There has been a lot of research to overcome the problem
of locating these invasive instruments. Yi Wang [12] used
received signal strength (RSS) method using two 4 x 4 sensor
arrays with maximum location error of 100 mm, which is
relatively inaccurate. The permanent magnet (PM) technique
is used to determine both the position and orientation of the
source. The accuracy is high; however, due to the size restric-
tion of the WCE and NGT only small magnets can be used,
which is insufficient to provide enough power. Also, presence
of any ferromagnetic material in the detecting area could cause
failure in accurate localization [13], [14]. Therefore, more
focus is given to the electromagnetic field (EMF) localization
technique.

The EMF localization method is based on RSS, time of
arrival (TOA), time difference of arrival (TDOA) and angle
of arrival (AOA). However, in the near field the TOA and
TDOA are not achievable as they require very accurate time
synchronization of less than 1ns due to the high speed of
EM waves (3 x 10% m/s). Likewise, the AOA is not prac-
tical due to multiple reflections among tissues. Hence, the
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studies are focused generally on RSS. Nonetheless, RSS is
problematic because tissue-dependent signal attenuation may
lead to inaccurate localization. Also, this method requires good
knowledge of transmitted power which can change as the
resonant frequency of the transmitter will vary depending on
the tissue properties. A small inaccurate measurements of one
of these parameters could cause high error [1].

To overcome the issue with the localization of IBMI in
the near field, a magnetic field based localization technique
is proposed. 13.56 MHz signal is applied through solenoid
(IBMI) to generate an alternating magnetic field. This fre-
quency was chosen to maximize the signal strength at the
receiver while minimizing the attenuation through the tissue
[5]. Since the distance between the source and the sensor
array (< 20 cm) is much smaller than the wavelength (22.12
m), it is in the near field region. In the near field region the
plane wave assumption cannot be used as in the far field case
because the wavefronts arriving at the neighbouring sensors
are spherical. Therefore, the wavefronts are required to be
modelled by both direction of arrival and range in which phase
difference between neighbouring sensors are needed. It is not
possible to calculate the phase difference in this problem due
to long wavelength. Thus, the studies in [6]-[11] either need
additional pairings or large computational cost owing to the
use of algorithms such as MUSIC and ESPRIT, while magnetic
field mapping (MFM) does not require additional pairing and
computationally cheap.

The novel MFM method presented in this paper does
not need time-synchronization and does not get affected by
multiple reflections. There is no need to know transmitted
power strength or power loss through the tissues. The MFM
overcomes issues in the near field localization at relatively
low frequency. It achieves higher locating accuracy and low
frequency with low computation cost.

The paper is organized as follows; General background is
in section II. Simulation Modelling is in section III. Local-
ization and Orientation Methods are explained in section IV.
Experimental Set-up and Experimental Results are provided
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in section V. Finally, section VI concludes the paper.

II. BACKGROUND
A. Near Field Region

The space around an antenna is generally divided into near-
field and far-field regions. The near field region is defined
based on the transmitter dimension and the the distance to
observation point. Suppose the radius of coil as a, speed
of light ¢, frequency of signal f and distance between the
transmitter and receiver is r. Then, the near field region is
computed as:

M << 1 (1)

c
B. Magnetic Field Computation

In the near field region, the electromagnetic field radiates
like the static field. Hence, The magnetic field generated by
a multi-turn coil at a observation point of P; is calculated
by using by using Biot-Savart law. Suppose that the turns of
the coil are closely spaced. Then, the coil can be defined as
many currents’ loop. Based on the superposition principle, the
magnetic field observed at point P; is addition of contribution
of each turn. As shown in Fig.l1, a coil with radius of a
is placed on the X-Y plane at the origin of the coordinate
system. The coil is excited with a sinusoidal current of
I = I, sin(wt + ¢), where I,,,, w, t and ¢ are peak current,
angular frequency, time and the initial phase, respectively.

Now suppose we divide the loop into infinitesimally small
size pieces of Id I (current’s element) as shown Fig.1.

Z

Fig. 1. Magnetic field source (coil) center position Ps(zs,ys,zs) and
observation point P;(x;, y;, z;) position.

Then, the distance from the current’s element to the obser-
vation point is

r =/ +y} + 27 + a® — 2a — 2ay;sin(9) , (2)
and the total incident magnetic field at P is
tola dl x 7
B= .
4 / r3

Where z;, y;, 21, a, po and 6 are coordinate position of
observation point in X, Y and Z, the radius of coil, free
space magnetic permeability and the angle between the current

3)

element and the X-axis, respectively (derivations and details of
these equations could be found in [17]). Eq. (3) (Biot-Savart
law) is an elliptical equation, as a consequence, it is difficult
to solve analytically, so numerical methods are used. Since
we are only interested in one component of the field, which is
orthogonal to plane of sensors (from now on will be denoted
as SP along X-axis), the equation to be used is

_ puoNIpy, /7r ziacos(0)do
4 o r3 '

B, “4)
Where B,, N are the magnetic field component in X-axis and
equal to B, in Fig. 2 and coil’s number of turns, respectively.

C. Magnetic Flux Induction Based Faraday's Law

The source generates an RF alternating magnetic field. The
receivers are multi-turn printed circuit board (PCB) rectangular
coils. Thus, the system works based on Faraday’s law of
induction.

Fig. 2. Magnetic field with angle ¢ to coil surface and the field decomposed
to its B and B components.

Assume we have a coil with area of A (larger circle) as in
Fig. 2, the total flux passing through the coil surface is the
summation of the field passing through small dA (in grey)
areas as given below:

® = BA = BAcos(¢) = BLA = B, A (5)

Therefore, using Faraday’s law of induction we obtain induced
voltage € as p
Pl
€= o (6)

Where N, B, A, w, ¢ and t are loop’s number of turns, obser-
vation point total magnetic field, receiving loop area, angular
frequency, angle between incident field its and perpendicular
component and time, respectively [16]-[19].

Suppose we have n x n number of sensors, the induced
voltage across It" sensor could be computed as below by using
Eq.(5) and (6):

Vi = =N B Awsin(wt) 7
Therefore, the overall system could be generalized as
lel len
V(nxn)= : : ) (8)
anl ann

Suppose the source and the 1-D Linear SP is arranged as given
in Fig. 3 (a). The number of sensors (on SP) are assumed to
be 33 ranging from S; to Ss3, some of which are named in
Fig. 3 (a). Then, the results Fig. 3 (b) are obtained using (7).
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Fig. 3. The source position relative to 1-D linear sensor array (a) and the
field strength at the sensor array from S to Sz3 (b).

It is clear from Fig.3 (b) that signal strength is weak at S, but
it increases almost exponentially as we move from S; to Sis.
Then, it begins a steep decrease from Si3 to Sy7, at which the
strength is zero. The field strength at Sig to S33 mirror those
of Sig to Si. Hence, this is the crucial information that we
will use to deduce the location and orientation of the source
as explained in section IV.

III. SIMULATION MODELLING

Tissues

* Bone Signal
average

+ Colon generator
contents . i W|th

* Colon wall )

. Fat matching

+ Liver and tuning

¢ Muscle A

* Pancreas —. capacitors

« Skin -

* Small

intestine = -
contentsand
wall

* Stomach -
contentsand - - e
wall . e ce. R

Fig. 4. The magnetic field source (solenoid) and its feeding circuit placed
just next to the stomach of CST family voxel ("Donna’ as named in CST) and
the tissues (colours on voxel represent the different tissues) in the simulation
environment listed on the left.

The simulation medium in CST microwave is illustrated in
Fig.4. The source is a solenoid of 30 turns with the radius
of 3 mm and length of 20 mm. The source is connected in
parallel with a tuning capacitor and in series with a matching
capacitor to resonate and keep the load impedance at 50€2. It is
matched to 50€2 because the highest power can be delivered
under impedance match conditions (reader refer to [20] for
details).

The simulation was done with the part of human-body
starting just below breast to some part of the small intestine.
The reason this is done is because the memory required to
simulate the entire body exceeded the available computational
resources. Two different volumes of voxels were used in the
simulations to investigate to effect of vouxel resulution on the

computed magnetic field results. The sizes of the two voxel
were 85 x 100 x 110 mm?® and 110 x 120 x 125 mm?®. In both
cases of voxel simulations, the results were almost the same,
and they have negligible effect on the localization system.
The Donna is a good human representation (over a homoge-
neous phantom) as they are built from cross-sectional images
obtained using Computer Tomography (CT) and Magnetic
Resonance Imaging (MRI) devices. The voxel simulation takes
into account the electrical characteristic of tissues individually
for the specific frequency of operation. For instance, the blood
effect could be different when it’s still or flowing, therefore
the simulation calculates the effect of blood flow [21]-[23].
To ensure accuracy of the simulation, the minimum mesh step
is chosen to be one third of the minimum tissue thickness.

IV. LOCALIZATION AND ORIENTATION METHODS

In real scenarios, the initial orientation of the source is not
known, and as can be seen from Fig.3(a), the peaks are always
in parallel with the source orientation. In the proposed method
to determine source position and orientation, it is required to
have information of the peaks positions and strengths. So, the
peaks position is not detected in this case of 1-D array of
sensors, it will be applicable only if the orientation of the
source is in parallel with the SP array as illustrated in Fig.3(a).
Hence, 2-D plane of SP is used Fig. 5 (a).

In 2-D plane, when P and SP are orthogonal to each other
as in Fig. 5 (a), the field simulated in CST is given in (b). If
Fig.5 (b) is carefully observed, it can be seen that it agrees very
well with Fig. 3 (b) because the field between the local maxima
is zero. There are two identical, symmetrical field distribution
on both sides of the zero line between x; and x5. The field
distribution on both sides of the zero line take an elliptical
like shape. The decrease from the maximum point to zero
line is steeper than to other sides, which also could be used
to give an idea where the source may be located. Under this
circumstance, the way of finding the position and orientation
of the source was explained in Section II. For different source
orientation relative to SP is explained in the following.

A. Determining Angle ¢

If the source is rotated about V' axis by ¢° in Fig.5 (a), then
Eq. (4) will transform into:

B =c / Nﬂ (Zlacoj(@ + “25i2(¢)> PN C)
T T

—N7

The comparison of B, to its first component (cos(f)) and
second component (sin(¢)) at different ¢ are shown in Fig. 6.
It is noticeable from Fig.6 that B; is equal to addition of first
and second component on one side of the source center, while
on the other side is subtraction of second component from the
first. This happens because the first component of the field
(cos(#)) changes polarity while crossing the center line of the
source, while the second component maintains the same sign.
Also, local maxima change proportionally with the rotation
angle change for ¢=10° to ¢=30°. Hence, this indicates that
the local field strengths are related to second component of
the field, which depends on the rotation angle of the source.
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Fig. 5. Magnetic field source P, (blue coil) relative to local coordinate system
(U, V,W) aligned with W and the receiver coils on the Y-Z plane of the
global coordinate system aligned with X- axis (a), mapped field result for
source rotations 0° (b) and 30° (c).

Fig. 5 (c) indicates that as the source rotates about V' axis,
while one maximum field rises, the other one gets weaker. We
can use this information to predict the angle relative to SP.
From Fig. 6, clearly the change in ¢ causes a change in the
difference between the two field’s maxima (x; and xo hereon
will be described as peaks or maxima interchangeably).

If we plot the change in normalized maximum field differ-
ences (F' in Eq.(10)) against ¢, Fig. 7 is obtained.

X1 — X2
X1 —|—X2

F= (10)
Where x; and Xxo are local maxima. The graph in Fig. 7 is
similar to a typical sine function graph. Hence, if inverse sine
function of the normalized field differences are taken (¢ =
sin(F)~1), then the rotation angle (¢) can be predicted. Using
this, the source rotation is predicted and the predicted angles
versus real angle are illustrated in Fig.8 (a). The Predicted
angles’ results up to 65° were obtained with an accuracy of
less than 3° error. However, the results deteriorate when the
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Fig. 7. Change in field difference F’ versus orientation angle (¢) of the source
towards SP.

angle is at higher degrees depending on the distance between
SP and P. It is clearly seen from Fig.8 that the angles at
75° and 90° result in more inaccuracy. As a consequence, we
need to introduce some coefficients to obtain better predicted
results. Thus, we empirically used the following equation for
the distance between SP and P, with 20 mm increment starting
from 100 mm to 200 mm. At every distance, we have divided
predicted ratio (F') to real ratio (sin(¢)) for every 5° and taken
mean as follows:

C = L{x — 80 4+ 200 mm, ¢ = 5°,10°,...,90° (11)

sin(6)

Where [=1,2,...,6 and ()} is a constant matrix coefficient for

the distances of X 100 to 200 mm and C is the mean constant
vector coefficient of ) matrix.

-1
¢ = sin (g)

The results in Fig.8 (b) clearly show that the correction coef-
ficients increased the accuracy of prediction of the angles.In

(12)
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Fig. 8. Predicted versus real angle (a) and corrected prediction versus real
angle (b).

addition to improvement in the accuracy of the angles at the
higher degrees, the accuracy of lower angles are improved as
well. There is a good agreement between the predicted angles
and the real angles. However, the results for angles between
75° and 90° have more error relative to lower angles.

B. Source Position on Y-Z Plane

The relationship between rotation angle and the maxima
were explained above. Also, it can be realized from Fig.6 (a)
and (b), as the rotation angle increases the increasing peak
approaches the peak of second component while decreasing
peak moves away from it. Also, notice the second component’s
peak (shown in Fig.9 as x4) is always aligned with the source
position for any angle. The peaks were obtained in Eq.(9) by
adding together two B; components on one side or subtracting
from each other on the other side. It was understood from
results that the difference between peaks x3 always aligns with
the x4, and thus this is where the source is positioned.

B, = x3 = ||x1]|~[x2| (13)

But owing to the symmetry of B; around X7, the system could
show on both sides (x3 and x4), but we know that the source
is always between x; and xo. Hence, the system can easily
detect the position of the source in Y-Z plane.

C. Third Dimension (Depth) Determination

In Fig.10, the field mapped for distances of x = 50 mm
to X = 200 mm between the source and SP are given. This

Source Position in Y-Z
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Fig. 9. Predicting the source position at different angles on Y-Z plane

indicates that as the source moves away from the SP (x =
50 mm to x = 200 mm), the field distribution gets wider. It is
an indication of the link between the distance from the source
to SP and the width of the field distribution. This empirically
obtained relationship can be used to estimate the distance in X-
axis direction. The distance can be predicted using the Eq.14.
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Fig. 10. The field distribution gets wider on the same plane as it moves away
from the source (from (a) to (d)) by x distance.
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BTY
d= 5 gg (14)

The d here represents the half of the maximum field strength
measured around B,,,, (maximum field strength) shown in
black circle in Fig.10. We can predict the distance between the
SP and the source by using the d circle positions information.
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The depth (x) is proportional to the distance between two
farthest d around B,,,,. The Fig.11 displays the predicted
versus real distances for different source orientations.

The predicted results are best for all rotation angles between
80 mm and 140 mm region. The error is higher (almost 20 mm
for some angles) beyond this region.

V. EXPERIMENTAL SET-UP AND EXPERIMENTAL RESULTS

The Source
and its circuit
inside pork

Virtual Plane
a PCB

Sensor

% : Mat
TR |
Fig. 12. The feeding circuit & tilted solenoid (source) on plastic stand and
receiver coil on its plastic stand & its receiver circuit at back.

The experiments were conducted in free space environment
and in animal tissues (namely pork) as indicated in Fig.12.
The tissues that were used were fresh pork shoulder steaks,
belly joint and pork ribs. The tissues were placed around the
solenoid (IBMI). The thickness of the tissues between the
Source and SP were 9.5 cm and the layers of each different
tissue were distributed equally around the in-body medical
instrument. In the experiments, we used a solenoid (source) of
30 turns with radius of 3 mm and length of 20 mm. Also, the
sensor coil with 7 turns and radius of 5 mm on a PCB board
was used as seen in Fig.12.

A. MFM on Virtual Plane

in order to measure the field on SP, on the receiver side, a
single sensor was used instead of a sensor plane (n X n sensor
matrix). As seen in Fig.12, the receiver was put at 125 mm
distance away from the source. To measure the magnetic field
at each sensor points on the virtual plane (VP), the receiver is
moved virtually to each of the location of the sensors. Firstly,
the sensor was placed at point P;; on the VP shown on the
left side of Fig.12, and the field at this point is measured &
saved. Then, it was moved to its right by 1 cm to point Py,
and the field was measured & saved. This process conducted
continuously until Py,, as indicated by green arrow at the top.
After, the sensor was placed 1 cm (at P27) below the first point
P11 as shown with diagonal red arrow. The field at this point
was measured and saved. This procedure was carried out until
all the points (from Py; to P,, ) on the VP were measured
and saved. Finally, the results of all sensors on the VP is
mapped, and the results Fig.13 (b) were yielded. Then, the
results in Fig.13 (c) were achieved by placing the receiver 165
mm away from IBMI and the same procedures were repeated
for measuring the field on SP (VP).
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Fig. 13. Comparison of magnetic field computed in simulation, measured
in free space and in animal tissues (a), experimental magnetic field mapping
results on 2-D plane at distance of 125 mm (b), and 165 mm from Ps (c).

B. Comparison of Experimental and Simulation Results

To compare the results of experiments in free space, with
the pork tissues and the simulation results, firstly experiments
in free space were done along the line in parallel with the
source orientation at distances of 120, 130 and 140 mm from
the source. Then, the same procedures were conducted while
the source was surrounded by the tissues. The results of exper-
iments and simulation are given in Fig.13 (a). Fig.13 (a) shows
that the results are very similar. The difference between the
experiments in free space and in tissues are calculated by using
the root mean square error (RMSE). The RMSE values are
indicated on the right axis of Fig.13 (a). The maximum RMSE
between the experiments in tissues and in free space is less
than 0.92 mV. Also, it is clear that the experiment results are in
a good agreement with the simulation results. The simulation
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plots were deliberately scaled up for better demonstration of
the experiments results. Hence, this results suggests that the
effect of the tissues on the field passing through is negligible at
the frequency of operation. Furthermore, these results explains
that the numerical computations are highly accurate, which
means they could be used for localization and orientation
calculations.

C. Magnetic Field Mapping Results on 2-D Plane

Fig.13 (b) and (c) indicate the experiments results conducted
at distances of 125 mm and 165 mm from the source to SP,
respectively. It could be seen from results that there is a good
agreement between the experiment results in Fig.13 (b) and (c¢)
and the simulation results in Fig.5 (b). From Fig.13 (b) and (c),
it may be understood that the source is slightly tilted towards
the SP in the lower bound (which was 4°). The source position
is calculated as given in purple circle on the line between two
local maxima (x; and x2). The grey circles are the center of the
sensors along the line. Also, it is obvious there is a difference
between Fig.13 (b) and (c), because in (b) the depth is smaller,
the field is more intense in a smaller area. On the contrary, in
(c) the field intensity is distributed over a larger area as the
depth is bigger, which agrees well with the simulation results
Fig.10.

It is understood from the simulation and experiment results
that the localization of the source could be performed with an
accuracy of less than 1 cm in the Y-Z axes and 2 cm in depth
(in X-axis). Also, the source orientation in two dimensions
is obtained with almost 100 percent accuracy (less than 1°
error). But, the orientation of the source towards the SP is
less accurate, which is achieved with a worse case error of
less than 10°.

VI. CONCLUSION

A novel method has been described for near-field location,
based on measurement of the magnetic field orientations at
a number of sample points. The method was modelled and
simulated in Matlab and CST Microwave Studio and compared
with experimental results. The results show that there is a good
agreement between the simulations and the experiment. It is
understood that the source center could be located within 1 cm
Y-Z plane and depth of less then 2 cm. Also the orientation
of the source in two dimension could be determined with very
high resolution with error of less than 1°. The third orientation
could be achieved with maximum error of less than 10°. The
results indicates that the method could be used for in body
instrument localization with relatively high accuracy.
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