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Remarks on the self-shrinking Clifford torus

By Christopher G. Evans at London, Jason D. Lotay at London and Felix Schulze at London

Abstract. On the one hand, we prove that the Clifford torus in C? is unstable for
Lagrangian mean curvature flow under arbitrarily small Hamiltonian perturbations, even though
it is Hamiltonian F-stable and locally area minimising under Hamiltonian variations. On the
other hand, we show that the Clifford torus is rigid: it is locally unique as a self-shrinker
for mean curvature flow, despite having infinitesimal deformations which do not arise from
rigid motions. The proofs rely on analysing higher order phenomena: specifically, showing
that the Clifford torus is not a local entropy minimiser even under Hamiltonian variations, and
demonstrating that infinitesimal deformations which do not generate rigid motions are gen-
uinely obstructed.

1. Introduction

The Clifford torus contained in the 3-sphere in C? is an important example of a self-
shrinker in mean curvature flow. Moreover, the Clifford torus is Lagrangian in C? and has
particular significance in Lagrangian mean curvature flow: it is the simplest known example of
a compact Lagrangian self-shrinker in C2, as there are no self-shrinking Lagrangian spheres
in C2 [18] (even allowing for branched immersed spheres [5]).

In the present article we study two related issues: stability of the Clifford torus under
(Lagrangian) mean curvature flow, and rigidity of the Clifford torus as a (Lagrangian) self-
shrinker. Knowing stability would imply rigidity, but the converse is not necessarily true, as will
be the case here. Both issues are clearly crucial for understanding problems such as singularity
formation and genericity of singularity models.

1.1. Hamiltonian instability. Given that the Clifford torus is the simplest example
of a Lagrangian self-shrinker, Neves [13, Question 7.4] asked under what conditions on
a Lagrangian torus would the rescaled Lagrangian mean curvature flow converge to the Clifford
torus (up to translations and unitary transformations). It is known, for example by work in [10]
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and [11], that the Clifford torus is unstable under Lagrangian mean curvature flow, even at
the linear level (i.e. it is Lagrangian F-unstable). However, the variations used there to prove
instability are not Hamiltonian: they are the variations where one shrinks the size of one circle
generator in the Clifford torus relative to the other.

In fact, the Clifford torus is locally area-minimising under Hamiltonian variations, see
[15] as well as Theorem 4.3, and Oh conjectured that the Clifford torus is globally area-
minimising in its Hamiltonian isotopy class. Therefore, one would expect that it would be
stable for Lagrangian mean curvature flow under sufficiently small Hamiltonian perturbations.
This expectation is reinforced by the fact that the Clifford torus is Hamiltonian F'-stable, see
[10,11] as well as Lemma 4.2.

However, in spite of this, we show the following surprising phenomenon.

Theorem 1.1. The Clifford torus is unstable for Lagrangian mean curvature flow under
arbitrarily C k _small Hamiltonian perturbations for any k > 0.

The precise statement can be found in Theorem 4.9. Our construction is explicit, and
shows the result holds even in the U(1)-equivariant setting: in this context, the statement is that
the circle is unstable for the U(1)-equivariant Lagrangian mean curvature flow under arbitrarily
small Hamiltonian deformations. By looking at the U(1)-equivariant flow, it was shown in [8,
12] that the Clifford torus was unstable under large Hamiltonian perturbations, and in [14]
that the Clifford torus is unstable under arbitrarily C°-small Hamiltonian perturbations (but
this argument would never give C !-small perturbations due to the nature of the construction).
Theorem 1.1 therefore improves these results in this particular setting.

We expect that for the unstable perturbations the Lagrangian mean curvature flow devel-
ops a first finite-time singularity, which is Type II, whose Type I blow-up is a transverse pair of
special Lagrangian planes (with the same Lagrangian angle).

1.2. Hamiltonian stability. We observe by the work in [4] we have the following sta-
bility result (cf. Theorem 4.15).

Theorem 1.2. A compact embedded Lagrangian Ly in the 3-sphere in C? is Hamilton-
ian isotopic to the Clifford torus if and only if Lagrangian mean curvature flow starting at Ly,
after rescaling, converges to the Clifford torus (up to unitary transformation).

This is really a manifestation of the fact that a simple closed curve yq in the standard
2-sphere is Hamiltonian isotopic to an equator if and only if curve shortening flow starting
at yo exists for all time and converges to an equator.

1.3. Rigidity. Given that the Clifford torus is Hamiltonian F-stable, the instability
result Theorem 1.1 is only possible because there are infinitesimal (Hamiltonian) deforma-
tions of the Clifford torus as a self-shrinker which do not come from translations, dilations or
rotations. This means that, a priori, it is not clear whether the Clifford torus is locally isolated
in the space of self-shrinkers or not, and standard methods cannot determine the rigidity or
otherwise of the Clifford torus.

However, we use a novel approach to rigidity to show the Clifford torus indeed has
this property.
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Theorem 1.3. The Clifford torus is locally unique as a self-shrinker for mean curva-
ture flow.

The precise statement can be found in Theorem 5.6. The rigidity of the Clifford torus is
perhaps expected given that it is a simple and natural example of a self-shrinker, but what is
surprising is that the proof of this result does not, and cannot, proceed as one might expect.
Indeed, we hope that the novel method we employ to prove Theorem 1.3 will be useful in
other contexts.

1.4. Entropy. The proof of Theorem 1.1 relies on explicitly showing that the Clifford
torus is not a local minimizer for the entropy [6] under Hamiltonian variations. Due to
Hamiltonian F-stability, we know that this is not an issue that can be analysed at the “linear
level”.

More precisely, any Hamiltonian variation of order O(s) for which the entropy could
go down must have an entropy value which agrees with that of the Clifford torus up to and
including order O(s?). Therefore, one needs to look at “higher order” terms. It transpires that
the first order at which the entropy could go down is O(s%), showing the delicate nature of
the problem.

There is an additional issue that the entropy is defined as a supremum over all space-time
points, so it is not practical to compute directly. We overcome this through an argument which
allows us to restrict attention to the F-functional, which can be computed.

Theorem 1.1 follows from monotonicity of the entropy under (rescaled) mean curva-
ture flow.

1.5. Obstructions. Since we have infinitesimal deformations of the Clifford torus as
a self-shrinker which do not come from rotations, we have to demonstrate that these infinites-
imal deformations do not extend to genuine deformations. Therefore, again we have to go
beyond the “linear level” in the analysis, and take a new approach to the study of local unique-
ness.

More concretely, if the deformation is of order O(s), we have to explicitly demon-
strate that there are obstructions to extending it to a solution of the self-shrinker equation at
order O(s¥) for some k > 2. Here, we view the problem of solving a nonlinear equation in
terms of its linearisation and an iterative fixed point/contraction mapping argument, as one
uses in the Implicit Function Theorem. It turns out that obstructions do not appear at the first
step (i.e. k = 2) but rather at O(s>). Again, this demonstrates the somewhat subtle nature of
the problem.

1.6. Summary. We now briefly summarise the contents of the article.

In Section 2 we introduce the notation we shall use throughout for studying the Clifford
torus and its deformations, as well as recalling basic facts from Lagrangian geometry and the
definition of the entropy and F-functional. We describe some of the eigenspaces for low eigen-
values of the Laplacian on functions and on the normal bundle of the Clifford torus, since this
plays a role in the second variation of F, which we derive.

In Section 3, we study the orbit of the Clifford torus under various relevant group
actions and show that generators of these actions correspond to elements of the eigenspaces
we described in Section 2.
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In Section 4, after identifying the variations giving Hamiltonian F-stability, for one of
these sufficiently small variations we compute the F'-functional and the entropy. By showing
it goes down, we prove Theorem 1.1. We also prove Theorem 1.2 in this section using work
in [4] and some elementary observations, and additionally give an alternative proof of a weaker
form of the stability result Theorem 1.2 which may have applications in other contexts.

Finally, in Section 5, we set-up the deformation problem for self-shrinkers in terms of
zeros of a smooth map. After gauge-fixing for the action of rotations, we obtain a nonlinear
elliptic operator acting on normal vector fields whose zeros characterise nearby self-shrinkers.
We identify the (self-adjoint) linearisation of this operator, its kernel, and show that the nonlin-
ear operator determines a non-trivial cubic map from the kernel to itself. From this, we prove
Theorem 1.3.

2. Preliminaries

We define the Clifford torus in §3(2) € C2 = R* by
L ={v2(c'"% /%) € C?: 0,0, € R}.

We then have that L is Lagrangian and minimal in §3(2). Therefore, if X denotes the position
vector on L, we have that X = X, where + denotes projection onto the normal bundle NL.
Moreover, the mean curvature vector H of L in C2 satisfies

2.1 H = -

i.e. L is a self-shrinker so that L; = /1 — L is a solution to (Lagrangian) mean curvature
flow with Ly = L. These facts are easy to check so we do it here, as the computations will be
useful later.

Throughout we will use complex coordinates z1, zo on C2 and corresponding real coordi-
nates (x1, y1, X2, y2) on R* sothat z; = x1 + iy1 and zp = xp + iys.

2.1. Basics. We let 81 be the unit circle in C. We also let J and w be the standard
complex and symplectic structures on C2. We define the embedding X : 8! x 81 — L c C?
by

X(eiel,eiez) = «/E(eiol,eiez).

We therefore have two tangent vector fields on L given by

0 : 0 .
X1 = Xo| =— ) = V23e%,0) and X, = Xu| =— ) = v/2(0,i¢'%).
691 a92
It is immediate that
(2.2) [X11* = [X2> =2 and (X1, X5) =0,

thus the induced metric on L is
(2.3) 2d0F + 2d63,

which is flat.
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It is clear by inspection that
JX1 = —v2%,0) and JX, = —/2(0,¢'%)
are orthogonal normal vector fields on L, and hence L is Lagrangian. Moreover,
X=Xt=—-JXi-JX..
We see that

1 . 1
—X; and E, = (0,iel%?)=—Xx
V2 g ) V22

are orthonormal tangent vector fields on L, so we can compute the mean curvature vector field

Ey = (ie'?,0) =

1 1
H = VElEl + VEZEZ = EVXIXI + EVXZXZ
o\ V2
2 2
as claimed in (2.1).

Observe that if Q = dz; A dzp is the standard holomorphic volume form on C?2, then,
since

1

i 1 X
(0.¢'%) = SUX L+ TX2) = ——-,

i1 ) _
(e, 0) 5

X*dz; = V2ie'%df; and X*dzy = V2ie'?2d6,,

we have that '
X*Q = —26/01102) g9, A d6,.

Since the volume form on L is
2.4) voly, = 2d6; A dbs,

we see that the Lagrangian angle 6 of L satisfies

o0 — _ iO140) _ i(O1+0+7)

We therefore verify that
1
H=JV0=JV(O1+06,+m)= E(JXl + JX>).

(Notice that the factor of % arises from (2.2).)
The Clifford torus is also an example of a (positive) monotone Lagrangian, i.e. if A is the
1-form dual to J X+, then

[46) = S € H' (L)

for some constant ¢ > 0. We know in fact that ¢ = 1 for any Lagrangian self-shrinker satisfy-
ing (2.1). The monotone property is preserved under Hamiltonian isotopy, and any monotone
Lagrangian can be rescaled so that ¢ = 1.

2.2. Laplacians. We shall see that to understand the stability properties of the Clifford
torus as a self-shrinker, we will need to analyse the Laplacian on normal vector fields, and
particularly the 1-eigenspace of the Laplacian.
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Notice that (2.3) implies that the induced Laplacian on functions on L is just

1 1(0> 0°
2.5 AL =-Ag=—|— +—|.
) BT 2(5912 8022)

where Ag is just the standard Laplacian on 8! x §!. In particular, we have the following
elementary facts.

Lemma 2.1. For A given in (2.5) we have that the set of eigenvalues is
{%n :n € N},
Moreover, we have
Span{l} ={f : AL f =0},
Span{cos 01, sin01,cos bh,sinbr} = {f : AL f = %f},
Span{cos(0; + 63), sin(0; + 63),cos(61 — 62),sin(6y — 62)} ={f : AL f = f}.
Proof. This is immediate from (2.5), the observation that
Agcos(01 & 65) =2cos(01 £ 6,) and Agsin(fy £+ 6,) = 2sin(6 % 6;),

and the fact that cos 6;, sin 6; are 1-eigenfunctions of Ag fori =1, 2. O

Moreover, as L is Lagrangian and flat, and the normal bundle and tangent bundle are
isometric, we have that the normal bundle of L is flat. Thus the Laplacian on the normal bundle
is given by the rough Laplacian

(2.6) A7 =-V5 Vs, — Vg, Vs,
It is easy to see that
(2.7) Vx, X1 =JX1, Vx,Xo=JX2, Vx, Xo=Vx,X;=0.
Therefore, as the complex structure J is parallel (or just by inspection),
Vx,(JX1) = JVx, X1 = —X1, Vx,(JX2) = JVx, X2 = —X>,
Vx,(JX2) = JVx, X2 =0, Vx,(JX1) = JVx, X1 =0.
We therefore see that
(2.8) Vi, (JXj) =0
for all i, j. Hence, J X1 and J X» are harmonic normal vector fields:
AL JX; = 0.

Notice this implies that
ATH=0=A7X*
Since J X and J X, span the normal vector fields on L, we can write any normal vector

field V' on L uniquely as
V= fiJX1+ faJX>.
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From (2.8) we have that
(2.9) ALV = (AL /D) X1 + (AL f2) X2,
where Ay is given in (2.5). This yields the following.

Lemma 2.2. For Ai‘ given in (2.6) we have that the set of eigenvalues is
{%n :n € N},
Moreover, we have
Span{J X1 4+ J X2, JX1 — J X2} = {V : A7V =0},
Span{(cos 0;)J Xg. (sin0;)J Xy : jk = 1,2} ={V : A7V = 1V},
Span{cos(0y &+ 62)(J X1 + J X>3),sin(01 £ O2)(J X1 £ T X2)} ={V: Ai‘V =V}

Proof. This is immediate from Lemma 2.1 and (2.9). O

Notice that the fact that there is a 2-dimensional space of harmonic normal vector fields
is consistent with the fact that b! (L) = 2, and thus the space of harmonic 1-forms is 2-dimen-
sional.

2.3. Entropy. The entropy of an immersion X : £2 — C?2, where X2 is compact, is
defined as in [6] to be

1 X — xal?
AX) = Sup / €xXp (—&) voly,
(x0.t0)eC2xR+ 4710 Jx 410

where voly is the volume form induced by X *g, and g is the Euclidean metric on C2. It will
also be useful to consider the F'-functional

1 X —xo|?
F(X,xq,1t0) = m[xexp(—%) volyg,

so that
AMX) = sup F(X, xo,19).
(x0,t0)€C2xR+

The important properties that the entropy has are summarised as follows (cf. [6]). By
rescaled mean curvature flow, we mean the flow where we perform the standard Type I rescaling
of mean curvature flow about some space-time point.

Lemma 2.3. The following statements hold:
(a) The entropy is invariant under translations, dilations and rotations.

(b) The entropy is non-increasing under mean curvature flow and rescaled mean curvature
Sflow.
(¢) The critical points of the entropy are the self-shrinkers satisfying
X —xo)t
(2.10) H = X —xo)™
2to

for some xo € C? and tg > 0.
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Notice that if one has a self-shrinker satisfying (2.10), then by applying a translation and
dilation one can ensure that the new shrinker satisfies (2.1).
For a self-shrinker M satisfying (2.1) we have that

A(X) = F(X,0,1).
It is therefore straightforward to compute the entropy of the Clifford torus.
Lemma 2.4. For the Clifford torus X : L — C 2 we have

2
AX) =T =2311... .
e

Proof. 'We compute

1 1
AMX) = H/Lexp(—Z|X|2) volg,

1 2w 2w 4 2 2
- — / 27 dby dby = — = =
4 0 0 2mwe e
where we used | X |?> = 4 and (2.4). o

2.4. Second variation. As we already stated, the first variation of F at (X, 0, 1) van-
ishes precisely at self-shrinkers satisfying (2.1). Therefore, to understand the stability (or oth-
erwise) of the Clifford torus we need to look at the second variation of F at (X, 0, 1). This is
computed by several authors, e.g. [1,2, 10], and we specialise their formula to our situation.

Lemma 2.5. The second variation of F at the Clifford torus L at (X, 0, 1) in a normal
direction V = fiJ X1 + foJX> (so fixing xo = 0 and to = 1) is given by

2

4 = (V.(AL = DV)p2

s=0
=2(f1i. (AL =D fi)p2 + 2(/2. (AL — 1) f2) 2.
More generally, the second variation of F at L at (X, 0, 1) in a normal direction V with

Ot
=g, to = 5 — =T,
s=0 § 0 os ls=0

Te——r0
0s2

OxXg

Xo =V, _aS

is given by

O°F 1 Lo 12 2.2
4Jreas—2 = (V.(A; =DV +E+1X) 2 — EHS 7. —8m"7~.

Proof. It is shown in [10, Theorem 3], for example, that if gij denotes the components
of the inverse of the induced metric and 4;; denotes the components of the second fundamental
form on L, and we set

. Vo1
LV = ATV — (4. V)gH g Ay — 5t EV}J(_T v,
then

2

@11y 4n ok
) T—
0s2

1x|2

:/((V,iV)+(V,$)—%|EL|2—21(H, V)—r2|H|2)e_4 voly .
L

s=0
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For the Clifford torus, it is easy to see from (2.7) that the second fundamental form A
of L with respect to the basis X1, X5 is given by

A1 =JX1, Aia=A421=0, Ay =JX;.

Therefore, using (2.3) we see that

o 1 1 I . |4
(Aij. V)gH g Ay = JUIXL VI Xy + ((IX0. V)T X = g (IXi V)X =
The fact that X = X implies that X T = 0. Moreover, 2H = —X, |X|?> = 4 and the volume
of L is 872. The result follows from (2.9) and (2.11). ]

Lemma 2.5 implies the linearisation of the self-shrinker condition (2.1) on L is, up to
an overall sign, given by Ai‘ — 1. We shall formalise this statement later, but what we mean
is that if we consider a normal graph over L which also satisfies (2.1), then to first order the
normal vector defining the graph will lie in the kernel of A i — 1, which we have described in
Lemma 2.2.

3. Group orbits

We look at the orbit of the Clifford torus L under various groups, studying those which
preserve the Lagrangian or self-shrinker condition, or otherwise. This will play a crucial role
in our later study.

3.1. Dilations. Since L is a self-shrinker, we know that dilations of L are generated
by H, or equivalently
(3.1) U =-Xt=JX|+JX,.

Notice that this is a harmonic normal vector field and thus clearly not Hamiltonian.
We can choose another harmonic normal vector field orthogonal to X+,

(3.2) Uy =JX1 —JX>,

and we observe the following from Lemma 2.2.

Lemma 3.1. For Ai‘ given in (2.6) and Uy, Uy given in (3.1)—(3.2), we have
Span{Uy, Uy} = {V : AiV = 0}.

If we define a one-parameter family {Ls : s € R} of Lagrangians by
V2

Fem

we see that Lg C & 3(2) forall s, L s, = L and we can calculate the variation vector field

OLs,

s

We shall see that L define Lagrangian variations for which the Clifford torus is unstable
under the flow, but we know these lie in different Hamiltonian isotopy classes to L for s # 0
as U, is not Hamiltonian.

Ls, =

s

(e75H01 e5Hi02) 1 91,0, € R},

=JX1—JX2 =U,.

s=0
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3.2. Translations. Translations clearly preserve the class of self-shrinkers and preserve
the Lagrangian condition. The translations on C? are generated by the vectors

(1,0), (@,0), (0,1), (0,7).

We can restrict these vector fields to the Clifford torus L and we may compute

((1,0), JE1) = —Re(e %) = —cos by, ((1,0), JE3) =

((i,0), JE;) = —Re(le 01y — _sin6y, ((i,0), JE;) =
((0,1), JE;) = ((0,1), JE,) = —Re(e 102) — _cos b,
((0,i), JE;) = ((0,i), JE;) = —Re(ie %) = —sin6,.

Therefore,
(3.3) (1,00t = —cos 61 JE; = —/2J V(sinby),
(i,0) = —sin61 JE1 = v/2JV(cos 6;),
(3.4) (0, 1) = —cosbrJE» = —~/2JV(sin 6,),

0,i)F = —sin6, JE, = V/2JV(cos 6>),

which are manifestly Hamiltonian. Moreover, we have the following.

Lemma 3.2. For Ay given in (2.5), we have
Span{(1,0)", (i,0)*%, (0, )*, (0,1) "} ={JV S AL f = 3 f}.

Proof. This is immediate from Lemma 2.1 and (3.3)—(3.4) D

3.3. Unitary transformations. We know that the unitary group U(2) on C? is the inter-
section of the rigid isometry group SO(4) on R* = C? with the Hamiltonian diffeomorphism
group on C2. Therefore, the orbit of L under U(2) consists of Lagrangian self-shrinkers satisfy-
ing (2.1), and the orbit of L under SO(4) consists of (not necessarily Lagrangian) self-shrinkers
satisfying (2.1).

The orbit of L under U(2) is 2-dimensional and the orbit of L under SO(4) is 4-dimen-
sional, since the stabilizer of L in each case is the maximal torus in U(2):

el 0
[ ) el

The maximal torus is generated by the matrices

i 0 0 0
and ,
(o) = (5 7)
1z and 0 ’
0 iZz

generating one-parameter subgroups in U(2) € SO(4). Notice that these vector fields restricted
to L are just X1 and X35, so their projection to the normal space of L is zero. (Here, and
throughout, we will not distinguish row vectors and column vectors.)

leading to vector fields on C?
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We can find a complementary (in fact, orthogonal) subspace of the Lie algebra of U(2)
to the maximal torus, spanned by the matrices

0 -1 0 i
and .
1 0 i 0
The corresponding vector fields on C? are
(3.5) (_22) and (’,22) ,
1 1Z1
whose restrictions to L are just

Y1 = V2(—e® %) and Yo = V2(ie'%ie').

We quickly see that

Hence,
(3.6) Yit = cos(8) — 62)(J X1 — JX5) = 2J V(sin(6; — 6,)),
(3.7) Y5t = —sin(@; — 62)(J X1 — J X2) = 2J V(cos(61 — 62)).

which are manifestly Hamiltonian.
If we consider the action of the matrix

(3.8) R e U(2)
' V2 \=i i

on L, we see that we obtain the Lagrangian self-shrinker
(3.9) L' ={(e' +e'%,—ie® +ie'%): 0,0, eR)

= {((cos 01 + cos 62) + i (sin b + sinb5),
(sin 0y — sin B) — i(cos B1 — cos 92)) 101,05 € ]R}

= {(2eos(215%) cos(%45%2) + 21 sin(“5%) cos(15%2),

2005(91;92) sin(algez) +2i sin(elzﬂ) sin(@) 160,60, € R}

= {2(e'® cos p,e'? sinp) : $, p € R},

where we set

_91+92 01 — 0,

(3.10) ¢ 5 and p=
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In this way, we can view the Clifford torus as an § !-invariant Lagrangian of the form

{r(9)(cos p,sinp) : ¢, p € R}

for a curve y in C. In the case of the Clifford torus, the curve in C in question is just
y(@) =267,

a circle of radius 2.

3.4. Hamiltonian group orbits. From the perspective in (3.9) it is clear that we can act
by the linear Hamiltonian group on C = R2, i.e. SL(2,R), on the curve y(¢) = 2¢'? to obtain
Lagrangians Hamiltonian isotopic to L', and thus L. The stabilizer of y in SL(2, R) is SO(2),
so the orbit of y under SL(2, R) is 2-dimensional. Moreover, if  is in the SL(2, R) orbit of y,
then the corresponding Lagrangian

(3.11) L' = {7(¢)(cos p.sinp) : ¢, p € R}

lies in the SO(4, R) orbit of L’, and thus L, if and only if = y up to reparametrisation, which
isifand only if L' = L’.

We can choose two one-parameter subgroups of SL(2, R) which, together with SO(2),
enable us to generate SL(2, R): for example, we can take

e 0 coshs sinhs
Ag = and By =| .
0 e* sinhs coshs
fors € R, sothat {45 : s € R} and { By : s € R} are our one-parameter subgroups. We see that,
identifying R? = C, we have
Asy(¢p) = 2e° cosp + 2ie”* sing

and
Bsy(¢) = 2(cosh s cos ¢ + sinh s sin¢) + 2i(sinh s cos ¢ + cosh s sin ¢)

= 2(cosh se’® + i sinh se™'?).

Taking y = Asy or y = Bsy in (3.11) leads to the following Lagrangians Hamiltonian
isotopic to L’ (and L) which only lie in the SO(4)-orbit of L for s = 0:

Ly = {2(e cos¢ + ie *sing)(cos p,sinp) : ¢, p € R},
L;RS = {2(coshsei¢ + i sinh se "?)(cos p,sinp) ¢, p € ]R}.

(The statement about not lying in the SO(4)-orbit for s # 0, as well as being clear by inspec-
tion, also follows from (3.16) below.) Acting by the inverse of the unitary matrix in (3.8),

namely
1 (1 i
— e U(2),
ﬁ(l —i) ?

on L;‘S and L;BS, we obtain Lagrangians L4, and L g, Hamiltonian isotopic to L, which obvi-
ously still only lie in the SO(4) orbit of L for s = 0. Explicitly, we see that

La, = {V2(e* cos¢ +ie " sing) (e, e™?) : ¢, p € R},
Lp, = {«/i(coshsei"s + i sinhse "®) (e, e7P) 1 . p € R}.
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Substituting back for ¢, p in terms of 81, 6, via (3.10), we compute
2(e* cosp + e sing)e® = e*(cos B + cos B2) + e (cos O; — cos )
+ie’(sinf; —sinbp) + ie *(sinO; + sin 6)
— 2coshse!? + 2 sinh se_iez,
2(e® cos ¢ + ie* sing)e P = e (cos O + cos B) + e (cos O — cos 6;)
+ie*(sinf, —sinfy) + ie *(sin By + sin ;)
= 2sinhse ™% + 2coshse'®,
2(coshse'® + i sinhse ")’ = 2 coshse’® + 2i sinhse %2,
2(coshse’® + i sinhse™?)e ™" = 2i sinh se" 01 4 2coshse’®.
We can thus rewrite
(3.12) Ly, = {«/E(cosh st 4 ginh se % ginh se %" + cosh seigz) 101,65 € R},
(3.13) Lp, = {x/z(coshse“91 +i sinhse %2 i sinh se 101 +coshsei92) 101,05 € R}.
Notice that the variation vector fields for L4, and L g, at s = 0 are given by
Vq = \/E(e_iez,e_iel) and Vp = «/E(ie_ioz,ie_iel).

We may compute that

(V4. JE1) = Re(—v2e 1 @240y — _ /2 ¢cos(6; + 6,),
(V4, JE3) = Re(—v2e71O1+02)y — _ /2 cos(6; + 6,),
(Vg, JE1) = Re(—+2ie 102400y — _/2in(6; + 6,),
(Vg, JE>) = Re(—/2ie 10102y — _/25in(6; + 6,).
Hence,
(3.14) Vit = —cos(61 + 02)(J X1 + JX2) = —2J V(sin(6; + 62)),
(3.15) Vg = —sin(0; + 62)(J X1 + JX2) = 2JV(cos(6) + 62)).

which are both clearly Hamiltonian, as we knew.
It is worth noting the following, which follows immediately from Lemma 2.1.

Lemma 3.3. For the normal vector fields given in (3.6), (3.7), (3.14), (3.15), we have
Span{Yi-, Y5, Vi Vgt =V S ALf = f}.

Observe that the matrices defining the vector fields on R* = C2, which generate the
one-parameter subgroups of transformations defining the families L4, and L g, are given by

0 0 1 0 000 1

0 0 0 —1 0010
(3.16) and

1 0 0 0 0100

0 -1 0 0 1000

These matrices lie in sp(4, R), the Lie algebra of the symplectic group on R*, but clearly do
not lie in $0(4) (and thus do not lie in 11(2)).
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3.5. Rotations. We have so far focused on the Clifford torus L as a Lagrangian self-
shrinker, but we now want to understand its character just as a self-shrinker. For this, we first
need to identify the rotations in SO(4) which do not arise from U(2). At the Lie algebra level
(i.e. in $0(4)), we can span this 2-dimensional space with the following matrices:

0O 0 -1 0 00 0 -1
0 O 0 1 00 -1 0
and
1 0 0 0 0 1 0
0O -1 0 O 1 0 O 0

This yields corresponding vector fields on R4 = C?2,

—X2 —)2

—Z5 —X —iZy
Y2 _ _2 and 2| _ '_2 ’
X1 1 Y1 1Z1
- X1

generating one-parameter subgroups in SO(4). Their restrictions to L are
= ﬁ(—e_iez,e_iel) and Y4 = ﬁ(—ie_i92,ie_i91).

As before, we may compute
(Y3, JE1) = Re(v/2e 102400y — (/2 cos(6; + 02),
(Y3, JE5) = Re(—~2e7101102)y — _ /2 cos(6; + 6,),
(Y4,JE1) Re(v2ie 102400y = /25in(0; + 6,),
(Y, JE;) = Re(—2ie 101192y — _/25in(6; + 6,).

Thus, we have

(3.17) Y3t =cos(8; + 62)(JX1 —JXp) and Y;- =sin(6; + 62)(J X1 — J X2).

Notice here that these vector fields are not Hamiltonian, again as we would expect.

3.6. Further group orbits. Finally, we consider the following 2 x 2 complex (in fact,
Hermitian) matrices at the Lie algebra level (i.e. they lie in the Lie algebra of SL(2, C)):

0 1 —i
and 0 : ,
1 0 i 0

which are identified with the following real 4 x 4 matrices

0010 0O 0 0 1
00 0 1 0O 0 —-1 0
and ,
1 000 0 -1 0 0
01 00 1 0 0 O

that do not lie in s0(4) or in sp(4, R). These matrices yield corresponding vector fields on C?2:

Z1 1Z1
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which one should compare to (3.5). These vector fields generate one-parameter groups given
by {Cs : s € R} and { Dy : s € R}, where

coshs sinhs coshs —isinhs
Cs = and Dy = .

sinhs coshs isinhs coshs

The orbits of L under the action of these one-parameter groups yield the following real surfaces
in C2, which lie in the SO(4)-orbit of L only for s = 0:

Le, = {ﬁ(cosh se'?" 4 sinhse!?2, sinh se’' + coshsei02) 101,06, € R},
Lp, = {x/i(coshsem‘ — i sinhse'?2 i sinhse’® + coshseiez) 101,60, € R}.
(These formulae should be compared to L4, and Lp, in (3.12)—(3.13).)
The variation vector fields of L¢, and Lp, at s = 0 are given by
Ve = V22,9 and  Vp = V2(—ie'®, ie!%).

We may compute that

Hence,

(3.18) Vi = —cos(8) — 02)(J X1 + J X2),
Vi = sin(6 — 02)(J X1 + J X2),

which should be compared to (3.14)—(3.15), and which are manifestly nor Hamiltonian, as we
would expect.
We now observe the following by Lemma 2.2.

Lemma 3.4. For the normal vector fields on L given in (3.6), (3.7), (3.14), (3.15),
(3.17), (3.18), we have

Span{Yi-, Y5, Y55 Y5 VE Ve Va, Vil =V i ALV = V).

4. Hamiltonian instability

It is known that the Clifford torus is F-unstable under Lagrangian variations [10, Theo-
rem 8] but F-stable under Hamiltonian variations (this is claimed in [10, 11], even though
[2, Main Theorem 6] seems erroneously to claim the contrary). We will verify these claims
explicitly and show more: that the Clifford torus is entropy unstable under Hamiltonian varia-
tions.

From this we will prove that the Clifford torus is unstable under Lagrangian mean curva-
ture flow under C *°-small Hamiltonian variations (even U(1)-equivariant and graphical).
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4.1. Second variation. In this subsection, we first verify the Lagrangian instability
result in [10, Theorem 8].

Lemma 4.1. In the direction of the Lagrangian variation Uy = J X1 — J X3 of the
Clifford torus L, the second variation of F is strictly negative. Thus, the Clifford torus L is
Lagrangian F -unstable.

Proof. We have that Ai‘Uz = 0 by Lemma 2.2. We know that U, is orthogonal to
X = JX; + JX;, by (2.2), and U, is orthogonal to the restriction of any constant vector to
L by Lemmas 2.2 and 3.2. The result follows from taking V' = U, in Lemma 2.5. O

This Lagrangian variation corresponds to “squashing” one geodesic circle direction in
the torus whilst “expanding” the orthogonal geodesic circle direction. We reiterate that this
variation is not Hamiltonian.

We know, by Lemmas 2.2, 2.5 and 3.2, that the second variation of F will be negative
in the direction of any translation since they have eigenvalue % for Ai‘. These transformations
are also Hamiltonian so they give unstable Hamiltonian directions for F. However, we now
show that these are the only unstable directions, verifying the Hamiltonian F-stability claimed
in [10,11].

Lemma4.2. In the direction of any Hamiltonian variation of the Clifford torus L ortho-
gonal to the translations, the second variation of F is non-negative. Thus, L is Hamiltonian
F-stable.

Proof. 1f JV f is a Hamiltonian vector field orthogonal to the translations, then f must
lie in the span of the eigenspaces of Ay, of eigenvalue greater than or equal to 1 by Lemmas 2.1
and 3.2. The result follows from Lemma 2.5. O

This result fits well with the following [15].

Theorem 4.3. The Clifford torus L is a local minimum for volume under Hamiltonian
variations in C2.

We finally characterise the kernel of the second variation under Hamiltonian variations.

Lemma 4.4. The Hamiltonian vector fields JV f which give directions for which the
second variation of F at the Clifford torus L is zero are those where Ap f = f, described in
Lemma 3.3.

By Lemma 3.3, two of these variations arise from unitary transformations and therefore
are integrable directions, in the sense that the F'-functional is constant under these transforma-
tions. However, we need to analyse further the other two directions, as we only currently know
that the F'-functional is non-decreasing in these directions to second order.

4.2. Entropy. We now return to the Lagrangians L4 introduced in (3.12). By Lem-
mas 3.3 and 4.4, they are generated at s = 0 by a Hamiltonian vector field for which the second
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variation at s = 0 is zero. If we let X(s) be the position vector of L4, we wish to compute the
value of the F-functional at (X(s), 0, 1) for s near 0 to compare it to its value at (X, 0, 1) as
X0)=X.

After that, we wish to estimate F at (X(s), xo, fo) for s near 0 and (xg, #o) near (0, 1).
With this information, we wish to compare the value of the entropy A(X(s)) relative to A(X),
computed in Lemma 2.4.

We begin by showing that the F-functional, centred at (xg, z9) = (0, 1) strictly decreases
along the family L4, for s near 0.

Proposition 4.5. For s near 0, we have that

F(X(s),0,1) — F(X(0),0,1) = _%S6 + 0(s®).

Hence F(X(s),0,1) has a strict local maximum at s = 0.

Proof. 'We start by recalling that
4.1) X(s) = v/2(cosh se'® + sinhse %2 sinhse ™% + cosh seiez).
Hence,
|X(5))* = 2((cosh s cos 01 + sinh s cos 6)% + (cosh s sin §; — sinh s sin 65)
+ (sinh s cos 61 + cosh s cos 62)% + (—sinh s sin 61 + cosh s sin 6,)?)

= 2(2(cosh2 s + sinh? s) + 4 sinh s cosh s cos(f; + 92))
= 4cosh2s + 4sinh 2s cos(61 + 6>).

We have two tangent vector fields on L 4,:
X1(s) = vV2(i coshse!?', —i sinh se_iol),
Xa(s) = V2(~i sinhse %2 coshsei92).
We see that
|X1(5)|> = | X2(s5)|* = 2(cosh? s + sinh? 5) = 2 cosh 2,
(X1(s), X2(s)) = —2cosh s sinhs Re(ei(9‘+92) + e_i(9‘+62))
= —2sinh 2s cos(61 + 62),

so the induced metric on Ly, is
2 cosh 2s(d612 + d922) — 2sinh 2s cos(0; + 6,) d6, db,.

Therefore, the volume form on Lg4, is

4.2) vol(s) = 2\/cosh2 25 — sinh? 2 cos2(61 + 62) df; A db,.
Hence, we deduce that
1 2w 2
4.3) F(X(s),0,1) = — / 1(s)dB do,
2me 0 0
where

(4.4) I(s) = \/cosh2 25 — sinh? 25 cos2(f; + B)e ! cosh2s—sinh 25 cos(61+62)
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This is clearly a real analytic function of s and we may then compute its power series expansion
about s = 0. We see that since changing s to —s in (4.4) can be accounted for by translating
01 + 65 to 61 + 6> + 7, the power series of (4.3) will be even in s. Equivalently, we notice
that the odd powers of s in the expansion of /(s) will be linear combinations of odd powers of
cos(0y + 6») and so will integrate to O in (4.3). We see this explicitly when we compute the
first terms of the power series, by calculating

@45  I1(0)=1, I'(0)=—2cos(d; +6), 1"(0)=0,

(4.6) ! (3;!(0) = —g cos(f; + 62) + 20053(91 + 62),

4.7) I(‘:!(O) = —2 + 8cos?(f; + 6) — ?0054(91 + 65),

(4.8) 1(55)!(0) = i—g cos(601 + 62) — 2 cos(0; + 62) + 2 cos® (61 + 6),

4.9) 1 ©) = i - 2 cos?(6; + 0>) + ﬂ cos* (61 + 6,) — ﬁ cos6(91 + 67).

6! 3 3 9 45
Notice that (4.5) implies that, for s near 0,

2
F(X(5),0,1) = X + 0(s3) = F(X,0,1) + 0(s3),
e
which is consistent with the fact that X is a critical point for F and that the second variation is

zero in the direction a)ggs) |s=0. As already observed, the terms in (4.6) and (4.8) integrate to 0.
It is also elementary to see from (4.7) and (4.9) that

21 p2m 1(4) 0 2m 27w 1(6)(( 8
f / ( )d91 df, =0 and / / ( )d91 do, = ——x2.
o Jo 6! 9

The result now follows. O

We now consider the value of the F'-functional for L 4, for space-time centres near (0, 1).

Proposition 4.6. Let X(s) denote the position of L4, given in (3.12). Then there exist
so > 0 and rog > 0 such that whenever (xg, ty) lies in the set

S = {(x0.10) € C* x RT : |xo|> + 2|t — 1> < 1§},
and |s| < so we have

F(X(5).%0.10) = F(X(0).0.1) = = (lxo[* 420 — 11°) - —e s°.
Proof. 'We know from (4.2) that if xo € C? and tg € RT, then

1 2 21
F(X(s),x0.t) = %/0 /0 I(s, xo,t9) df; db>,

where

IX (s)—x0I2

1 _
I(s,x0.t0) = P \/cosh2 25 — sinh? 25 cos2(6; + 92)61 419
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Pick any (£, 7) € C? x R with |§|> + 2|7|?> = 1, and define

2w p2m
f(r.s) = / / I(s,r&, 1 4+ rt)df; dos.
o Jo

Performing a Taylor expansion using formula (4.1) (and with the help of Mathematica) around
(r,s) = (0,0) yields

8
f(rs) = £(0.0) — 72(|E]* + 21%)r? — §n2s6 + 0(r?s) + O(r) + O(s”)
8
= f(0,0) — 72r? — §n2s6 + O(rzs) + 0(r3) + 0(s7).
We can thus choose rg, s > 0 sufficiently small such that for |r| < r¢ and |s| < s¢9 we have

1 4
f(r.s) < £(0,0) — Enzrz — §n2s6.

Since this estimate is uniform in (&, ), this yields the desired statement. |
We can now combine Propositions 4.5 and 4.6 to give our first key result.

Theorem 4.7. For s near 0 we have that
2
A(X()) = A(X(0) = 55",
e
Hence, the entropy A(X(s)) has a local maximum at s = 0.

Proof.  We first recall that Huisken’s monotonicity formula [9] implies that for a com-
pact self-shrinker ¥ satisfying (2.1), the entropy A(X) is uniquely attained at (0, 1): we consider
the self-similar evolution of ¥ given by ¥, = /=t - X for t € (—00,0). The first observation
is that the monotonicity formula implies that the Gaussian density at minus infinity satisfies

O((Z1)r<0,0) = A(2).
Since this flow is self-similar, this yields that
AMZ) = F(2,0,1).

Now assume that there is a point (xg, o) # (0, 1) such that A(X) = F (X, x¢, tp). The mono-
tonicity formula then implies that (X;);<¢ is also self-similarly shrinking with respect to the
point (xg, 9 — 1). This already yields that fp = 1. The monotonicity formula further implies
that the entropy is attained on any point along the line containing xo and 0, and thus X has to
split as a product X’ x R. This contradicts the compactness of X.

Now consider X’ given as an exponential normal graph of U € C*°(N X). We choose
go > 0 and assume

(4.10) Ullct <& < eo.

Note that this implies that for 69 = g¢(X) > 0 sufficiently small, given any 1o > 0, there exists
a constant §o = §o(X, n79) > 0 such that

4.11) F(X',x0.10) < 1+ no
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for all xg € C2, 0 <ty < 8. We can choose g = %(A(E) — 1) > 0 (as X is not a plane).
Since the entropy of X is uniquely attained at (0, 1), given any r > 0, there exists 0 < 1 < ng
such that

F(E,XQ, lo) < /\(E) —3n

for all |xo| > r and (9 — 1) > r. Using (4.11), we see that we can thus choose ¢ sufficiently
small in (4.10) such that
F(E/, X0, Z()) < A(Z) —2n

for all |xo| > r and (fo — 1)®> > r and
F(Z',0,1) > A(Z) — 1.
We deduce that the entropy of X/ is attained in the set
{(x0.20) € C* x RY : |xo| <1, (1o — 1)* < r}.

Applying this to our set-up, we see that for s small, the entropy A(X(s)) is only attained at
(possibly non-unique) points (xg, £5) with the property (xs, 5) — (0, 1) as s — 0. The claimed
result then follows directly from Proposition 4.6. O

Theorem 4.7 yields the following immediate corollary.

Corollary 4.8. The Clifford torus is not a local entropy minimiser, even under Hamilton-
ian variations.

Given that the Clifford torus is the simplest example of a compact Lagrangian self-
shrinker in C2, Corollary 4.8 naturally leads one to ask: which Lagrangian self-shrinkers in
C? are local minimisers of the entropy under Hamiltonian variations?

4.3. Flow instability. With these results in hand, we can now prove our flow instability
result.

Theorem 4.9. For every € > 0 and k € N, there exists a compact embedded Lagrangian
torus L', Hamiltonian isotopic and e-close in C k 1o the Clifford torus L, such that Lagrangian
mean curvature flow starting at L' develops a first finite-time singularity whose blow-up is not
A - L for any A € U(2). Hence, the rescaled Lagrangian mean curvature flow starting at L’
does not converge to the Clifford torus.

Proof. 'We can choose L' = L4, for some s sufficiently small to ensure it is e-close
in C* to L. The entropy A(X(s)) is strictly less than the entropy of L and the entropy is non-
increasing under the Lagrangian mean curvature flow (or the rescaled flow) by Lemma 2.3.
Hence, the rescaled flow cannot converge to any member of the U(2)-orbit of L. m]

Theorem 4.9 yields the following interesting corollary, which is surprising given the local
stability results in Lemma 4.2 and Theorem 4.3. In particular, even though the Clifford torus is
locally volume minimizing under Hamiltonian variations, it is unstable under Lagrangian mean
curvature flow under such perturbations. This is counter to one’s intuition concerning gradient
flows, and points to a lack of the expected coercivity of the volume functional in this situation.
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Corollary 4.10. The Clifford torus is Hamiltonian unstable for arbitrarily small defor-
mations under Lagrangian mean curvature flow.

It is worth noting that the work in [14] implies that we can find L’ Hamiltonian isotopic
to L as in Theorem 4.9 which is arbitrarily C°-close, but not C !-close. The fact that L’ given
in [14] is not C!-close to L is not a technicality, but rather an essential consequence of the
construction of L’. Hence, Theorem 4.9 strengthens the results of [14] in this instance.

The family L 4, we chose in the proof of Theorem 4.9 is, up to unitary transformation, the
same family considered in [8, Section 4] and [12, Theorem C]. The latter implies the following.

Theorem 4.11.  For s sufficiently large, Lagrangian mean curvature flow starting at L 4
will develop a first finite-time Type Il singularity at the origin, whose blow-up is a transverse
pair of special Lagrangian planes with the same Lagrangian angle.

This shows Hamiltonian instability of the Clifford torus for large deformations (i.e.
large s), but we have now shown it is true for any sufficiently small deformation (so small s).
It is reasonable to ask whether the same behaviour as in Theorem 4.11 occurs for Lagrangian
mean curvature flow starting at L4, for any s # 0. Since L4, is monotone, by the theory
in [12], it should be enough to show that the first singularity of the flow starting at Lg4, is
before time cosh 2s. This is equivalent to saying that the flow starting at 1 L4, becomes
singular before time 1, which is when the Clifford torus (and any self-shrinker satisfying (2.1))
shrinks to a point.

4.4. Stability. In contrast to our instability results we can prove a stability result for the
Clifford torus as follows, which utilises our local uniqueness result we shall prove later.

Theorem 4.12. Let L' be a compact embedded Lagrangian in 83(2), Hamiltonian iso-
topic to the Clifford torus L. If L' is sufficiently close to L, then L’ has a first finite-time Type I
singularity at the origin at time 1 and the rescaled Lagrangian mean curvature flow starting
at L’ converges to L, up to some unitary transformation.

Proof. For any Lagrangian L’ in §3(2) with position vector X', we see that
4weF(X’',0,1) = Vol(L').
By Theorem 4.3, we therefore know that for any L’ as in the statement we have that
(4.12) dweF(X',0,1) = Vol(L') > Vol(L) = 4 F(X,0,1).

We can also deduce this result directly from our own calculations.
By the work in [4], we know that L’ is a torus foliated by Hopf circles, so we can write
91+62

L = {ei( 2 ))/(91 — 92) 101,60, € R}

for some curve y(0; — 6,) in $2(2). In the case of L, we have that
. 01—6 . 01—6

V(Ql _ 02) — ﬁ(el( 12 2)’e—l( 12 2))

Therefore, the variation vector field of any Hamiltonian isotopy at L is given by JV f where
f = f(61 — 62). The Hamiltonian vector fields V' on L for which (V, (Ai‘ —1)V) <0 are
given in Lemmas 3.2 and 3.3. We see immediately that the only such V' of the form JV f
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where f is a function of 8; — 6, are YIJ- and YZJ- which generate unitary transformations. Thus
the second variation of F at (X, 0, 1) is non-negative for Hamiltonian variations within §3(2)
and the directions for which the second variation vanishes are given by unitary transformations,
under which the F-functional is constant. We therefore have that (4.12) holds as claimed.

We now consider the maximal smooth evolution (L})o<; <7 of L’ =: L{ by (Lagrangian)
mean curvature flow. We first recall that also for mean curvature flow of higher codimension,
more precisely for mean curvature flow of k-dimensional surfaces in R”, spheres with radius
R(t) = v/ R? — 2kt act as barriers both from the inside and from the outside. Applied to the

present set-up this implies that
L, 832V1—-1)

forall 0 <t < T. Note further that since Lagrangian mean curvature flow preserves the Maslov
class [d0’] of L’ and the class of the Liouville form of L} satisfies

[A1] = 2(1 = 1)[de']

by [12, Lemma 2.1], we have that L, remains Hamiltonian isotopic to L; where (L;)o<;<1 is
the self-similar evolution of the Clifford torus.
We consider the rescaled flow

~ 1
L= L, < 8%2),
T m t = ( )
where T = —log(1 — 1), and let X ! denotes its position vector in C2. Note that this rescaling

yields L; = L. We now consider Huisken’s rescaled monotone quantity:

8(£/)=i exp X vol 7 =LV01(Z/)
t 4 Ji 4 Lt ™ 4xe v

which is decreasing in t. Furthermore, by (4.12), we have

ey =ew ="
The remaining argument is now a direct application of the Lojasiewicz-Simon inequality as
in [17], which we now outline.
We assume that L’ can be written as a normal exponential graph over L, given by
V e C*®°(NL). Then we can write, at least for t sufficiently small, I:’r as normal exponen-
tial graphs over L, given by V(7) € C*°(NL).
Let0 <e < 070 be chosen later, and assume that

IVO)lc2a <.
We consider the set
S:={t>0:|V(s)||c2« <o0pforalls e [0,7)}.

We aim to show that for ¢ sufficiently small and o chosen suitably S = [0, c0).

Note that for og sufficiently small, since ¢ < %0, there exists a § > 0, independent of ¢
such that (0, 28] € S. By higher interior estimates, see for example [19], there exists Cy > 0
such that for all £ € (0, Z2) we have

(4.13) V(@ lcse = Co

forall T € S with t > 4.
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We write E(V (1)) = & (I:/r) and &(0) = &(L). For oy sufficiently small, depending only
on L, we have by [17, Lemma 3.1] that there exist 6 € (0, %) and C; = Cy(L) such that

(4.14) sup [V (x) = V(t)llz2 < C1(E(V(11)) — €(0))°
t€ty,12]
for all 71,12 € S, 11 < 7. We now fix gg accordingly so that estimate (4.14) holds. Note that
&(V(0)) — &(0) as e — 0. This implies that

[V©)lL2 < IVO)llL2 + CLEV(0) - €(0)°

for all T € S. Interpolating the C?*-norm between the LZ-norm and the C*%-norm and
using (4.13), we see that for ¢ sufficiently small we have

3
V@lc2a = 00

forall T € S with T > §, and thus S = [0, 00) as desired.

The monotonicity formula then implies that there is a sequence t; — oo such that Z/ri
converges smoothly to a self-shrinker L” which is a small C?** normal graph of, say, V"
over L.

By the Lojasievicz—Simon inequality we have that (L") = & (L) and thus by the mono-
tonicity of &(V (1)), §(V(r)) — &(0) as T — oo. Thus by (4.14) we have that V(t) is a Cauchy
sequence in L?(NL) and the sequence converges to V"

By the local uniqueness of the Clifford torus, Theorem 5.6, we have that L” = A - L
for some A € U(2) and the whole sequence converges. As an alternative to using Theorem 5.6
below, we may observe that the argument thus far implies that L” must be a minimal Lagrangian
torus contained in §3(2), which is embedded as it is a small C2*® graph over L. Hence, L" is
L up to a unitary transformation by the proof of the Lawson Conjecture [3]. |

We should be clear that Theorem 4.12 actually holds without the additional assumption
that L’ is close to L, as stated in Theorem 4.15 below. This follows from the work in [4],
as we shall now explain. However, we wanted to illustrate here in the proof of Theorem 4.12
an alternative approach for obtaining an (albeit weaker) stability result for the Clifford torus,
which may be applicable in other contexts where the special techniques implemented in [4]
may not be valid.

To relate Theorem 4.12 to work in [4], we require the following result in curve shortening
flow (cf. [4,7]), which is interesting in its own right.

Theorem 4.13. Let yo be a simple closed curve in 8% and let y; be the evolution of yg
under curve shortening flow in 82. Then the following are equivalent:

(@) yo is Hamiltonian isotopic to an equator in 82.
(b) yo divides 82 into two regions of equal area.
(c) y: divides 87 into two regions of equal area for all t.

(d) y: exists for all time and converges to an equator in 82.

Proof. By definition, Hamiltonian isotopies in §2 preserve area (as the symplectic form
on 82 is the area form), so if yy is Hamiltonian isotopic to an equator, it divides §2 into two
regions of equal area. Therefore, (a) implies (b).
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By [4, Lemma 3.2], yo divides 82 into two regions of equal area if and only if y, does
for each ¢. Therefore, (b) is equivalent to (c). Moreover, the proof of [4, Corollary 3.3] states
that (b) is equivalent to (d). Therefore, we need only show that y; is a Hamiltonian isotopy to
show that (d) implies (a) and thus complete the proof.

At every time ¢, we know that y; is a simple closed curve and divides §2 into two regions
of equal area 27 (using here that §2 has curvature 1 and so its area is 47). Choose one of these
regions U; for each ¢. By Gauss—Bonnet,

/ dA +/ Ky = 27'[)((?./(;),
U, Yt

where k; is the curvature of y;. Since the area of U; is 27 and the Euler characteristic
x(U;) = 1 we have that
/ Ky = 0
Vi

for all 7. Hence, k; is exact for each ¢, and thus the curve shortening flow y; is indeed
a Hamiltonian isotopy as desired. O

We now make the following observation.

Lemma 4.14. A compact embedded orientable Lagrangian L' in 83 (2) is Hamiltonian
isotopic to the Clifford torus L if and only if L' divides 83(2) into two regions of equal volume.

Proof. In [4, Proposition 2.1], it is shown that any embedded Lagrangian torus in §3
descends via the Hopf fibration 7 : §3 — &2 to a simple closed curve on §2. We review and
extend this argument to show that we can translate the stated claim to one involving curves
on 82

Let L' = Lo and L = L be Hamiltonian isotopic through Lagrangian tori Ly C 83(2),
s € [0, 1], and let fs : Ly — R be smooth Hamiltonian functions generating the isotopy. Let
N denote the normal vector field to §3(2) C C2. Since Ly is Lagrangian, JN is tangent to L.
The integral curves of JN are the Hopf circles, so Ly must be foliated by such circles, and
hence (L) = ys € 82 is a closed curve. We also see that Lg is embedded if and only if y
is simple. Furthermore, as JV fs is tangent to §3(2), we have that

(Vf.JN) = —(JV f,N) =0

and so f; is constant along the Hopf fibres. Thus, the f:v descend to Hamiltonian functions
fs 1 ys = R. Conversely, given Hamiltonian functions fs generating an isotopy y;, we can lift
ys to a Hamiltonian isotopy L by extending each f; to a function f; constant along each Hopf
fibre. In conclusion, we have a one-to-one correspondence between Hamiltonian isotopies of
Lagrangian tori in §3(2) and of closed curves in §2.

Moreover, one may easily see, as in [4], that given any embedded Lagrangian torus L’
in §3(2), the ratio of the volumes of the two regions of §3(2) determined by L’ is equal to the
ratio of the areas of the two regions of §2 determined by the simple closed curve 7 (L’).

The result then follows from Theorem 4.13. O

With this result in hand, we can re-cast the main results of [4] as follows, which thus
shows that Theorem 4.12 is a special case of their work.
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Theorem 4.15. Let L' be a compact embedded orientable Lagrangian in 83 (2).

(a) If L’ is Hamiltonian isotopic to the Clifford torus L, then Lagrangian mean curvature
flow starting at L' has a first finite-time Type I singularity at the origin, and the rescaled
flow converges to L, up to a unitary transformation.

(b) If L' is not Hamiltonian isotopic to L, then Lagrangian mean curvature flow starting
at L' has a first finite-time Type I singularity along a circle, and the rescaled flow con-
verges to a cylinder 81 x R in some R3 € C2.

We should note that the rescaling in (b) considered in [4] is not the standard rescaling,
but it is equivalent to the standard one and so the result holds as stated. It is perhaps interesting
to observe that the entropy of the cylinder is

2
A8 xR) =/ = = 1.520...,
e

which is less than 2 (the entropy of two planes) and less than the entropy of the Clifford torus.
We also observe the following corollary, which is also known by Lemma 4.14 and the
study of the isoperimetric problem in 3-dimensional space forms in [16], for example.

Corollary 4.16. The Clifford torus L is the unique volume (and thus entropy) minimiser
amongst Lagrangians in 83(2) Hamiltonian isotopic to L, up to unitary transformations.

Proof. By Theorem 4.15 any Lagrangian L’ Hamiltonian isotopic to the Clifford torus L
will under the rescaled mean curvature flow converge to L, up to some unitary transformation.
Since the entropy is non-increasing along the flow, we know that A(X’) > A(X) (and hence
Vol(L’) > Vol(L)). We also know that the entropy is constant if and only if the flow is self-
similar, but then L’ must be L up to a unitary transformation. |

5. Local uniqueness

We now wish to move away from the purely Lagrangian setting and discuss the local
uniqueness of the Clifford torus as a self-shrinker for mean curvature flow. This is not straight-
forward since there is a kernel for the linearisation for the self-shrinker equation which is larger
than we would expect: i.e. it does not just consist of infinitesimal rigid motions. Therefore,
we must show the remaining infinitesimal deformations are genuinely obstructed to deduce
local uniqueness.

5.1. The self-shrinker equation. We start by observing that any compact embedded
submanifold which is a graph over the Clifford torus can be written as the image of an immer-
sion

Xy =X+V:8'xs8! - C?,

where V' is a normal vector field on the Clifford torus L, which is the image of X. More-
over, the graph of V must lie in a C !-neighbourhood U of the zero section in the normal
bundle NL (where we omit the inclusion of the pullback of this bundle to 8! x §! for simplic-
ity). We therefore denote the image of Xy by Ly for V € C1(U), where the notation means
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C!-sections of NL whose graph lies in U, and we use similar notation for sections of other
Banach spaces. We also let 7 denote the tubular neighbourhood of L given by applying the
exponential map to U.

We know that Ly is a self-shrinker with space-time centre at (xg,#9) = (0,1) € C2xR™
if and only if (2.1) is satisfied. We can equivalently say that C !-close self-shrinkers Ly are
characterised as zeros of the functional

(5.1) 8 :C>%(U) - CO¥*(NL),

J_V L
S(V) = —X{'}(H(X +V)+ %) .

Here, H(X + V) is the mean curvature vector of Ly and -V, - denote the orthogonal projec-
tions on NLy and NL (again abusing notation and omitting pullbacks). Since Ly is a normal
graph over L, the projection of the vector in brackets in (5.1) onto NL will vanish if and only
if the vector vanishes. Moreover, we need only consider V in C%“ since if the self-shrinker
equation is satisfied then V' will necessarily be smooth.

5.2. Rotations. We know that the action of rotations preserves condition (2.1).
To deal with this, recall the normal vector fields Y /.J- on L for j =1,2,3,4 givenin (3.6),
(3.7) and (3.17). Define ‘

(5.2) my 1 CP*(NL) — ¥ = Span{Y{-, Y5, V5t v;h)
to be L2-orthogonal projection.
Lemma 5.1. Making U smaller if necessary, for any sufficiently C'-close submanifold

L’ to L there exist A € SO(4) and V € CY(U) N Kermy such that A- L' = Ly. Moreover,
A is unique up to the action of U(1)? preserving L.

Proof. This is a direct application of the slice theorem for Lie group actions by diffeo-
morphisms. O

This yields a description of self-shrinkers satisfying (2.1) which are close to L, modulo
the action of rotations.

Lemma 5.2. Up to the action of rotations, sufficiently C'-close self-shrinkers to L are
uniquely determined by zeros of the functional

80 : C>%(U) N Kery — C2*(NL),

X+t

So(V) = —X; (H(X +V) + %) ,
where my is given in (5.2). The linearisation of 8¢ at 0 is given by
(5.3) £o = A7 —1:Kerwy — CO*(NL).

Hence,

So(V) = (AL — 1)V + Qo(V)

for some smooth functional Qo whose value and first derivatives at 0 vanish. Moreover, the



Evans, Lotay and Schulze, Remarks on the self-shrinking Clifford torus 165

kernel of L is given by
K = Ker Lo = Span{V,i, Vg Ve, Vi),
using the notation of (3.14), (3.15) and (3.18).

Proof. If we are given a family X (s) with
0X(s)
= V(s),
3 (5)
then the first variation formula for F = F(X(s),0, 1) for any s is ([10, Theorem 1])

oF 1 X 912
=—— <V(s),H(s) + és)>e_|x<4> volz (s),

g 4 L(s)
where L(s) is the image of X(s), and the rest of the notation should be clear. Differentiating
(5.4) with respect to s and setting s = 0, we can compare the result to the second variation in
Lemma 2.5 and deduce that
X(s)

0 _ 1
{ro. 5 (10 + 52| ) = 00.af - pvo.

Thus the linearisation of &g at 0 is as given in (5.3) and the expression for 8o (1) is as claimed.
The remainder of the result follows from the discussion at the start of this subsection,
Lemmas 3.4 and 5.1. O

X(0) = X,

(5.4)

For convenience later, we let
. r2,a _ 1 1 1 1
nyx : C**(NL) — K = Span{Vi . Vg . V&, Viy}

denote L2-orthogonal projection onto X .

5.3. Obstructions. We see that the linearisation (5.3) of the self-shrinker operator,
modulo rotations, still has a kernel, so the Clifford torus does have non-trivial infinitesimal
deformations as a self-shrinker. It is therefore not yet clear whether the Clifford torus is locally
unique or not. To understand this, we must show that these infinitesimal deformations are
obstructed,; that is, there are no self-shrinkers generated by them.

Before continuing on, we make some elementary observations that shall be useful later.

Lemma 5.3. The following statements hold:
(a) There exists cg > 0 such that for all V € (Ker £9)+ € C2%(NL) we have

Viicza = cgllo(V)coa-
(b) There exists cq > 0 such that for all V, V' € C*%(Uo) we have
1Qo(V) = Qo(V)llcoe = calV =V'lc2a(lVlc2e + 1V [c20).

Proof. Ttem (a) follows from the ellipticity of &£¢. Item (b) is a consequence of the fact
that the value and first derivatives of € vanish at 0. O

We study the case of VAJ- given in (3.14) in detail as the calculations for all of the other
kernel elements is essentially the same. We show that the infinitesimal deformation VAJ- is
obstructed at cubic order.
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Proposition 5.4. For all s sufficiently small, we have that

3
(5.5) 7y 0 So(sViL) = %VAL + O(sh).

Moreover, there exists a constant 8§ > 0 such that, given any W € Ker my € C>*(NL) with
|75 (W) |lc2.e = O(s?), we have that

(5.6) 7 0 So(sVit + W)l cow > 85>

Proof. It is an elementary explicit computation to show that

(5.7) So(sVi) = Qo(sVi)
B 252(1 4+ 5cos(2601 + 2605)) — 1953 cos(36; + 362)
o 8

(JX1+ JX>2)
31 4

Therefore, (5.5) holds. For completeness, we briefly describe how we derived (5.7).
The position vector of the graph L o of sVAJ- over L is given by
X(s)=X+ SVAJ' = ﬁ(l + s cos(07 + 02))(ei91,ei62).
We therefore have tangent vectors
Xi(5) = X0 =

§) = X($)x| —

1 * 891
— ﬁ(l + scos(01 + 92))(z‘e"91 ,0) — +/2ssin(0; + 62)(e'%1, e192),

0
Xo(s) = X(5)« (E)

= V2(1 + scos(f1 + 62))(0,i€'%) — V25 sin(6 + 62)('?, ')
Hence, the induced metric on Ly, 1 is
A

(2 + 35% + 4scos(1 + 02) — 5% cos(261 + 26,))(dOF + db3)
+ 252(1 — COS(291 + 292)) d6; db,.
From this data, it is straightforward to compute Vy, )X, (s) and its projection to the normal
bundle of L SV and hence the mean curvature H (s). Explicitly, we see that the determinant
of the induced metric is
4 + 165 cos(61 + 62) + 45%(5 + cos(26; + 26))
+ 452 (5cos(01 + 02) — cos(30; + 362)) + O(s*),
and thus the inverse of the induced metric is
1 5 20, + 26
(— —scos(fy + 63) + 52 + cos(201 +265)
2 4
3c08(01 + 62) + cos(301 + 362)
-
2
n (S2C03(291 —;292) —1

)(def + d62

+ S3(COS(91 + 6,) — cos(36; + 392))) d6; db, + 0(S4).
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We also see that

Vx, (s X1(5) = —\/5((1 + 25 cos(f; + 62))e'? s cos(6y + 92)ei92)
—2+/2ssin(6; + 62)(i €', 0),
Vxi(5)X2(s) = —/2s cos(0r + 62)(61.91 , €i92) —V2s sin(0y + 92)(iei91 , ieiez)
= Vi (9 X1(5).
Vi, (s X2(s) = —\/E(s cos(B1 + 62)e’%", (1 4 25 cos(6; + 92))61‘92)
—2+/2s sin(f; + 62)(0, ieiaz).

Therefore, in order to compute the normal projection, we may compute (Vy, (5) X (s), Xi (5)),
for example

(Vx, ) X1(5), X1(5)) = —2ssin(0 + 62) + 57 sin(261 + 26,),
and thus find the mean curvature H (s) from the formula

H(s) = g" (Vx, (5)X;j (s) — ¢ {Vix, ()X (5). X () X; (s))
2 . . 2 . . . .
= —g(ele1 , 6192) - %(008(91 + 92)((3’01 , 6’02) + 2sin(f; + 92)(l'e’61 , ie’ez))
V252
+ 4
V2s3 ( 5(cos(61 + 62) + 3cos(36; + 362))
+ —
2 4
9sin(6; + 62) + sin(367 + 36,)
+ 2

(5 + cos(260; + 202))(ei0‘ , eiez)

(ei9| ei@z)

(ief"l,ief@z)) + 0(sh).

We may also compute the projection of X(s) to the normal bundle of L SV calculating that

Xt 1 y
(;) - E(X(S)_glj (X(s), Xi (5)) X (s))
= ?("’w‘ e @(005(91 + 02)(e 1, ¢1®2) 1 25in(6; + 02)(ie'®,ie?2))

+ «/Esz(cos(291 + 26,) — 1)(@“91 ,el92)
3 . .
® ((cos(By + 62) — cos(36) + 36,)) (e e1?2)

+2(sin(361 + 362) — 3sin(B1 + 02))(ie'?,ie'%2)) + O(s*).
Hence, we have an explicit formula for H(s) + %S)J_, which we can then project to the nor-
mal bundle of L (after translation, which is elementary since we have written L sV as an
exponential normal graph). This gives us formula (5.7).

Now, given any W € Ker 7y we can write it uniquely as W = U’ + W/, where U’ € X
and W’ e (Ker £0)-. We then have that

So(sVE + W) = Lo(W') + Qo(sVi + W)
= Lo(W') + Qo(sVi) + Qo(sVi + W) — Qo(sVi).
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We know by Lemma 5.3 that
1
[£oW)cow = —W|c2a:
ce

1Qo(sVE + W) — Qo(sVE) | cow < calWlc2a(lsViE 4+ Wlczw + Vit c2.a).

We first assume that, given so > 0 and €p > 0, we have || W ||c2.« > €ps for some 0 < |s| < sp.
Since |U'||¢2.« = O(s?) by assumption, we can make so and Uo smaller if necessary to
conclude from (5.7) that

180(sVz" + W)l co = 8s

for some constant § = §(¢g) > 0, and thus (5.6) holds.
We therefore now assume that || W | c2.« < €os and 0 < |s| < s¢. This implies

(5.8) 1Qo(sVE + W) — Qo(sVi) | cow < Ceps?.
As £ is self-adjoint, we know that (Im é‘io)l = Ker £y = K. Hence,
Lo(W') + Qo(sVi) — g 0 Qo(sVi)
is orthogonal to K and, by (5.7), we know that
(5.9) 1Lo(W’) + Qo(sV) — mx © Qo(sVi) | cow > &'
for some §' = §'(€p) > 0, unless

s2(1 + 5cos(20; + 26,))

2o (W) + n

(JX1 + JX2)|coa < Cegs?,

which is equivalent to

52(3 — 5cos(260;1 + 26,))
12

Therefore, if (5.10) does not hold, we can deduce from (5.5), (5.8) and (5.9) that

(5.10) W' —

(JX1 4+ JX2)|c2a < Ceps®.

180(sVE + W)l cow = 852

for some constant §” = §”(eg) > 0, and thus again (5.6) holds.
So, finally, we now assume that W' satisfies (5.10). With this choice of W’ and writing

U =s*aVi +bVg +cVa +dVy) + o(s?)
for some a, b, c,d € R, we can explicitly estimate
|5 o SO(SVAJ‘ +U +W)—mygo 80(SVAJ‘)||Co,a < Ceps>.
Thus we can fix € sufficiently small such that (5.5) implies (5.6). D

We now show that the analogue of Proposition 5.4 holds for any infinitesimal deformation
of L as a self-shrinker which does not generate a rigid motion; i.e. it is obstructed at cubic order.

Proposition 5.5. There exists § > 0 and sg > 0 such that for all s € (—so, So) the fol-
lowing holds. Given any U € Ker £o with |U||c2.« = 1, and W € Kermry € C>*(NL) with
|75 W)|lc2.e = O(s?) such that sU + W € C%%(Uy), we have

75 0 8o(sU + W)|coa > 8s°.
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Proof. Leta,b,c,d € R and let
U=aVi+bVg +cVa+dVy.

We may then explicitly compute, as we did for VAJ- in the proof of Proposition 5.4 above (i.e. the
case (a,b,c,d) = (1,0,0,0)) that

3
5 0 8o(sU) = %(a2 + b2 + 18¢2 + 18d2) @V + bVi)

3
s
+ 5 (180> +18% ¢ + d*)(Ve +dVp) + 0(s*).
In particular, we see that if | U || c2.« = 1, then there exists a constant § > 0 such that
75 0 80(sU)||cow > 85>

for all s sufficiently small.
The rest of the proof now follows just as for Proposition 5.4. o

5.4. Main result. We now have all of the ingredients necessary to prove our local
uniqueness result for the Clifford torus. We consider here self-shrinkers with arbitrary space-
time centres (xg, f9) € C? x RY, i.e. satisfying (2.10).

Theorem 5.6. Any 2-dimensional compact embedded self-shrinker in C? which is suf-
ficiently C%*-close to the Clifford torus L is, up to some translation, dilation and rotation,
equal to L.

Proof.  Assume first that we have a sequence of self-shrinkers L/ with centers (xO to)
converging in C2 to L. Then (xO to) — (0, 1) and the shrinkers L/ = (t )~ 2 (L) — xo) also
converge in C%® to L. It is thus sufficient to replace the sequence L/ by the sequence of self-
shrinkers L/, which have centres at (0, 1).

To show that for large enough j, we have that up to a rotation L/ = L, we know by
Lemma 5.2 that we must show that the only solution to 89(V') = 0 for || V| c2.« sufficiently
smallis V' = 0.

Any V € C%%(Ug) N Ker 7y can be written uniquely as V = U + W, where U € Ker £
and W e (Ker £9)~. We see from Proposition 5.5 that, potentially making Uq smaller if nec-
essary, we have that for 8o(U + W) to vanish we must have U = 0,s0 V = W € (Ker £¢)~.

Now, 8o(V') = 0 is equivalent to

(5.11) Lo(V) = —=Qo(V).
By Lemma 5.3 we have that

(5.12) Vigra = celZo(V)licow and [Qo(V)llcow < callV s .-
Putting together (5.11) and (5.12) gives that

(5.13) IViic2a < cgcallV 2ma-
Hence, if
1
V a < ,
V2 crca

we deduce from (5.13) that V' = 0, from which the result follows. O



170

(1]
(2]

(5]
(6]

Evans, Lotay and Schulze, Remarks on the self-shrinking Clifford torus

References

B. Andrews, H. Li and Y. Wei, ¥ -stability for self-shrinking solutions to mean curvature flow, Asian J. Math.
18 (2014), no. 5, 757-7717.

C. Arezzo and J. Sun, Self-shrinkers for the mean curvature flow in arbitrary codimension, Math. Z. 274
(2013), no. 34, 993-1027.

S. Brendle, Embedded minimal tori in S3 and the Lawson conjecture, Acta Math. 211 (2013), no. 2, 177-190.
L. Castro, A. M. Lerma and V. Miquel, Evolution by mean curvature flow of Lagrangian spherical surfaces in
complex Euclidean plane, J. Math. Anal. Appl. 462 (2018), no. 1, 637-647.

J. Chen and J. M. S. Ma, The space of compact self-shrinking solutions to the Lagrangian mean curvature flow
in CZ, J. reine angew. Math. 743 (2018), 229-244.

T. H. Colding and W. P. Minicozzi, 11, Generic mean curvature flow I: Generic singularities, Ann. of Math. (2)
175 (2012), no. 2, 755-833.

M. E. Gage, Curve shortening on surfaces, Ann. Sci. Ec. Norm. Supér. (4) 23 (1990), no. 2, 229-256.

K. Groh, M. Schwarz, K. Smoczyk and K. Zehmisch, Mean curvature flow of monotone Lagrangian submani-
folds, Math. Z. 257 (2007), no. 2, 295-327.

G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom. 31 (1990),
no. 1, 285-299.

Y-I. Lee and Y.-K. Lue, The stability of self-shrinkers of mean curvature flow in higher co-dimension, Trans.
Amer. Math. Soc. 367 (2015), no. 4, 2411-2435.

J. Li and Y. Zhang, Lagrangian F-stability of closed Lagrangian self-shrinkers, J. reine angew. Math. 733
(2017), 1-23.

A. Neves, Singularities of Lagrangian mean curvature flow: Monotone case, Math. Res. Lett. 17 (2010), no. 1,
109-126.

A. Neves, Recent progress on singularities of Lagrangian mean curvature flow, in: Surveys in geometric
analysis and relativity, Adv. Lect. Math. (ALM) 20, International Press, Somerville (2011), 413-438.

A. Neves, Finite time singularities for Lagrangian mean curvature flow, Ann. of Math. (2) 177 (2013), no. 3,
1029-1076.

Y.-G. Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations, Math. Z. 212
(1993), no. 2, 175-192.

M. Ritoré and A. Ros, Stable constant mean curvature tori and the isoperimetric problem in three space forms,
Comment. Math. Helv. 67 (1992), no. 2, 293-305.

F. Schulze, Uniqueness of compact tangent flows in mean curvature flow, J. reine angew. Math. 690 (2014),
163-172.

K. Smoczyk, The Lagrangian mean curvature flow, Habilitaion, University Leipzig, Leipzig 2000.

B. White, A local regularity theorem for mean curvature flow, Ann. of Math. (2) 161 (2005), no. 3, 1487-1519.

Christopher G. Evans, Department of Mathematics, University College London,
Gower Street, London, WC1E 6BT, United Kingdom
e-mail: christopher.evans.13 @ucl.ac.uk

Jason D. Lotay, Department of Mathematics, University College London,
Gower Street, London, WC1E 6BT, United Kingdom
https://orcid.org/0000-0002-0456-4538
e-mail: j.lotay @ucl.ac.uk

Felix Schulze, Department of Mathematics, University College London,
Gower Street, London, WC1E 6BT, United Kingdom

e-mail: f.schulze@ucl.ac.uk

Eingegangen 11. Februar 2018, in revidierter Fassung 29. April 2019



