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Remarks on the self-shrinking Clifford torus
By Christopher G. Evans at London, Jason D. Lotay at London and Felix Schulze at London

Abstract. On the one hand, we prove that the Clifford torus in C2 is unstable for
Lagrangian mean curvature flow under arbitrarily small Hamiltonian perturbations, even though
it is Hamiltonian F -stable and locally area minimising under Hamiltonian variations. On the
other hand, we show that the Clifford torus is rigid: it is locally unique as a self-shrinker
for mean curvature flow, despite having infinitesimal deformations which do not arise from
rigid motions. The proofs rely on analysing higher order phenomena: specifically, showing
that the Clifford torus is not a local entropy minimiser even under Hamiltonian variations, and
demonstrating that infinitesimal deformations which do not generate rigid motions are gen-
uinely obstructed.

1. Introduction

The Clifford torus contained in the 3-sphere in C2 is an important example of a self-
shrinker in mean curvature flow. Moreover, the Clifford torus is Lagrangian in C2 and has
particular significance in Lagrangian mean curvature flow: it is the simplest known example of
a compact Lagrangian self-shrinker in C2, as there are no self-shrinking Lagrangian spheres
in C2 [18] (even allowing for branched immersed spheres [5]).

In the present article we study two related issues: stability of the Clifford torus under
(Lagrangian) mean curvature flow, and rigidity of the Clifford torus as a (Lagrangian) self-
shrinker. Knowing stability would imply rigidity, but the converse is not necessarily true, as will
be the case here. Both issues are clearly crucial for understanding problems such as singularity
formation and genericity of singularity models.

1.1. Hamiltonian instability. Given that the Clifford torus is the simplest example
of a Lagrangian self-shrinker, Neves [13, Question 7.4] asked under what conditions on
a Lagrangian torus would the rescaled Lagrangian mean curvature flow converge to the Clifford
torus (up to translations and unitary transformations). It is known, for example by work in [10]

This research was supported by Leverhulme Trust Research Project Grant RPG-2016-174.



140 Evans, Lotay and Schulze, Remarks on the self-shrinking Clifford torus

and [11], that the Clifford torus is unstable under Lagrangian mean curvature flow, even at
the linear level (i.e. it is Lagrangian F -unstable). However, the variations used there to prove
instability are not Hamiltonian: they are the variations where one shrinks the size of one circle
generator in the Clifford torus relative to the other.

In fact, the Clifford torus is locally area-minimising under Hamiltonian variations, see
[15] as well as Theorem 4.3, and Oh conjectured that the Clifford torus is globally area-
minimising in its Hamiltonian isotopy class. Therefore, one would expect that it would be
stable for Lagrangian mean curvature flow under sufficiently small Hamiltonian perturbations.
This expectation is reinforced by the fact that the Clifford torus is Hamiltonian F -stable, see
[10, 11] as well as Lemma 4.2.

However, in spite of this, we show the following surprising phenomenon.

Theorem 1.1. The Clifford torus is unstable for Lagrangian mean curvature flow under
arbitrarily C k-small Hamiltonian perturbations for any k � 0.

The precise statement can be found in Theorem 4.9. Our construction is explicit, and
shows the result holds even in the U.1/-equivariant setting: in this context, the statement is that
the circle is unstable for the U.1/-equivariant Lagrangian mean curvature flow under arbitrarily
small Hamiltonian deformations. By looking at the U.1/-equivariant flow, it was shown in [8,
12] that the Clifford torus was unstable under large Hamiltonian perturbations, and in [14]
that the Clifford torus is unstable under arbitrarily C 0-small Hamiltonian perturbations (but
this argument would never give C 1-small perturbations due to the nature of the construction).
Theorem 1.1 therefore improves these results in this particular setting.

We expect that for the unstable perturbations the Lagrangian mean curvature flow devel-
ops a first finite-time singularity, which is Type II, whose Type I blow-up is a transverse pair of
special Lagrangian planes (with the same Lagrangian angle).

1.2. Hamiltonian stability. We observe by the work in [4] we have the following sta-
bility result (cf. Theorem 4.15).

Theorem 1.2. A compact embedded Lagrangian L0 in the 3-sphere in C2 is Hamilton-
ian isotopic to the Clifford torus if and only if Lagrangian mean curvature flow starting at L0,
after rescaling, converges to the Clifford torus (up to unitary transformation).

This is really a manifestation of the fact that a simple closed curve 0 in the standard
2-sphere is Hamiltonian isotopic to an equator if and only if curve shortening flow starting
at 0 exists for all time and converges to an equator.

1.3. Rigidity. Given that the Clifford torus is Hamiltonian F -stable, the instability
result Theorem 1.1 is only possible because there are infinitesimal (Hamiltonian) deforma-
tions of the Clifford torus as a self-shrinker which do not come from translations, dilations or
rotations. This means that, a priori, it is not clear whether the Clifford torus is locally isolated
in the space of self-shrinkers or not, and standard methods cannot determine the rigidity or
otherwise of the Clifford torus.

However, we use a novel approach to rigidity to show the Clifford torus indeed has
this property.
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Theorem 1.3. The Clifford torus is locally unique as a self-shrinker for mean curva-
ture flow.

The precise statement can be found in Theorem 5.6. The rigidity of the Clifford torus is
perhaps expected given that it is a simple and natural example of a self-shrinker, but what is
surprising is that the proof of this result does not, and cannot, proceed as one might expect.
Indeed, we hope that the novel method we employ to prove Theorem 1.3 will be useful in
other contexts.

1.4. Entropy. The proof of Theorem 1.1 relies on explicitly showing that the Clifford
torus is not a local minimizer for the entropy [6] under Hamiltonian variations. Due to
Hamiltonian F -stability, we know that this is not an issue that can be analysed at the “linear
level”.

More precisely, any Hamiltonian variation of order O.s/ for which the entropy could
go down must have an entropy value which agrees with that of the Clifford torus up to and
including order O.s2/. Therefore, one needs to look at “higher order” terms. It transpires that
the first order at which the entropy could go down is O.s6/, showing the delicate nature of
the problem.

There is an additional issue that the entropy is defined as a supremum over all space-time
points, so it is not practical to compute directly. We overcome this through an argument which
allows us to restrict attention to the F -functional, which can be computed.

Theorem 1.1 follows from monotonicity of the entropy under (rescaled) mean curva-
ture flow.

1.5. Obstructions. Since we have infinitesimal deformations of the Clifford torus as
a self-shrinker which do not come from rotations, we have to demonstrate that these infinites-
imal deformations do not extend to genuine deformations. Therefore, again we have to go
beyond the “linear level” in the analysis, and take a new approach to the study of local unique-
ness.

More concretely, if the deformation is of order O.s/, we have to explicitly demon-
strate that there are obstructions to extending it to a solution of the self-shrinker equation at
order O.sk/ for some k � 2. Here, we view the problem of solving a nonlinear equation in
terms of its linearisation and an iterative fixed point/contraction mapping argument, as one
uses in the Implicit Function Theorem. It turns out that obstructions do not appear at the first
step (i.e. k D 2) but rather at O.s3/. Again, this demonstrates the somewhat subtle nature of
the problem.

1.6. Summary. We now briefly summarise the contents of the article.
In Section 2 we introduce the notation we shall use throughout for studying the Clifford

torus and its deformations, as well as recalling basic facts from Lagrangian geometry and the
definition of the entropy and F -functional. We describe some of the eigenspaces for low eigen-
values of the Laplacian on functions and on the normal bundle of the Clifford torus, since this
plays a role in the second variation of F , which we derive.

In Section 3, we study the orbit of the Clifford torus under various relevant group
actions and show that generators of these actions correspond to elements of the eigenspaces
we described in Section 2.
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In Section 4, after identifying the variations giving Hamiltonian F -stability, for one of
these sufficiently small variations we compute the F -functional and the entropy. By showing
it goes down, we prove Theorem 1.1. We also prove Theorem 1.2 in this section using work
in [4] and some elementary observations, and additionally give an alternative proof of a weaker
form of the stability result Theorem 1.2 which may have applications in other contexts.

Finally, in Section 5, we set-up the deformation problem for self-shrinkers in terms of
zeros of a smooth map. After gauge-fixing for the action of rotations, we obtain a nonlinear
elliptic operator acting on normal vector fields whose zeros characterise nearby self-shrinkers.
We identify the (self-adjoint) linearisation of this operator, its kernel, and show that the nonlin-
ear operator determines a non-trivial cubic map from the kernel to itself. From this, we prove
Theorem 1.3.

2. Preliminaries

We define the Clifford torus in S3.2/ � C2 D R4 by

L D
®p
2.ei�1 ; ei�2/ 2 C2

W �1; �2 2 R
¯
:

We then have that L is Lagrangian and minimal in S3.2/. Therefore, if X denotes the position
vector on L, we have that X D X?, where ? denotes projection onto the normal bundle NL.
Moreover, the mean curvature vector H of L in C2 satisfies

(2.1) H D �
X?

2
;

i.e. L is a self-shrinker so that Lt D
p
1 � tL is a solution to (Lagrangian) mean curvature

flow with L0 D L. These facts are easy to check so we do it here, as the computations will be
useful later.

Throughout we will use complex coordinates z1; z2 on C2 and corresponding real coordi-
nates .x1; y1; x2; y2/ on R4 so that z1 D x1 C iy1 and z2 D x2 C iy2.

2.1. Basics. We let S1 be the unit circle in C. We also let J and ! be the standard
complex and symplectic structures on C2. We define the embedding X W S1 � S1 ! L � C2

by
X.ei�1 ; ei�2/ D

p
2.ei�1 ; ei�2/:

We therefore have two tangent vector fields on L given by

X1 D X�

�
à
à�1

�
D
p
2.iei�1 ; 0/ and X2 D X�

�
à
à�2

�
D
p
2.0; iei�2/:

It is immediate that

(2.2) jX1j
2
D jX2j

2
D 2 and hX1; X2i D 0;

thus the induced metric on L is

(2.3) 2d�21 C 2d�22 ;

which is flat.
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It is clear by inspection that

JX1 D �
p
2.ei�1 ; 0/ and JX2 D �

p
2.0; ei�2/

are orthogonal normal vector fields on L, and hence L is Lagrangian. Moreover,

X D X? D �JX1 � JX2:

We see that

E1 D .ie
i�1 ; 0/ D

1
p
2
X1 and E2 D .0; ie

i�2/ D
1
p
2
X2

are orthonormal tangent vector fields on L, so we can compute the mean curvature vector field

H D rE1E1 CrE2E2 D
1

2
rX1X1 C

1

2
rX2X2

D �

p
2

2
.ei�1 ; 0/ �

p
2

2
.0; ei�2/ D

1

2
.JX1 C JX2/ D �

X?

2
;

as claimed in (2.1).
Observe that if � D dz1 ^ dz2 is the standard holomorphic volume form on C2, then,

since
X�dz1 D

p
2iei�1 d�1 and X�dz2 D

p
2iei�2 d�2;

we have that
X�� D �2ei.�1C�2/ d�1 ^ d�2:

Since the volume form on L is

(2.4) volL D 2 d�1 ^ d�2;

we see that the Lagrangian angle � of L satisfies

ei� D �ei.�1C�2/ D ei.�1C�2C�/:

We therefore verify that

H D Jr� D Jr.�1 C �2 C �/ D
1

2
.JX1 C JX2/:

(Notice that the factor of 1
2

arises from (2.2).)
The Clifford torus is also an example of a (positive) monotone Lagrangian, i.e. if � is the

1-form dual to JX?, then
Œd�� D

c

2
Œ�� 2 H 1.L/

for some constant c > 0. We know in fact that c D 1 for any Lagrangian self-shrinker satisfy-
ing (2.1). The monotone property is preserved under Hamiltonian isotopy, and any monotone
Lagrangian can be rescaled so that c D 1.

2.2. Laplacians. We shall see that to understand the stability properties of the Clifford
torus as a self-shrinker, we will need to analyse the Laplacian on normal vector fields, and
particularly the 1-eigenspace of the Laplacian.
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Notice that (2.3) implies that the induced Laplacian on functions on L is just

(2.5) �L D
1

2
�0 D �

1

2

�
à2

à�21
C
à2

à�22

�
;

where �0 is just the standard Laplacian on S1 � S1. In particular, we have the following
elementary facts.

Lemma 2.1. For �L given in (2.5) we have that the set of eigenvalues is

¹
1
2
n W n 2 Nº:

Moreover, we have

Span¹1º D ¹f W �Lf D 0º;

Span¹cos �1; sin �1; cos �2; sin �2º D ¹f W �Lf D 1
2
f º;

Span¹cos.�1 C �2/; sin.�1 C �2/; cos.�1 � �2/; sin.�1 � �2/º D ¹f W �Lf D f º:

Proof. This is immediate from (2.5), the observation that

�0 cos.�1 ˙ �2/ D 2 cos.�1 ˙ �2/ and �0 sin.�1 ˙ �2/ D 2 sin.�1 ˙ �2/;

and the fact that cos �i , sin �i are 1-eigenfunctions of �0 for i D 1; 2.

Moreover, as L is Lagrangian and flat, and the normal bundle and tangent bundle are
isometric, we have that the normal bundle of L is flat. Thus the Laplacian on the normal bundle
is given by the rough Laplacian

(2.6) �?L D �r
?
E1
r
?
E1
� r

?
E2
r
?
E2
:

It is easy to see that

(2.7) rX1X1 D JX1; rX2X2 D JX2; rX1X2 D rX2X1 D 0:

Therefore, as the complex structure J is parallel (or just by inspection),

rX1.JX1/ D JrX1X1 D �X1; rX2.JX2/ D JrX2X2 D �X2;

rX1.JX2/ D JrX1X2 D 0; rX2.JX1/ D JrX2X1 D 0:

We therefore see that

(2.8) r
?
Xi
.JXj / D 0

for all i; j . Hence, JX1 and JX2 are harmonic normal vector fields:

�?LJXi D 0:

Notice this implies that
�?LH D 0 D �

?
LX
?:

Since JX1 and JX2 span the normal vector fields on L, we can write any normal vector
field V on L uniquely as

V D f1JX1 C f2JX2:
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From (2.8) we have that

(2.9) �?LV D .�Lf1/JX1 C .�Lf2/JX2;

where �L is given in (2.5). This yields the following.

Lemma 2.2. For �?L given in (2.6) we have that the set of eigenvalues is

¹
1
2
n W n 2 Nº:

Moreover, we have

Span¹JX1 C JX2; JX1 � JX2º D ¹V W �?LV D 0º;

Span¹.cos �j /JXk; .sin �j /JXk W j; k D 1; 2º D ¹V W �
?
LV D

1
2
V º;

Span¹cos.�1 ˙ �2/.JX1 ˙ JX2/; sin.�1 ˙ �2/.JX1 ˙ JX2/º D ¹V W �?LV D V º:

Proof. This is immediate from Lemma 2.1 and (2.9).

Notice that the fact that there is a 2-dimensional space of harmonic normal vector fields
is consistent with the fact that b1.L/ D 2, and thus the space of harmonic 1-forms is 2-dimen-
sional.

2.3. Entropy. The entropy of an immersion X W †2 ! C2, where †2 is compact, is
defined as in [6] to be

�.X/ D sup
.x0;t0/2C2�RC

1

4�t0

Z
†

exp
�
�
jX � x0j

2

4t0

�
vol†;

where vol† is the volume form induced by X�g, and g is the Euclidean metric on C2. It will
also be useful to consider the F -functional

F.X; x0; t0/ D
1

4�t0

Z
†

exp
�
�
jX � x0j

2

4t0

�
vol†;

so that
�.X/ D sup

.x0;t0/2C2�RC
F.X; x0; t0/:

The important properties that the entropy has are summarised as follows (cf. [6]). By
rescaled mean curvature flow, we mean the flow where we perform the standard Type I rescaling
of mean curvature flow about some space-time point.

Lemma 2.3. The following statements hold:

(a) The entropy is invariant under translations, dilations and rotations.

(b) The entropy is non-increasing under mean curvature flow and rescaled mean curvature
flow.

(c) The critical points of the entropy are the self-shrinkers satisfying

(2.10) H D �
.X � x0/

?

2t0

for some x0 2 C2 and t0 > 0.
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Notice that if one has a self-shrinker satisfying (2.10), then by applying a translation and
dilation one can ensure that the new shrinker satisfies (2.1).

For a self-shrinker M satisfying (2.1) we have that

�.X/ D F.X; 0; 1/:

It is therefore straightforward to compute the entropy of the Clifford torus.

Lemma 2.4. For the Clifford torus X W L! C2, we have

�.X/ D
2�

e
D 2:311 : : : :

Proof. We compute

�.X/ D
1

4�

Z
L

exp
�
�
1

4
jX j2

�
volL

D
1

4�

Z 2�

0

Z 2�

0

2e�1 d�1 d�2 D
4�2

2�e
D
2�

e
;

where we used jX j2 D 4 and (2.4).

2.4. Second variation. As we already stated, the first variation of F at .X; 0; 1/ van-
ishes precisely at self-shrinkers satisfying (2.1). Therefore, to understand the stability (or oth-
erwise) of the Clifford torus we need to look at the second variation of F at .X; 0; 1/. This is
computed by several authors, e.g. [1, 2, 10], and we specialise their formula to our situation.

Lemma 2.5. The second variation of F at the Clifford torus L at .X; 0; 1/ in a normal
direction V D f1JX1 C f2JX2 (so fixing x0 D 0 and t0 D 1) is given by

4�e
à2F
às2

ˇ̌̌
sD0
D hV; .�?L � 1/V iL2

D 2hf1; .�L � 1/f1iL2 C 2hf2; .�L � 1/f2iL2 :

More generally, the second variation of F at L at .X; 0; 1/ in a normal direction V with

x0 D 0;
àxs
às

ˇ̌̌
sD0
D �; t0 D 1;

àts
às

ˇ̌̌
sD0
D �;

is given by

4�e
à2F
às2

ˇ̌̌
sD0
D hV; .�?L � 1/V C � C �XiL2 �

1

2
k�?k2

L2
� 8�2�2:

Proof. It is shown in [10, Theorem 3], for example, that if gij denotes the components
of the inverse of the induced metric andAij denotes the components of the second fundamental
form on L, and we set

LV D �?LV � hAij ; V ig
kigjlAkl �

V

2
C
1

2
r
?

X>
V ;

then

(2.11) 4�
à2F
às2

ˇ̌̌
sD0
D

Z
L

�
hV;LV iChV; �i�

1

2
j�?j2�2�hH;V i��2jH j2

�
e�
jXj2

4 volL:
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For the Clifford torus, it is easy to see from (2.7) that the second fundamental form A

of L with respect to the basis X1; X2 is given by

A11 D JX1; A12 D A21 D 0; A22 D JX2:

Therefore, using (2.3) we see that

hAij ; V ig
kigjlAkl D

1

4
hJX1; V iJX1 C

1

4
hJX2; V iJX2 D

1

2
gij hJXi ; V iJXj D

V

2
:

The fact that X D X? implies that X> D 0. Moreover, 2H D �X , jX j2 D 4 and the volume
of L is 8�2. The result follows from (2.9) and (2.11).

Lemma 2.5 implies the linearisation of the self-shrinker condition (2.1) on L is, up to
an overall sign, given by �?L � 1. We shall formalise this statement later, but what we mean
is that if we consider a normal graph over L which also satisfies (2.1), then to first order the
normal vector defining the graph will lie in the kernel of �?L � 1, which we have described in
Lemma 2.2.

3. Group orbits

We look at the orbit of the Clifford torus L under various groups, studying those which
preserve the Lagrangian or self-shrinker condition, or otherwise. This will play a crucial role
in our later study.

3.1. Dilations. Since L is a self-shrinker, we know that dilations of L are generated
by H , or equivalently

(3.1) U1 D �X
?
D JX1 C JX2:

Notice that this is a harmonic normal vector field and thus clearly not Hamiltonian.
We can choose another harmonic normal vector field orthogonal to X?,

(3.2) U2 D JX1 � JX2;

and we observe the following from Lemma 2.2.

Lemma 3.1. For �?L given in (2.6) and U1, U2 given in (3.1)–(3.2), we have

Span¹U1; U2º D ¹V W �?LV D 0º:

If we define a one-parameter family ¹Lıs W s 2 Rº of Lagrangians by

Lıs D

² p
2

p
cosh 2s

.e�sCi�1 ; esCi�2/ W �1; �2 2 R

³
;

we see that Lıs � S3.2/ for all s, Lı0 D L and we can calculate the variation vector field
àLıs
às

ˇ̌̌
sD0
D JX1 � JX2 D U2:

We shall see that Lıs define Lagrangian variations for which the Clifford torus is unstable
under the flow, but we know these lie in different Hamiltonian isotopy classes to L for s ¤ 0
as U2 is not Hamiltonian.
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3.2. Translations. Translations clearly preserve the class of self-shrinkers and preserve
the Lagrangian condition. The translations on C2 are generated by the vectors

.1; 0/; .i; 0/; .0; 1/; .0; i/:

We can restrict these vector fields to the Clifford torus L and we may compute

h.1; 0/; JE1i D �Re.e�i�1/ D � cos �1; h.1; 0/; JE2i D 0;

h.i; 0/; JE1i D �Re.ie�i�1/ D � sin �1; h.i; 0/; JE2i D 0;

h.0; 1/; JE1i D 0; h.0; 1/; JE2i D �Re.e�i�2/ D � cos �2;

h.0; i/; JE1i D 0; h.0; i/; JE2i D �Re.ie�i�2/ D � sin �2:

Therefore,

.1; 0/? D � cos �1JE1 D �
p
2Jr.sin �1/;(3.3)

.i; 0/? D � sin �1JE1 D
p
2Jr.cos �1/;

.0; 1/? D � cos �2JE2 D �
p
2Jr.sin �2/;(3.4)

.0; i/? D � sin �2JE2 D
p
2Jr.cos �2/;

which are manifestly Hamiltonian. Moreover, we have the following.

Lemma 3.2. For �L given in (2.5), we have

Span¹.1; 0/?; .i; 0/?; .0; 1/?; .0; i/?º D ¹Jrf W �Lf D 1
2
f º:

Proof. This is immediate from Lemma 2.1 and (3.3)–(3.4)

3.3. Unitary transformations. We know that the unitary group U.2/ on C2 is the inter-
section of the rigid isometry group SO.4/ on R4 D C2 with the Hamiltonian diffeomorphism
group on C2. Therefore, the orbit ofL under U.2/ consists of Lagrangian self-shrinkers satisfy-
ing (2.1), and the orbit ofL under SO.4/ consists of (not necessarily Lagrangian) self-shrinkers
satisfying (2.1).

The orbit of L under U.2/ is 2-dimensional and the orbit of L under SO.4/ is 4-dimen-
sional, since the stabilizer of L in each case is the maximal torus in U.2/:´ 

ei�1 0

0 ei�2

!
W �1; �2 2 R

µ
:

The maximal torus is generated by the matrices 
i 0

0 0

!
and

 
0 0

0 i

!
;

leading to vector fields on C2  
iz1

0

!
and

 
0

iz2

!
;

generating one-parameter subgroups in U.2/ � SO.4/. Notice that these vector fields restricted
to L are just X1 and X2, so their projection to the normal space of L is zero. (Here, and
throughout, we will not distinguish row vectors and column vectors.)
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We can find a complementary (in fact, orthogonal) subspace of the Lie algebra of U.2/
to the maximal torus, spanned by the matrices 

0 �1

1 0

!
and

 
0 i

i 0

!
:

The corresponding vector fields on C2 are

(3.5)

 
�z2

z1

!
and

 
iz2

iz1

!
;

whose restrictions to L are just

Y1 D
p
2.�ei�2 ; ei�1/ and Y2 D

p
2.iei�2 ; iei�1/:

We quickly see that

hY1; JE1i D Re.
p
2ei.�2��1// D

p
2 cos.�1 � �2/;

hY1; JE2i D Re.�
p
2ei.�1��2// D �

p
2 cos.�1 � �2/;

hY2; JE1i D Re.�
p
2iei.�2��1// D �

p
2 sin.�1 � �2/;

hY2; JE2i D Re.�
p
2iei.�1��2// D

p
2 sin.�1 � �2/:

Hence,

Y ?1 D cos.�1 � �2/.JX1 � JX2/ D 2Jr.sin.�1 � �2//;(3.6)

Y ?2 D � sin.�1 � �2/.JX1 � JX2/ D 2Jr.cos.�1 � �2//;(3.7)

which are manifestly Hamiltonian.
If we consider the action of the matrix

(3.8)
1
p
2

 
1 1

�i i

!
2 U.2/

on L, we see that we obtain the Lagrangian self-shrinker

L0 D
®�
ei�1 C ei�2 ;�iei�1 C iei�2

�
W �1; �2 2 R

¯
(3.9)

D
®�
.cos �1 C cos �2/C i.sin �1 C sin �2/;

.sin �1 � sin �2/ � i.cos �1 � cos �2/
�
W �1; �2 2 R

¯
D

°�
2 cos

�
�1C�2
2

�
cos
�
�1��2
2

�
C 2i sin

�
�1C�2
2

�
cos
�
�1��2
2

�
;

2 cos
�
�1C�2
2

�
sin
�
�1��2
2

�
C 2i sin

�
�1C�2
2

�
sin
�
�1��2
2

�
W �1; �2 2 R

±
D
®
2.ei� cos �; ei� sin �/ W �; � 2 R

¯
;

where we set

(3.10) � D
�1 C �2

2
and � D

�1 � �2

2
:
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In this way, we can view the Clifford torus as an S1-invariant Lagrangian of the form

¹.�/.cos �; sin �/ W �; � 2 Rº

for a curve  in C. In the case of the Clifford torus, the curve in C in question is just

.�/ D 2ei� ;

a circle of radius 2.

3.4. Hamiltonian group orbits. From the perspective in (3.9) it is clear that we can act
by the linear Hamiltonian group on C D R2, i.e. SL.2;R/, on the curve .�/ D 2ei� to obtain
Lagrangians Hamiltonian isotopic to L0, and thus L. The stabilizer of  in SL.2;R/ is SO.2/,
so the orbit of  under SL.2;R/ is 2-dimensional. Moreover, if Q is in the SL.2;R/ orbit of  ,
then the corresponding Lagrangian

(3.11) QL0 D ¹ Q.�/.cos �; sin �/ W �; � 2 Rº

lies in the SO.4;R/ orbit of L0, and thus L, if and only if Q D  up to reparametrisation, which
is if and only if QL0 D L0.

We can choose two one-parameter subgroups of SL.2;R/ which, together with SO.2/,
enable us to generate SL.2;R/: for example, we can take

As D

 
es 0

0 e�s

!
and Bs D

 
cosh s sinh s

sinh s cosh s

!
for s 2 R, so that ¹As W s 2 Rº and ¹Bs W s 2 Rº are our one-parameter subgroups. We see that,
identifying R2 D C, we have

As.�/ D 2e
s cos� C 2ie�s sin�

and
Bs.�/ D 2.cosh s cos� C sinh s sin�/C 2i.sinh s cos� C cosh s sin�/

D 2.cosh sei� C i sinh se�i�/:

Taking Q D As or Q D Bs in (3.11) leads to the following Lagrangians Hamiltonian
isotopic to L0 (and L) which only lie in the SO.4/-orbit of L for s D 0:

L0As D
®
2.es cos� C ie�s sin�/.cos �; sin �/ W �; � 2 R

¯
;

L0Bs D
®
2.cosh sei� C i sinh se�i�/.cos �; sin �/ W �; � 2 R

¯
:

(The statement about not lying in the SO.4/-orbit for s ¤ 0, as well as being clear by inspec-
tion, also follows from (3.16) below.) Acting by the inverse of the unitary matrix in (3.8),
namely

1
p
2

 
1 i

1 �i

!
2 U.2/;

on L0As and L0Bs , we obtain Lagrangians LAs and LBs Hamiltonian isotopic to L, which obvi-
ously still only lie in the SO.4/ orbit of L for s D 0. Explicitly, we see that

LAs D
®p
2.es cos� C ie�s sin�/.ei�; e�i�/ W �; � 2 R

¯
;

LBs D
®p
2.cosh sei� C i sinh se�i�/.ei�; e�i�/ W �; � 2 R

¯
:
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Substituting back for �; � in terms of �1; �2 via (3.10), we compute

2.es cos� C ie�s sin�/ei� D es.cos �1 C cos �2/C e�s.cos �1 � cos �2/

C ies.sin �1 � sin �2/C ie�s.sin �1 C sin �2/

D 2 cosh sei�1 C 2 sinh se�i�2 ;

2.es cos� C ie�s sin�/e�i� D es.cos �1 C cos �2/C e�s.cos �2 � cos �1/

C ies.sin �2 � sin �1/C ie�s.sin �1 C sin �2/

D 2 sinh se�i�1 C 2 cosh sei�2 ;

2.cosh sei� C i sinh se�i�/ei� D 2 cosh sei�1 C 2i sinh se�i�2 ;

2.cosh sei� C i sinh se�i�/e�i� D 2i sinh se�i�1 C 2 cosh sei�2 :

We can thus rewrite

LAs D
®p
2.cosh sei�1C sinh se�i�2 ; sinh se�i�1Ccosh sei�2/ W �1; �2 2R

¯
;(3.12)

LBs D
®p
2.cosh sei�1C i sinh se�i�2 ; i sinh se�i�1Ccosh sei�2/ W �1; �2 2R

¯
:(3.13)

Notice that the variation vector fields for LAs and LBs at s D 0 are given by

VA D
p
2.e�i�2 ; e�i�1/ and VB D

p
2.ie�i�2 ; ie�i�1/:

We may compute that

hVA; JE1i D Re.�
p
2e�i.�2C�1// D �

p
2 cos.�1 C �2/;

hVA; JE2i D Re.�
p
2e�i.�1C�2// D �

p
2 cos.�1 C �2/;

hVB ; JE1i D Re.�
p
2ie�i.�2C�1// D �

p
2 sin.�1 C �2/;

hVB ; JE2i D Re.�
p
2ie�i.�1C�2// D �

p
2 sin.�1 C �2/:

Hence,

V ?A D � cos.�1 C �2/.JX1 C JX2/ D �2Jr.sin.�1 C �2//;(3.14)

V ?B D � sin.�1 C �2/.JX1 C JX2/ D 2Jr.cos.�1 C �2//;(3.15)

which are both clearly Hamiltonian, as we knew.
It is worth noting the following, which follows immediately from Lemma 2.1.

Lemma 3.3. For the normal vector fields given in (3.6), (3.7), (3.14), (3.15), we have

Span¹Y ?1 ; Y
?
2 ; V

?
A ; V

?
B º D ¹Jrf W �Lf D f º:

Observe that the matrices defining the vector fields on R4 D C2, which generate the
one-parameter subgroups of transformations defining the families LAs and LBs , are given by

(3.16)

0BBBB@
0 0 1 0

0 0 0 �1

1 0 0 0

0 �1 0 0

1CCCCA and

0BBBB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1CCCCA :
These matrices lie in sp.4;R/, the Lie algebra of the symplectic group on R4, but clearly do
not lie in so.4/ (and thus do not lie in u.2/).
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3.5. Rotations. We have so far focused on the Clifford torus L as a Lagrangian self-
shrinker, but we now want to understand its character just as a self-shrinker. For this, we first
need to identify the rotations in SO.4/ which do not arise from U.2/. At the Lie algebra level
(i.e. in so.4/), we can span this 2-dimensional space with the following matrices:0BBBB@

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1CCCCA and

0BBBB@
0 0 0 �1

0 0 �1 0

0 1 0 0

1 0 0 0

1CCCCA :
This yields corresponding vector fields on R4 D C2,0BBBB@

�x2

y2

x1

�y1

1CCCCA D
 
�z2

z1

!
and

0BBBB@
�y2

�x2

y1

x1

1CCCCA D
 
�iz2

iz1

!
;

generating one-parameter subgroups in SO.4/. Their restrictions to L are

Y3 D
p
2.�e�i�2 ; e�i�1/ and Y4 D

p
2.�ie�i�2 ; ie�i�1/:

As before, we may compute

hY3; JE1i D Re.
p
2e�i.�2C�1// D

p
2 cos.�1 C �2/;

hY3; JE2i D Re.�
p
2e�i.�1C�2// D �

p
2 cos.�1 C �2/;

hY4; JE1i D Re.
p
2ie�i.�2C�1// D

p
2 sin.�1 C �2/;

hY4; JE2i D Re.�
p
2ie�i.�1C�2// D �

p
2 sin.�1 C �2/:

Thus, we have

(3.17) Y ?3 D cos.�1 C �2/.JX1 � JX2/ and Y ?4 D sin.�1 C �2/.JX1 � JX2/:

Notice here that these vector fields are not Hamiltonian, again as we would expect.

3.6. Further group orbits. Finally, we consider the following 2 � 2 complex (in fact,
Hermitian) matrices at the Lie algebra level (i.e. they lie in the Lie algebra of SL.2;C/): 

0 1

1 0

!
and

 
0 �i

i 0

!
;

which are identified with the following real 4 � 4 matrices0BBBB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1CCCCA and

0BBBB@
0 0 0 1

0 0 �1 0

0 �1 0 0

1 0 0 0

1CCCCA ;
that do not lie in so.4/ or in sp.4;R/. These matrices yield corresponding vector fields on C2: 

z2

z1

!
and

 
�iz2

iz1

!
;
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which one should compare to (3.5). These vector fields generate one-parameter groups given
by ¹Cs W s 2 Rº and ¹Ds W s 2 Rº, where

Cs D

 
cosh s sinh s

sinh s cosh s

!
and Ds D

 
cosh s �i sinh s

i sinh s cosh s

!
:

The orbits ofL under the action of these one-parameter groups yield the following real surfaces
in C2, which lie in the SO.4/-orbit of L only for s D 0:

LCs D
®p
2.cosh sei�1 C sinh sei�2 ; sinh sei�1 C cosh sei�2/ W �1; �2 2 R

¯
;

LDs D
®p
2.cosh sei�1 � i sinh sei�2 ; i sinh sei�1 C cosh sei�2/ W �1; �2 2 R

¯
:

(These formulae should be compared to LAs and LBs in (3.12)–(3.13).)
The variation vector fields of LCs and LDs at s D 0 are given by

VC D
p
2.ei�2 ; ei�1/ and VD D

p
2.�iei�2 ; iei�1/:

We may compute that

hVC ; JE1i D Re.�
p
2ei.�2��1// D �

p
2 cos.�1 � �2/;

hVC ; JE2i D Re.�
p
2ei.�1��2// D �

p
2 cos.�1 � �2/;

hVD; JE1i D Re.
p
2iei.�2��1// D

p
2 sin.�1 � �2/;

hVD; JE2i D Re.�
p
2iei.�1��2// D

p
2 sin.�1 � �2/:

Hence,

V ?C D � cos.�1 � �2/.JX1 C JX2/;(3.18)

V ?D D sin.�1 � �2/.JX1 C JX2/;

which should be compared to (3.14)–(3.15), and which are manifestly not Hamiltonian, as we
would expect.

We now observe the following by Lemma 2.2.

Lemma 3.4. For the normal vector fields on L given in (3.6), (3.7), (3.14), (3.15),
(3.17), (3.18), we have

Span¹Y ?1 ; Y
?
2 ; Y

?
3 ; Y

?
4 ; V

?
A ; V

?
B ; V

?
C ; V

?
D º D ¹V W �

?
LV D V º:

4. Hamiltonian instability

It is known that the Clifford torus is F -unstable under Lagrangian variations [10, Theo-
rem 8] but F -stable under Hamiltonian variations (this is claimed in [10, 11], even though
[2, Main Theorem 6] seems erroneously to claim the contrary). We will verify these claims
explicitly and show more: that the Clifford torus is entropy unstable under Hamiltonian varia-
tions.

From this we will prove that the Clifford torus is unstable under Lagrangian mean curva-
ture flow under C1-small Hamiltonian variations (even U.1/-equivariant and graphical).
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4.1. Second variation. In this subsection, we first verify the Lagrangian instability
result in [10, Theorem 8].

Lemma 4.1. In the direction of the Lagrangian variation U2 D JX1 � JX2 of the
Clifford torus L, the second variation of F is strictly negative. Thus, the Clifford torus L is
Lagrangian F -unstable.

Proof. We have that �?LU2 D 0 by Lemma 2.2. We know that U2 is orthogonal to
X D JX1 C JX2 by (2.2), and U2 is orthogonal to the restriction of any constant vector to
L by Lemmas 2.2 and 3.2. The result follows from taking V D U2 in Lemma 2.5.

This Lagrangian variation corresponds to “squashing” one geodesic circle direction in
the torus whilst “expanding” the orthogonal geodesic circle direction. We reiterate that this
variation is not Hamiltonian.

We know, by Lemmas 2.2, 2.5 and 3.2, that the second variation of F will be negative
in the direction of any translation since they have eigenvalue 1

2
for �?L . These transformations

are also Hamiltonian so they give unstable Hamiltonian directions for F . However, we now
show that these are the only unstable directions, verifying the Hamiltonian F -stability claimed
in [10, 11].

Lemma 4.2. In the direction of any Hamiltonian variation of the Clifford torusL ortho-
gonal to the translations, the second variation of F is non-negative. Thus, L is Hamiltonian
F -stable.

Proof. If Jrf is a Hamiltonian vector field orthogonal to the translations, then f must
lie in the span of the eigenspaces of�L of eigenvalue greater than or equal to 1 by Lemmas 2.1
and 3.2. The result follows from Lemma 2.5.

This result fits well with the following [15].

Theorem 4.3. The Clifford torus L is a local minimum for volume under Hamiltonian
variations in C2.

We finally characterise the kernel of the second variation under Hamiltonian variations.

Lemma 4.4. The Hamiltonian vector fields Jrf which give directions for which the
second variation of F at the Clifford torus L is zero are those where �Lf D f , described in
Lemma 3.3.

By Lemma 3.3, two of these variations arise from unitary transformations and therefore
are integrable directions, in the sense that the F -functional is constant under these transforma-
tions. However, we need to analyse further the other two directions, as we only currently know
that the F -functional is non-decreasing in these directions to second order.

4.2. Entropy. We now return to the Lagrangians LAs introduced in (3.12). By Lem-
mas 3.3 and 4.4, they are generated at s D 0 by a Hamiltonian vector field for which the second
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variation at s D 0 is zero. If we let X.s/ be the position vector of LAs , we wish to compute the
value of the F -functional at .X.s/; 0; 1/ for s near 0 to compare it to its value at .X; 0; 1/ as
X.0/ D X .

After that, we wish to estimate F at .X.s/; x0; t0/ for s near 0 and .x0; t0/ near .0; 1/.
With this information, we wish to compare the value of the entropy �.X.s// relative to �.X/,
computed in Lemma 2.4.

We begin by showing that the F -functional, centred at .x0; t0/ D .0; 1/ strictly decreases
along the family LAs for s near 0.

Proposition 4.5. For s near 0, we have that

F.X.s/; 0; 1/ � F.X.0/; 0; 1/ D �
4�

9e
s6 CO.s8/:

Hence F.X.s/; 0; 1/ has a strict local maximum at s D 0.

Proof. We start by recalling that

(4.1) X.s/ D
p
2.cosh sei�1 C sinh se�i�2 ; sinh se�i�1 C cosh sei�2/:

Hence,

jX.s/j2 D 2
�
.cosh s cos �1 C sinh s cos �2/2 C .cosh s sin �1 � sinh s sin �2/2

C .sinh s cos �1 C cosh s cos �2/2 C .� sinh s sin �1 C cosh s sin �2/2
�

D 2
�
2.cosh2 s C sinh2 s/C 4 sinh s cosh s cos.�1 C �2/

�
D 4 cosh 2s C 4 sinh 2s cos.�1 C �2/:

We have two tangent vector fields on LAs :

X1.s/ D
p
2.i cosh sei�1 ;�i sinh se�i�1/;

X2.s/ D
p
2.�i sinh se�i�2 ; i cosh sei�2/:

We see that

jX1.s/j
2
D jX2.s/j

2
D 2.cosh2 s C sinh2 s/ D 2 cosh 2s;

hX1.s/; X2.s/i D �2 cosh s sinh s Re.ei.�1C�2/ C e�i.�1C�2//

D �2 sinh 2s cos.�1 C �2/;

so the induced metric on LAs is

2 cosh 2s.d�21 C d�22 / � 2 sinh 2s cos.�1 C �2/ d�1 d�2:

Therefore, the volume form on LAs is

vol.s/ D 2
q

cosh2 2s � sinh2 2s cos2.�1 C �2/ d�1 ^ d�2:(4.2)

Hence, we deduce that

F.X.s/; 0; 1/ D
1

2�e

Z 2�

0

Z 2�

0

I.s/ d�1 d�2;(4.3)

where

(4.4) I.s/ D

q
cosh2 2s � sinh2 2s cos2.�1 C �2/e1�cosh2s�sinh2s cos.�1C�2/:
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This is clearly a real analytic function of s and we may then compute its power series expansion
about s D 0. We see that since changing s to �s in (4.4) can be accounted for by translating
�1 C �2 to �1 C �2 C � , the power series of (4.3) will be even in s. Equivalently, we notice
that the odd powers of s in the expansion of I.s/ will be linear combinations of odd powers of
cos.�1 C �2/ and so will integrate to 0 in (4.3). We see this explicitly when we compute the
first terms of the power series, by calculating

I.0/ D 1; I 0.0/ D �2 cos.�1 C �2/; I 00.0/ D 0;(4.5)

I .3/.0/

3Š
D �

4

3
cos.�1 C �2/C

8

3
cos3.�1 C �2/;(4.6)

I .4/.0/

4Š
D �2C 8 cos2.�1 C �2/ �

16

3
cos4.�1 C �2/;(4.7)

I .5/.0/

5Š
D
56

15
cos.�1 C �2/ �

32

3
cos3.�1 C �2/C

32

5
cos5.�1 C �2/;(4.8)

I .6/.0/

6Š
D
4

3
�
32

3
cos2.�1 C �2/C

160

9
cos4.�1 C �2/ �

416

45
cos6.�1 C �2/:(4.9)

Notice that (4.5) implies that, for s near 0,

F.X.s/; 0; 1/ D
2�

e
CO.s3/ D F.X; 0; 1/CO.s3/;

which is consistent with the fact that X is a critical point for F and that the second variation is
zero in the direction àX.s/às jsD0. As already observed, the terms in (4.6) and (4.8) integrate to 0.
It is also elementary to see from (4.7) and (4.9) thatZ 2�

0

Z 2�

0

I .4/.0/

4Š
d�1 d�2 D 0 and

Z 2�

0

Z 2�

0

I .6/.0/

6Š
d�1 d�2 D �

8

9
�2:

The result now follows.

We now consider the value of the F -functional forLAs for space-time centres near .0; 1/.

Proposition 4.6. Let X.s/ denote the position of LAs given in (3.12). Then there exist
s0 > 0 and r0 > 0 such that whenever .x0; t0/ lies in the set

S D
®
.x0; t0/ 2 C2

�RC W jx0j
2
C 2jt0 � 1j

2
� r20

¯
;

and jsj � s0 we have

F.X.s/; x0; t0/ � F.X.0/; 0; 1/ �
�

4e
.jx0j

2
C 2jt0 � 1j

2/ �
2�

9e
s6:

Proof. We know from (4.2) that if x0 2 C2 and t0 2 RC, then

F.X.s/; x0; t0/ D
1

2�e

Z 2�

0

Z 2�

0

I.s; x0; t0/ d�1 d�2;

where

I.s; x0; t0/ D
1

t0

q
cosh2 2s � sinh2 2s cos2.�1 C �2/e

1�
jX.s/�x0j

2

4t0 :
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Pick any .�; �/ 2 C2 �R with j�j2 C 2j� j2 D 1, and define

f .r; s/ D

Z 2�

0

Z 2�

0

I.s; r�; 1C r�/ d�1 d�2:

Performing a Taylor expansion using formula (4.1) (and with the help of Mathematica) around
.r; s/ D .0; 0/ yields

f .r; s/ D f .0; 0/ � �2.j�j2 C 2�2/r2 �
8

9
�2s6 CO.r2s/CO.r3/CO.s7/

D f .0; 0/ � �2r2 �
8

9
�2s6 CO.r2s/CO.r3/CO.s7/:

We can thus choose r0; s0 > 0 sufficiently small such that for jr j � r0 and jsj � s0 we have

f .r; s/ � f .0; 0/ �
1

2
�2r2 �

4

9
�2s6:

Since this estimate is uniform in .�; �/, this yields the desired statement.

We can now combine Propositions 4.5 and 4.6 to give our first key result.

Theorem 4.7. For s near 0 we have that

�.X.s// � �.X.0// �
2�

9e
s6:

Hence, the entropy �.X.s// has a local maximum at s D 0.

Proof. We first recall that Huisken’s monotonicity formula [9] implies that for a com-
pact self-shrinker† satisfying (2.1), the entropy �.†/ is uniquely attained at .0; 1/: we consider
the self-similar evolution of † given by †t D

p
�t �† for t 2 .�1; 0/. The first observation

is that the monotonicity formula implies that the Gaussian density at minus infinity satisfies

‚..†t /t<0;1/ D �.†/:

Since this flow is self-similar, this yields that

�.†/ D F.†; 0; 1/:

Now assume that there is a point .x0; t0/ ¤ .0; 1/ such that �.†/ D F.†; x0; t0/. The mono-
tonicity formula then implies that .†t /t<0 is also self-similarly shrinking with respect to the
point .x0; t0 � 1/. This already yields that t0 D 1. The monotonicity formula further implies
that the entropy is attained on any point along the line containing x0 and 0, and thus † has to
split as a product †0 �R. This contradicts the compactness of †.

Now consider †0 given as an exponential normal graph of U 2 C1.N†/. We choose
"0 > 0 and assume

(4.10) kU kC1 � " � "0:

Note that this implies that for "0 D "0.†/ > 0 sufficiently small, given any �0 > 0, there exists
a constant ı0 D ı0.†; �0/ > 0 such that

(4.11) F.†0; x0; t0/ � 1C �0
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for all x0 2 C2, 0 < t0 < ı0. We can choose �0 D 1
4
.�.†/ � 1/ > 0 (as † is not a plane).

Since the entropy of † is uniquely attained at .0; 1/, given any r > 0, there exists 0 < � < �0
such that

F.†; x0; t0/ < �.†/ � 3�

for all jx0j > r and .t0 � 1/2 > r . Using (4.11), we see that we can thus choose " sufficiently
small in (4.10) such that

F.†0; x0; t0/ < �.†/ � 2�

for all jx0j � r and .t0 � 1/2 � r and

F.†0; 0; 1/ � �.†/ � �:

We deduce that the entropy of †0 is attained in the set®
.x0; t0/ 2 C2

�RC W jx0j � r; .t0 � 1/
2
� r

¯
:

Applying this to our set-up, we see that for s small, the entropy �.X.s// is only attained at
(possibly non-unique) points .xs; ts/ with the property .xs; ts/! .0; 1/ as s ! 0. The claimed
result then follows directly from Proposition 4.6.

Theorem 4.7 yields the following immediate corollary.

Corollary 4.8. The Clifford torus is not a local entropy minimiser, even under Hamilton-
ian variations.

Given that the Clifford torus is the simplest example of a compact Lagrangian self-
shrinker in C2, Corollary 4.8 naturally leads one to ask: which Lagrangian self-shrinkers in
C2 are local minimisers of the entropy under Hamiltonian variations?

4.3. Flow instability. With these results in hand, we can now prove our flow instability
result.

Theorem 4.9. For every � > 0 and k 2N, there exists a compact embedded Lagrangian
torus L0, Hamiltonian isotopic and �-close in C k to the Clifford torus L, such that Lagrangian
mean curvature flow starting at L0 develops a first finite-time singularity whose blow-up is not
A � L for any A 2 U.2/. Hence, the rescaled Lagrangian mean curvature flow starting at L0

does not converge to the Clifford torus.

Proof. We can choose L0 D LAs for some s sufficiently small to ensure it is �-close
in C k to L. The entropy �.X.s// is strictly less than the entropy of L and the entropy is non-
increasing under the Lagrangian mean curvature flow (or the rescaled flow) by Lemma 2.3.
Hence, the rescaled flow cannot converge to any member of the U.2/-orbit of L.

Theorem 4.9 yields the following interesting corollary, which is surprising given the local
stability results in Lemma 4.2 and Theorem 4.3. In particular, even though the Clifford torus is
locally volume minimizing under Hamiltonian variations, it is unstable under Lagrangian mean
curvature flow under such perturbations. This is counter to one’s intuition concerning gradient
flows, and points to a lack of the expected coercivity of the volume functional in this situation.
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Corollary 4.10. The Clifford torus is Hamiltonian unstable for arbitrarily small defor-
mations under Lagrangian mean curvature flow.

It is worth noting that the work in [14] implies that we can find L0 Hamiltonian isotopic
to L as in Theorem 4.9 which is arbitrarily C 0-close, but not C 1-close. The fact that L0 given
in [14] is not C 1-close to L is not a technicality, but rather an essential consequence of the
construction of L0. Hence, Theorem 4.9 strengthens the results of [14] in this instance.

The familyLAs we chose in the proof of Theorem 4.9 is, up to unitary transformation, the
same family considered in [8, Section 4] and [12, Theorem C]. The latter implies the following.

Theorem 4.11. For s sufficiently large, Lagrangian mean curvature flow starting atLAs
will develop a first finite-time Type II singularity at the origin, whose blow-up is a transverse
pair of special Lagrangian planes with the same Lagrangian angle.

This shows Hamiltonian instability of the Clifford torus for large deformations (i.e.
large s), but we have now shown it is true for any sufficiently small deformation (so small s).
It is reasonable to ask whether the same behaviour as in Theorem 4.11 occurs for Lagrangian
mean curvature flow starting at LAs for any s ¤ 0. Since LAs is monotone, by the theory
in [12], it should be enough to show that the first singularity of the flow starting at LAs is
before time cosh 2s. This is equivalent to saying that the flow starting at 1p

cosh2s
LAs becomes

singular before time 1, which is when the Clifford torus (and any self-shrinker satisfying (2.1))
shrinks to a point.

4.4. Stability. In contrast to our instability results we can prove a stability result for the
Clifford torus as follows, which utilises our local uniqueness result we shall prove later.

Theorem 4.12. Let L0 be a compact embedded Lagrangian in S3.2/, Hamiltonian iso-
topic to the Clifford torus L. If L0 is sufficiently close to L, then L0 has a first finite-time Type I
singularity at the origin at time 1 and the rescaled Lagrangian mean curvature flow starting
at L0 converges to L, up to some unitary transformation.

Proof. For any Lagrangian L0 in S3.2/ with position vector X 0, we see that

4�eF.X 0; 0; 1/ D Vol.L0/:

By Theorem 4.3, we therefore know that for any L0 as in the statement we have that

(4.12) 4�eF.X 0; 0; 1/ D Vol.L0/ � Vol.L/ D 4�F.X; 0; 1/:

We can also deduce this result directly from our own calculations.
By the work in [4], we know that L0 is a torus foliated by Hopf circles, so we can write

L0 D
®
ei.

�1C�2
2

/.�1 � �2/ W �1; �2 2 R
¯

for some curve .�1 � �2/ in S2.2/. In the case of L, we have that

.�1 � �2/ D
p
2
�
ei.

�1��2
2

/; e�i.
�1��2
2

/
�
:

Therefore, the variation vector field of any Hamiltonian isotopy at L is given by Jrf where
f D f .�1 � �2/. The Hamiltonian vector fields V on L for which hV; .�?L � 1/V i � 0 are
given in Lemmas 3.2 and 3.3. We see immediately that the only such V of the form Jrf
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where f is a function of �1 � �2 are Y ?1 and Y ?2 which generate unitary transformations. Thus
the second variation of F at .X; 0; 1/ is non-negative for Hamiltonian variations within S3.2/

and the directions for which the second variation vanishes are given by unitary transformations,
under which the F -functional is constant. We therefore have that (4.12) holds as claimed.

We now consider the maximal smooth evolution .L0t /0�t<T ofL0 DW L00 by (Lagrangian)
mean curvature flow. We first recall that also for mean curvature flow of higher codimension,
more precisely for mean curvature flow of k-dimensional surfaces in Rn, spheres with radius
R.t/ D

p
R2 � 2kt act as barriers both from the inside and from the outside. Applied to the

present set-up this implies that
L0t � S3.2

p
1 � t /

for all 0 � t < T . Note further that since Lagrangian mean curvature flow preserves the Maslov
class Œd� 0� of L0 and the class of the Liouville form of L0t satisfies

Œ�0t � D 2.1 � t /Œd�
0�

by [12, Lemma 2.1], we have that L0t remains Hamiltonian isotopic to Lt where .Lt /0�t<1 is
the self-similar evolution of the Clifford torus.

We consider the rescaled flow

QL0� D
1

p
1 � t

L0t � S3.2/;

where � D � log.1 � t /, and let QX 0� denotes its position vector in C2. Note that this rescaling
yields QL� D L. We now consider Huisken’s rescaled monotone quantity:

E. QL0� / D
1

4�

Z
QL0�

exp
�
�
j QX 0� j

2

4

�
vol QL0� D

1

4�e
Vol. QL0� /;

which is decreasing in � . Furthermore, by (4.12), we have

E. QL0� / � E.L/ D
2�

e
:

The remaining argument is now a direct application of the Łojasiewicz-Simon inequality as
in [17], which we now outline.

We assume that L0 can be written as a normal exponential graph over L, given by
V 2 C1.NL/. Then we can write, at least for � sufficiently small, QL0� as normal exponen-
tial graphs over L, given by V.�/ 2 C1.NL/.

Let 0 < " < �0
2

be chosen later, and assume that

kV.0/kC2;˛ < ":

We consider the set

S WD ¹� > 0 W kV.s/kC2;˛ � �0 for all s 2 Œ0; �/º:

We aim to show that for " sufficiently small and �0 chosen suitably S D Œ0;1/.
Note that for �0 sufficiently small, since " < �0

2
, there exists a ı > 0, independent of "

such that .0; 2ı� � S . By higher interior estimates, see for example [19], there exists C0 > 0
such that for all " 2 .0; �0

2
/ we have

(4.13) kV.�/kC3;˛ � C0

for all � 2 S with � � ı.
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We write E.V .�// D E. QL0� / and E.0/ D E.L/. For �0 sufficiently small, depending only
on L, we have by [17, Lemma 3.1] that there exist � 2 .0; 1

2
/ and C1 D C1.L/ such that

(4.14) sup
�2Œ�1;�2�

kV.�/ � V.�1/kL2 � C1.E.V .�1// � E.0//�

for all �1; �2 2 S , �1 < �2. We now fix �0 accordingly so that estimate (4.14) holds. Note that
E.V .0//! E.0/ as "! 0. This implies that

kV.�/kL2 � kV.0/kL2 C C1.E.V .0// � E.0//�

for all � 2 S . Interpolating the C 2;˛-norm between the L2-norm and the C 3;˛-norm and
using (4.13), we see that for " sufficiently small we have

kV.�/kC2;˛ �
3

4
�0

for all � 2 S with � � ı, and thus S D Œ0;1/ as desired.
The monotonicity formula then implies that there is a sequence �i !1 such that QL0�i

converges smoothly to a self-shrinker L00 which is a small C 2;˛ normal graph of, say, V 00

over L.
By the Łojasievicz–Simon inequality we have that E.L00/ D E.L/ and thus by the mono-

tonicity of E.V .�//, E.V .�//! E.0/ as �!1. Thus by (4.14) we have that V.�/ is a Cauchy
sequence in L2.NL/ and the sequence converges to V 00.

By the local uniqueness of the Clifford torus, Theorem 5.6, we have that L00 D A � L
for some A 2 U.2/ and the whole sequence converges. As an alternative to using Theorem 5.6
below, we may observe that the argument thus far implies thatL00must be a minimal Lagrangian
torus contained in S3.2/, which is embedded as it is a small C 2;˛ graph over L. Hence, L00 is
L up to a unitary transformation by the proof of the Lawson Conjecture [3].

We should be clear that Theorem 4.12 actually holds without the additional assumption
that L0 is close to L, as stated in Theorem 4.15 below. This follows from the work in [4],
as we shall now explain. However, we wanted to illustrate here in the proof of Theorem 4.12
an alternative approach for obtaining an (albeit weaker) stability result for the Clifford torus,
which may be applicable in other contexts where the special techniques implemented in [4]
may not be valid.

To relate Theorem 4.12 to work in [4], we require the following result in curve shortening
flow (cf. [4, 7]), which is interesting in its own right.

Theorem 4.13. Let 0 be a simple closed curve in S2 and let t be the evolution of 0
under curve shortening flow in S2. Then the following are equivalent:

(a) 0 is Hamiltonian isotopic to an equator in S2.

(b) 0 divides S2 into two regions of equal area.

(c) t divides S2 into two regions of equal area for all t .

(d) t exists for all time and converges to an equator in S2.

Proof. By definition, Hamiltonian isotopies in S2 preserve area (as the symplectic form
on S2 is the area form), so if 0 is Hamiltonian isotopic to an equator, it divides S2 into two
regions of equal area. Therefore, (a) implies (b).



162 Evans, Lotay and Schulze, Remarks on the self-shrinking Clifford torus

By [4, Lemma 3.2], 0 divides S2 into two regions of equal area if and only if t does
for each t . Therefore, (b) is equivalent to (c). Moreover, the proof of [4, Corollary 3.3] states
that (b) is equivalent to (d). Therefore, we need only show that t is a Hamiltonian isotopy to
show that (d) implies (a) and thus complete the proof.

At every time t , we know that t is a simple closed curve and divides S2 into two regions
of equal area 2� (using here that S2 has curvature 1 and so its area is 4�). Choose one of these
regions Ut for each t . By Gauss–Bonnet,Z

Ut

dAC
Z
t

�t D 2��.Ut /;

where �t is the curvature of t . Since the area of Ut is 2� and the Euler characteristic
�.Ut / D 1 we have that Z

t

�t D 0

for all t . Hence, �t is exact for each t , and thus the curve shortening flow t is indeed
a Hamiltonian isotopy as desired.

We now make the following observation.

Lemma 4.14. A compact embedded orientable Lagrangian L0 in S3.2/ is Hamiltonian
isotopic to the Clifford torus L if and only if L0 divides S3.2/ into two regions of equal volume.

Proof. In [4, Proposition 2.1], it is shown that any embedded Lagrangian torus in S3

descends via the Hopf fibration � W S3 ! S2 to a simple closed curve on S2. We review and
extend this argument to show that we can translate the stated claim to one involving curves
on S2.

Let L0 D L0 and L D L1 be Hamiltonian isotopic through Lagrangian tori Ls � S3.2/,
s 2 Œ0; 1�, and let Qfs W Ls ! R be smooth Hamiltonian functions generating the isotopy. Let
N denote the normal vector field to S3.2/ � C2. Since Ls is Lagrangian, JN is tangent to Ls .
The integral curves of JN are the Hopf circles, so Ls must be foliated by such circles, and
hence �.Ls/ D s � S2 is a closed curve. We also see that Ls is embedded if and only if s
is simple. Furthermore, as Jr Qfs is tangent to S3.2/, we have that

hr Qfs; JN i D �hJr Qfs; N i D 0

and so Qfs is constant along the Hopf fibres. Thus, the Qfs descend to Hamiltonian functions
fs W s ! R. Conversely, given Hamiltonian functions fs generating an isotopy s , we can lift
s to a Hamiltonian isotopy Ls by extending each fs to a function Qfs constant along each Hopf
fibre. In conclusion, we have a one-to-one correspondence between Hamiltonian isotopies of
Lagrangian tori in S3.2/ and of closed curves in S2.

Moreover, one may easily see, as in [4], that given any embedded Lagrangian torus L0

in S3.2/, the ratio of the volumes of the two regions of S3.2/ determined by L0 is equal to the
ratio of the areas of the two regions of S2 determined by the simple closed curve �.L0/.

The result then follows from Theorem 4.13.

With this result in hand, we can re-cast the main results of [4] as follows, which thus
shows that Theorem 4.12 is a special case of their work.
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Theorem 4.15. Let L0 be a compact embedded orientable Lagrangian in S3.2/.

(a) If L0 is Hamiltonian isotopic to the Clifford torus L, then Lagrangian mean curvature
flow starting at L0 has a first finite-time Type I singularity at the origin, and the rescaled
flow converges to L, up to a unitary transformation.

(b) If L0 is not Hamiltonian isotopic to L, then Lagrangian mean curvature flow starting
at L0 has a first finite-time Type I singularity along a circle, and the rescaled flow con-
verges to a cylinder S1 �R in some R3 � C2.

We should note that the rescaling in (b) considered in [4] is not the standard rescaling,
but it is equivalent to the standard one and so the result holds as stated. It is perhaps interesting
to observe that the entropy of the cylinder is

�.S1 �R/ D

r
2�

e
D 1:520 : : : ;

which is less than 2 (the entropy of two planes) and less than the entropy of the Clifford torus.
We also observe the following corollary, which is also known by Lemma 4.14 and the

study of the isoperimetric problem in 3-dimensional space forms in [16], for example.

Corollary 4.16. The Clifford torusL is the unique volume (and thus entropy) minimiser
amongst Lagrangians in S3.2/ Hamiltonian isotopic to L, up to unitary transformations.

Proof. By Theorem 4.15 any LagrangianL0 Hamiltonian isotopic to the Clifford torusL
will under the rescaled mean curvature flow converge to L, up to some unitary transformation.
Since the entropy is non-increasing along the flow, we know that �.X 0/ � �.X/ (and hence
Vol.L0/ � Vol.L/). We also know that the entropy is constant if and only if the flow is self-
similar, but then L0 must be L up to a unitary transformation.

5. Local uniqueness

We now wish to move away from the purely Lagrangian setting and discuss the local
uniqueness of the Clifford torus as a self-shrinker for mean curvature flow. This is not straight-
forward since there is a kernel for the linearisation for the self-shrinker equation which is larger
than we would expect: i.e. it does not just consist of infinitesimal rigid motions. Therefore,
we must show the remaining infinitesimal deformations are genuinely obstructed to deduce
local uniqueness.

5.1. The self-shrinker equation. We start by observing that any compact embedded
submanifold which is a graph over the Clifford torus can be written as the image of an immer-
sion

XV D X C V W S
1
� S1 ! C2;

where V is a normal vector field on the Clifford torus L, which is the image of X . More-
over, the graph of V must lie in a C 1-neighbourhood U of the zero section in the normal
bundleNL (where we omit the inclusion of the pullback of this bundle to S1 � S1 for simplic-
ity). We therefore denote the image of XV by LV for V 2 C 1.U/, where the notation means
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C 1-sections of NL whose graph lies in U, and we use similar notation for sections of other
Banach spaces. We also let T denote the tubular neighbourhood of L given by applying the
exponential map to U.

We know thatLV is a self-shrinker with space-time centre at .x0; t0/ D .0; 1/ 2 C2�RC

if and only if (2.1) is satisfied. We can equivalently say that C 1-close self-shrinkers LV are
characterised as zeros of the functional

S W C 2;˛.U/! C 0;˛.NL/;(5.1)

S.V / D �X�V

�
H.X C V /C

.X C V /?V

2

�?
:

Here, H.X C V / is the mean curvature vector of LV and ?V , ? denote the orthogonal projec-
tions on NLV and NL (again abusing notation and omitting pullbacks). Since LV is a normal
graph over L, the projection of the vector in brackets in (5.1) onto NL will vanish if and only
if the vector vanishes. Moreover, we need only consider V in C 2;˛ since if the self-shrinker
equation is satisfied then V will necessarily be smooth.

5.2. Rotations. We know that the action of rotations preserves condition (2.1).
To deal with this, recall the normal vector fields Y ?j onL for j D 1; 2; 3; 4 given in (3.6),

(3.7) and (3.17). Define

(5.2) �Y W C
2;˛.NL/! Y D Span¹Y ?1 ; Y

?
2 ; Y

?
3 ; Y

?
4 º

to be L2-orthogonal projection.

Lemma 5.1. Making U smaller if necessary, for any sufficiently C 1-close submanifold
L0 to L there exist A 2 SO.4/ and V 2 C 1.U/ \ Ker�Y such that A � L0 D LV . Moreover,
A is unique up to the action of U.1/2 preserving L.

Proof. This is a direct application of the slice theorem for Lie group actions by diffeo-
morphisms.

This yields a description of self-shrinkers satisfying (2.1) which are close to L, modulo
the action of rotations.

Lemma 5.2. Up to the action of rotations, sufficiently C 1-close self-shrinkers to L are
uniquely determined by zeros of the functional

S0 W C
2;˛.U/ \ Ker�Y ! C 0;˛.NL/;

S0.V / D �X
�
V

�
H.X C V /C

.X C V /?V

2

�?
;

where �Y is given in (5.2). The linearisation of S0 at 0 is given by

(5.3) L0 D �
?
L � 1 W Ker�Y ! C 0;˛.NL/:

Hence,
S0.V / D .�

?
L � 1/V CQ0.V /

for some smooth functional Q0 whose value and first derivatives at 0 vanish. Moreover, the



Evans, Lotay and Schulze, Remarks on the self-shrinking Clifford torus 165

kernel of L0 is given by

K D Ker L0 D Span
®
V ?A ; V

?
B ; V

?
C ; V

?
D

¯
;

using the notation of (3.14), (3.15) and (3.18).

Proof. If we are given a family X.s/ with

X.0/ D X;
àX.s/
às

D V.s/;

then the first variation formula for F D F.X.s/; 0; 1/ for any s is ([10, Theorem 1])

(5.4)
àF
às
D �

1

4�

Z
L.s/

�
V.s/;H.s/C

X.s/

2

�
e�
jX.s/j2

4 volL.s/;

where L.s/ is the image of X.s/, and the rest of the notation should be clear. Differentiating
(5.4) with respect to s and setting s D 0, we can compare the result to the second variation in
Lemma 2.5 and deduce that

�

�
V.0/;
à
às

�
H.s/C

X.s/

2

�ˇ̌̌
sD0

�
L2
D hV.0/; .�?L � 1/V .0/iL2 :

Thus the linearisation of S0 at 0 is as given in (5.3) and the expression for S0.V / is as claimed.
The remainder of the result follows from the discussion at the start of this subsection,

Lemmas 3.4 and 5.1.

For convenience later, we let

�K W C
2;˛.NL/!K D Span

®
V ?A ; V

?
B ; V

?
C ; V

?
D

¯
denote L2-orthogonal projection onto K .

5.3. Obstructions. We see that the linearisation (5.3) of the self-shrinker operator,
modulo rotations, still has a kernel, so the Clifford torus does have non-trivial infinitesimal
deformations as a self-shrinker. It is therefore not yet clear whether the Clifford torus is locally
unique or not. To understand this, we must show that these infinitesimal deformations are
obstructed; that is, there are no self-shrinkers generated by them.

Before continuing on, we make some elementary observations that shall be useful later.

Lemma 5.3. The following statements hold:

(a) There exists cL > 0 such that for all V 2 .Ker L0/
? � C 2;˛.NL/ we have

kV kC2;˛ � cLkL0.V /kC0;˛ :

(b) There exists cQ > 0 such that for all V; V 0 2 C 2;˛.U0/ we have

kQ0.V / �Q0.V
0/kC0;˛ � cQkV � V

0
kC2;˛ .kV kC2;˛ C kV

0
kC2;˛ /:

Proof. Item (a) follows from the ellipticity of L0. Item (b) is a consequence of the fact
that the value and first derivatives of Q0 vanish at 0.

We study the case of V ?A given in (3.14) in detail as the calculations for all of the other
kernel elements is essentially the same. We show that the infinitesimal deformation V ?A is
obstructed at cubic order.
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Proposition 5.4. For all s sufficiently small, we have that

(5.5) �K ı S0.sV
?
A / D

s3

8
V ?A CO.s

4/:

Moreover, there exists a constant ı > 0 such that, given any W 2 Ker�Y � C
2;˛.NL/ with

k�K.W /kC2;˛ D O.s
2/, we have that

(5.6) k�K ı S0.sV
?
A CW /kC0;˛ � ıs

3:

Proof. It is an elementary explicit computation to show that

S0.sV
?
A / D Q0.sV

?
A /(5.7)

D
2s2.1C 5 cos.2�1 C 2�2// � 19s3 cos.3�1 C 3�2/

8
.JX1 C JX2/

C
s3

8
V ?A CO.s

4/:

Therefore, (5.5) holds. For completeness, we briefly describe how we derived (5.7).
The position vector of the graph LsV?A of sV ?A over L is given by

X.s/ D X C sV ?A D
p
2
�
1C s cos.�1 C �2/

�
.ei�1 ; ei�2/:

We therefore have tangent vectors

X1.s/ D X.s/�

�
à
à�1

�
D
p
2
�
1C s cos.�1 C �2/

�
.iei�1 ; 0/ �

p
2s sin.�1 C �2/.ei�1 ; ei�2/;

X2.s/ D X.s/�

�
à
à�2

�
D
p
2
�
1C s cos.�1 C �2/

�
.0; iei�2/ �

p
2s sin.�1 C �2/.ei�1 ; ei�2/:

Hence, the induced metric on LsV?A is�
2C 3s2 C 4s cos.�1 C �2/ � s2 cos.2�1 C 2�2/

�
.d�21 C d�22 /

C 2s2
�
1 � cos.2�1 C 2�2/

�
d�1 d�2:

From this data, it is straightforward to compute rXi .s/Xj .s/ and its projection to the normal
bundle of LsV?A , and hence the mean curvature H.s/. Explicitly, we see that the determinant
of the induced metric is

4C 16s cos.�1 C �2/C 4s2
�
5C cos.2�1 C 2�2/

�
C 4s3

�
5 cos.�1 C �2/ � cos.3�1 C 3�2/

�
CO.s4/;

and thus the inverse of the induced metric is�
1

2
� s cos.�1 C �2/C s2

5C cos.2�1 C 2�2/
4

� s3
cos.�1 C �2/C cos.3�1 C 3�2/

2

�
.d�21 C d�22 /

C

�
s2

cos.2�1 C 2�2/ � 1
2

C s3
�
cos.�1 C �2/ � cos.3�1 C 3�2/

��
d�1 d�2 CO.s4/:
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We also see that

rX1.s/X1.s/ D �
p
2
�
.1C 2s cos.�1 C �2//ei�1 ; s cos.�1 C �2/ei�2

�
� 2
p
2s sin.�1 C �2/.iei�1 ; 0/;

rX1.s/X2.s/ D �
p
2s cos.�1 C �2/.ei�1 ; ei�2/ �

p
2s sin.�1 C �2/.iei�1 ; iei�2/

D rX2.s/X1.s/;

rX2.s/X2.s/ D �
p
2
�
s cos.�1 C �2/ei�1 ; .1C 2s cos.�1 C �2//ei�2

�
� 2
p
2s sin.�1 C �2/.0; iei�2/:

Therefore, in order to compute the normal projection, we may compute hrXi .s/Xj .s/; Xk.s/i,
for example

hrX1.s/X1.s/; X1.s/i D �2s sin.�1 C �2/C s2 sin.2�1 C 2�2/;

and thus find the mean curvature H.s/ from the formula

H.s/ D gij
�
rXi .s/Xj .s/ � g

kl
hrXi .s/Xj .s/; Xk.s/iXl.s/

�
D �

p
2

2
.ei�1 ; ei�2/ �

p
2s

2

�
cos.�1 C �2/.ei�1 ; ei�2/C 2 sin.�1 C �2/.iei�1 ; iei�2/

�
C

p
2s2

4

�
5C cos.2�1 C 2�2/

�
.ei�1 ; ei�2/

C

p
2s3

2

�
�
5
�
cos.�1 C �2/C 3 cos.3�1 C 3�2/

�
4

.ei�1 ; ei�2/

C
9 sin.�1 C �2/C sin.3�1 C 3�2/

2
.iei�1 ; iei�2/

�
CO.s4/:

We may also compute the projection of X.s/ to the normal bundle of LsV?A , calculating that

X.s/?

2
D
1

2

�
X.s/ � gij hX.s/; Xi .s/iXj .s/

�
D

p
2

2
.ei�1 ; ei�2/C

p
2s

2

�
cos.�1 C �2/.ei�1 ; ei�2/C 2 sin.�1 C �2/.iei�1 ; iei�2/

�
C
p
2s2

�
cos.2�1 C 2�2/ � 1

�
.ei�1 ; ei�2/

C

p
2s3

2

��
cos.�1 C �2/ � cos.3�1 C 3�2/

�
.ei�1 ; ei�2/

C 2
�
sin.3�1 C 3�2/ � 3 sin.�1 C �2/

�
.iei�1 ; iei�2/

�
CO.s4/:

Hence, we have an explicit formula for H.s/C X.s/
2

?
, which we can then project to the nor-

mal bundle of L (after translation, which is elementary since we have written LsV?A as an
exponential normal graph). This gives us formula (5.7).

Now, given anyW 2 Ker�Y we can write it uniquely asW D U 0 CW 0, where U 0 2K

and W 0 2 .Ker L0/
?. We then have that

S0.sV
?
A CW / D L0.W

0/CQ0.sV
?
A CW /

D L0.W
0/CQ0.sV

?
A /CQ0.sV

?
A CW / �Q0.sV

?
A /:
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We know by Lemma 5.3 that

kL0.W
0/kC0;˛ �

1

cL

kW 0kC2;˛ ;

kQ0.sV
?
A CW / �Q0.sV

?
A /kC0;˛ � cQkW kC2;˛ .ksV

?
A CW kC2;˛ C ksV

?
A kC2;˛ /:

We first assume that, given s0 > 0 and �0 > 0, we have kW kC2;˛ � �0s for some 0 � jsj � s0.
Since kU 0kC2;˛ D O.s

2/ by assumption, we can make s0 and U0 smaller if necessary to
conclude from (5.7) that

kS0.sV
?
A CW /kC0;˛ � ıs

for some constant ı D ı.�0/ > 0, and thus (5.6) holds.
We therefore now assume that kW kC2;˛ � �0s and 0 � jsj � s0. This implies

(5.8) kQ0.sV
?
A CW / �Q0.sV

?
A /kC0;˛ � C�0s

2:

As L0 is self-adjoint, we know that .Im L0/
? D Ker L0 DK . Hence,

L0.W
0/CQ0.sV

?
A / � �K ıQ0.sV

?
A /

is orthogonal to K and, by (5.7), we know that

(5.9) kL0.W
0/CQ0.sV

?
A / � �K ıQ0.sV

?
A /kC0;˛ � ı

0s2

for some ı0 D ı0.�0/ > 0, unless

kL0.W
0/C

s2.1C 5 cos.2�1 C 2�2//
4

.JX1 C JX2/kC0;˛ � C�0s
2;

which is equivalent to

(5.10) kW 0 �
s2.3 � 5 cos.2�1 C 2�2//

12
.JX1 C JX2/kC2;˛ � C�0s

2:

Therefore, if (5.10) does not hold, we can deduce from (5.5), (5.8) and (5.9) that

kS0.sV
?
A CW /kC0;˛ � ı

00s2

for some constant ı00 D ı00.�0/ > 0, and thus again (5.6) holds.
So, finally, we now assume that W 0 satisfies (5.10). With this choice of W 0 and writing

U 0 D s2.aV ?A C bV
?
B C cV

?
C C dV

?
D /C o.s

2/

for some a; b; c; d 2 R, we can explicitly estimate

k�K ı S0.sV
?
A C U

0
CW 0/ � �K ı S0.sV

?
A /kC0;˛ � C�0s

3:

Thus we can fix �0 sufficiently small such that (5.5) implies (5.6).

We now show that the analogue of Proposition 5.4 holds for any infinitesimal deformation
ofL as a self-shrinker which does not generate a rigid motion; i.e. it is obstructed at cubic order.

Proposition 5.5. There exists ı > 0 and s0 > 0 such that for all s 2 .�s0; s0/ the fol-
lowing holds. Given any U 2 Ker L0 with kU kC2;˛ D 1, and W 2 Ker�Y � C

2;˛.NL/ with
k�K.W /kC2;˛ D O.s

2/ such that sU CW 2 C 2;˛.U0/, we have

k�K ı S0.sU CW /kC0;˛ � ıs
3:
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Proof. Let a; b; c; d 2 R and let

U D aV ?A C bV
?
B C cV

?
C C dV

?
D :

We may then explicitly compute, as we did for V ?A in the proof of Proposition 5.4 above (i.e. the
case .a; b; c; d/ D .1; 0; 0; 0/) that

�K ı S0.sU / D
s3

8
.a2 C b2 C 18c2 C 18d2/.aV ?A C bV

?
B /

C
s3

8
.18a2 C 18b2 C c2 C d2/.cV ?C C dV

?
D /CO.s

4/:

In particular, we see that if kU kC2;˛ D 1, then there exists a constant ı > 0 such that

k�K ı S0.sU /kC0;˛ � ıs
3

for all s sufficiently small.
The rest of the proof now follows just as for Proposition 5.4.

5.4. Main result. We now have all of the ingredients necessary to prove our local
uniqueness result for the Clifford torus. We consider here self-shrinkers with arbitrary space-
time centres .x0; t0/ 2 C2 �RC, i.e. satisfying (2.10).

Theorem 5.6. Any 2-dimensional compact embedded self-shrinker in C2 which is suf-
ficiently C 2;˛-close to the Clifford torus L is, up to some translation, dilation and rotation,
equal to L.

Proof. Assume first that we have a sequence of self-shrinkers Lj with centers .xj0 ; t
j
0 /

converging in C 2;˛ to L. Then .xj0 ; t
j
0 /! .0; 1/ and the shrinkers QLj D .tj0 /

� 1
2 .Lj �x

j
0 / also

converge in C 2;˛ to L. It is thus sufficient to replace the sequence Lj by the sequence of self-
shrinkers QLj , which have centres at .0; 1/.

To show that for large enough j , we have that up to a rotation Lj D L, we know by
Lemma 5.2 that we must show that the only solution to S0.V / D 0 for kV kC2;˛ sufficiently
small is V D 0.

Any V 2C 2;˛.U0/\Ker�Y can be written uniquely as V D UCW , whereU 2Ker L0

and W 2 .Ker L0/
?. We see from Proposition 5.5 that, potentially making U0 smaller if nec-

essary, we have that for S0.U CW / to vanish we must have U D 0, so V D W 2 .Ker L0/
?.

Now, S0.V / D 0 is equivalent to

(5.11) L0.V / D �Q0.V /:

By Lemma 5.3 we have that

(5.12) kV kC2;˛ � cLkL0.V /kC0;˛ and kQ0.V /kC0;˛ � cQkV k
2
C2;˛

:

Putting together (5.11) and (5.12) gives that

(5.13) kV kC2;˛ � cLcQkV k
2
C2;˛

:

Hence, if

kV kC2;˛ <
1

cLcQ

;

we deduce from (5.13) that V D 0, from which the result follows.
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