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Recent revisions to the diagnostic criteria for Alzheimer’s disease (AD†) incorporated conceptual advances 
in the field. Specifically, AD is now recognized to encompass a continuum, spanning from preclinical 
(accruing brain pathology in the absence of symptoms) through symptomatic predementia (prodromal AD, 
mild cognitive impairment) and dementia phases. The role of biological markers (biomarkers) of both the 
underlying molecular pathologies and related neurodegenerative changes has also been acknowledged. 
In this abridged review, we provide an overview of fluid (cerebrospinal fluid and blood) and molecular 
imaging-based biomarkers used within the field and discuss the potential role of computer driven artificial 
intelligence approaches for both the early and accurate identification of AD and as a tool for population 
enrichment in clinical trials testing candidate disease modifying therapies.
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INTRODUCTION

Alzheimer’s disease (AD) is the leading cause of 
dementia, accounting for between 50 and 70 percent of 
cases [1]. Clinically, AD is characterized by progressive 
global cognitive decline, affecting memory, language, 
visuospatial abilities, and executive function, leading 
ultimately, to dementia [2]. Neuropathologically, the two 

major hallmarks of AD are the deposition of insoluble 
amyloid-β (Aβ) plaques and the formation of neurofibril-
lary tangles (NFTs), composed of hyperphosphorylated 
tau. It is currently believed that the dysmetabolism of 
Aβ triggers a cascade of secondary abnormalities that 
involved tau-associated neurodegeneration as well as un-
resolved neuroinflammation [3] (reviewed in [4]).

During the past two decades, advances in the abil-
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 Table 1. Performance of AD biomarkers.

Biomarker Sensitivity / Specificity References
CSF Aβ1-42 0.86/ 0.90 [7]

Aβ1-42/Aβ1-40 0.93/ 1.0 [8]
p-tau 0.80/ 0.92 [7]
t-tau 0.81/ 0.90 [7]

Plasma Aβ1-42 0.93/ 0.96 [9]
Aβ1-42/ Aβ1-40 0.90/ 0.90 [10]
APP669-711/A1-42 0.85/ 0.95 [10]
Composite 0.95/ 0.95 [10]

PET Aβ 0.85/ 0.88 [11]
Tau 0.93-0.97/ 1.0 [12]
FDG 0.84/ 0.86 [11]

MRI 0.81/ 0.75 [11]

Sensitivity and specificity figures for AD biomarkers, for the comparison AD dementia versus controls. Though these are in line with 
recommendations by the 1998 Biomarker Working Group, stating that an ideal AD biomarker should have sensitivity and specificity > 
80% [13], performance is imperfect; this relates to the use of patients possibly misdiagnosed or harbouring mixed pathologies, the use 
of amyloid-positive “controls” and the high overlap in pathology between AD and other dementia disorders. Composite = APP669–711/
Aβ1-42 to Aβ1-40/Aβ1-42.

Figure 1. Fluid and imaging biomarkers in Alzheimer’s disease. A schematic overview of established and 
candidate imaging and fluid-based AD biomarkers.
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ity to identify AD pathology using biological markers 
(biomarkers) have changed the way we understand AD 
entirely. A biomarker, by definition, is “a characteristic 
that is objectively measured and evaluated as an indicator 
of normal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic intervention” 
[5]. Currently, AD hallmarks can be assessed in vivo by 
analyzing biomarkers in two main categories: i) fluid bio-
markers, including cerebrospinal fluid (CSF) and promis-
ing developments in blood; and ii) imaging biomarkers, 
such as positron emission tomography (PET) and mag-
netic resonance imaging (MRI) [6] (Figure 1; Table 1). 
These biomarkers are now providing reliable quantitative 
measures that can support the early and accurate diag-
nosis of AD and carry the potential to surpass precision 
levels using clinical measures [14].

In this short review, we discuss the recent revisions 
to the conceptualization of AD and provide an overview 
of fluid and imaging-based biomarkers commonly used 
in the assessment of AD. Further, we address the use of 
artificial intelligence (AI) as a strategy to help identify 
individuals at risk for developing AD.

DEFINING AD: THREE DECADES OF 
ADVANCES

When the first diagnostic criteria for AD were pub-
lished in 1984 by the National Institute of Neurological 
and Communicative Disorders and Stroke and the Alz-
heimer’s Disease and Related Disorders Association 
(NINCDS-ADRDA) [15], the typical amnestic syndrome 
that defines AD clinically and AD neuropathological 

changes were considered interchangeable. AD has since 
become a clinical-biomarker construct with the introduc-
tion of the International Working Group (IWG) [16-18] 
and National Institute on Aging and the Alzheimer’s As-
sociation (NIA-AA) guidelines [2,19,20]. Incorporating 
biomarkers for Aβ, tau, and neurodegeneration, these 
guidelines highlighted how AD pathology and resulting 
symptoms are not related in a one-to-one fashion, and 
delineated a continuum spanning preclinical (AD neuro-
pathology begins to accumulate in the brain, yet in the 
absence of overt symptoms) and clinical stages (encom-
passing both a prodromal or mild cognitive impairment 
(MCI) phase, characterized by objective cognitive im-
pairment, no dementia, and a dementia phase, each sup-
ported by biomarker evidence of AD pathology) (Figure 
2). This separation of AD neuropathology from the signs/
symptoms of the disease was further refined in recent re-
visions to the NIA-AA guidelines, with AD now an entity 
defined entirely on the basis of biomarkers for amyloid, 
tau, and neurodegeneration [21]. Though the IWG and 
2011 NIA-AA guidelines incorporated criteria intended, 
in part, to assist in clinical decision-making, these guide-
lines overall are largely intended to provide a common 
framework for defining and staging AD.

FLUID BIOMARKERS

Cerebrospinal Fluid Biomarkers
The core CSF biomarkers used in the diagnostic 

work-up of and research in AD are residues from the en-
zymatic cleavage of the amyloid precursor protein (APP) 
at different lengths (Aβ1-38, Aβ1-40, and Aβ1-42), total tau 

Figure 2. Hypothetical model of biomarker changes in Alzheimer’s disease. Biomarkers for Aβ are believed to 
become abnormal first (CSF Aβ1-42 preceding PET), followed by tau (CSF p-tau preceding PET), and neurodegeneration 
(CSF t-tau, MRI, [18F]FDG PET) and cognitive decline. Adapted from [6].
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sistently observed [31], however the lack of correlation 
of plasma t-tau with CSF suggests that these two body 
fluids are differentially regulated [32]. The half-life of tau 
appears to be much shorter in plasma (hours) than in CSF 
(weeks) [33,34]. In contrast, plasma and CSF NFL tight-
ly correlate [35,36], with plasma levels shown to have a 
marked elevation in AD compared to MCI and healthy 
controls [37], comparable to differences seen with core 
CSF biomarkers [38]. However, it is likely that increased 
plasma NFL lacks disease specificity as it is found to be a 
feature in many conditions [36,39,40].

Research has also focused upon the detection of other 
circulating blood proteins which may serve as peripheral 
indicators for clinical AD (reviewed in [41]). Increasingly, 
promising “endophenotype” studies that utilize imaging 
surrogates of brain atrophy [42] and amyloid-β PET [43] 
have pointed to peripheral biomarker panels indicative of 
on-going disease pathophysiology. However, these pilot 
data should be interpreted with some caution as they are 
derived from multi-marker panels and as a mechanistic 
understanding of the associations is currently lacking.

MOLECULAR IMAGING

Aβ and tau PET
Since the first application of the PET ligand 11C-Pitts-

burgh Compound B (11C-PIB) to the in vivo study of Aβ 
plaques in AD, numerous studies using 11C-PIB have 
shown that the global amount of Aβ in AD dementia pa-
tients is typically 50 to 70 percent above levels seen in CU 
older individuals [44]. Similar studies in CU individuals 
and MCI patients have shown Aβ positivity in a high pro-
portion (30 percent and 60 percent, respectively) [45,46], 
consistent with autopsy data in both groups showing 
comparable percentages meeting neuropathological cri-
teria for AD [47,48]. Aβ positivity among patients diag-
nosed clinically as AD dementia lies around 90 percent, 
with Aβ-negative cases assumed to represent clinical 
misdiagnosis [49]. Driven by the success of 11C-PIB and 
limitations tied to its short half-life (~20 min, making 
it impractical for clinical use), several Aβ labelling 18F 
compounds have been developed (half-life ~110 min), in-
cluding 18F-florbetapir, 18F-flutemetamol, 18F-florbetaben, 
and 18F-NAV4694 (previously 18F-AZD4694) [50]. Using 
these tracers, findings similar to those for 11C-PIB have 
been reported [49] (Figure 3). Importantly, 18F-florbetapir 
(Amyvid), 18F-flutemetamol (Vizamyl), and 18F-florbeta-
ben (Neuraceq) are now approved for clinical use. Inter-
estingly, preliminary findings suggest that retinal levels 
of Aβ plaques, measured in vivo, may provide an index 
of overall Aβ brain levels [51]. Other autofluorescence 
based techniques have also shown potential for future in 
vivo use [52,53].

(t-tau), and phosphorylated tau (p-tau, mainly phosphor-
ylated at threonine 181 or serine 199) [22].

Of the different cleavage residues of APP, Aβ1-42 is 
the main constituent of Aβ plaques. Multiple studies have 
demonstrated a marked decrease in CSF Aβ1-42 levels in 
AD, possibly due to the deposition of the peptide in Aβ 
plaques. Levels of Aβ1-38 and Aβ1-40, however, are not af-
fected in AD [23] and may be useful for the normalization 
of interindividual differences in Aβ-production [24] in 
the form of ratios (Aβ1-42/Aβ1-38 and Aβ1-42/Aβ1-40), though 
some studies have failed to show increased diagnostic 
accuracy using these [23,25].

In contrast to Aβ, cognitive decline in AD better 
relates to tau and neurodegeneration, processes that are 
reflected in the CSF as elevated t-tau and p-tau. Measure-
ment of t-tau is considered to reflect the intensity of neu-
rodegeneration at a given point while p-tau is thought to 
reflect a pathologic state of hyperphosphorylation leading 
to the formation of NFTs [22]. Both have been shown 
to be of value in the separation of AD from cognitively 
unimpaired (CU) controls and non-AD disorders, as well 
as prognostic abilities in predicting the conversion from 
MCI to AD [26]; here, ratios with Aβ1-42 have been shown 
to provide increased sensitivity and specificity [25,26]. 
Interestingly, the axonal neuron-specific protein neurofil-
ament light (NFL), which has been shown to correlate 
with low Aβ1-42 and elevated tau levels [27], may serve as 
a useful marker of progression in AD.

Blood Biomarkers
The invasiveness of lumbar puncture as a procedure 

for collecting CSF stands as a drawback when consider-
ing its widespread use in the clinical work up of patients 
presenting with cognitive complaints, and for participant 
selection in therapeutic trials. A blood-based measure for 
AD pathology would therefore have significant practical 
advantages.

Establishing robust blood biomarkers for Aβ and tau 
species has proven troublesome. Aβ peptides are readily 
measured in plasma but historically the correlation with 
brain Aβ levels (measured by Aβ PET or CSF) has been 
weak, with levels being confounded by platelet produc-
tion and other extra-cerebral tissues [28]. However, this 
generalized opinion is beginning to change with recent 
mass spectrometric and ultrasensitive immunoassay 
(single-molecule array, Simoa) evidence suggesting that 
Aβ peptide ratios (Aβ1-42/Aβ1-40, APP669-711/Aβ1-42 and 
a composite APP669–711/Aβ1-42 to Aβ1-40/Aβ1-42) identify 
Aβ-positive individuals with high sensitivity and speci-
ficity [10,29,30]. There are currently no robust immuno-
assays for p-tau in plasma whereas the Simoa platform 
allows for femtomolar measures of t-tau. Nominal group 
differences between AD and CU individuals are con-
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18F-FDG PET
Since approved by the Food and Drug Administra-

tion (FDA) in 2004 for use in the diagnostic work up 
of dementia disorders, 18F-FDG PET has come to play 
an important role in the evaluation of patients with sus-
pected AD. A marker of neurodegeneration, decreased 
uptake of 18F-FDG is interpreted as largely reflecting 
synaptic depletion [62]. In AD, a characteristic pattern 
of glucose hypometabolism is observed, involving the 
precuneus/posterior cingulate, inferior parietal lobule as 
well as posterolateral and medial aspects of the temporal 
lobe, including the hippocampus and entorhinal cortex 
[63,64]. In patients with MCI, the presence of this meta-
bolic signature has been shown to predict progression to 
AD dementia [65,66]. Further, 18F-FDG has shown high 
sensitivity and specificity in identifying AD and related 
neurodegenerative diseases using neuropathologic diag-
nosis as the standard of truth [67] and has been shown 
to be a helpful adjunct in clinical practice [68]. More-
over, 18F-FDG hypometabolism has been shown to relate 
closely to cognitive decline, predicting progression from 
normal cognition through MCI and AD dementia [69,70]. 
11C-UCB-J, a marker of the synaptic vesicle glycoprotein 
2A [71], also shows promise as a marker of synaptic loss; 

Building on the success of Aβ imaging, PET ligands 
selective for AD-related paired-helical filament (PHF) 
tau have recently made their entry into the field. Us-
ing “first generation” tracers, including 18F-THK5317, 
18F-THK5351, and 18F-flortaucipir (also known as 18F-AV-
1451, 18F-T807) (reviewed in [54]), robust differences in 
uptake have been reported between CU elderly controls 
and patients with AD have been observed, as well as el-
evated uptake in subjects with MCI [55,56] (Figure 3). 
Further, several tau imaging studies have shown good 
correspondence between ligand retention and Braak 
staging of post mortem tau pathology [56,57], and tight 
associations with neurodegenerative markers such as cor-
tical atrophy measurements and 18F-fluorodeoxyglucose 
(18F-FDG) PET [58,59]. Comparative studies between tau 
ligands suggest varying sensitivity/specificity toward AD 
type tau [60,61], highlighting the complexity of tau pa-
thology and the likely need for multiple tracers to proper-
ly address the full range of tauopathies. Importantly, first 
generation tracers have been shown to exhibit “off-target” 
binding, notably to monoamine oxidase B. Early findings 
from “second generation” tracers, including 18F-MK-
6240 and 18F-PI-2620, appear promising; presented data, 
however, has so far mostly been limited to international 
conferences.

Figure 3. Molecular imaging in Alzheimer’s disease. Representative images showing 18F-flutemetamol (beta-
amyloid) and 18F-flortaucipir (tau) PET, along with T1-weighted MRI, in a patient with AD and a cognitively unimpaired 
older control. In rows one and two, warmer colors indicate areas of increased ligand retention, expressed as standard 
uptake value ratio (SUVR = ligand uptake in target region / reference region (cerebellar cortex), devoid of specific 
binding). Copyright Swedish BioFINDER, PI professor Oskar Hansson, MD, PhD, Clinical Memory Research Unit, Lund 
University, Malmö, Sweden.
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the cause of AD [79], the predominant view is that dysho-
meostasis of Aβ is the initiating event [80,81]. Accord-
ing to this hypothesis, aggregation of Aβ1-42 leads to tau 
pathology, neurodegeneration, and clinical symptoms. 
Accordingly, the first biomarkers to become abnormal 
are CSF Aβ1-42 followed by Aβ PET; Aβ then induces 
tau pathology in the medial temporal lobe (an alternative 
model stipulates that medial temporal tau in fact precedes 
Aβ [82]) and fosters its spread into neocortical areas; this 
process is reflected by abnormal CSF p-tau, and later, 
tau PET. This tauopathy would then lead to abnormal-
ities in biomarkers of neurodegeneration, namely t-tau, 
structural MRI and 18F-FDG PET, with clinical symptoms 
following these markers [83-85]. Though Aβ biomarkers, 
and, possibly, CSF tau [86,87] are thought to reach a pla-
teau during the early symptomatic phase of the disease 
(i.e. prodromal AD) [88], tau PET and neurodegenerative 
biomarkers are believed to remain dynamic though the 
dementia phase [6,89]. Importantly, the relationship be-
tween a given individual’s cognitive status and biomarker 
profile is thought to be influenced by genetic risk factors, 
comorbid pathologies, and cognitive reserve [90].

COMPUTER-ASSISTED BIOMARKER 
DRIVEN APPROACHES

One of the most pressing challenges facing the field 
currently is the failure of clinical trials testing candidate 
disease modifying treatments. Given the recognition that 

potentially more specific than 18F-FDG, the field awaits 
findings from current cohort studies.

Magnetic Resonance Imaging
The use of structural MRI is an important component 

in the clinical work-up of patients with suspected AD. 
Atrophy within characteristically vulnerable medial tem-
poral regions, including the hippocampus and entorhinal 
cortex, is the most established and validated measure, 
with visually based ratings showing high sensitivity and 
specify, both in the differentiation of AD from vascular 
and non-AD neurodegenerative pathologies [72] and in 
the prediction of conversion to AD dementia among MCI 
patients [73]. Further, given the high co-occurrence of 
cerebrovascular pathologies with AD [74], T2-weighted 
images can be used to gauge the proportion of cognitive 
impairment that can be ascribed to each; this, in turn, can 
help guide the magnitude of therapeutic emphasis placed 
on the control of vascular risk factors, for instance [75]. 
A related development has been the ability to image ce-
rebral microbleeds (CMBs) using T2* and susceptibility 
weighted imaging [76]; CMBs have been shown to affect 
some 20 percent of AD patients [77] and to carry prog-
nostic value [78].

BIOMARKER MODELLING OF AD

Though there exist differing schools of thought as to 

Figure 4. Representative artificial intelligence workflow for predicting patients at-risk for developing Alzheimer’s 
disease. Large-scale multicentric studies in heterogeneous populations (a) collecting a wide range of biomarkers 
(imaging and fluid), genetics and neuropsychological data (b) can provide enormous quantity of valuable data, which 
can be promptly analyzed and shared. Using these big databases as input variables in highly refined machine learning 
and deep machine learning algorithms (c) it is expected that in the near future we will be able to identify and predict 
patients at-risk to develop Alzheimer’s disease (d). 
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therapies may prove ineffective in those already exhibit-
ing dementia, focus has shifted toward the inclusion of 
minimally symptomatic and asymptomatic CU elderly 
individuals with biomarker evidence of AD pathology 
[91]. In order to facilitate reductions in required sample 
size, and to better assess treatment outcomes, identifying 
individuals who will show disease progression within a 
reasonable time frame is critical. Given the likely need 
to move beyond single variable approaches [92], instead 
accounting for high number of variables, as well as 
complex interactions between them, computer aided ap-
proaches, including AI, are emerging as a useful strategy 
for population enrichment (Figure 4). Findings derived 
using machine learning or deep learning, which involve 
computer algorithms extracting patterns from a dataset, 
and then learning to predict an outcome of interest [93], 
indeed suggest that the risk to develop AD can be detect-
ed prior to symptomatic onset [94].

CONCLUSIONS AND OUTLOOK

While further studies are required to more fully as-
sess the utility of fluid and imaging biomarkers, particu-
larly for tau PET given its recent introduction, findings 
are thus far promising and suggest that the informed and 
appropriate use of biomarkers can be of help in the ear-
ly and accurate identification of AD. The complexity of 
many findings, aggravating the definition of thresholds 
for biomarker “positivity,” and the high cost of these 
investigations, however, remain as obstacles to their rou-
tine use in clinical settings. Further, additional markers 
for targets such as α-synuclein and transactive response 
DNA binding protein 43 kDa (TDP-43) are likely needed 
to increase capabilities with respect to characterizing the 
full range of proteinopathies that can underlie dementia 
disorders. Given the recognition that potential disease 
modifying treatments are most likely to succeed if ad-
ministered during the preclinical phase of AD, biomarker 
driven strategies for population enrichment are critical. 
In this respect, AI driven approaches may help optimize 
selection algorithms in order to increase study power and 
decrease observational periods.
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