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ABSTRACT 42 
With the widespread uptake of 2D and 3D single molecule localization microscopy, a large set of 43 
different data analysis packages have been developed to generate super-resolution images. To guide 44 
researchers on the optimal analytical software for their experiments, in a large community effort we 45 
designed a competition to extensively characterise and rank these options. We generated realistic 46 
simulated datasets for popular imaging modalities – 2D, astigmatic 3D, biplane 3D, and double helix 47 
3D – and evaluated 36 participant packages against these data. This provides the first broad 48 
assessment of 3D single molecule localization microscopy software, provides a holistic view of how 49 
the latest 2D and 3D single molecule localization software perform in realistic conditions, and 50 
ultimately provides insight into the current limits of the field.   51 



INTRODUCTION 52 
Image processing software is central to single molecule localization microscopy (SMLM1–3). Efficient 53 
and automated image processing is essential to extract the super-resolved positions of individual 54 
molecules from thousands of raw microscope images, containing millions of blinking fluorescent 55 
spots. Improvements in SMLM image processing have been crucial in maximizing spatial resolution 56 
and reducing imaging time of SMLM for compatibly with live cell imaging4–6. If SMLM is to achieve a 57 
resolving power approaching that of electron microscopy, the analysis software employed needs to 58 
be robust, accurate, and performing at current algorithmic limits. This can only be achieved through 59 
rigorous quantification of SMLM software performance. 60 

The first localization microscopy software challenge was carried out in 2013 to benchmark 2D SMLM 61 
software7. But biology is not just a 2D problem, and a key focus of localization microscopy is the 62 
imaging of 3D imaging of nanoscale cellular processes8,9. 3D localization microscopy is a more 63 
difficult image processing problem than 2D SMLM. In addition to finding the center of diffraction 64 
limited spots to super-resolve lateral position, 3D SMLM algorithms must also extract axial 65 
information from the image, usually by measuring small changes in the shape of a point spread 66 
function10 (PSF). 67 

Despite the widespread use of 3D localization microscopy, and challenging nature of 3D SMLM 68 
image processing, the performance of software for 3D single molecule localization microscopy has 69 
previously only been assessed for 2-3 software packages at a time, and without standard test data or 70 
metrics11–14. In the absence of common reference datasets and reliable assessment, it is not possible 71 
to objectively assess how different software affects final image quality, or which algorithmic 72 
approaches are most successful. Crucially, end-users cannot determine which 3D SMLM software 73 
package and imaging modality is optimal for their application. 74 

We therefore ran the first 3D localization microscopy software challenge, to assess the performance 75 
of 3D SMLM software. We assessed software performance on simulated datasets designed for 76 
maximum realism, incorporating experimentally derived point spread functions, using biologically 77 
inspired structures, signal to noise levels based closely on common experimental conditions, and 78 
modelling fluorophore photophysics. We assessed software performance on synthetic datasets for 79 
three popular 3D SMLM modalities: astigmatic imaging10, biplane imaging15 and double helix point 80 
spread function microscopy16. We also assessed astigmatism software performance on two real 81 
STORM datasets. Furthermore, we ran a second 2D localization microscopy software challenge to 82 
assess performance of the latest 2D SMLM software.  83 

RESULTS 84 

Competition design 85 
We established a broad committee from the SMLM community, including experimentalists and 86 
software developers, to define the scope of the challenge, ensure realism of the datasets and define 87 
analysis metrics. We opened this discussion to all interested parties in an online discussion forum17.  88 

In 2016, we ran a first round of the 3D SMLM competition with explicit submission deadlines, 89 
culminating in a special session at the 6th annual Single Molecule Localization Microscopy 90 
Symposium (SMLMS 2016). Since then, the challenge has been opened to continuously accept new 91 
entries. Thirty-six software packages have been entered in the competition thus far, including four 92 
packages used in commercial software (Table S1, Supplementary Note 1). Participation in the 93 
competition actually led at least eight teams to modify their software to support additional 3D 94 
SMLM modalities, showing how competition can foster microscopy software development.  95 

Realistic 3D simulations 96 
Testing super-resolution software on experimental data lacks the ground truth information required 97 
for rigorous quantification of software performance. Therefore, realistic simulated datasets are 98 



required. A critical challenge to in simulating 3D SMLM data was to accurately model the 99 
experimental microscope PSF for each 3D modality. 3D SMLM inherently involves addition of 100 
aberrations to the microscope PSF to encode the Z-position of the molecule. For the PSF models 101 
included in the competition: astigmatic (AS), double helix (DH), and biplane (BP), we observed that 102 
the PSFs showed complex aberrations not well described by simple analytical models (Fig. S1). Even 103 
experimental 2D PSFs showed significant aberrations away from the focal plane (Fig. S1). 104 

We thus combined experimental 3D PSFs with simulated ground truth by performing simulations 105 
using PSFs directly derived from experimental calibration data (Fig. 1, Methods). We generated 106 
simulated datasets over a range of spot densities and signal to noise levels, for simulated 107 
microtubule- and endoplasmic reticulum-like structures, using a 4-state model for photophysics18 108 
(Methods).  109 

Quantitative performance assessment of 3D software 110 
We assessed software performance by 26 quality metrics (Supplementary Note 2). The complete set 111 
of summary statistics, axially resolved performance and super-resolved images is available for each 112 
competition software on the competition website. We built an interactive ranking and graphing 113 
interface for ranking and plotting software performance by any metric, including new user defined 114 
metrics (Fig. S2). Detailed individual software reports can also be accessed, along with a tool for 115 
side-by-side comparison of software (Fig. S2, S3).  116 

We focused our primary analysis on metrics directly assessing performance in detecting individual 117 
molecules. This was based on three key metrics (Methods): 118 

1. Root mean squared localization error (RMSE) between measured molecule position and the 119 
ground truth.  120 

2. Jaccard index (JAC). This quantifies the fraction of correctly detected molecules in a dataset. 121 
3. Efficiency (E). For ranking purposes, we developed a single summary statistic for overall 122 

evaluation of software performance combining RMSE and Jaccard index, which we term the 123 
efficiency (Methods).  124 

Choice of ranking metric is discussed in Supplementary Note 2, where several alternative ranking 125 
metrics are also presented.  126 

Performance of 3D software  127 
Complete rankings for each imaging modality and spot density are presented (Fig. 2), together with 128 
summary information on all competition software (Supplementary Table 1, Supplementary Note 1).  129 

After assembling an overall summary of best performers for each competition category, we 130 
investigated the performance of software within each imaging modality.  131 

Astigmatic localization microscopy 132 

Astigmatic localization microscopy is probably the most popular 3D SMLM modality, reflected by the 133 
highest number of software submissions in the 3D competition (Fig. 2). For astigmatism, we 134 
observed a large spread of software performance, even for the most straightforward high SNR, low 135 
spot density (LD) conditions (Fig. 3, Supplementary Table 2). The best-in-class software (SMAP-136 
201819) has significantly better localization error and Jaccard index performance than average 137 
(lateral RMSE 26 nm best vs 38 nm average, axial RMSE 29 nm best vs 66 nm average, Jaccard index 138 
85 % best vs 74 % average). Clearly, the quality of the image reconstruction depends strongly on 139 
choice of 3D software. 140 

To investigate the reasons for software variation, we inspected plots of software performance as a 141 
function of axial position in the low density, high SNR dataset for best-in-class and representative 142 
middle-range software (Fig. S4A). We observed that a key cause of the spread in software 143 



performance is variation in software performance away from the focal plane. Near the focal plane, 144 
most software packages perform well. However, the axial and lateral RMSE away from the plane of 145 
focus is significantly higher for the best in class software, and the Jaccard index is also slightly 146 
improved (Fig. S4A). This is also visibly apparent in the super-resolved images (Fig. 4A). We observed 147 
that best-in-class software had a Z-range (the FWHM range of axially resolved software recall, 148 
Methods) of 1170 nm, greater than two-thirds of the simulated range. Outside this range, the recall 149 
and Jaccard index dropped sharply, probably due the large increase in PSF size and decrease in 150 
effective SNR at large defocus (Fig. S1). 151 

When we examined results for the low SNR, low density dataset (Fig. 2A, 3F), we found an expected 152 
two-fold degradation in best-in-class RMSE (lateral RMSE 39 nm, axial RMSE 60 nm), due to the 153 
decrease in image SNR. However, the best-in-class software (SMolPhot20) Jaccard index was 154 
effectively constant between the low and high SNR datasets (86 % vs 85 %), although the Z-range did 155 
drop at lower SNR (930 nm vs 1120 nm). The best astigmatism software packages were thus 156 
remarkably good at finding spots at low SNR, even away from the focal plane. 157 

We compared best-in-class software performance to Cramér-Rao lower bound (CRLB) theoretical 158 
limits (Fig. S5, S6, Supplementary Note 3). Close to the focus, best-in-class software was near the 159 
CRLB (within 25 %), but significant deviations from the CRLB occurred > 200 nm (Fig. S6). This could 160 
be due to difficulty in distinguishing signal from false positives away from focus. 161 

Astigmatic software performance dropped for the challenging high spot density datasets (Fig. 2A, 3). 162 
For the high SNR high spot density dataset (best software, SMolPhot), localization error increased 163 
and Jaccard index decreased significantly compared to the low density condition (lateral RMSE best 164 
HD 51 nm vs best LD 27 nm, axial RMSE best HD 66 nm vs best LD 29 nm, Jaccard index best HD 66 % 165 
vs best LD 85 %). Inspection of the super-resolved images (Fig. S7) nevertheless shows qualitatively 166 
acceptable results for the HD dataset, particularly in the lateral dimension. In some circumstances, 167 
the performance reduction at 10x higher spot density could be acceptable for 10x faster, potentially 168 
live-cell-compatible, imaging speed. We also observed a large spread of software performance for 169 
the high density datasets, probably because a significant fraction of the software packages were 170 
primarily designed for low density conditions.  171 

We observed poor performance for the most challenging low SNR high spot density astigmatism 172 
dataset (Fig. 2A, 3, S8, best software SMolPhot). Best-in-class localization precision and Jaccard 173 
index decreased significantly (lateral RMSE 76 nm, axial RMSE 101 nm, Jaccard index 58 %). These 174 
data suggest that low SNR high density 3D astigmatic localization microscopy entails significant 175 
reduction in image resolution.  176 

Double helix point spread function localization microscopy 177 

We next analyzed the performance of the double helix software (Fig. 3D-F, S9A). For the software in 178 
the high SNR low spot density condition, double helix software showed more uniform performance 179 
than astigmatism. Best-in-class software (SMAP-2018) showed only a limited improvement 180 
compared with average software (Fig. 3D-F, lateral RMSE, 27 nm best vs 37 nm average; axial RMSE 181 
21 nm best vs 34 nm average; Jaccard index 77 % best vs 73 % average). In general software 182 
localization performance was close to the CRLB (Fig. S6). We observed that performance of the 183 
software away from the focal plane is relatively uniform (Fig. 4A, S4A), and best-in-class Z-range at 184 
high SNR was large at 1180 nm (Fig. S4A, Supplementary Table 2). Double helix imaging may show 185 
less software-to-software variation and larger Z-range at low spot density than astigmatic imaging 186 
because the PSF shape and intensity are fairly constant as a function of Z; unlike astigmatic imaging, 187 
where spot size, shape and intensity vary greatly as a function of Z (Fig. S1).  188 

Double helix software performance decreased significantly for the low spot density low SNR 189 
condition (best software, SMAP-2018), particularly in terms of best-in-class Jaccard index (66 % low 190 



SNR vs 77 % high SNR, Fig. 3D-E, S8, S9A). DH Jaccard index was also significantly worse than 191 
astigmatism results at either high or low SNR (85 % high SNR, 86 % low SNR). This indicates that it 192 
was quite hard to successfully find localizations in the low SNR DH dataset, likely because the large 193 
size of the DH PSF spreads emitted photons over a large area, lowering effective image SNR. DH PSF 194 
designs with reduced Z-range but more compact PSF would likely be less sensitive to this issue21.  195 

Double helix software performed poorly on the high spot density datasets at high SNR (best software 196 
CSpline22), especially in terms of the Jaccard index (Fig. 3D-E, S9A, best lateral RMSE 67 nm, best 197 
axial RMSE 69 nm, best Jaccard index 46 %). The poor performance at high spot density is again 198 
probably because the large DH PSF size increases spot density and decreases SNR (Fig. S1). DHPSF 199 
performance at high spot density and low SNR was also not reliable (Fig. 3D-F, S9A, best software, 200 
SMAP-2018). 201 

Biplane localization microscopy 202 

Best-in-class biplane software (SMAP-2018), at low spot density and for both high and low SNR, 203 
delivered the best performance in any modality (high SNR: lateral RMSE 12.3 nm, axial RMSE 21.7 204 
nm, Jaccard 87 %), despite a slightly decreased image SNR for the biplane simulations (Methods). 205 
We observed a large spread in software performance in terms of lateral RMSE and Jaccard index, 206 
with the best-in-class software significantly outperforming the other competitors (Fig. S9B, 2D). At 207 
low spot density, best-in-class biplane software (SMAP-2018) showed good performance as a 208 
function of Z, with high Jaccard index over almost the entire Z-range of the simulations, and with a Z-209 
range of 1200 nm at high SNR (Fig. S4AC, Supplementary Table 2). The axial RMSE was relatively 210 
uniform as a function of Z and close to the CRLB limit (Fig. S6). As axial and lateral RMSE are both 211 
averaged over the entire Z-range, the strong biplane results arise from good performance across a 212 
large Z-range (Fig. S4). 213 

At high spot density and high SNR, best-in-class biplane software (SMAP-2018) showed acceptable 214 
performance (Fig. 3D-F, S7, S9B, best lateral RMSE 43 nm, best axial RMSE 49 nm, best Jaccard index 215 
61 %). Uniquely among the 3D modalities, best-in-class biplane software also gave acceptable 216 
performance at high spot density and low SNR (Fig. 3D-F, S7, S9B, best lateral RMSE 55 nm, best 217 
axial RMSE 72 nm, best Jaccard index 61 %, best software SMAP-2018). 218 

Performance of 2D software  219 
We next assessed the performance of 2D SMLM software. For the pseudo-ER 2D dataset, at low 220 
density best-in-class software (ADCG23) performed substantially better than the class average 221 
(Fig. S10, S11, lateral RMSE 31 nm vs 36 nm average, Jaccard index 90 % best vs 72 %). Low density 222 
results for the brighter fluorophore microtubules dataset were similar to the dimmer pseudo-ER 223 
dataset (Fig. S10, S12 best software SMolPhot). For the very high density 2D dataset, which had 25x 224 
higher spot density than the LD dataset, best-in-class software (ADCG) showed excellent 225 
performance (Fig. S10, lateral RMSE, 45.5 nm, Jaccard index 75%). Best-in-class performance (ADCG) 226 
on the dimmer fluorophore data at high spot density was also strong (Fig. S10, best lateral RMSE 51 227 
nm, best Jaccard index 70 %).  228 

Algorithms 229 
We identified several classes of algorithm participant software (Supplementary Table 1):  230 

1) Non-iterative software regroups pixels in the local neighborhood of the candidates, like 231 
interpolation, center of mass (QuickPALM24) or template matching (WTM25). These often older 232 
algorithms are fast but tend to achieve poor performance.  233 

2) Single emitter fitting software is usually built on a multi-step strategy of detection, spot 234 
localization, and optional spot rejection. The detection step finds bright spots in noisy images on the 235 
pixel grid. The selection of candidates is usually performed by local maximum search after a 236 



denoising filter. Others rely on more complex algorithms like the wavelet transform (WaveTracer26). 237 
We did not observe software ranking to depend noticeably on the choice of optimization scheme: 238 
least-square, weighted least-square or maximum-likelihood estimator. 239 

3) Multi-emitter fitting software groups clusters of overlapping spots, and simultaneously fits 240 
multiple model PSFs to the data. Typically, fitted spots are added to the cluster until a stopping 241 
condition is met4,5. This leads to improved localization performance at high spot density, at the cost 242 
of reduced speed. This class of software (e.g., 3D-DAOSTORM11, CSpline, PeakFit, ThunderSTORM27) 243 
was amongst the top performers in each 2D and 3D competition category. 244 

As expected, single- and multiple-emitter fitting methods both performed well on low density data. 245 
For the 2D challenge, multi-emitter fitting showed a clear advantage over single emitter fitting at 246 
high density. Surprisingly however, well-tuned single-emitter fitting algorithms (SMolPhot, SMAP-247 
2018) outperformed multi-emitter algorithms for the 3D high density conditions.  248 

4) Compressed sensing algorithms. One subset of these algorithms utilize deconvolution with 249 
sparsity constraints to reconstruct super-resolved images28–30. Although deconvolution approaches 250 
can give good results, they are limited by the necessary use of a sub-pixel grid; increased localization 251 
precision requires smaller grid resolution, which must be balanced against increased computational 252 
time. Recent approaches address this issue by localizing the point sources in a gridless manner under 253 
some sparsity constraint (ADCG, SMfit, SOLAR_STORM, TVSTORM31). This software class consistently 254 
gave the overall best performance for 2D high-density (ADCG 1st, FALCON30 2nd, SMfit 3rd).  255 

5) Other approaches. Of the alternative algorithmic approaches used, the annihilating filter-based 256 
method LEAP32 gave good performance for biplane imaging. Recently, we received the first challenge 257 
submission from a deep learning SMLM software (DECODE); these promising preliminary results are 258 
available on the competition website. 259 

Post-hoc temporal grouping 260 

Because molecule on-time is stochastically distributed across multiple frames, a common post-261 
processing approach to improve localization precision is to group molecules detected multiple times 262 
in adjacent frames, and average their position33 (Supplementary Note 4). Temporal grouping was 263 
used by the top performers (including SMolPhot, MIATool34 and SMAP-2018), and is visibly apparent 264 
as a more punctate super-resolved image (Fig. 4A). 265 

Choice of PSF model 266 

Most software used a variant of Gaussian PSF model. A few participants designed more accurate PSF 267 
models. Either diffraction theory was used (MIATool, LEAP) or spline fitting of an analytical function 268 
to the experimental PSF was adopted (CSpline, SMAP-2018). Although simple Gaussian model PSFs 269 
were sufficient to obtain best-in-class performance for the 2D and astigmatic modalities (ADCG, 270 
PeakFit, SMolPhot), top results for the more optically complex biplane and double helix modalities 271 
were exclusively software using non-Gaussian PSF models (SMAP-2018, CSpline, MIATool, LEAP).  272 

Multi-algorithm packages 273 

Several software packages take a Swiss army knife approach of integrating multiple optional 274 
localization algorithms into one program, to be flexible enough to suit various experimental 275 
conditions19,27. SMAP-2018 and ThunderSTORM achieved strong across-the-board performance 276 
supporting this rationale.  277 

Software run time 278 

Software run time is important both for ease of use and real time analysis. We did not observe 279 
correlation between software localization performance (Efficiency) and software run time (Fig. 280 



S13A). We thus created an alternative ranking metric, Efficiency-Runtime, which gave 25 % weighting 281 
to run time (Supplementary Note 2.7, Fig S13B). Many good performers in the efficiency-only 282 
ranking were relatively fast and thus retained good ranking (SMAP-2018, SMolPhot, 3D-283 
DAOSTORM). Interestingly, two software packages highly optimized for speed gained top ranking in 284 
this analysis: pSMLM-3D35 and QC-STORM. 285 

Diagnostic tools for software and algorithm performance  286 

During our analysis, we frequently noticed common types of deviation between software results and 287 
ground truth which were easily diagnosed by visual inspection (Fig. S14, S15). This included not only 288 
obvious issues of poor localization precision or spot averaging at high density, but also more subtle 289 
problems such as a common error of structural warping which significantly reduced software 290 
performance. On the competition website, we provide detailed diagnostic software reports including 291 
multiple examples of software performance on individual frames to help developers to identify 292 
algorithm and software limitations and maximize software performance (Fig. S3, S16). 293 

Assessment on real STORM data 294 
We investigated the performance of a representative subset of astigmatism software on real STORM 295 
datasets of well characterized test structures, microtubules and nuclear pore complex, NPC (Fig. 4B, 296 
S17). This qualitative assessment was consistent with findings for simulated data. No performance 297 
difference between single and multi-emitter fitters was observed, which is not surprising since spot 298 
density in these datasets was low. Relatively poor software performance was immediately obvious 299 
from visual inspection (QuickPALM). Temporal grouping noticeably improved resolution (3D-300 
DAOSTORM, CSpline, MIAtool, SMAP-2018). Gaussian fitting software . Interestingly, although 301 
Gaussian/ Bessel PSF modelling software (3D-DAOSTORM, MIATool, ThunderSTORM) gave high 302 
resolution images, software which modelled the experimental PSF via spline fitting (CSpline, SMAP-303 
2018) gave noticeably improved resolution of fine structural features such as the top and bottom of 304 
the NPC (Fig. 4B) or the hollow core of antibody-labelled microtubules (Fig. S17).  305 

DISCUSSION 306 
The strongest conclusion we draw from the 3D localization microscopy challenge is that choice of 307 
localization software greatly affects the quality of final super-resolution data, even at “easy” high 308 
SNR, low spot density conditions. Biplane performance was particularly dependent on software 309 
choice, with only one software (SMAP-2018) achieving near-Cramér-Rao lower bound performance. 310 
Double helix SMLM showed less sensitivity to choice of software than biplane, with astigmatic SMLM 311 
intermediate between the two. The best software in each modality performed close to the Cramér-312 
Rao lower bounds over a wide focal range and successfully detected most molecules, even at low 313 
signal to noise. Average software in all three modalities was significantly worse, with the obtained 314 
axial resolution being particularly sensitive to software choice.  315 

The second major conclusion is that localization software that explicitly includes the experimental 316 
PSF in the fitting model gives a significant performance increase for 3D SMLM. For the more optically 317 
complex biplane and double helix modalities in particular, the best results were from software which 318 
incorporated non-Gaussian PSF models (SMAP-2018, CSpline, MIATool). This result also highlights 319 
the importance of accurate PSF modelling in 3D SMLM simulations. The performance advantage of 320 
experimental PSF fitting software would not have been observable had simulations been generated 321 
with a simple Gaussian PSF. 322 

Of the different algorithm classes, well-tuned single-emitter and multi-emitter fitting algorithms 323 
(each capable of dealing well with occasional molecule overlap) gave good results for low density 3D 324 
SMLM. We also found that several software packages for astigmatic or biplane imaging gave 325 
adequate performance for the challenging case of high molecule densities, as long as the image SNR 326 
was high. Current software packages gave poor performance when molecule density was high and 327 



image SNR was low. These results indicate that with current algorithms high density 3D SMLM 328 
performance is mediocre at high SNR and poor at low SNR. Surprisingly, multi-emitter fitting did not 329 
show significant improvement over well-tuned single emitter fitting for the 3D high-density datasets; 330 
this may indicate that significant potential for improvement remains in this category.  331 

Many software packages did not apply temporal grouping33, resulting in reduced software 332 
performance. Since temporal grouping is a simple step for maximum precision, we urge all software 333 
developers to integrate this approach into their software as an optional final step in the localization 334 
process. 335 

The second 2D localization microscopy challenge provided the opportunity to reassess the state of 336 
the field. The performance of best-in-class 2D software over a range of conditions, at both high and 337 
low spot density, was very strong. Interestingly, the top three performers in the 2D high density 338 
condition were all compressed sensing algorithms (ADCG, FALCON, SMfit). In low density 2D 339 
conditions, the best single-emitter, multi-emitter and compressed sensing algorithms all gave 340 
comparable, excellent, performance. We speculate that performance in the low spot density 2D 341 
category might now be near optimal levels.  342 

In future, we plan to extend the SMLM challenge into an open platform with a fully automated 343 
assessment process, and where new competition simulations and assessment metrics can easily be 344 
created and contributed by the community. It will be important to account for new technologies and 345 
developments in SMLM, such as scientific CMOS cameras6, in future simulations. It would also be 346 
exciting to adapt the tools developed in the SMLM challenge to other classes of super-resolution 347 
microscopy, such as fluorescence-fluctuation-based super-resolution microscopies (e.g., 3B36, SOFI37, 348 
SRRF38) and structured illumination microscopy39. 349 

The results of this competition show that the best 2D and 3D localization microscopy software have 350 
formidable algorithmic performance. However, a problem that often hinders adoption of new SMLM 351 
algorithms is that only a small subset of algorithms is packaged in, or compatible with fast, well-352 
maintained, user-friendly software packages, which include all stages of the SMLM data analysis 353 
pipeline – analysis, visualization and quantification. This remains a key outstanding challenge for the 354 
field. 355 

Both the 3D and 2D localization microscopy software challenges remain open and continuously 356 
updated on the competition website. This continuously evolving analysis of SMLM software 357 
performance provides software developers with a robust means of benchmarking new algorithms, 358 
and helps to ensure that super-resolution microscopists use software that gets the best out of their 359 
hard-won data.  360 

 361 
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METHODS 487 

1. CHALLENGE ORGANIZATION 488 
We first ran the 3D SMLM software challenge as a time limited competition, with a results session 489 
hosted as a special session of the 6th Annual Single Molecule Localization Microscopy Symposium in 490 
August 2016. The competition has now been converted to a permanent software challenge 491 
accepting new submissions. Special thanks is due to the software SMAP and 3D-WTM25 that 492 
participated in all eight categories (density x modality). The current list of participants is at:  493 

http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=participants 494 

All datasets, methods, participations, and results of the challenge 2016 made available at 495 
http://bigwww.epfl.ch/smlm/challenge2016/. Software for simulation and analysis is hosted on the 496 
competition GitHub repository: https://github.com/SMLM-Challenge/Challenge2016/  497 

A Life Sciences Reporting Summary is associated with this manuscript on the Nature Methods 498 
website.  499 

2. LOCALIZATION MICROSCOPY SIMULATIONS 500 

2.1. Structure, noise levels and spot densities 501 
Structure. The synthetic datasets were designed to be similar to images derived from real cellular 502 
structures . We defined mathematical models for cellular structures that imitate cytoskeletal 503 
filaments such as microtubules and larger tubular structures such as the endoplasmic reticulum or 504 
mitochondria (Fig. S18A). These structures have a tubular shape in the 3D space. For the 3D 505 
competition, we simulated synthetic 25 nm diameter microtubules (Fig. 1). Psuedo-microtubules are 506 
defined with their central axis elongating in a 3D space having an average outer diameter of 25 nm 507 
with an inner, hollow tube of 15 nm diameter. For the 2D competition, in addition to synthetic 508 
microtubules (MT), we simulated larger diameter 150 nm cylinders, called pseudo-endoplasmic 509 
reticulum (pseudo-ER), designed to approximate larger cellular structures such as mitochondria and 510 
the endoplasmic reticulum (ER) (Fig. 1).   511 

The underlying sample structure is formalized in a continuous space which allows rendering of digital 512 
images at any scale, from very high resolution (up to 1 nm/pixel) to low resolution (camera 513 
resolution: 100 nm/ pixel). The continuous-domain 3D curve is represented by means of a 514 
polynomial spline. The sample is imaged in a 6.4 × 6.4 μm2 field of view, and the center lines of the 515 
microtubules have limited variation along the z (vertical) axis, i.e., less than 1.5 μm. The fluorescent 516 
markers are uniform randomly distributed over the structure according to the required density. The 517 
photon emission rate of each fluorophore is controlled by a photo-activation model (see below). The 518 
exact locations of all fluorophores are stored at high precision floating-point numbers expressed in 519 
nanometers. This ground-truth file is used for conducting objective evaluations without human bias. 520 

Noise levels. We generated data at three different signal-to-noise ratio (SNR) levels, based on real 521 
signal to noise levels encountered under common SMLM experimental scenarios: N1, fixed cells 522 
antibody labelled with organic dye10, high signal, medium background; N2, fluorescent protein 523 
labelling1, low signal, low background; and N3, live cell affinity dye labelling40,41, high signal, high 524 
background. 525 

Spot density. As performance at different density of active emitters is a key challenge for SMLM 526 
software, we generated 3D competition datasets at both sparse emitter density 527 
(0.25 mol. [molecule] μm-2), 3D LD and high emitter density (2.5 mol. μm-2), 3D HD. For the 2D 528 
competition, we generated a sparse (0.5 mol. μm-2), 2D LD, and very high density dataset 529 
(5 mol. μm-2), 2D HD. 530 



Together, these simulated conditions closely resemble experimental 3D and 2D data under a range 531 
of challenging conditions of SNR, spot density, axial thickness and structure summarized in 532 
Supplementary Table 3. In addition, we provide simulated z-stacks of bright beads for software 533 
calibration. The competition datasets (Supplementary Table 4) are available online on the 534 
competition website. 535 

 536 

2.2. Photophysics activation model 537 
We incorporated a 4-state model of fluorophore photophysics18, including a transient dark state (dye 538 
blinking) and a bleaching pathway (Fig. S18C). Given a list of source locations from the structure 539 
simulator, fluorophore blinking was simulated by a 4-states Markov chain model. The states are ON, 540 
OFF, BLEACH, DARK and the transitions are Poisson distributed (Fig. S18C), except for the OFF to ON 541 
transitions which follow a uniform random distribution to reflect that in typical experimental 542 
conditions, constant imaging density is maintained by tuning the photoactivation rate during the 543 
experiment. All switching is calculated at sub-frame resolution and then total fluorophore on-time 544 
was integrated over each frame. 545 

Due to two decay paths, the actual mean lifetime of the state ON is 546 ܶܧܯܫܶܧܨܫܮ = 	 11ܱܶܰ +  ܪܥܣܧܮܤ1ܶ

Switching rates were chosen to approximate photoactivatable fluorescent proteins TON=3 frames, 547 
TDARK=2.5 frames, and TBLEACH=1.5 frames. 548 

Fractional fluorophore ON-times per frame (between 0 and 1) were multiplied by the mean flux of 549 
photon emission. The flux of photons expressed in photons/seconds was given by the relation 550 ࡲ ݁ߪ	ܲ	∅	=  

Φ is the quantum yield of the dye, P is power of the laser in W/cm2, e = h c / λ is the energy of one 551 
photon, σ = 1000 ln(10) ε / NA is the absorption cross section in cm2 and ε is the molar extinction 552 
coefficient (EC) or absorptivity in cm2/mol which is a characteristic of a given fluorophore. The laser 553 
power was Gaussian distributed over the field of view. At the end of this process a list of XY 554 
positions, on-frames and (noise-free) intensities for all activated fluorophores was obtained.  555 

Analysis of the resulting simulated photon counting distribution is presented in Supplementary 556 
Note 5 and Figure S23. 557 

2.3. Experimental Point Spread Function 558 
Model PSFs, stored as high resolution look up tables, were derived from experimentally measured 559 
PSFs. Although the algorithmic approach is distinct, the concept of accurately modelling the 560 
experimental PSF based on calibration data bears relation to the PSF phase retrieval approach 561 
previously employed by Hanser and coworkers42.  562 

Images of fluorescent beads were recorded for each modality (Supplementary Table 5). Signal to 563 
noise ratio of recorded PSFs was maximized in all cases by maximizing exposure time and averaging 564 
over several frames to increase dynamic range.  565 

To acquire experimental PSFs, we took 100 nm Tetraspek beads (Invitrogen) adsorbed to #1.5 566 
(170 μm thick) coverglass, imaged in water. The excitation wavelength was between 640 nm and 647 567 
nm, and a Cy5 emission filter was used. Data acquisition parameters for each modality are listed in 568 
Supplementary Table 5.  569 



The experimental PSFs used to generate the simulated data are available on the competition 570 
website. As the goal of this study was to compare software obtained on typical SMLM microscopes, 571 
we deliberately chose PSFs representative of common implementations of each 3D modality. 572 
However, additional PSF engineering should improve results of any specific modality, for example 573 
adaptive-optics corrected astigmatism43, or reduced Z-range, higher SNR DH-PSF designs21.  574 

The experimental point spread functions used here were measured for fluorescent beads adsorbed 575 
to the microscope cover slip, and should be appropriate simulations of SMLM data acquired within a 576 
few microns of the cover slip. Performing SMLM imaging at greater depths, e.g., in tissue or even 577 
deep within single cells, with oil immersion objectives will cause spherical aberration due to 578 
refractive index mismatch44. In order to accurately simulate SMLM data acquired at depth, the 579 
experimental PSFs could be acquired at a matching depth, by embedding fluorescent beads in 580 
agarose. Alternatively, the PSF for beads at the coverslip could be measured and explicitly calculated 581 
via phase retrieval, and then convolved with the appropriate degree of spherical aberration44. 582 

 583 

2.4. Simulation PSF construction 584 
For each modality, 3-6 beads were selected within a small (< 32 μm) region, to minimize PSF 585 
variation due to spherical aberration. Images for each selected bead were interpolated in XY to a 586 
pixel size of 10 nm. Beads were then coaligned by cross-correlation on the in-focus frame. Coaligned 587 
beads were averaged in XY to minimize pixel quantization artefacts and to increase SNR. Where 588 
necessary, Z-stacks were interpolated to a Z-step size of 10 nm. A central Z-range of 1.5 μm was 589 
selected that represents 151 optical planes with a Z-step of 10 nm. The Z-range covers -750 nm to 590 
+750 nm. The plane of best focus was chosen as the simulation 0 nm plane. Each model PSF was 591 
normalized such that the total intensity of the PSF in the in-focus frame within a diameter of 3 592 
FWHM from the PSF center was equal to 1.  593 

For the DH PSF, the transmission of the combined phase mask system was measured as 96 %, which 594 
was approximated as 100 % brightness relative to the 2D and astigmatic PSFs. 595 

In biplane super-resolution microscopy, emitted fluorescence is split into two simultaneously imaged 596 
channels, with a small (500-1000 nm) defocus introduced between the two channels15. As the small 597 
defocus should introduce minimal additional aberration into an optical system, we semi-598 
synthetically constructed a realistic biplane PSF from the experimental 2D PSF. The two defocused 599 
PSFs were constructed by duplicating the 2D PSF and offsetting it by -250 nm and 250 nm for each Z-600 
plane.  601 

This yielded five high SNR model PSFs with an isotropic voxel size of 10x10x10 nm3.  602 

The ground truth XY=0 was defined as the image center of mass of the in-focus frame of the model 603 
PSF, and Z=0 was defined as the in-focus frame. Accounts for shifts in the fitted XY center of the 604 
model PSF by localization software due to systematic offsets and Z-dependent variation of the model 605 
PSF center of mass are dealt with below (wobble correction). 606 

2.5. Noise model 607 
A constant mean autofluorescent background was added to the noise-free simulated images, and 608 
these images were then fed through the noise model representing Poisson distributed fluorescence 609 
emission recorded on a high quantum efficiency back-illuminated EMCCD45,46. 610 

The proposed noise model assumed as main contributions to the stochastic noise: 611 

 ௌ , the shot noise produced by the fluorescence background and signal and the spurious 612ߪ •
charge. Shot noise can be derived from the second moment of the Poisson distribution 613 



 ோ, the read noise of EMCCD camera, which is described by second moment of the Gaussian 614ߪ •
distribution 615 

 ாெ, the electron multiplication noise introduced by the gain process, which is described by 616ߪ •
the second moment of the Gamma distribution46. 617 
 618 

We assumed as camera parameters the ones specified for the Photometrics Evolve Delta 512 EMCCD 619 
camera (values for other manufacturer’s EMCCDs are similar): 620 

• QE = 0.9, Evolve quantum efficiency at 700 nm absorption wavelength. 621 
 ோ= 74.4 electrons, manufacturer measured root mean square noise for Evolve 512 camera 622ߪ •
• c = 0.002 electrons, manufacturer quoted spurious charge (clock induced charge only, dark 623 

counts negligible) 624 
• EMgain = 300 625 
• eadu = 45 electron per analog to digital unit (ADU), analog to digital conversion factor  626 
• G = 0.9*300/45 = 6, total system gain  627 
• BL = 100 ADU 628 

The final simulated photon electrons will thus be given by:  629 ݊௜௘ 	= ܧܳ)࣪	 ∙ ݊௣௛௢௧ூ௡ + ܿ) ݊௢௘ 	= 	Γ൫݊௜௘, ௚௔௜௡൯ܯܧ + ࣡(0,  (ோߪ
which leads to the final pixel counts: 630 ܷܦܣ௢௨௧ 	= ݉݅݊ ቆ݊௢௘ − ݊௢௘݉݀݋	 ஺݁஽௎݁௣௘௥ೌ೏ೠ + ,ܮܤ 65535ቇ	 
2.6. Depth-dependent lateral distortion/ wobble 631 
As the PSF models are experimentally derived, the 3D estimated localizations exhibit a depth-632 
dependent lateral distortion, here called wobble. This optical distortion is due to a combination of a 633 
systematic offset (arbitrary definition of PSF center) and optical aberrations47. In order to compare 634 
estimated and true localizations, we correct this effect during the assessment (Methods 3.1). 635 

2.7 Comparison of software results between different modalities. 636 
The intensities of the PSF in each imaging modality were normalized to facilitate comparison of 637 
results between different modalities. Software results between 2D, 3D AS and 3D DH modalities are 638 
expected to be directly comparable. 639 

For the biplane model PSF, as the emitted fluorescence is split into two channels, the intensity in 640 
each of the two simulated biplane channels was additionally reduced by 50 %. We note that a 641 
simulation bug meant that the fluorescence background was not reduced by 50 % as intended, 642 
leading to artificially high background for the biplane simulation. I.e., the background in each of the 643 
two biplane channels is the same as in the single channel of the other modalities. However, due to 644 
the low background level in the 3D simulations, the effect on image SNR and thus localization error 645 
is small (see Fig. S5, S6), less than 5 nm near the plane of focus. Therefore, as long as the small drop 646 
in image SNR is taken into account, approximate comparisons of the biplane data to the other 647 
modalities can still be made. 648 

3. SOFTWARE ASSESSMENT 649 

3.1 Protocol 650 
Each localization file submitted by the participants was manually checked for erroneous systematic 651 
errors in the definition of the dataset coordinate system, such as offsets, XY axis flips or clear scaling 652 



errors. Datasets were then programmatically standardized into a consistent output format. All 653 
modifications are publicly available. If required, the modifications consisted of columns reordering, 654 
reversing axes, XY axis swap, and shifting the lateral positions by a half camera pixel. 655 

The assessment pipeline includes three main parts: localization processing, the pairing between true 656 
and estimated localization and the metrics calculations. The first one depends on the assessment 657 
settings. There are two switchable properties: photon thresholding and wobble correction. Their 658 
combinations yield four different assessment settings. Up to 64 assessment runs per software were 659 
possible (i.e., 4 modalities, 4 datasets per modality). For any setting, we excluded the fluorophores 660 
within a lateral distance of 450 nm from the border. This value corresponds to the radius of the 661 
largest PSF, i.e., Double Helix. The activations too close from the border are more difficult to localize 662 
and could bias the results.  663 

The pairing between true and estimated localizations was performed frame by frame. For every 664 
frame, we identified the localizations that are close enough to a ground-truth position as true-665 
positives (TP), the spurious localizations as false-positives (FP) and the undetected molecules as 666 
false-negatives (FN). The procedure matches two sets of localizations. We deployed the presorted 667 
nearest-neighbor search for its efficiency, with a linking threshold of 250 nm. The results are 668 
effectively similar to the computationally intensive Hungarian algorithm7. 669 

Photon thresholding 670 

A photon threshold was required primarily due to the use of a realistic fluorophore blinking model. 671 
Since a fluorophore could activate/ bleach at any point in a simulated frame, this led to many frames 672 
containing very dim, undetectable localizations, e.g., where a molecule had been active for one or 673 
more frames previously, and then bleached during the first 5 % of a frame. These fractional 674 
localizations should also be present but practically undetectable in an experimental dataset. 675 

We decided to focus the software analysis on the localizations where the molecule was active for the 676 
majority of a frame, to be consistent with experimental expectations. Therefore, we implemented a 677 
photon threshold means where we kept the 75% brightest ground truth fluorophore activations. 678 
Because this was performed after the pairing step, observed localizations that were paired to 679 
discarded ground truth activations were also removed from the metric calculations. 680 

Wobble correction 681 

The centroid of experimental point spread functions shifts laterally by as much as 50 nm, as a 682 
function of axial position10,47. This is most often ignored by localization software, and instead 683 
corrected post-hoc by reference to a calibration curve37. Since our simulated PSF is experimentally 684 
derived, it was necessary to correct for these artefactual shifts between the observed localizations 685 
and ground truth, as part of the assessment process. This correction was performed using calibration 686 
data uploaded by competitors, similar to the correction typically performed on experimental data47. 687 

Three scenarios were proposed to the participants: no correction was applied during the 688 
assessment; the correction was based on a file provided by the participant itself or the correction 689 
was calculated by ourselves. The latter nevertheless requires the participant to localize a stack of 690 
beads we provided. Since the true positions of the beads are known, the difference between the 691 
estimated and true positions could be calculated and averaged. It thus yields the values for wobble 692 
correction. 693 

In certain specific cases (identified on the competition website), at the request of authors, we did 694 
not apply this correction, for example because the software explicitly considered the whole 3D PSF 695 
during fitting and was thus immune to this lateral shift artefact. For accurate results, application of 696 
lateral shift correction is critical for analysis of localization microscopy simulations using 697 



experimentally derived PSFs, as can be seen by comparison of typical software results with and 698 
without wobble correction (Fig. S19). 699 

3.2 Metrics 700 
We calculated a large number of analysis metrics to quantify the performance of software relative to 701 
ground truth. These are discussed in detail in Supplementary Note 2. The metrics are split into two 702 
categories: localization based and image based metrics.  703 

Localization based metrics. This directly relies on the localizations positions and notably includes the 704 
Recall, the Precision, the Jaccard Index, the RMSE (axial and lateral) and the consolidated Z-range. 705 
For the calculation of average software performance (Fig. 3D-F, S10) outlier software with an 706 
efficiency less than eff=0 (eff=-30 for 3D high density dataset) were excluded from the 707 
measurement. The key metrics of assessment were:  708 

1. Root mean squared localization error (RMSE). The foremost consideration for localization 709 
software is how accurately it finds the position of labelled molecules. This was quantified as 710 
the root mean squared difference between the measured molecule position, ݔ௜௦, and the 711 
ground truth position, ݔ௜௧, in both the lateral (XY) and axial (Z) dimensions.  712 

RMSE lateral (RMSE Lateral) [nm]: ට ଵ୘୔∑ 	௜∈ୗ∩୘ ௜௦ݔ) − ௜௧)ଶݔ + ௜௦ݕ) −  ௜௧)ଶ. 713ݕ

RMSE axial (RMSE Axial) [nm]: ට ଵ୘୔∑ 	௜∈ୗ∩୘ ௜௦ݖ) −  ௜௧)ଶ. 714ݖ

2. Jaccard index (JAC, %). In addition to localization precision, SMLM image resolution depends 715 
critically on number of localized molecules48, so it is crucial for SMLM software to accurately 716 
detect a large fraction of molecules in a dataset, and minimize false localizations. For every 717 
frame, we identified the localizations that are close enough to a ground-truth position as 718 
true-positives (TP), the spurious localizations as false-positives (FP) and the undetected 719 
molecules as false-negatives (FN). We then computed the Jaccard index (JAC, %), which 720 
measures the fraction of correctly detected molecules in a dataset,  721 ܥܣܬ = 100 ܶܲܶܲ + ܲܨ +  ܰܨ

3. Efficiency (E). For ranking purposes, we developed a single summary statistic for overall 722 
evaluation of software performance, which we term the efficiency (E), encapsulating both 723 
the software’s ability to find molecules, measured by the Jaccard index, and the software’s 724 
ability to precisely localize molecules.  725 ܧ = 100 − ඥ(100 − ଶ+∝ଶ(ܥܣܬ  ଶܧܵܯܴ	
The trade-off between these two metrics is controlled by a parameter α. In a retrospective 726 
analysis, we chose α = 1 nm-1 for the lateral efficiency Elat, α = 0.5 nm-1 for the axial efficiency 727 
Eax, based on the linear regression slope between the localization errors and Jaccard index 728 
(Fig. S20J-K). Using this definition, an average software performance has an efficiency in the 729 
range 25-75, a perfect software would have the maximum efficiency of 100. Overall 3D 730 
efficiency was calculated as the average of lateral and axial efficiencies. Overall software 731 
rankings (Fig. 2) were calculated as the sum of rankings for high and low SNR datasets. 732 

Image based metrics. The image based metrics are computed from a rendered image and includes 733 
the Signal-to-Noise Ratio (SNR) and the Fourier Ring / Shell Correlation (FRC/FSC). To render the 734 
image, we added the contribution of each localized molecule at the corresponding pixels. A 735 
contribution takes the form of a 3D additive Gaussian with a Full-Width Half Maximum (FWHM) of 736 
20 nm. A complete list of all computed metrics is presented in the Supplementary Note 2. 737 

We also calculated localization based metric results as a function of axial position. We proceeded by 738 
considering a subset of activations lying within an interval of axial positions (i.e., from the true 739 



localizations). Then, most of the metrics (e.g., Recall) are locally computed. This yields a curve 740 
providing information on the depth performance of each software / modality. 741 

In order to summarize software axial performance, we analyzed how the recall varied as a function 742 
of Z. A typical recall versus axial position curve (Fig. S4) will drop at positions far from the focal 743 
plane, i.e., where software can no longer detect spots to defocus. We first smoothed the curve using 744 
a sliding window. Then we computed the software Z-range, defined as the full width half maximal 745 
Recall of the smoothed curve (Fig. S21). This quantity is visually intuitive and useful for discussion of 746 
the recall performance if considered alongside a plot of recall vs axial position. However, because 747 
FHWM recall depends on the maximal recall, ranking based on this procedure would promote a 748 
software which poorly performed everywhere (i.e., flat curve), whereas a software which performed 749 
well in the focal plane but less well outside would obtain a worse FWHM recall. This observation 750 
leads us to produce a so-called consolidated Z-range, by multiplying the Z-range value by the 751 
maximal Recall, which should provide a robust metric that avoids the previous case scenario. 752 

Principal component analysis. In order to analyse the relationship between analysis metrics we 753 
computed the covariance matrix between each metric (Fig. S22A) and the principal component 754 
analysis (PCA) on the metrics (Fig. S22B-D). Each metric was standardized before applying the 755 
covariance and the PCA. For convenience, we took the additive inverse of the metrics for which 756 
lower values are best (i.e., FP, FN, RMSE, FRC, FSC). 757 

Summary statistics and detailed results for each software are available on the competition website 758 
(http://bigwww.epfl.ch/smlm/challenge2016/index.html?p=results), which also includes a tool for 759 
side-by-side comparison of the results of multiple software packages  760 

3.3 Baseline Localization Software 761 
We developed a minimalist Java tool software that performs localizations of bright emitters on the 4 762 
modalities of the challenge 2016: 2D, Astigmatism, Double-Helix, and Biplane. This 763 
SMLM_BaselineLocalization software is only designed to establish the performance baseline for the 764 
SMLM challenge. It has intentionally limited lines of code and relies only on few threshold 765 
parameters to localize particles. It has basic calibration tool that has to run on a z-stack of beads to 766 
find the linear f(x) relation between the axial position Z and the shape of the bead.  767 

• Astigmatism: Z = f(WX - WY) , where WX and WY are respectively an estimation of the size in X 768 
and Y.  769 

• Double-Helix: Z = f(θ), where θ is the angle formed the pairing of two close points.  770 
• Biplane: Z = f (Wleft - Wright), where Wleft and Wright are respectively an estimation of the size of 771 

the spots in left and the right plane. 772 
The Java code is available: https://github.com/SMLM-Challenge/Challenge2016 773 

4 REAL DATA ASSESSMENT 774 
Astigmatism software was tested on previously published real 3D STORM datasets of microtubules 775 
and nuclear pore complex19. The tubulin dataset corresponds to the raw data for Fig. S6 in Ref 19, 776 
and the nuclear pore complex dataset corresponds to raw data for Fig. S9 in Ref 19. Key acquisition 777 
parameters for data analysis are summarized on the competition website. 778 

Data were analyzed by software authors or expert users, and submitted via the competition website. 779 
All data were drift corrected via cross-correlation. STORM images were rendered with a constant 780 
Gaussian blur with 3 nm standard deviation and saturated by 0.1 – 0.5 %. The complete scripts used 781 
for assessment and image rendering are available on the competition GitHub page.  782 



5 DATA AVAILABILITY 783 

5.1 Data availability statement 784 
Simulated competition datasets are available at http://bigwww.epfl.ch/smlm/challenge2016/, 785 
together with the parameters used to generate the data. The ground truth list of simulated molecule 786 
positions for each competition dataset remains secret in order to allow the software challenge to 787 
remain continuously open to new submissions. However, ground truth data are available for the 788 
simulated training datasets. 789 

Raw data for this study are uploaded on the Nature Methods website. The data corresponding to 790 
specific figures are listed with the Supplementary information.  791 

5.2 Code availability statement 792 
All software is available at https://github.com/SMLM-Challenge/Challenge2016 793 
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FIGURE LEGENDS 816 
Figure 1: Summary of SMLM challenge simulations. A. 3D rendering of simulated microtubules and 817 
endoplasmic reticulum samples. B. Key simulation steps. The structure is constructed from 3D tubes 818 
continuously defined by three B-spline functions in the volume of interest. Membranes of the tubes 819 
are densely populated with possible positions. Fluorophores follow a 4-state photophysics model. 820 
Activations of a given frame are convolved with the experimental PSF and shot & camera noise is 821 
added. C. Summary of all 16 challenge datasets, calibration data and experimental PSFs. Left column: 822 
orthogonal projections of the experimentally-derived PSF. Right column: exemplar frame for each 823 
competition dataset, characterized by structure (endoplasmic reticulum, E; microtubules, MT), 824 
modality (2D; astigmatism, AS; double helix, DH; biplane, BP), density (low density, LD; high density, 825 
HD) and SNR (noise level N1, N2, N3). BP Ch. 1,2, indicates two biplane channels with a relative focal 826 
shift of 500 nm.  827 

Figure 2: Leaderboards for each competition modality, at low and high spot density. Ranking is based 828 
on software Efficiency, which combines Jaccard index (fraction of successfully detected molecules) 829 
and localization precision (RMSE, root mean square error, lateral & axial). Orange, contribution of 830 
high SNR dataset; blue, contribution of low SNR dataset.  831 

Figure 3: Comparison of 3D software performance. Gold stars indicate top performers for each 832 
dataset. Dashed lines in top, middle panels indicate overall efficiency (higher is better). A-C. 833 
Localization error and spot detection performance of all astigmatic SMLM software. D-E. Average 834 
(colored marker with s.d. error bars, sample sizes for each category indicated in Supplementary 835 
Table 2) and best-in-class (colored marker with gold star) software performance for all competition 836 
modalities. AS, astigmatism; DH, double helix; BP, biplane. 837 

Figure 4: Super-resolved images of software results for simulated and real competition datasets. A. 838 
Xy and xz projection images of 3D competition datasets for representative software. Top: best-in-839 
class software in each modality, for high SNR low density dataset. Bottom: representative average 840 
software. Left: xy and xz overview images for winning AS software. Middle: xy and xz zoom images of 841 
boxed regions in left panel, for winning and mid-range software, each modality. Right: xy and xz line 842 
profiles of winning and mid-range software for each modality, for boxed regions in middle panel. 843 
Image colors: red, ground truth; green, software results. Line profiles: GT, ground truth, black; AS, 844 
astigmatism, red; BP, biplane, blue; DH, double helix, green. Panel key: Software-name Dataset-845 
ranking°. Scale bar: full image, 1 μm, magnified regions, 100 nm. B. Astigmatism software results for 846 
real nuclear pore complex 3D STORM data. Top: Super-resolved overview image in xy for 3D-847 
DAOSTORM software, color coded for depth. Bottom: xz orthoslices along 600 nm wide dashed 848 
region indicated in top panel for 8 astigmatism software packages. Scale bars, 500 nm. 849 
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