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Adaptive Reconstruction for Electrical Impedance Tomography
with a Piecewise Constant Conductivity

Bangti Jin* Yifeng Xuf

~
Abstract

In this work we propose and analyze a numerical method for electrical impedance tomography of
recovering a piecewise constant conductivity from boundary voltage measurements. It is based on stan-
dard Tikhonov regularization with a Modica-Mortola penalty funétional and adaptive mesh refinement
using suitable a posteriori error estimators of residual type that involve the state, adjoint and varia-
tional inequality in the necessary optimality condition and a/Separate marking strategy. We prove the
convergence of the adaptive algorithm in the following sense:|the sequence of discrete solutions contains
a subsequence convergent to a solution of the continuous neéeessary optimality system. Several numerical
examples are presented to illustrate the convergence behavior of the algorithm.
Keywords: electrical impedance tomography, piecewise constant eonductivity, Modica-Mortola func-
tional, a posteriori error estimator, adaptive finite element method, convergence analysis

1 Introduction

Electrical impedance tomography (EIT)/aims. at recovering the electrical conductivity distribution of an
object from voltage measurements on the boundary.r It has attracted much interest in medical imaging,
geophysical prospecting, nondestructive evaluation and pneumatic oil pipeline conveying etc. A large number
of reconstruction algorithms have been proposed; seeye.g., [37, 36, 26, 35, 31, 30, 24, 15, 21, 40, 39, 18, 3, 34,
33, 57, 28, 54, 51] for a rather incompletelist. One prominent idea underpinning many imaging algorithms is
regularization, especially Tikhonov fegularization [29]. In practice, they are customarily implemented using
the continuous piecewise linear finite element method (FEM) on quasi-uniform meshes, due to its flexibility
in handling spatially variable coefficients and general domain geometry. The convergence analysis of finite
element approximations was carried out_in [22, 47, 27].

In several practical applications, the physical process is accurately described by the complete electrode
model (CEM) [14, 50]&, It employs nonstandard boundary conditions to capture characteristics of the
experiment. In particular, around the electrode edges, the boundary condition changes from the Neumann
to Robin type, which,aceordingtoelassical elliptic regularity theory [23], induces weak solution singularity
around the electrode edges; see, e.g., [45] for an early study. Further, the low-regularity of the sought-for
conductivity distribution, especially that enforced by a nonsmooth penalty, e.g., total variation, can also
induce weak interiorsingularities of the solution. Thus, a (quasi-)uniform triangulation of the domain can be
inefficient for resolving these singularities, and the discretization errors around electrode edges and internal
interfaces can'potentially compromise the reconstruction accuracy. These observations motivate the use of
an adaptivestrategy to@achieve the desired accuracy in order to enhance the overall computational efficiency.

For direct problems, the mathematical theory of AFEM, including a posteriori error estimation, con-
vergence and computational complexity, has advanced greatly [1, 44, 53, 12]. A common adaptive FEM
(AFEM) comsists/of the following successive loops:

SOLVE — ESTIMATE — MARK — REFINE. (1.1)
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The module ESTIMATE employs the given problem data and computed solutions to provide.ecomputable
quantities on the local errors, and distinguishes different adaptive algorithms.

In this work, we develop an adaptive EIT reconstruction algorithm with a piecewise constant conductiv-
ity. In practice, the piecewise constant nature is commonly enforced by a total variation penalty. However,
it is challenging for AFEM treatment (see e.g., [5] for image denoising). Thus, we take amindirect approach
based on a Modica-Mortola type functional:

1
Felo) = 5/ |Vo|?dz + f/ W (o) dz,
Q € Ja
where the constant € > 0 is small and W(s) : R — R is the double-well potential, i.e.,
W(s) = (s —co)?(s — 1)?, ~ (1.2)

with ¢, c; > 0 being two known values that the conductivity ¢ can take. The functional F. I'-converges to
the total variation semi-norm [42, 43, 2]. The corresponding regularized least-squares formulation reads

inf {J(0) = 31U () - V| + §eg)) (13)

where & > 0 is a regularization parameter; see Section 2 for further details. In this work, we propose a
posteriori error estimators and an adaptive reconstruction ‘algerithm of the form (1.1) for (1.3) based on
a separate marking using three error indicators in the module MARK; see Algorithm 3.1. Further, we give
a convergence analysis of the algorithm, in the sense that the sequénce of state, adjoint and conductivity
generated by the adaptive algorithm contains a convergent subsequence to a solution of the necessary
optimality condition. The technical proof consistsief two steps: Step 1 shows the subsequential convergence
to a solution of a limiting problem, and Step 2 proves that the solution of the limiting problem satisfies
the necessary optimality condition. The main techmical ¢hallenges in the convergence analysis include the
nonlinearity of the forward model, the nonconvexity of the double well potential and properly treating the
variational inequality. The latter two are overcome,by. pointwise convergence of discrete minimizers and
Lebesgue’s dominated convergence theorem, and AFEM analysis techniques for elliptic obstacle problems,
respectively. The adaptive algorithm and its convergence analysis are the main contributions of this work.

Last, we situate this work in the existing literature. In recent years, several adaptive techniques, including
AFEM, have been applied to the numerieal resolution of inverse problems. In a series of works [6, 7, 8, 9],
Beilina et al studied the AFEM in a dual weighted residual framework for parameter identification. Feng
et al [20] proposed a residual-based estimator for the state, adjoint and control by assuming convexity of
the cost functional and high regula&y on the control. Li et al [38] derived a posteriori error estimators
for recovering the flux and proved their reliability; see [55] for a plain convergence analysis. Clason et
al [17] studied functional ,a postériori estimators for convex regularized formulations. Recently, Jin et al
[32] proposed a first AFEM for Tikhonov functional for EIT with an H!(Q2) penalty, and also provided a
convergence analysis. This work extends the approach in [32] to the case of a piecewise constant conductivity.
There are a number of major differences between this work and [32]. First, the H({) penalty in [32]
facilitates derivingthe a posteriori estimator on the conductivity o, by completing the squares and suitable
approximation argument, which is not directly available for the Mordica-Mortola functional F.. Second, we
develop a sharper error indicator associated with the crucial variational inequality than that in [32], by a
novel constraint préserving imterpolation operator [13]; see the proof of Theorem 5.5, which represents the
main technical movelty of this work. Third, Algorithm 3.1 employs a separate marking for the estimators,
instead of a collective marking in [32], which automatically takes care of different scalings of the estimators.

The rest of this paper is organized as follows. In Section 2, we introduce the complete electrode model,
and the.regularized least-squares formulation. In Section 3, we give the AFEM algorithm. In Section 4,
we ppresent extensive numerical results to illustrate its convergence and efficiency. In Section 5, we present
the lengthy technical convergence analysis. Throughout, (-,-) and (-,-) denote the inner product on the
Euclidean space and (L?(2))¢, respectively, by || - || the Euclidean norm, and occasionally abuse (-, -) for the
duality pairing between the Hilbert space H and its dual space. The superscript t denotes the transpose of
a vector. The notation ¢ denotes a generic constant, which may differ at each occurrence, but it is always
independent of the mesh size and other quantities of interest.
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2 Regularized approach

This part describes the regularized approach for recovering piecewise constant conductivities.

2.1 Complete electrode model (CEM)

Let Q be an open bounded domain in R? (d = 2,3) with a polyhedral boundary 9. We denote, the set of
electrodes by {el}lel, which are line segments/planar surfaces on 99 and satisfy e; M éx = 0 if 7 # k. The
applied current on electrode e; is denoted by I;, and the vector I = (Iy, ..., I;)¥€ R” satisfies Zle I, =0,
ie, I € RL .= {V e RE ZleVl = 0}. The electrode voltage U = (Uy,...,Ur)" I8 normalized, i.e.,
U € RE. Then the CEM reads: given the conductivity o, positive contactfimpedances {zl}lL:1 and input

current I € RZ, find (u,U) € H'(Q) ® R such that [14, 50] =
-V (eVu)=0 inQ,
u—}—zlog—Z:Ul onenl=1,2,...,L,
fuds = for [ = L 21)
0, T on s =1 orl=1,2,.. L
o2t =0 on 90\ U, er.

The inverse problem is to recover the conductivity o from a-noisy.version U° of the electrode voltage U (o)
(for the exact conductivity o) corresponding to one or multiple.input currents.
Below the conductivity o is assumed to be piecewise constant, i.e., in the admissible set

A:={c € L>®(Q) g = co + (ef — co)xa, }

where the constants ¢; > ¢g > 0 are known, Q; C Qis an inknown open set with a Lipschitz boundary and
X, denotes its characteristic function. We.denote by H the space H'(Q) ® RL with its norm given by

1w, OM= Nl ) + U117
A convenient equivalent norm on the space H is'given below.

Lemma 2.1. On the space H, the morm || Hllu is equivalent to the norm | - ||m« defined by

L
I, OBVl 0 + > lu = Uill2aey-
=1

The weak formulation/of the medel (2.1) reads [50]: find (u,U) € H such that
a(@, (u,U), (v,V)) = (I,V) V(v,V) € H, (2.2)
where the trilineargform a(o, (w, U), (v,V)) on A x H x H is defined by

L
a(g, (ugll), (v,V)) = (0Vu, Vo) + > 27 (u = Uy, v = Vi) 12(c)),

=1
where (-{+)12(c,) denotes the L?(¢;) inner product. For any o € A, {z}/-, and I € B%, the existence and

uniqueness of a solution (u,U) € H to (2.2) follows from Lemma 2.1 and Lax-Milgram theorem.

2.2 Regularized reconstruction

For numerical reconstruction with a piecewise constant conductivity, the total variation (TV) penalty is
popular. The conductivity o is assumed to be in the space BV(2) of bounded variation [4, 19], i.e.,

BV(Q) = {v e L' (Q) : |v|rv) < oo},
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equipped with the norm [[v|[gyv(q) = [|[v||l1 () + [v|Tv(Q), Where

olrviy = sup{ [0 -0dr: s ey 6w < 1}-

Below we discuss only one dataset, since the case of multiple datasets is similar. Then Tikhonov regular-
ization leads to the following minimization problem:

min {7 (o) = §|U(0) = U + alolavion} (2.3)

The scalar « > 0 is known as a regularization parameter. It has at least onesmminimizer [46, 22].
Since ¢ is piecewise constant, by Lebesgue decomposition theorem [4], the TVaterm |o|rv(q) in (2.3)
reduces to [ |[o]|dH9!, where S, is the jump set, [0] = o — o~ 'dendbes the jump across S, and

H~! refers to the (d — 1)-dimensional Hausdorff measure. The numeri¢al approximation of (2.3) requires
simultaneously treating two sets of different Hausdorff dimensions (i.e., 2 and S, ), which is very challenging.
Thus, we replace the TV term |o|py (o) in (2.3) by a Modica-Mortela, type functional [43]

() e elVzllia g + £ Jo W(2)@r ifze HH(Q),
e(2) = +00 otherwise,

where € is a small positive constant controlling the width of the transition interface, and W : R — R is
the double-well potential given in (1.2). The functional F. was first proposed to model phase transition of
two immiscible fluids in [11]. It is connected with the TV semi-norm as follows [43, 42, 2]; see [10] for an
introduction to I'-convergence.

Theorem 2.1. With cyy = f(:l VWi(s)ds, let

L 20W|Z'TV(Q) ZfZ € BV(Q) N .A,
Fle) = { +00 otherwise.

Then F. T'-converges to F in L*(Q) as.c — 07. Let {e,}n>1 and {v,}n>1 be given sequences such that
en — 01 and {F., (vn)}n>1 is bounded. Then v, is precompact in L*(9).

The proposed EIT reconstructiomymethod reads

inf { Te(0) = LU (o) = U°|* + §Fe(0)} (2.4)
oA

where & = a/cw, and the admissible set A is defined as
A= {oe H' () :co<o(z)<ciae z€Q}.

Now we recall a useful continuity result of the forward map [22, Lemma 2.2], which gives the continuity
of the fidelity térm in the functional J.. See also [31, 18] for related continuity results.

Lemma 2.2. Let' {0, }y>1 C A satisfy o, — o* in L*(). Then

|| (u(o) — u(0*). Ulon) ~ U(") [l = 0. (25)

Femma 2.20implies that {J.}.~0 are continuous perturbations of J in L'(£2). Then the stability of
I'-convergenée [2, Proposition 1(ii)] [10, Remark 1.4] and Theorem 2.1 indicate that J. I'-converges to J
with respect to L!(Q), and J. can (approximately) recover piecewise constant conductivities. Next we show
the existence of a minimizer to J;.

Theorem 2.2. For each € > 0, there exists at least one minimizer to problem (2.4).

Page 4 of 26
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Proof. Since J. is nonnegative, there exists a minimizing sequence {c,, },>1 C A such that J. (gm)h— M=
inf_ 7 Je(0). Thus, sup,, [|[Von||r2(q) < oo, which, along with ¢y < 0, < c1, yields [0y [| g1 () < c. Since A
is closed and convex, there exist a subsequence, relabeled as {0, },>1, and some o* € A such that

on — o weakly in H(Q), o, = 0" in LY(Q), o, —>0c" ae inQ. (2.6)

Since W(s) € C?[cy,c1], {W(0p)}n>1 is uniformly bounded in L () and converges to Wi(g*) almost
everywhere in Q. By Lebesgue’s dominated convergence theorem [19, p. 28, Theorem 1.19], [, W(o,,) dz —
Jo W(o*)dz. By Lemma 2.2 and the weak lower semi-continuity of the H'(£2)-§eminorm, we obtain

J:(0*) <liminf J.(o,) < li_>m Je(op) = me.

n—oo

Thus ¢* is a global minimizer of the functional 7. O

To obtain the necessary optimality system of (2.4), we use the standard adjoint technique. The adjoint
problem for (2.2) reads: find (p, P) € H such that

a(o, (p, P), (v, V) = (U(c) — U, V)V (0, ¥2) € H. (2.7)

By straightforward computation, the Gateaux derivative ()] of the functional J. at o € A in the
direction u € H*(Q) is given by

T (0)] = @ [(Vo, Vs) + & (Wio) @iV u(0), V(o).

Then the minimizer o* to problem (2.4) and théwrespective state (u*,U*) and adjoint (p*, P*) satisfy the
following necessary optimality system:

alo*, (u*,U*), (v,V)) = (I,V) V(u,¥) € H
a(o™®, (p*, P*), (v, V) = (05— U%34_¥(v,V) € H, (2.8)
Ge(Vo*,V(n—0") + & (W (0N — o) — (1 — 0")Vu*, Vp*) >0 Vp e A,

where the variational inequality at thelast line is due to the box constraint in the admissible set A. The
optimality system (2.8) forms the basis of the adaptive algorithm and its convergence analysis.

3 Adaptive algorithm*

Now we develop an adaptive EEM for/problem (2.4). Let 7y be a shape regular triangulation of € into
simplicial elements, each intersecting at most one electrode surface e;, and T be the set of all possible
conforming triangulations of'Q obtained from 7y by the successive use of bisection. Then T is uniformly
shape regular, i.e., thé shape-regularity of any mesh 7 € T is bounded by a constant depending only on 7y
[44, 52]. Over any J' € T, we define a continuous piecewise linear finite element space

Vr={veCQ):vlre A(T)VT €T},

where P;(T) consists of all linear functions on T'. The space V7 is used for approximating the state v and
adjoint p, andrthe discrete admissible set A7 for the conductivity is given by

JZT =VrnN A.
@iven o €7, the discrete analogue of problem (2.2) is to find (uy,Ur) € Hy = V7 ® RE such that
a(or, (ur, Ur), (vr, V) = (I,V) V(vr,V) € Hr. (3.1)
Then we approximate problem (2.4) by minimizing the following functional over .ZT:

Jer(or) = 3| Ur(or) = U°|? + S F.(o7). (3.2)



oNOYTULT D WN =

29

AUTHOR SUBMITTED MANUSCRIPT - IP-102070.R1

Then, similar to Theorem 2.2, there exists at least one minimizer o7 to (3.2), and the minimizer o5 and
the related state (u%-,U7) € Hy and adjoint (p3-, Py) € Hy satisfy

a(o—;v (UJ;V U’;k')v (’U, V)) = <Iv V> V(’U, V) € Hr,
(o (P P2), (0, V) = (U~ U, V) V(o,V) € Hr, )

-~ * * a * * * * * e
B(Voy, Vi~ 07) + s (W (05), 1= o) — (11— 07) Vi, V) 200 s € AP
Further, (u%-, Us) and (p¥-, P7) depend continuously on the problem data, i.e.4

I, U3 + 195, P s < (T + 10 ) (3.4
~
where the constant ¢ can be made independent of o and e.

To describe the error estimators, we first recall some useful notatioiznThe collegtion of all faces (respec-
tively all interior faces) in 7 € T is denoted by Fr (respectively F%) andits réstriction to the electrode ¢
and 99\ Ulel e; by ]-',lr and F%, respectively. A face/edge F has éfixed normal unit vector np in Q with
ng =n on JQ. The diameter of any T € T and F € Fr is denoted byphr := |T|'/¢ and hp := |F|V/(4=1),
respectively. For the solution (0%, (u¥-, Us), (p%, Py)) to problem (3.3), we define two element residuals for
each element T' € T and two face residuals for each face F' € F7 by

Rra(or,ur) =V - (07 Vur),

* * * o * + & - 4

RT,Z(GTvuTva) = TEW/(UT) - V’LLT ) vp’Tv
[05- Vs nr) for F e F&,

Jra (o ur, Ur) = ¢ opVurenuwy —Us )z for F e FY,
orVur-n for F'e Ff,

. ae(Vorimg] for F e Fi,
Jr2(or) =9 _ .

aeVoprnn for '€ FrUF5,

where [-] denotes the jump across interior face F. Then for any element T' € T, we define the following
three error estimators

n%’,l(g;vu?a U’}k’aT) = }QZR”RTJ(U;”U’?)H%Q(T) + Z hF”JFyl(O—;-au;V U;‘)”%Q(F)a
FCoT

W 2(07, 0, PF T E D R (07, 90| 2oy + D hellJra (07 07 P22 r),
Fcor

ng-’3(a$-,u$—,p$—,T) = h%‘HRTﬂ(U;’au;vp;‘)”qm(T) + Z hF”JF,?(U;')”qu(F)
FCoT

with ¢ = d/(d—1)4The estimator 17 (0%, u’, Uz, T) is identical with the standard residual error indicator
for the direct preblem: find (&, U) € H such that

a(o, (@,0), (v, V) = (I,V), ¥Y(uv,V)eH.

It differs{from the direct problem in (2.8) by replacing the conductivity ¢* with ¢ instead, and is a
perturbation of the latter case. The perturbation is vanishingly small in the event of the conjectured
(subsequential) comvergence 0 — o*. The estimator 0y 2(0%, p%, Py, T) admits a similar interpretation.
These two estimators are essentially identical with that for the H'(2) penalty in [32], and we refer to [32,
Section 3.3] for a detailed heuristic derivation. The estimator ny 3(o%-, %, p%-, T') is related to the variational
inequality in‘the necessary optimality condition (2.8), and roughly provides a quantitative measure how well
it is satisfied. The estimator (including the exponent ¢) is motivated by the convergence analysis; see the
proof-of Theorem 5.5 and Remark 5.2 below. It represents the main new ingredient for problem (2.4), and
differs from that for the H'(Q) penalty in [32].

Page 6 of 26
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Remark 3.1. The estimator ny 3 improves that in [32], i.e.,
W7 5(0% wh, pi, T) i= Wi | Rro (o5, i, )| Toery + Y BEITE2(05) 172
FCoT

in terms of the exponents on hp and hp. This improvement is achieved by a novelsconstraint preserving
interpolation operator defined in (5.13) below.

Now we can formulate an adaptive algorithm for (2.4); see Algorithm 3.lemBelow, we indicate the
dependence on the mesh 7;, by the subscript &, e.g., Je i for Je 7.

Algorithm 3.1 AFEM for EIT with a piecewise constant conductivity.

~~

1: Specify an initial mesh 7y, and set the maximum number K of refinements.

2: fork=0: K —1do 4

3:  (SOLVE) Solve problem (3.1)-(3.2) over Ty, for (o}, (uy,Uy)) € A X Hy and (3.3) for (p;, P;) € Hg.

4: (ESTIMATE) Compute error indicators 13 , (ok, ug, Uy), ni o (@, i Pr ) @nd i o(of, ui, pi)-

5. (MARK) Mark three subsets M} C Ty (i = 1,2,3) such that each M /contains at least one element
JN",; € Tr. (i =1,2,3) with the largest error indicator:

3
ki (Ty) = 22N (3.5)
- 4
Then My, := M} UM3Z UM;.

6:  (REFINE) Refine each element T in My, byrbisection to get Tp41.

7 Check the stopping criterion.

8: end for

9: Output (o, (ug, UY), (0%, Py)).

The MARK module selects a collection of eléements in the mesh 7;. The condition (3.5) covers several
commonly used marking strategies e.g., maximum, equidistribution, modified equidistribution, and Dorfler’s
strategy [49, pp. 962]. Compared with a collective marking in AFEM in [32], Algorithm 3.1 employs a
separate marking to select more elements for refinement in each loop, which leads to fewer iterations of the
adaptive process. The error estimators may also be used for coarsening, which is relevant if the recovered
inclusions change dramatically during'the iteration. However, the convergence analysis below does not carry
over to coarsening, and it willinot be Turther explored.

Last, we give the main theorétical  result: for each fixed € > 0, the sequence of discrete solutions
{o}, (u;, U}), (pk, PP) besosgenerated by Algorithm 3.1 contains a subsequence converging in H'(Q) x H x H
to a solution of system (2.8). The proof is lengthy and technical, and thus deferred to Section 5.

Theorem 3.1. The/sequence ofdiscrete solutions {oy, (ui, UY), (0%, Pi) k>0 by Algorithm 8.1 contains a
subsequence {0y, , (qu,U,;*j), (B, . Pi,)}j>0 convergent to a solution (o™, (u*,U”), (p*, P*)) of system (2.8):

o= o @y M (ur, — v Ug; = U")llms [1(pk, —p* P, = P)llm = 0 as j — oo.

4 Numerical experiments and discussions

Now we ‘present numerical results to illustrate Algorithm 3.1 on a square domain Q = (—1,1)2. There
are sixteen electrodes {e;}~ , (with L = 16) evenly distributed along 9%, each of length 1/4. The contact
impedances {zl}lL:1 are all set to unit. We take ten sinusoidal input currents, and for each voltage U(coT) €
RZL| generate the noisy data U° by

U =U(oh) + emlax|Ul(aT)\gl, I=1,...,L, (4.1)
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where € is the (relative) noise level, and {&}%, follow the standard normal distribution. Note that. ¢ = le-2
refers to a relatively high noise level for EIT. The exact data U(c') is computed using a much finer uniform
mesh, to avoid the most obvious form of “inverse crime”.

In the experiments, we fix K (the number of refinements) at 15, ¢ (exponent in n,‘ig) at 2pand & (the
functional F.) at le-2. The marking strategy (3.5) in the module MARK selects a minimal refinement set
My:= U M C Ty, such that

2 2 2 2 2
nk,l(o—zvuz7Ulz<7Mllc) Z 9%,1(0;7@62, Ul:)v nk,Q(o—vaz’PI:7Mk) 2 gnk,2(al>:7pltvpl:)a
77/%,3(027%71?2’/\4%) 2 9771%,3(0';:”“'2)192)7

with a threshold # = 0.7. The refinement is performed with one popular refinement strategy, i.e., newest
vertex bisection [41]. Specifically, it connects the midpoint z7, as a newest/vertexyof a reference edge F of an
element T' € T, to the opposite node of F'; and employs two edges oppositeto the midpoint xp as reference
edges of the two newly created triangles in 7y41. Problem (3.1)-(3.2) is selved by‘a Newton type method;
see Appendix A for the detail. The conductivity on 7y is initialized to oy =¢g, and then for k = 1,2, ...,
o (defined on Tj_1) is interpolated to 7x to warm start the optimization. The regularization parameter
& in (2.4) is determined in a trial-and-error manner. All computations ace performed using MATLAB 2018a

on a personal laptop with 8.00 GB RAM and 2.5 GHz CPU.
1 2 1| 12 2 2 2
05 18 18 . . 18 ¥ {18 1.8
16 1.6 1.6 16 1.6
0

14 14 14 14 14
05 12 12 O \‘ 12 12 12

A 1 1 - 1 - 1 1
-1 -0.5 0 0.5 1
(a) true conductivity adaptlve (c) adaptive ) uniform (e) uniform

-1 -0.5 0 0.5 1

Figure 1: The final recoveries by the adaptive and uniform refinements for Example 1(i). The results in (b)
and (d) are for e = le-3 and & = 2€:2, and (c) and (e) for e = le-2 and & = 3e-2. d.o.f. in (b), (¢), (d) and
(e) are 15830, 18770, 16641 and 16641, respectively.

The first set of examples are concerned with two inclusions.
Example 1. The background condu}ivity oo(xz) =1.

(i) The true conductivity oinis given by oo(z) + x5, () + XxB, (), with By and By denote two circles
centered at (0,0.5)0and (0,=0:5); respectively, both with a radius 0.3.
(224 (22-0.5)2) (22 +(2240.5)%)
(ii) The true conduétivitypa® isngiven by oo(z) + 1+ 1.2~ PR T , G.e., two
Gaussian bumps centered, at (0,0.5) and (0,—0.5).

(iii) The true comductivity o' is given by oo(x) + 5x B, (z) + 5xB, (), with By and By denote two circles
centered fat (0,40.5) .and.(0, —0.5), respectively, both with a radius 0.3.

The numerical results for Example 1(i) with ¢ = 1le-3 and € = le-2 are shown in Figs. 1-5, where d.o.f.
denotes the degree of freedom of the mesh. It is observed from Fig. 1 that with both uniform and adaptive
refinements, the final recoveries have comparable accuracy and capture well the inclusion locations.

Next, werexamine the adaptive refinement process more closely. In Figs. 2 and 3, we show the meshes 7y,
during the iteration and the corresponding recoveries oy, for Example 1(i) at two noise levels € = le-3 and
€ = le-2, respectively. On the coarse mesh 7y, the recovery has very large errors and can only identify one
component and thus fails to correctly identify the number of inclusions, due to the severe under-resolution
of both state and conductivity. Nonetheless, Algorithm 3.1 can correctly recover the two components with
reasonable accuracy after several adaptive loops, and accordingly, the support of the recovery is gradually
refined with its accuracy improving steadily. In particular, the inclusion locations stabilize after several

Page 8 of 26
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loops, and thus coarsening of the mesh seems unnecessary. Throughout, the refinement occurs mainly in
the regions around the electrode edges and internal interface, which is clearly observed for both noise levels.
This is attributed to the separable marking strategy, which allows detecting different sources of singularities
simultaneously. In Fig. 4, we display the evolution of the error indicators for Example 1(i) with € = 1e-3.
The estimators play different roles: 77,%71 and 77,%72 indicate the electrode edges during first iterations and then
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also internal interface, whereas throughout 77 5 concentrates on the internal interface. Thus, g and; ,
are most effective for resolving the state and adjoint, whereas 77,%,3 is effective for detecting internal jumps
of the conductivity. The magnitude of n? , is much smaller than 7? |, since the boundary data U° — U(oy,)
for the adjoint is much smaller than theyinput current I for the state. Thus, a simple collective marking
strategy (i.e., 77,% = 77,%71 + 77,%72 + 7),%73) may miss the correct singularity, due to their ‘drastically different
scalings. In contrast, the separate marking in (3.5) can take care of the scaling automatically:

In Fig. 5, we plot the L*(Q2) and L!(Q) errors of the recoveries versus d.o.f. Njwhere the recovery on
the corresponding finest mesh is taken as the reference (since the recoveries by.the adaptive and uniform
refinements are slightly different; see Fig. 1). Due to the discontinuity of the/sought-for conductivity, the
L' () norm is especially suitable for measuring the convergence. The convergenee of the algorithm is clearly
observed for both adaptive and uniform refinements. Further, with a fixed déo.f., AFEM@ives more accurate
results than the uniform one in both error metrics. These observations show thea)mputational efficiency
of the adaptive algorithm.

Examples 1(ii) and (iii) are variations of Example 1(i), and the resultsiare presented in Figs. 6-9. The
proposed approach assumes a piecewise constant conductivity with known lowernand upper bounds. Example
1(ii) does not fulfill the assumption, since the true conductivity ofhis not piecewise constant. Thus the
algorithm can only produce a piecewise constant approximationdo the exactione. Nonetheless, the inclusion
support is reasonably identified. When the noise level € increases from le-3 to le-2, the reconstruction
accuracy deteriorates significantly; see Fig. 6. Example 1(iii) involves high contrast inclusions, which are
well known to be numerically more challenging. This is‘clearly observed in Fig. 8, where the recovery
accuracy is inferior, especially for the noise level ¢ = le-2. /However, the adaptive refinement procedure
works well similarly as the preceding examples: the refinement occurs mainly around the electrode edges
and inclusion interface; see Figs. 7 and 9 for thé details.

Now we consider one more challenging example with four inclusions.

Example 2. The true conductivity ol is given by ao(x) % 221:1 XB; (z), with the circles B; centered at
(0.6,£0.6) and (—0.6,20.6), respectively; alliwith_a radius 0.2, and the background conductivity oo(x) = 1.

The numerical results for Example 2 are given in Figs. 10-12. The results are in excellent agreement
with the observations from Example,l: The algorithm converges steadily as the adaptive iteration proceeds,
and with a low noise level, it can accurately recover all four inclusions, showing clearly the efficiency of the
adaptive approach. The refinement s mainly around the electrode edge and interval interface.

5 Proof of Theorem 3:1

The lengthy and technical prooffis divided into two steps: Step 1 shows the convergence to an auxiliary
minimization problem over a limitingradmissible set in Section 5.1, and Step 2 shows that the solution of the
auxiliary problem satisfies the necessary optimality system (2.8) in section 5.2. The overall proof strategy
is similar to [32], and¢thenceywe omit relevant arguments.

5.1 Auxiliary convergence

Since the two sequences dHy br>o and {J‘Tl@}kzo generated by Algorithm 3.1 are nested, we may define
Hy, := U Hy, (in H-norm) and Ay := U Ay, (in H'(Q)-norm).
k>0 E>0

@learly Higgris a closed subspace of H. For the set VZOO, we have the following result [32, Lemma 4.1].

Lemma 5.1. ,,100 s a closed conver subset of A.

Over the limiting set A, we define an auxiliary limiting minimization problem:

min {je,OO(UOO> = %HUOO<UOO) - U6||2 + %]:6(‘700)} ) (5.1)

Ooo €A

10

Page 10 of 26
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Figure 3:4The meshes 7, and recoveries o during the adaptive refinement, for Example 1(i) with ¢ = le-2
and & =/3e-2. Thé numbers refer to d.o.f.

where (s, Ueo) € Hy satisfies
(0 ooy (Uoo, Uso ), (0, V) = (I, V) VY(v,V) € Hy. (5.2)

By Lemma 2.1 and Lax-Milgram theorem, problem (5.2) is well-posed for any fixed 0o, € As. The next
résult gives the existence of a minimizer to (5.1)—(5.2).

11
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Figure 4: The evolution of the three error indicators 771%,1‘ for k=0,1,...,9, i =1 (top), i = 2 (middle) and
i = 3 (bottom), for Example 1(i) with € = le-3 and & = 2e-2.

Theorem 5.1. Thereexists at least one minimizer to problem (5.1)—(5.2).

Proof. Let {o}, (ui4U})§k>0be the sequence of discrete solutions given by Algorithm 3.1. Since ¢; € Ay,
for all k, by (3:4)4 J- x(07) < T-k(c1) < ¢, and thus {0} }x>0 is uniformly bounded in H'($2). By Lemma
5.1 and Sébolev embedding, there exist a subsequence, denoted by {a,jj }i>0, and some o* € Ay, such that

opy — 0" weakly in H'(Q), o, 0" in L*(Q), oy, 0" ae inf) (5.3)
Next we introduce a discrete analogue of problem (5.2) with oo, = 0*: find (ug;, Ux;) € Hy; such that
a(c”, (ug;,Ux,), (v, V) =(I,V) V(v,V) € Hy,. (5.4)

By Lemma 2.1, Cea’s lemma and the construction of the space H, the solution (u’ ,UZ%) € Hy of (5.2)

Page 12 of 26
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27 Figure 6: The final recoveries by the adaptive and umiform refinements for Example 1(ii). The results in
28 (b) and (d) are for e = 1le-3 and & = 2e-2, and (c)and (e)for € = le-2 and & = 5e-2. The d.o.f. of (b), (c),
29 (d) and (e) are 17736, 20524, 16641 and 16641.

32 with 0., = o* satisfies

- I =ty U2 Mgl < nf, (e = 0. U% = V)l =0, (55)

36 Taking the test function (v,V) = (ug, — uj, sUk; — Uy ) € Hy, in the first line of (3.3) and (5.4) and then
37 applying the Cauchy-Schwarz mequajﬁy lead to

39 a(o-Zj7 (uk] PR u;:lj7 Uk] - U;C:)’ (uk_] - u;‘;j ? Uk_] - U]:)k]))
(0, — AN (e, L), ¥, — ui,)) + (07, — o) Vusle, Vam, — )
42 < (107 @) Vg™ uco)ll 2 () + [0k, — 0%)Vusellz2@) IV (ur; — ug,)llz2(0)-

N
o
Il

In view of (5.5), peintwise convergence in (5.3) and Lebesgue’s dominated convergence theorem,
45 1ok, 20V, =uo)lL2 o) < e[V —ui )z =0, (o, — o) Vulllrz@) = 0,

47 This and Lemma 2.1 imply ||(ux, — v, Uk, — Uy, )llm — 0. Then, (5.5) and the triangle inequality imply
49 Ik, — use, Uy, = UZo)lm — 0. (5.6)

Meanwhile; repeating the argument of Theorem 2.2 gives

g; /QW(O’Zj)d:E*)/QW(O'*)dl‘. (5.7)

55 nextpwe apply a density argument. For any o, € .ZOO, by the construction of the space H,, there
56 exists a sequence {0y }r>0 C Upso Ak such that o — 0 in H'(2). Repeating the preceding argument

13
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55 gives [|U(op)— U°||> = |U(0s) — U°||? and [, W(oy)dz — [, W(0s)dz. Now (5.6), the weak lower
53 semicontinuity of the H'(2)-norm, (5.7) and the minimizing property of o} to J- x over the set Ay, imply

55 Teo0(0™) < Hminf J. x; (o) < limsup T x, (07, )
J—00 j—o0
56
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Figure 8: The final recoveries by the adaptive and uniform refinements for Example 1(iii).” The results in
(b) and (d) are for € = le-3 and & = le-4, and (c¢) and (e) for € = le-2 and a.=2e-4. The d.o.f. for (b), (¢),

(d) and (e) is 14620, 19355, 16641 and 16641 respectively. =
< limsup Jz x(0}) < limsup Tz x(0k) = Je.00(08) Yode € Ase. (5.8)
k—o0 k—o0

Since 0* € As, 0%, := 0™ is a minimizer of J; » over A. O

o0
Further, we have the following auxiliary convergence.

Theorem 5.2. The sequence of discrete solutions {o},, (uglii) frse to problem (3.2) contains a subsequence
{or, (ur,, Ui ) }j>0 convergent to a minimizer (0%, (uig, US,)) o, pugblem (5.1)~(5.2):

O, = 05 i HY(Q), oy, = osgma.e. in Q. (g U ) — (ul,, USL,)  in HL

Proof. The convergence of (uzj, U ,’;) was already proved,in Theorem 5.1. Taking 0., = o in (5.8) gives
im0 ek, (0%,) = Te00(0%)- By (5.6) and (5.7), we have ||Vazj||%2(9) — ||VO';OH%2(Q). Thus, the
sequence {0} };>o converges to o3, in HYQ). O

Next we consider the convergence of the sequence {(p}, P})}r>0. With a minimizer (¢, (ul,,UZL)) to
problem (5.1), we define a limiting adjoint problem: find (p%,, P%) € Ho such that

a(or,, (PihPL), (o)) = (UL —U°, V) V(v,V) € Hy. (5.9)

By Lemma 2.1 and Lax-Milgram thegrem, (5.9) is uniquely solvable. We have the following convergence
result for (p’,, P%). The proof is identical with [32, Theorem 4.5], and hence omitted.

Theorem 5.3. Undergtheycondition of Theorem 5.2, the subsequence of adjoint solutions {(pj, Py, )};>0
generated by Algorithm 8. Ixconverges to the solution (pi,, PL) of problem (5.9):

lim [ (pk, — pos Pi; = Poo)llm = 0.

j*)OO

5.2 Proof.of Theorem 3.1

Theorem 3.1 follows directly by ecombining Theorems 5.2-5.3 in Section 5.1 and Theorems 5.4-5.5 below. The
proof in thispart relies on the marking condition (3.5). First, we show that the limit (o, (ul,, UL), (p%,, PL))
solves the variational equations in (2.8).

Theorem 5.4. The solutions (o U%L) and (pk, PL) to problems (5.1)-(5.2) and (5.9) satisfy

007 OO’

a(ogo,( r LUk ) (7), V)) = <I,V> V(v,V) e H,
307 (poovpcfo) (U’ V)) = <U;o - U6’V> V(va) eH

15
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Proof. The proof is identical with [32, Lemma 4.8], using Theorems 5.2-5.3, and hence we only give a brief
sketeh. By [32, Lemma 3.5], for each T € Ty, with its face F' (intersecting with ¢;), there hold

771%,1(0;2’“;7 Uy, T) < C(HVU’ZH%?(DT) + hplluy, — UI:,ZH%Z’(FOEZ))V

nz,Q(JvaZ’PI:vT) < C(HVPZH%P(DT) + hFsz - Pg,l”%?(Fﬁel))’

16
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:; Figure 10: The final recoveries by the adaptive and uniform refinements for Example 24The results in (b)
14 and (d) are for € = 1le-3 and & = 2e-2, and (c) and (e) for € = 1le-2 and & = 3e-25 The d,0'f. of (b), (¢), (d)
15 and (e) is 18008, 21120 and 16641 and 16641, respectively. =
16
17 where the notation Dy is defined below. Then by the marking condition(3:5), [324 Lemma 4.6] implies that
12 for each convergent subsequence {ozj, (u,’;] U ,:fj), (p,";j , P;:j)}jzo from Theorems, 5.2 and 5.3, there hold
20 lim max op o upr U ) T)=0 and lim max ar v, Py, T)=0.
” Joo TEM) 77k a(oy, ko Wk Yk, T) R nk 2( k> Pryr Lk )
22
23 Last, by [32, Lemma 4.7] and Theorems 5.2-5.3, the argument of,[32, Lemma 4.8] completes the proof. [
24 Remark 5.1. The argument of Theorem 5.4 dates back to 4 9],nafd the main tools include the Galerkin
25 orthogonality of the residual operator, the Lagrange and the Scott-Zhang interpolation operators [16, 48],
26 the marking condition (3.5) and a density argument. Furthers the error estimators ng (o}, uy,U}) and
;; Ne,2(0k, Dis Pi) emerge in the proof and are then employed in the module ESTIMATE of Algorithm 3.1.
29 Next we prove that the limit (o, (uk,, UL), (piosPs ) satisfies the variational inequality in (2.8). The
30 proof relies crucially on a constraint preservingpinterpolation operator. We denote by D the union of
31 elements in 7 with a non-empty intersection with an element 7' € T, and by wg the union of elements in
32 T sharing a common face/edge with F' € Fr. Let
33
34 =7, Te=%\T" & := ) Dr, 9= ] Dr.
35 12k TeT, TETY
36
37 The set 7? consists of all eleniénts netiefined after the k-th iteration, and all elements in TY are refined
38 at least once after the k-th iferation. Clearly, 7;+ C '7? for [ < k. We also define a mesh-size function
39 hi : Q — RT almost everywhere ‘
40 o hT7 S Tl,
41 (@) = { hp,  x€F",
42 where T denotes thé interioryof an element T € T, and F? the relative interior of an edge F € F},. It has
22 the following propérty [49, Corollary 3.3]:
45 ti e g (@) = O (5.10)
46 k— o0
47 The next.zesult gives the limiting behaviour of the maximal error indicator 7 3.
48
49 Lemma 5.2. Let{(o}, (uy, UL), (pi, Pi)) }e>o be the sequence of discrete solutions generated by Algorithm
50 3.1. Then for each convergent subsequence {o}, , (uj U} ), (Pk,, Pi;)}j>0, there holds
51

lim max o up e, T)=0.
52 0 2 e 3(k; Upys Piey» T)
53
>4 Proof. The inverse estimate and scaled trace theorem imply that for each T € T, (with its face F)
55
56 WY EW(0}) — Ytk - Vil < eIV} - VDR %y + W )G
58
59 17
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Figure 114 The meshes 7;, and recovered conductivities o} during the adaptive refinement, for Example 2
with € = 1le-3 and{@ = 2e-2. The number under each figure refers to d.o.f.

< hh |V - Vil oy + BEIV O .

Z hFHJF,Q(UI’;)H%q(F) <c Z hFhJ;1||VUI:||qu(wF)-
FCoT FcoT
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16 Figure 12: The L*(2) and L' () errors versus the degree of freedom N of thé mesh, for Example 2, using
17 the adaptive (solid) and uniform (dashed) refinement.
18
19 With the choice ¢ = d/(d — 1), combining these two estimates gives
20
3 Moo 6 9 T) < IV - V5% oy + RSN o Mner 1901 1) (5.11)
22 B
23 where ¢ depends on & and € in .. Next, for the subsequence {aj., (vj . Uy ), (py,, Pi,)}j>0, let T} € M%j
24 be the element with the largest error indicator T]kj,g(O'Zj,’u;zj , pz ) )QSIHCG D i C Q , (5.10) implies
25
;? D] < el ||de(Q%j) -0, as j — oo. (5.12)
28 By (5.11), Cauchy-Schwarz inequality and triangle inequality, there holds
29
50 0, 2, B5) < eI, Vi + 15 W (O, o + 195, )
3 < (19, — ugl 4y + Vel ) IV, = P2 Gy + IV )
33 «
34 +hq S(IW'(ok,) = W) a0y + W (05 )||LQ(T3))
35 + (1907, = 020y T L)
36 Q j
g; By Theorems 5.2 and 5.3, Lebesgue’s dominated convergence theorem, the choice ¢ = d/(d — 1) < 2 and
39 Holder inequality, we obtain [[W' (g7 ) — W' (03 )||Lq (@) — Oand IV(op, —o )||Lq(Q — 0. Then the absolute
40 continuity of the normdfz. oy withaespect to Lebesgue measure and (5.12) complete the proof. O
41 Due to a lack of Galerkin orthogonality for variational inequalities, we employ a local L"-stable interpo-
42 lation operator of Clément/Chen-Nochetto type. Let N be the set of all interior nodes of 7y, and { ¢, }zen,
43 be the nodal basisdunctions in\Vy. For each z € Ny, the support of ¢, is denoted by w,, i.e., the union of
44 all elements in Tp-withha non‘empty intersection with 2. Then we define I : L*(2) — V;, by
45
46 Mo := Z vdzg,. (5.13)
47 ve, [wel o,
48 ~
49 Clearly, IIxv € Apiif ¢g < v < ¢; a.e. & € Q. The definition is adapted from [13] (for elliptic obstacle
50 problems) by replacing the maximal ball A, C w, centered at an interior node x by w,. ;v satisfies
51 follewing properties; see Appendix B for a proof.
52
53 Lemma 5.3. For any v € W1 (Q), there hold for all v € [1,+00], any T € Ty and any F C 9T,
o ITkollzrery < ellollr ey VIl Lrery < el Vollzrog),

1 1/r

56 v — Tgo| e (zy < hrl|VollLroeys ([0 = o]l ey < chp 71V 0l Lr (D)
57
58
59 19
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Last we show that the limit (o, (uk,, UL), (pk, PL)) satisfies the variational inequality ing(2.8)
Theorem 5.5. The solutions (o3, ,ul,, UZ%) and (pl,, PL) to problems (5.1)-(5.2) and (5.9) satisfy

o0 Yoo
Qe(Vole, V(p —0%)) + 52 (W (05), i — 0%) = (Vube, Vol (n— 0%)) 20 s e A
Proof. The proof is lengthy, and we break it into five steps.
Step i. Derive a preliminary variational inequality. We relabel the subsequence {a,’ij, (uzj UL, ), (p’,gj , P,jj )}iso0
in Theorems 5.2 and 5.3 as {0}, (u}, U}), (pk, Py) }r>0. Let Ij, be the Lagrange intérpolation operator on Vj,

apd let o = ae and o = &. For any u € ANC™(Q), Ip € Ay and let v = fo — Ip. Direct computation
gives

o (Vop, V(p —op)) + o/ (W (op), n — o) — ((k — o) Vug, Vi)

=o' (Vop, V(p = Tep)) + o (W' (op), 1t — Tip) — (0 ~<dep) Vug, Vir)
+d/(Voy, V(Iip — op)) + " (W (07), Inpe — 07,) — (Teles 07) Vg, Vg

=ad'(Vop, V(v — ) + o (W' (0), v — Ugr) — ((n— xv)Vuy, Vpy)
+ o/ (Voi, VL) + o' (W' (03), Ugv) — (UprNuy, Vpi)
+d/(Vop, V(Ip — op)) + o (W (07), Inpt — 07) =({rp — 07) Vg, Vpp)

> [/ (Voi, V(v — ) + ' (W (o}), v =)= ((v — v)Vug, V)]

+ [ (Voy, VIIgy) + "' (W (oy), Myv) — (UppNuieVpr)] =1+ 11, (5.14)
where the last inequality is due to the variational inequality in (3.3) with g = I p.

Step ii. Bound the I. By elementwise integration by'parts, Hélder inequality, the definition of the estimator
Nk,3 and Lemma 5.3 with r = ¢’ (with ¢’ being the conjugate exponent of ¢),

=y / Ry (of, uf, pi) (v — M) Ay / Jra(op) (v — v)ds
Tt JT FeF, ' F
< > (I1Rraor. ui iMangn v = Wl ) + > 1r2(@0)l oIy = vl o i) )
TeTk FCoT
* * * 1 *
< > (hrlRra(oh ulgpDllen® > W 1Tra(eD) o)) IVV e o)
TETk FCcoT
N
<c Z 771:,3(0;,UZ,PZaT)”VV”Lq’(DT)'
TETk

Thus, for any k > [, by (diserete) Hélder’s inequality and the finite overlapping property of the patches Dy,
due to uniform shape regularity, of/the meshes 7; € T, there holds

1] < C( Z le,3(<727uZapZaT)HVVHLq’(DT) + Z nk73(0';;7u;;’plth)HVV”LQ'(DT))

TET\T," TeTt
* * * 1/
Le((32 Vg (o vt v 1) IV (0= L)l o apy
TeTAT,"
* * % 1/q
£ (X nla(oruipi 1) IV (0 = L)l o )-
TeT,"

Sinee W' (s) & C'[co, c1], by the pointwise convergence of {77} }1>0 in Theorem 5.2 and Lebesgue’s dominated

convergence theorem, we deduce
W'(o}) — W'(ok) in L*(Q). (5.15)

Since.q.= d/(d — 1) < 2, the sequence {W' (o} )}k>0 is uniformly bounded in L7(2). By Theorems 5.2 and
5.3, the sequences {0} x>0, {u} k>0 and {p} }r>0 are uniformly bounded in H'(Q). Thus, (5.11) and (5.10),
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and Holder inequality give

> nfslofuipi, T)

TeT\T,;"
* * -1 * * * *
<c(IVui - Vpilfiley D IVt Vol + Wl o IW @00y £ IV0RELL o 0 )
TeTI\T,"
<c(IVuilEa IV PN 20y + Iixag [ oy W @0 agy + IV o2 e (5.16)

Then by the error estimate of I, [16],
* * * 1/
1] < ellbuxay | L@ llellwzar @) + (Y 0t sk uipi ) Atz o)
TeT "
By (5.10), cllhuxao || Lo @) 1l w2.a (o) — 0 as I — oo. Since 7,5 C Ty, for k>0, (3.5) implies
q IR 1/q< +1/q * ox % < +1/q ok ot T
( Z nk,S(Uk’qupka )) = |7? | max nk,3(0k’uk7pk’T) - |7; | maX3 nk73(ak’uk’pk7 )
TeT,;" TeM;
TeT"
By Lemma 5.2, for any small £ > 0, we can choose k1 > [ for some large fixed [y such that whenever k > k1,
C( Z nZ,S(UZault7p27T))l/q”/J’”WZQ’?Q) <Ee.
TeT,t

Consequently, Q -
I—-0 Vue ANC™(Q). (5.17)

Step iii. Bound the term II. For the term Il elementwise integration and Holder inequality yield

Z /RT,2(027uZap2)Hka$+ Z /JFQ(O'Z)Hkl/dS
T F

TeTk FecFy

> (IBr2(oi, uigBON B vl ooy + Y 19220 e vl o i) )
TETk FCoT

| =

IA

By the scaled trace theorem, lgcal inverse estimate, qu—stability of Il in Lemma 5.3, local quasi-uniformity
and interpolation error estimate for I {16], we deduce that for k > [

% % — 1 * —1/q—1/q
I <c Z (hT”RT,?(Uk’ukapk)”L‘l(T)thHHkV”Lq’(T) + Z hF/q||JF,2(0k)||L4(F)hF fa-t/a ||HkVHLq’(T))

TETk FcoT
* * * 1 * —
<e 3 (hrlBaelor wiggi eaer + 3 BN Tm2 @D o )b 1) L (o)
TeT FcoTr

<c > maleriug o |n— Ll o o,y

TeTk
=c( Do Wk (afui v Dhrllillwew gy + D a0k ui vk Dhrlullwee (p,))
TeTN\T,* TeT"
* * * 1/ * * * 1/
SC”thQ?”Lw(Q)( Z UZ,:;(UkaUk»PkaT)) q”:u‘HWZQ’(Q)"_C( Z ng,g(gkvuk»pkaT)) q”ﬂHW%q’(Qy

TET\T," TeT,"

Since (ZTe’ﬁ,\ﬂ+ ng,3(az,uz,pz,T))l/q < ¢, cf. (5.16), there holds

* * * 1/
|II| S C”thQ?HLOC(Q)”/J’”W2q/(Q) + C( Z 771373(01@7101«]91@»71)) q”ﬂ”wz,q/(g)'
TeTt
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Now by repeating the argument for the term I, we obtain
-0 VYue ANnC™(Q). (5:18)

Step iv. Take limit in preliminary variational inequality. Using (5.15) and the H X({2)-convergénce of
{0} }k>0 in Theorem 5.2, we have for each u € AN C>(Q)

o/ (Voi, Vi —of)) + o' (Wop), n— o) = o (Vol, V(p — 0)) + o (W (05w — 0%,). (519

Further, the uniform boundedness on {u}}r>o in H'(Q2) and the convergence/of {p; }rs0 to pi, in H'(Q)
in Theorem 5.3 yield

|(uVug, V(pr, — p2)) < el Vipr = pi)llz@) 20
This and Theorem 5.2 imply

(1, Vpg) = (Vg V(5 — L)) + (1Vud, Vo) = (4Vule, Vooie AnC=@).  (5.20)
In the splitting
(03 Vug, Vpy) = (05, Vul,, Vpl,) = (05 Vug, V(pp— pi)) ok — 05) Vug, VL)
+ (05 Vug=—ug), Vrs.),
the arguments for (5.20) directly yields v
(0% Vug, V(pg, — pio))l = 0 tand - [(o5gV(dy, — ul,), VpS,)| = 0.

The boundedness on {u} }r>o in H'(£2), pointwise convergence of {0} }x>o of Theorem 5.2 and Lebesgue’s
dominated convergence theorem imply

(0% = 030) Vug, Vo) | < eff(o — 05,) Vel 2 @) — 0
Hence, there holds
(@pNVuy, Vpr) — (05 Vuli,, Vpi). (5.21)
Now by passing both sides of (5.14) to the limit and combining the estimates (5.17)-(5.21), we obtain

o (Voi, ,V(p—ok)) + O//(W/(O'}.o),/,b =o0%) — (Vul,,Vpi (n— 05 ) 2@ >0 Ve AN C>(Q).

Step v. Density arguments, By the density of C>°(Q) in H'(Q2) and the construction via a standard mollifier
[19], for any p € A there exists a sequence {u,} C AN C>(Q) such that ||, — pllgi@) — 0 as n — oo.

Thus, (Voli,, Vi) =AM M) p(W (02), i) = (W'(0k,), 1), and (u,Vuli,,Vpi) — (uVuli,, Vi),
after possibly passing to a‘subsequence. The desired result follows from the preceding two estimates. O

Remark 5.2. The computable quantity ng s(o;, uy, py, T) emerges naturally from the proof, i.e., the upper
bounds on 1 and 11, whichmotivates its use as the a posteriori error estimator in Algorithm 3.1.
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A The solution of the variational inequality
Now we describe an iterative method for minimizing the energy functional
ae o 1
IVl + 5 [ Wopa+ 51U(0) - U
Let p(z) = (2 — ¢p)(z — ¢1). Then one linearized approximation pr,(z, z) reads (with 0z = z'=zg)
pr(z,z1) = p(2k) + p'(28) (2 — 21)

= (zg — (co + ¢1)zk + cocr) + (225 — co — ¢1)dz.

Upon substituting the approximation pr,(z, z;) for p(z) and linearizing thedorward map U(c), we obtain
the following surrogate energy functional (with §o = o — o, being the inctementrand 6U = U°® — U(0},))

SIV(ow +60) 72 () + s llplow) + 1/ (0r)d0] 72 ) + sl0@R)00 = 6U|>. (A1)

The treatment of the double well potential term fQ W (o)dz is in the spirithof the classical majorization-
minimization algorithm in the following sense (see [56] for a detailed. derivation)

/W(Jk)dx:/pL(ok,ak)de, v/ W(Uk)dx=V/pL(ak,ak)2dx7
Q Q Q Q

and VQ/ W(Uk)dx§V2/pL(ok,ak)2dx.
Q Q
This algorithm is known to have excellent numerical stability. Upgn ignoring the box constraint on the
conductivity o, problem (A.1) is to find §o € HA(S2) such that
(U'(ok)*U'(0k)60,¢) + ae(Vo, Vo) + 2 (p(or)do, )
= (U'(04)"8U, ¢) £ (plaw)p' (04), ¢) — Ge(Vor, V), Vo € H'(Q).

This equation can be solved by an iterative method.for the update do (with the box constraint treated by a
projection step). Note that U’ (o) and U’(og)% can be implemented in matrix-free manner using the stan-
dard adjoint technique. In our experiment, we employ the conjugate gradient method to solve the resulting
linear systems, preconditioned by the'sparse matrix corresponding to ée(Vdo, Vo) + %(p/(ak)%rf, ?).

B Proof of Lemma 5.3

N
The proof follows that in [13,/25]. By Hélder inequality and h¢ < |w,| for each node z € T,

—d/r
Lr(n) < b |0l

vd&| < |we| V7|0l

L™ (wg)*

‘|ww W

The desired L"-stability follows from the estimate |dg| (1) < ch;l/ ", by the local quasi-uniformity of the
mesh. In view of the definition, (5.13), II;¢ = ¢ for any ¢ € R. By local inverse estimate, the L"-stability of
I, standard interpolation error estimate [16] and local quasi-uniformity,

VLo gier) = 3161]% INVTL (0 = Ol ey < chp' CHEl]% k(v = Ollzr(r)

< clir’' it [[o = Cllor oy < chy'llo = 5

|DT| DTUdﬂTHLr(DT) S CHV/UHLT(DT). (Bl)

Similarly,
o — ol

Lrry = [[v = ¢ =e(v = Qe (1)
<cifflv—dllzor) < chr Vol or)-

By thesscaled trace theorem, for any F' C 9T, there holds
lo = Tvl| rmy < e(h" " o = vl ey + b IV (0 = Te0) | ey
Then (B.1) and (B.2) complete the proof of the lemma.
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