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Abstract

The inherent capacity of somatic cells to switch their phenotypic status in response to dam-

age stimuli in vivo might have a pivotal role in ageing and cancer. However, how the entry-

exit mechanisms of phenotype reprogramming are established remains poorly understood.

In an attempt to elucidate such mechanisms, we herein introduce a stochastic model of

combined epigenetic regulation (ER)-gene regulatory network (GRN) to study the plastic

phenotypic behaviours driven by ER heterogeneity. To deal with such complex system, we

additionally formulate a multiscale asymptotic method for stochastic model reduction, from

which we derive an efficient hybrid simulation scheme. Our analysis of the coupled system

reveals a regime of tristability in which pluripotent stem-like and differentiated steady-states

coexist with a third indecisive state, with ER driving transitions between these states. Cru-

cially, ER heterogeneity of differentiation genes is for the most part responsible for confer-

ring abnormal robustness to pluripotent stem-like states. We formulate epigenetic

heterogeneity-based strategies capable of unlocking and facilitating the transit from differen-

tiation-refractory (stem-like) to differentiation-primed epistates. The application of the hybrid

numerical method validates the likelihood of such switching involving solely kinetic changes

in epigenetic factors. Our results suggest that epigenetic heterogeneity regulates the mech-

anisms and kinetics of phenotypic robustness of cell fate reprogramming. The occurrence of

tunable switches capable of modifying the nature of cell fate reprogramming might pave the

way for new therapeutic strategies to regulate reparative reprogramming in ageing and

cancer.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006592 April 30, 2019 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Folguera-Blasco N, Pérez-Carrasco R,

Cuyàs E, Menendez JA, Alarcón T (2019) A

multiscale model of epigenetic heterogeneity-

driven cell fate decision-making. PLoS Comput Biol

15(4): e1006592. https://doi.org/10.1371/journal.

pcbi.1006592

Editor: Natalia L. Komarova, University of California

Irvine, UNITED STATES

Received: October 18, 2018

Accepted: March 19, 2019

Published: April 30, 2019

Copyright: © 2019 Folguera-Blasco et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work is supported by a grant of the

Obra Social La Caixa Foundation on Collaborative

Mathematics awarded to the Centre de Recerca

Matemàtica. The authors have been partially

funded by the CERCA Programme of the

Generalitat de Catalunya. EC is the recipient of a

Sara Borrell post-doctoral contract (CD15/00033,

Ministerio de Sanidad y Consumo, Fondo de

http://orcid.org/0000-0003-1584-5885
http://orcid.org/0000-0001-5348-8829
http://orcid.org/0000-0001-5353-440X
https://doi.org/10.1371/journal.pcbi.1006592
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006592&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006592&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006592&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006592&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006592&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006592&domain=pdf&date_stamp=2019-05-10
https://doi.org/10.1371/journal.pcbi.1006592
https://doi.org/10.1371/journal.pcbi.1006592
http://creativecommons.org/licenses/by/4.0/


Author summary

Certain modifications of the structure and functioning of the protein/DNA complex

called chromatin can allow adult, fully differentiated, cells to adopt a stem cell-like plurip-

otent state in a purely epigenetic manner, not involving changes in the underlying DNA

sequence. Such reprogramming-like phenomena may constitute an innate reparative

route through which human tissues respond to injury and could also serve as a novel

regenerative strategy in human pathological situations in which tissue or organ repair is

impaired. However, it should be noted that in vivo reprogramming would be capable

of maintaining tissue homeostasis provided the acquisition of pluripotency features is

strictly transient and accompanied by an accurate replenishment of the specific cell types

being lost. Crucially, an excessive reprogramming in the absence of controlled re-differen-

tiation would impair the repair or the replacement of damaged cells, thereby promoting

pathological alterations of cell fate. A mechanistic understanding of how the degree of

chromatin plasticity dictates the reparative versus pathological behaviour of in vivo repro-

gramming to rejuvenate aged tissues while preventing tumorigenesis is urgently needed,

including especially the intrinsic epigenetic heterogeneity of the tissue resident cells being

reprogrammed. We here introduce a novel method that mathematically captures how epi-

genetic heterogeneity is actually the driving force that governs the routes and kinetics to

entry into and exit from a pathological stem-like state. Moreover, our approach computa-

tionally validates the likelihood of unlocking chronic, unrestrained plastic states and drive

their differentiation down the correct path by solely manipulating the intensity and direc-

tion of few epigenetic control switches. Our approach could inspire new therapeutic

approaches based on in vivo cell reprogramming for efficient tissue regeneration and reju-

venation and cancer treatment.

Introduction

The ability of the ageing process to interfere with the robustness of the epigenetic regulation

(ER) of differentiated phenotypes might suffice to promote tissue dysfunction and maligniza-

tion [1].

Fully committed somatic cells can spontaneously reprogram to pluripotent stem-like cells

during the normal response to injury or damage in vivo [2]. Such cellular processes involving

dedifferentiation and cell-fate switching might constitute a fundamental element of a tissue’s

capacity to self-repair and rejuvenate [3, 4]. However, such physiological/reparative cell repro-

gramming might have pathological consequences if the acquisition of epigenetic and pheno-

typic plasticity is not transient. In response to chronically permissive tissue environments for

in vivo reprogramming, the occurrence of unrestrained epigenetic plasticity might perma-

nently lock cells into self-renewing pluripotent cell states disabled for reparative differentiation

and prone to tumorigenesis (see Fig 1) [1, 5–8].

Central to such so-called stem-lock model for ageing and cancer [6, 9, 10] is the sufficient

capacity of ER to drive cell fate in the absence of bona fide, initiating events. ER refers to a

series of modifications of the cell’s DNA without modifying its genetic sequence. Such modifi-

cations can disrupt or allow expression of particular genes. By switching on or off different

parts of the genome, ER is in fact responsible for the variety of phenotypes in complex multi-

cellular organisms (where all somatic cells are genetically identical). Recent advances in

experimental determination of ER mechanisms have triggered an ever-growing interest in

developing mathematical models regarding both ER of gene expression [11–16] and epigenetic
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memory [12–14, 17–20]. Identification of the molecular culprits underlying the ER capacity to

drive the transition between normal and highly restrictive/permissive chromatin states is

expected to have major impact in the understanding and therapeutic management of ageing-

related diseases including cancer [7, 21, 22]. Unfortunately, robust and standardised

approaches capable of capturing such fundamental stochastic aspects of ageing biology are

mostly lacking.

Here, we present a mathematical and computational systems biology approach capable of

deconstructing, modelling and simulating the predictive power that ER may have on the sus-

ceptibility of cells to loss (and re-gain) their normal identity. By adding ER to the picture, our

current work significantly extends previous approaches where phenotypes are associated with

the attractors of complex gene regulatory systems and their robustness, with the resilience of

such attractors in the presence of intrinsic noise, environmental fluctuations, and other distur-

bances [23–31]. Specifically, we develop a stochastic model of a coupled ER-gene regulatory

network (GRN) system aimed at analysing the impact of ER heterogeneity on the causal rela-

tionship between epigenetic plasticity and cell-fate reprogramming and determination. More-

over, by introducing a stochastic model reduction analysis based on multiple scale asymptotics

of the combined ER-GRN system [32–39], we provide our model with the capacity of evaluat-

ing a variety of phenotypic behaviours due solely to ER systems heterogeneity [40].

This work is organised as follows. In section Materials and methods, we present a summary

of the formulation of our ER-GRN model and its analysis. First, we present the general

description of an ER-GRN model, and later, we focus on the ER component of the model. We

Fig 1. Physiological and pathological cell fate reprogramming: A mathematical approach. Reprogramming-like phenomena in response to damage

signalling may constitute a reparative route through which human tissues respond to injury, stress, and disease via induction of a transient acquisition

of epigenetic plasticity and phenotypic malleability. However, tissue regeneration/rejuvenation should involve not only the transient epigenetic

reprogramming of differentiated cells, but also the committed re-acquisition of the original or alternative committed cell fate. Chronic or unrestrained

epigenetic plasticity would drive ageing/cancer phenotypes by impairing the repair or the replacement of damaged cells; such uncontrolled phenomena

of in vivo reprogramming might also generate cancer-like cellular states. Accordingly, we now know that chronic senescence-associated inflammatory

signalling (SAIS) might lock cells in highly plastic epigenetic states disabled for reparative differentiation and prone to malignant transformation. We

herein introduce a first-in-class stochastic, multiscale reduction method of combined epigenetic regulation (ER)-gene regulatory network (GRN) to

mathematically model and computationally simulate how ER heterogeneity regulates the entry-exit mechanisms and kinetics of physiological and

pathological cell fate reprogramming.

https://doi.org/10.1371/journal.pcbi.1006592.g001
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detail how the transitions between stable states within the ER system are computed and how

the ensemble of ER systems is generated. In order to analyse the consequences of the existing

heterogeneity within the ER systems generated, we develope a multiscale asymptotic theory to

study ER-GRN systems (for which additional details are given in the S1 Text). Such theory

allows us to reduce the complexity of the model to a hybrid system, for which a numerical sim-

ulation method was implemented (see S1 Appendix). The Results section starts by presenting

the findings regarding the effects of ER in the GRN. In particular, we initially evaluate the epi-

genetic parameters regulating the entry into robust epigenetic states throughout the entire

ER-GRN system. Then, we focus on the role that the ER heterogeneity may have in giving rise

to different system behaviours, namely, differentiation-primed and differentiation-resilient

(pluripotency-locked) states. Once these two different behaviours are identified, we perform

an analysis to identify the mechanisms regulating the phenotypic robustness of the pluripo-

tency-locked and differentiation-primed states. We then formulate epigenetic heterogeneity-

based strategies capable of directing the exit and transit from stem-locked to differentiation-

primed epistates. We finally apply the hybrid numerical method derived from our theoretical

analysis to determine the efficiency of the epigenetic strategies formulated to unlock a persis-

tent state of pathological pluripotency. Finally, in the Discussion section, we summarise our

findings and present our conclusions.

Materials and methods

Model formulation and analysis

In this paper, we aim to study an ER-GRN model which can describe cell differentiation and

cell reprogramming. One of the simplest GRNs which allows to study such situation consists

of two genes, one promoting differentiation, and the other promoting pluripotency (see Fig

2(a)). Nevertheless, in this section, we formulate and analyse our model considering a generic

case with NG genes. By doing so, our theoretical analysis can be further applied to any

ER-GRN model, which implies a wide applicability of the derived formulation. However,

when possible, we try to relate the theory developed to our particular ER-GRN so as to keep

track of our case study.

Fig 2. Schematic reprentation of the ER-GRN model and its multiscale reduction. (a): Gene regulatory network (GRN) of two self-activating, mutually-

inhibitory genes with epigenetic regulation (ER). In the GRN model, the gene product (single circle, denoted by Xi in S2 Table) is its own transcription factor

which, upon dimerisation (two joint circles), binds the promoter region of the gene thus triggering gene transcription. The transition rates corresponding to

this GRN are given in S2 Table. For simplicity, we use an effective model in which the formation of the dimer and binding to the promoter region is taken into

account in a single reaction, and the resulting number of promoter sites bound by two transcription factors is denoted by Xij (see S2 Table). Furthermore,

depending on whether the epigenetic state is open (i.e. predominantly acetylated (A)) or closed (i.e. predominantly methylated (M)) the promoter region of the

gene is accessible or inaccessible to the transcription factor, respectively. (b): Schematic representation of the time separation structure of the multiscale method

developed to simulate the ER-GRN system. See text and S1 Text for more details.

https://doi.org/10.1371/journal.pcbi.1006592.g002
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General description of the stochastic model of an epigenetically-regulated

gene regulatory network

Consider a gene regulatory network composed of NG self-activating genes which can repress

each other. In particular, we consider that the gene product of each of these genes forms

homodimers, which act as a transcription factor (TF) for its own gene by binding to its own

promoter. Furthermore, each gene within the network has a number of inhibitors, which oper-

ate via competitive inhibition: the homodimers of protein j bind to the promoter of gene i, and

by doing so they impede access of the TF to the promoter of gene i. In Fig 2(a), an illustrative

scheme of the simplified case of two mutually inhibiting genes, one promoting pluripotency

(blue) and one promoting differentiation (green), is shown. The regulation topology of the

network can be represented by the binding rates of homodimers of protein j to the promoter

of gene i, bij> 0 (see Fig 2(a)). Moreover, the expression of gene i is induced at a constant

basal production rate, R̂i, independent of the regulatory mechanism described above. Proteins

(TF monomers) of type i are synthesised at a rate proportional to the number of bound pro-

moter sites with rate constant ki1 and degraded with degradation rate ki2 (see Fig 2(a) and

S2 Table).

In addition to TF regulation, we further consider that each gene is under ER. ER controls

gene transcription by modulating access of TFs to the promoter regions of the genes. In other

words, in our model, ER is associated with an upstream drive that regulates gene expression

[41]. Such epigenetic control is often related to alternative covalent modifications of histones.

To address the high complexity of ER, we focus on a simpler stochastic model of ER, based on

that formulated in [11, 16] and [17]. Our model belongs to a wider class of models which con-

sider that single unmodified (U) chromatin loci can be modified so as to acquire positive (A)

or negative (M) marks. Of such modifications, we consider methylation (associated with

negative marks) and acetylation (associated with positive marks) [17]. An illustrative example

on how epigenetic modifications alter the accessibility of TFs to the promoter regions of the

genes is shown in Fig 2(a). Depending on whether the promoter region of a gene is mainly

acetylated (A) or methylated (M), that promoter region is accessible (open) or inaccessible

(closed) to the TFs, respectively. Both modifications are mediated by epigenetic enzymes: his-

tone methylases (HMs) and demethylases (HDMs), and histone acetylases (HACs) and deace-

tylases (HDACs), which add or remove methylation and acetylation marks, respectively.

Following [16], we explicitly account for HDM and HDAC activity only (see Fig 2(a)). In our

model, a positive feedback mechanism is introduced whereby M marks help to both add more

M marks and remove A marks from neighbouring loci [17]. The positive marks are assumed

to be under the effects of a similar positive reinforcement mechanism [14, 17]. In this frame-

work, each ER state is defined by the vector (Yi1, . . ., Yi7), describing the abundance of epige-

netic marks and epigenetic enzymes at a given time. A full description of the details of the ER

model are given in Section Stochastic model of epigenetic regulation of the S1 Text (see also

[16]) and S3 Table, where the transition rates for the ER model are provided.

Under suitable conditions, determined by the activity and abundance of histone-modifying

enzymes and co-factors, the positive reinforcement mechanism produces robust bistable

behaviour. In this bistable regime, the two possible ER stable states are an open epigenetic state

and a silenced epigenetic state. In the open epigenetic state, the levels of positive (negative)

marks are elevated (downregulated). In this case, the promoter of the gene is accessible to TFs

and transcription can occur. By contrast, in the absence (abundance) of positive (negative)

marks, the gene is considered to be silenced, as TFs cannot reach the promoter.

An essential part of the stochastic dynamics of the ER system is the noise-induced transi-

tions between the open and silenced states. Escape from steady states is a well-established
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phenomenon (see e.g. [42]) and thoroughly analysed within the theory of rate processes [43]

and large deviation theory [28, 44, 45]. As we will illustrate below, these noise-induced dynam-

ics are essential to classify the epiphenotypes of somatic cells [16] and stem cells and to unravel

the mechanisms of reprogramming and locking.

Transitions between ER states: Minimum action path approach

Noise-induced transitions are essential to understand ER dynamics and their effect on cell-fate

determination [46]. Throughout the bistable regime, sufficiently large fluctuations in the sto-

chastic ER system will induce switching between the open and silenced states. The rate at

which such transitions occur can be described using reaction-rate theory [43] and large devia-

tion theory [44], which show that the waiting time between transitions is exponentially distrib-

uted. The average switching time, τs, increases exponentially with system size, which in this

case is given by the scale of ER substrates, Y [44, 45, 47, 48]:

ts ¼ CeYS; ð1Þ

where C is a constant and S is the minimum action of the stochastic switch. Eq (1) is derived

from considering the probability distribution of the so-called fluctuation paths, φ(τ), in the ER

space (Yi1, . . ., Yi7), which connect the mean-field steady states in a time τ. According to large

deviation theory [44, 45], we have PðφðtÞÞ � e� YAFW ðφðtÞÞ, which implies that the probability

of observing paths different from the optimal, i.e. the path φ� that minimises the Freidlin-

Wentzel (FW) action functional AFW , is exponentially supressed as system size, Y, increases.

This means that, for a large enough system size, the behaviour of the system regarding large

fluctuations is characterised by the optimal path:

S � AFWðφ�Þ ¼ min
t;φðtÞ

AFWðφðtÞÞ: ð2Þ

An explicit form of the functional AFWðφðtÞÞ (see S1 Text) can be given if the dynamics is

described by the corresponding chemical Langevin equation [49]. In this case, the optimal

value of the action, S, can be found by numerical minimisation, which provides both the opti-

mal or minimum action path (MAP), φ�, and the rate at which the ER system switches state

driven by intrinsic noise [28]. Details regarding implementation of the action-optimisation

algorithm are given in Section Summary of the minimum action path theory and numerical
method of the S1 Text. A complete description of τs requires to estimate the pre-factor C (see

Eq (1)), which is not provided by the FW theory, but can be easily estimated using stochastic

simulation.

ER-system ensemble generation and parameter sensitivity analysis

In order to compute the switching time between the open and closed states (and vice versa) of

the ER system, we should consider a particular ER system for each gene within the network. In

order to mimic the existing ER heterogeneity within a set of cells from a particular tissue, we

generated an ensemble of ER systems for each gene, which can be used to identify properties at

population level. Such an ensemble is generated using approximate Bayesian computation

(ABC) [50, 51], whereby we generate an ensemble of parameter sets {cij|i = 1, . . ., NG; j = 1, . . .,

16}, with cij the kinetic parameter of the j-th reaction of the ER model for the gene i (see S3

Table), compatible with simulated data for the epigenetic regulation systems. The generated

kinetic rate constants are dimensionless, i.e. they are relative to a given rate scale [16]. Such a

feature implies that there is an undetermined time scale in our system. This additional degree

of freedom can be used to fit our model of epigenetic (de-)activation to particular data. Since
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the global time scales associated with different ER systems may differ among them, our model

has the capability of reproducing different systems characterised by different time scales as

previously shown by Bintu et al. [12].

Our approach follows closely that of [16], to which readers are referred to for a detailed pre-

sentation of the implementation. To summarise, we start by generating synthetic (simulated)

data (denoted as “raw data” in S1 Fig) for the ER system of a genetic network epigenetically

poised for differentiation, i.e. open differentiation-promoting genes and silenced pluripo-

tency-promoting genes (see the example shown in S1 Fig). These raw data will play the role of

the experimental data, x0, to which we wish to fit our model. The raw data set consists of 10

realisations and 25 time points per realisation for each of the NG epigene regulatory systems.

For each time point, ti, we consider two summary statistics: the mean over realisations, �xðtiÞ,
and the associated standard deviation, σ(ti). We then run the ABC rejection sampler method

until we reach an ensemble of 10000 parameter sets which fit the raw data, x0, within pre-

scribed tolerances for the mean and standard deviation. We generate a 10000 parameter set

ensemble of the ER system for the pluripotency-promoting gene and another 10000 parameter

set ensemble for the gene promoting differentiation. In order to illustrate the effectiveness of

the ABC method, S1(a) & S1(b) Fig show results comparing the reference (raw simulated) data

to a subensemble average consisting of the 100 sets that best fit the data, for the differentiation-

and pluripotency-promoting genes, respectively.

The above procedure provides us with an ensemble of parameter sets {cij} that are compati-

ble with our raw data, i.e. such that they fit the data within the prescribed tolerances. The

heterogeneity within this ensemble is compatible with existing biological variability in the

activity of the different enzymes that carry out the epigenetic-regulatory modifications

(HDMs, HDACs, as well as, histone methylases (HMs) and histone acetylases (HACs)), so that

variation in {cij} can be traced back to heterogeneity in the availability of cofactors, many of

them of metabolic origin such as NAD+, which are necessary for these enzymes to perform

their function [16].

Our ensemble method also allows parameter sensitivity analysis regarding robustness of

different ER behaviours, as described in detail in [16]. Once we have generated the ensemble,

we identify subsets exhibiting certain properties of potential biological interest (e.g. mono- vs
bistability) and perform a comparison between the parameter sets belonging to each of the

subensembles, as well as a comparison of each subensemble with the whole ensemble. Such

approach allows an identification of the essential parameters (via comparison of their empiri-

cal cumulative distribution functions (CDFs)) required by the system to exhibit the dynamic

behaviour associated with a particular subensemble. A parameter is deemed as significant for a

given behaviour when statistically significant differences can be detected between the suben-

semble-specific CDF and the CDF of other subensembles (or the whole population). The

CDFs’ shapes provide also useful information as to how the significant parameter should be

changed for the ER system to switch a given behaviour. More details are given later in the

Results Section.

Coupling ER-GRN models: Multiscale analysis and model reduction

One should acknowledge that the system that results from coupling the ER and GRN models

becomes rather cumbersome and computationally intractable as the GRN grows. We therefore

took advantage of the intrinsic separation of time scales to analyse the behaviour of the result-

ing stochastic model [32–39]. Such approach allowed us to achieve meaningful model reduc-

tion via stochastic quasi-steady state approximations (QSSA) involving asymptotic analysis of

the stochastic ER-GRN system [34–36, 38] (see Fig 2(b)). We assumed that the characteristic
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scale for the number of TF monomers (S), the number of promoter binding sites (E), the num-

ber of ER modification sites (Y), and the number of ER enzymes (Z), are such that S� E, Y�
Z and OðEÞ ¼ OðYÞ (see S1 Table for the definition of these variables). It is noteworthy that

the assumption Y� Z is exactly the Briggs-Haldane hypothesis for enzyme kinetics [52]

because the ER modification sites are the substrates for the ER enzymes (see Section Stochastic
model of epigenetic regulation in the S1 Text). The multiscale analysis and its technical details

are provided in Sections Multiscale analysis of the GRN system: WKB approximation and
multiscale optimal path theory and Stochastic model reduction method of the S1 Text. Further-

more, the corresponding numerical method derived from this stochastic model reduction is

described in S1 Appendix.

Under appropriate assumptions regarding the characteristic scales of the different molecu-

lar species, our model exhibits a hierarchy of time scales, thereby allowing a model simplifica-

tion and its computational simulation. Since S� E and Y� Z, the number of bound-to-

promoter TFs and ER enzyme-substrate complexes are fast variables that can be sampled from

their quasi-equilibrium distribution with respect (or conditioned to) their associated slow vari-

ables. TFs and ER modification sites (i.e., ER substrates) are slow variables whose dynamics,

which dominate the long-time behaviour of the system, are given by their associated stochastic

dynamics with the fast variables sampled from their quasi-steady state approximation (QSSA)

probability density functions (PDFs).

The assumption that S� Y allows for additional simplification of the model, as it enables

to take the limit of S� 1 in the stochastic equations for the TFs monomers, which leads to a

piece-wise deterministicMarkov description where the dynamics of the number of TFs mono-

mers is given by an ordinary differential equation (ODE) perturbed at discrete times by a noise

source [36]. See Fig 2(b) for a schematic representation of the different techniques applied in

this multiscale method leading to the numerical method applied in the Results section. After

applying the asymptotic model reduction presented in detail in Section Stochastic model reduc-
tion method of the S1 Text, the resulting model equations of the full ER-GRN system reduce

to:

dxi
dt
¼ Ri þ oi1xii � oi2xi � 2

XNG

j¼1

bijZi
ej
E
�
XNG

k¼1

xjk

 !

x2

i � dijxij

 !

; i ¼ 1; . . . ;NG ð3Þ

yij ¼ yijð0Þ þ
XRE

k¼1

rEijk
1

E
P E

1

�2

Z t

0

vikðyiðsÞÞds
� �

; j ¼ 1; 2; 3; ð4Þ

with ηi coupling the system, as it is defined as ηi = H(yi3 − y0), i.e. gene i is epigenetically open

if the corresponding level of acetylation yi3 exceeds the threshold y0. The remaining variables

and parameters are in S1–S3 Tables.

The resulting dynamics consists of a coupled hybrid system where the dynamics of the TF

monomers, xi(τ) (Eq (3)) is described in terms of a piece-wise deterministic Markov process

[53, 54], i.e., by a system of ODEs perturbed at discrete times by two random processes, one

corresponding to stochastic ER (Eq (4)) and the other to TF dimers binding to the promoter

regions, xjk. The latter are sampled from their QSSA PDFs (Eq. (S.51) in the S1 Text). The sto-

chastic dynamics of the slow ER variables, Eq (4), is in turn coupled to the random variation of

the associated fast variables (ER enzymes, HDM and HDAC, and complexes). The number of

complexes, Yi5 and Yi7, are also sampled from their QSSA PDFs (Eqs. (S.53)-(S.54) in the S1

Text). We refer to this method as a hybrid method, since it involves coupling both types of

mathematical descriptions and its numerical implementation, namely, the coupling between
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ODE solvers and stochastic simulation methods. The corresponding numerical method used

to simulate such system is described in detail in S1 Appendix.

The computational time needed by the Gillespie algorithm (used to perform the stochastic

simulations) increases linearly with the number of reactions in the system. Our model reduc-

tion method increases computational efficiency by reducing the number of (stochastic) reac-

tions involved in the dynamics of the system (as illustrated in Fig. D in the S1 Text). Whilst in

the example been considered (i.e. a two-gene regulatory system) this reduction is significant,

such increase in efficiency might not be of enough significance when using larger GRNs. In

such cases, the model reduction method should be supplemented with a Next Reaction

Method implementation of the stochastic dynamics of the fast variables [55] or, alternatively,

by approximating such stochastic dynamics using either the τ-leaping method [49] or the

Chemical Langevin Equation (CLE) method [56]. In the latter case, a careful error analysis will

be required when coupling the ODE solver for the slow variables, Eq (4), with the τ-leaping or

CLE simulations.

Results

In order to focus our discussion, we study a gene regulatory circuit with two genes, one that

promotes differentiation and another one that induces pluripotency. These two genes are fur-

ther assumed to interact through mutual competitive inhibition and to be under the effects of

epigenetic regulation (see Fig 2(a)).

We proceed to analyse how ER sculpts the epigenetic landscape over the substrate of the

phase space given by the GRN model. The latter provides the system with a variety of cell fates,

corresponding to the stable steady states of the dynamical system underpinning the model of

gene regulatory network [58]. The transitions between such cellular states, both deterministic

and stochastic, depend upon the ability of the cell regulatory systems to elevate or lower the

barriers between them. Epigenetic regulation is one of such mechanisms able to alter these bar-

riers. Here, we show that the intrinsic ER heterogeneity within the ensemble generated—

understood to be originated by variations in the availability of the co-factors necessary for his-

tone modifying enzymes (HMEs) to carry out their chromatin-modifying functions—suffices

to produce a variety of behaviours, including differentiation-primed and stem-locked states.

The GRN model exhibits a complex phase space, including an undecided

regulatory state

We start our analysis by studying the phase space of the dynamical system underlying our

model of gene regulation, schematically illustrated in Fig 2(a). Using the methodology

described in detail in Section Multiscale analysis of the GRN system: WKB approximation and
multiscale optimal path theory of the S1 Text, we have derived the (quasi-steady state approxi-

mation) equations for the optimal path theory of the stochastic model of the mutually inhibi-

tory two-gene system [11]. Such equations describe the most likely relaxation trajectories

towards their steady states [47, 48], under conditions of time scale separation:

dq1

dt
¼ R1 þ p11

p
o11

b11

d11
q2

1

1þ
b11

d11
q2

1
þ

b12

d12
q2

2

� o12q1 ð5Þ

dq2

dt
¼ R2 þ p12

p
o21

b22

d22
q2

2

1þ
b21

d21
q2

1
þ

b22

d22
q2

2

� o22q2 ð6Þ

where q1 and q2 are the variables (generalised coordinates) associated with the number of
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molecules of proteins, X1 and X2, related to differentiation and pluripotent behaviours, respec-

tively. The re-scaled variables, qi and qij, and the re-scaled parameters, ωij, βij, and δij, are

defined in S2 Table.

The multiscale analysis carried out in Section Multiscale analysis of the GRN system: WKB
approximation and multiscale optimal path theory of the S1 Text shows that the parameters p,

p11
and p12

are such that p11
p ¼ e1

E and p12
p ¼ e2

E , where e1 and e2 are the number of binding

sites in the promoter region of the differentiation and pluripotency gene, respectively, which

are exposed to and available for binding by TFs. This implies that p11
p and p12

p can be

directly related to ER. Since E is a constant denoting the average number of binding sites at the

gene promoter region, a change in the parameter value of p1i
is due to a different value of the

available number of binding sites, ei. Hence, p1i
p! 0 (i.e., few binding sites are available),

i = 1, 2, corresponds to an epigenetically silenced gene, whereas p1i
p � Oð1Þ (i.e., a large

number of binding sites is available) associates with an epigenetically open gene. In this sec-

tion, we study the phase space of the system when both p11
p and p12

p are varied. This allows

us to understand how the behaviour of the GRN changes when its components are subject to

ER. Our results are shown in Fig 3.

The system described by Eqs (5) and (6) exhibits three types of biologically relevant stable

steady states, namely, the pluripotency steady state (PSS), the differentitation steady state

(DSS), and the undecided steady state (USS). The PSS (DSS) corresponds to a steady state with

high (low) levels of expression of the pluripotency gene and low (high) levels of expression of

the differentiation gene, q1� 1 and q2 ¼ Oð1Þ (q1 ¼ Oð1Þ and q2� 1), and the USS is associ-

ated with a state such that both genes are expressed at low levels, i.e. q1� 1 and q2� 1. The

existence of the latter state, the so-called “undecided”, is of particular interest because it closely

relates to experimental results indicating that irreversible commitment to leave pluripotency

and cell fate specification do not occur simultaneously [30, 59]. Therefore, such undecided

state, which is characterised by low expression levels of pluripotency and differentiation genes,

can be understood as a state where the cell has committed to leave pluripotency, indicated by

the low expression levels of pluripotency related genes, but has not been committed yet to a

particular differentiation fate, since differentiation-related genes are not up-regulated.

Different combinations of these states can coexist depending on the parameter values p1i
p

(see Fig 3), revealing a complex phase space with seven different regions: monostability regions

(RU ,RP,RD), bistability regions (RPU ,RDU ,RPD), and a tristability region (RPUD). The lines

shown in Fig 3 correspond to the stability boundary of the different regimes. At such bound-

aries, saddle-node bifurcations occur, as illustrated in the example shown in Fig B (Section

Benchmark: stochastic model of a single self-activating gene of the S1 Text). S3 Fig shows exam-

ples of trajectories illustrating the dynamics described by Eqs (5) and (6) for different values of

the pair ðp11
p; p12

pÞ corresponding to the different regions shown in Fig 3. In particular, we

show how the long term behaviour of different initial conditions differ as ðp11
p; p12

pÞ varies,

so that different cell fates (co)exist associated with different levels of TF accessibility.

The phase space shown in Fig 3 illustrates the enormous relevance of ER, represented by

the values of p1i
p, which determine the pluripotent, differentiated or undecided cell fate. It is

noteworthy that transitions between different cell fates can be achieved by simply altering

the ER status, to which the GRN responds by jumping between different regions of the phase

diagram (Fig 3). For example, by epigenetically silencing the differentiation gene (i.e., by

decreasing p11
p), the GRN system could move from a differentiated state (RD region) to an

undecided one (RU region). If this epigenetically silencing is accompanied by an increase in

the number of binding sites available at the promoter region of the pluripotency gene (i.e.,

A multiscale model of epigenetic heterogeneity-driven cell fate
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increase in p12
p), the GRN system can enter the RP region and reach a pluripotent cell fate.

Indeed, there exist several possible transitions between cell fates by solely altering ER, thus

highlighting its key role in switching fate. Its consequences for cell differentiation, cell repro-

gramming and cell locking is the focus of our study in the following sections.

Co-factor heterogeneity gives rise to both pluripotency-locked and

differentiation-primed states

In the previous section, we have analysed the landscape (phase space) provided by the dynam-

ical system describing the GRN. We now proceed to study the effect of ER on the robustness of

Fig 3. Phase diagram of the two-gene system, Eqs (5) and (6). Vertical blue (horizontal green) hatching denotes regions where the pluripotency

(differentiated) state is stable. Diagonal pink hatching denotes regions where the undecided state is stable. Regions of the phase diagram where different

hatchings overlap correspond to regions of bistability or tristability. In the labels in the plot, P stands for pluripotency,D stands for differentiation and

U for undecided. This phase diagram was obtained using the methodology formulated in [57]. Parameter values: ω11 = ω21 = 4.0. Other parameter

values as per S7 Table.

https://doi.org/10.1371/journal.pcbi.1006592.g003
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the different phases shown in Fig 3 (see also S3 Fig). ER is essential to the robustness of such

phases and, consequently, to the stability of the associated cell fates. Stochastic transitions in

bistable ER systems can induce (or facilitate) transitions between the GRN phases, which are

associated with differentiation and reprogramming of cell fates. This phenomenon, so-called

epigenetic plasticity, has been recently proposed as a major driver for disrupting cell-fate regu-

latory mechanisms in cancer and ageing [46]. We further focus on the role of heterogeneity

within the ensemble of ER systems described in Section Materials and methods (see also [16]).

In order to characterise robustness of the different ER systems within the ensemble, we

have focused on the analysis of the average transition times between the open and closed ER

states. We perform this analysis for each differentiation ER system (DERS) and each pluripo-

tency ER system (PERS). We define an ER system to be open (closed) when the acetylation lev-

els are over (under) 90% (10%). We denote by t1þ
(t1�

) the average transition time for a DERS

to switch from closed to open (open to closed). Similarly, the quantities t2þ
and t2�

are analo-

gously defined for the PERSs. The results are shown in Fig 4(a) and 4(b), where we present

scatter plots of the average transition times within the ensemble of DERSs (Fig 4(a)) and

PERSs (Fig 4(b)). Each point corresponds to an ER system (i.e. a given parameter set) within

our ensemble. By inspection, we observe that the heterogeneity exhibited by the differentiation

ER systems, showing large degrees of heterogeneity in both t1þ
and t1�

(Fig 4(a)), is greater

than the one corresponding to the pluripotency ER systems (Fig 4(b)). In particular, the dis-

persion in t2þ
is much smaller than in t1þ

, suggesting that DERSs have more variability in

opening times than PERSs.

Heterogeneity in the differentiation ER systems exhibits an interesting pattern: DERSs

organise themselves in three clusters obtained through k-means clustering, shown as blue,

Fig 4. Scatter plots showing heterogeneity in the behaviour of bistable (a)differentiation ER systems (DERSs) and (b)pluripotency ER systems

(PERSs). The vertical axis corresponds to the average opening time and the horizontal axis, to the average closing time. Each dot in plot (a) represents a

DERS within the ensemble (see Section ER-system ensemble generation and parameter sensitivity analysis). We analyse a total of 90 DERS parameter sets

and 100 PERSs. The red cluster includes 31 sets, the green cluster contains 13 sets, and the blue cluster has 46 sets. Different colours and black lines

show the three clusters resulting from a k-means analysis discussed in Sections Co-factor heterogeneity gives rise to both pluripotency-locked and
differentiation-primed states and Analysis of ensemble heterogeneity. Dots in plot (b) represent PERSs within the ensemble defined in Section ER-system
ensemble generation and parameter sensitivity analysis.

https://doi.org/10.1371/journal.pcbi.1006592.g004
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green and red dots in Fig 4(a). DERSs within the blue cluster are charaterised by long closed-

to-open waiting times and short open-to-closed waiting times. DERSs belonging to the red
cluster are the specular image of those within the blue cluster, i.e. they have short closed-to-

open waiting times and long open-to-closed waiting times. Finally, DERSs in the green cluster

are characterised by large values of both t1þ
and t1�

.

Insight into the stochastic dynamics, particularly regarding transitions between open and

silenced ER states due to intrinsic noise, can be gained by analysing the corresponding optimal

escape paths, φ�, which by means of the MAP theory provide the transition times (see Eq (1)).

To illustrate this, four examples of such paths, which were computed according to the MAP

theory (see Section Transitions between ER states: minimum action path approach), for two

DERSs and two PERSs of the corresponding generated ensembles are shown in S4 Fig. A com-

parison between the value of the minimum action, S (see Eq (2)), associated with each of these

systems, shows a tendency for DERSs to exhibit a larger degree of variability (see Table 1).

Whilst the action value corresponding to the closed-to-open transition exhibits about a two-

fold variability between PERSs, there is an over 8-fold increase when comparing the action val-

ues for this transition for DERSs. Similarly, when comparing the action S for the open-to-

closed optimal paths, we observe that the variability associated with the DERSs is also larger

than the one in PERSs. This property partly explains the difference between Fig 4(a) and 4(b)

regarding DERSs and PERSs heterogeneity, respectively. A similar argument can be put for-

ward to help us explain the heterogeneity within the DERS ensemble (Fig 4(a)). Blue cluster

DERSs (illustrated by DERS2 in Table 1) exhibit optimal closed-to-open paths with larger

value of the optimal action than that found in their red cluster (depicted by DERS1 in Table 1)

counterparts (see S4(a) Fig). This property has the consequence that the closed-to-open wait-

ing time, t1þ
, is longer for blue cluster DERSs.

To quantify the effects of bistable ER on the landscape related to the gene regulatory system

(see Fig 3), we proceed to estimate the probability, Q, that the combined activity of each pair

of DERS and PERS within our ensemble produces a global epigenetic regulatory state compati-

ble with differentiation. DERS-PERS pairs with high values of Q are associated with differenti-
ation-primed states. By contrast, those DERS-PERS combinations with low Q are identified

with pluripotency-locked states.

Since escape times from a stable attractor in a stochastic multistable system are exponen-

tially distributed [44, 45], the PDFs for the escape times for both DERSs and PERSs are fully

determined by the corresponding values of τ1± and τ2±. We also assume that, for a given

ER-GRN system, the DERS and the PERS evolve independently of each other.

We consider the PDF of the waiting time associated with a scenario of full remodelling of

the epigenetic landscape, τP. Such a scenario assumes that the system is initially in a pluripo-

tency-locked ER state where the DERS is closed and the PERS is open. We denote such epige-

netic state by D− P+. For the system to make its transit into the differentiation-primed state

Table 1. Minimum action values, S, corresponding to the optimal escape paths shown in S4 Fig (for details, see

Section Transitions between ER states: Minimum action path approach and Section Co-factor heterogeneity gives
rise to both pluripotency-locked and differentiation-primed states for details). Parameter values are given in S5

Table.

ER system Open to closed Closed to open

DERS1 0.05387 0.007012

DERS2 0.09947 0.05813

PERS1 0.01502 0.1836

PERS2 0.02043 0.07645

https://doi.org/10.1371/journal.pcbi.1006592.t001
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D+ P−, corresponding to open DERS and closed PERS, there are two possible reprogramming

routes: D− P+! D− P−! D+ P− (route 1) and D− P+! D+ P+! D+ P− (route 2). Simulta-

neous switch of both ER systems is considered highly unlikely and therefore ignored. The PDF

of the waiting time of the transition D− P+! D+ P−, denoted by P+−,−+(τP), is given by:

Pþ� ;� þðtPÞ ¼ Z � 1
ðP1ðtPÞ þ P2ðtPÞÞ; ð7Þ

where

P1ðtÞ ¼ t
� 1
1�
t� 1

2þ
e� t=t1�

e� t=t2þ � e� t=t2�
t� 1

2�
� t� 1

2þ

� �

P2ðtÞ ¼ t
� 1
1�
t� 1

2þ
e� t=t2þ

e� t=t1þ � e� t=t1�
t� 1

1�
� t� 1

1þ

� �

;

and

Z� 1
¼
ðt1� þ t2þÞððt

� 1
1�
þ t� 1

2�
Þðt� 1

1þ
þ t� 1

2þ
ÞÞ

t� 1
2þ
þ t� 1

1þ
þ t� 1

2�
þ t� 1

1�

:

P1(τp) and P2(τp) are the probabilities related to each of the landscape reprogramming

routes. The probability that the ER landscape has undergone reprogramming from pluripo-

tency-locked to differentiation-primed state within the time interval (0, τP], Q, is thus given

by:

Q �
Z tP

0

Pþ� ;� þðtÞdt; ð8Þ

where in our case, τP has been taken as the mean ensemble time for the differentiation ER sys-

tems (DERSs) to switch from the closed to the open state, τ1+. Furthermore, τ1+ exhibits a

greater range of variability than the time for the pluripotency ER systems to switch from its

open to its closed state, which is also a necessary condition for the epigenetic remodelling to

take place.

We investigate the DERSs belonging to the different clusters of Fig 4(a) regarding their like-

lihood to produce pluripotency-locked epigenetic landscapes (results shown in S2 Fig). The

analysis shows that when a DERS within the red cluster is paired with any PERS (S2(c) Fig),

the resulting system corresponds to a differentiation-primed epigenetic landscape (Q ¼ 1). By

contrast, when a PERS is paired with DERSs from the blue cluster (S2(a) Fig) and the green

cluster (S2(b) Fig), both differentiation-primed (large Q) and pluripotency-locked (small Q)

epigenetic landscapes are obtained. As discussed in the next section, the latter are more likely

within the blue cluster.

Analysis of ensemble heterogeneity

We now proceed to analyse the patterns observed in our ensemble of ER systems regarding

both the differences between the three clusters observed in the ensemble of DERSs (Fig 4(a))

and the distinctive features that characterise pluripotency-locked DERS-PERS pairs. We fol-

lowed the methodology put forward in [16], whereby statistics (in our case, cumulative distri-

bution functions (CDFs)) of a subensemble of systems exhibiting a particular behaviour are

analysed. We focused on the study of the CDFs of the kinetic parameters of the ER reactions,

cij (see S3 Table), belonging to the DERSs/PERSs associated with the relevant behaviour aiming
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to characterise. In our case, such subensembles are either the different clusters, or they are

determined by whether they exhibit low or high value of Q. By comparing such CDFs to either

the general population (i.e. whole ensemble) or to different subensembles, we can detect statis-

tically significant biases, which allows us to identify key parameters (and their biases) associ-

ated with the behaviour displayed by the subensemble under consideration.

Significant differences within the ensemble of DERSs. We start this analysis by studying

the patterns emerging in the ensemble of DERSs, Fig 4(a). As discussed in the previous section,

DERSs organise themselves in three clusters, which differ regarding their capability to trigger

differentiation-primed epigenetic landscapes (see Fig 4(a) and S2 Fig). Our results are shown

in Fig 5, where we depict the empirical CDFs for the relevant kinetic parameters of the ER

reactions for the differentiation gene, c1j
(see S3 Table), i.e. those c1j

exhibiting statistically sig-

nificant differences when comparing the CDFs of the clusters (red, green, blue) among them

(see Fig 5). Each of these two-sample comparison is carried out by means of the Kolmogorov-

Smirnov (KS) test. Statistically significant differences were found in the cases we comment

below. The p-values are reported in Section Analysis of ensemble heterogeneity: significant dif-
ferences of the S1 Text. The remaining CDFs for the ER reactions of the differentiation gene

are given in S5 Fig.

Red cluster versus blue cluster. As discussed in the previous section, the differences between

DERSs within the blue and red clusters are essential to ascertain the main features that distin-

guish differentiation-primed and pluripotency-locked systems. The bias detected within the

red (blue) cluster in the corresponding CDFs (see Fig 5) is towards bigger (smaller) values for

c11
(unrecruited demethylation) and c115

(unrecruited acetylation) and towards smaller (larger)

values for c111
(unrecruited deacetylation) and c116

(recruited acetylation). The behaviour of c11
,

c111
, and c115

is straightforward to interpret. The trends observed in the data are consistent with

the DERSs within red cluster being more prone to differentiation-primed ER landscapes, as

they promote removal of negative (methylation) marks and addition of positive (acetylation)

marks.

Red cluster versus green cluster. In this case, the bias detected within the red (green) cluster

in the corresponding CDFs (see Fig 5) is to larger (smaller) values for c13
(unrecruited demeth-

ylation) and to smaller (bigger) values for c116
(recruited acetylation). The tendency in the data

corresponding to c13
is compatible with the features of the red cluster DERSs, as it involves an

increase in the removal of negative marks.

Blue cluster versus green cluster. Fig 5 shows that DERSs within the green cluster have

smaller values of c13
(unrecruited demethylation) and larger values of c18

(recruited methyla-

tion) than their blue cluster counterparts. Both of such effects stimulate addition of negative

marks. However, DERSs in the green cluster also exhibit lower c111
(unrecruited deacetylation)

and bigger c115
(unrecruited acetylation), which both encourage addition of positive marks.

This can explain why the green cluster DERSs exhibit both long τ1− and τ1+ (see Fig 4(a)).

Significant differences between differentiation-primed and pluripotency-locked ER

landscapes. The quantity Q allows us to classify each pair DERS-PERS drawn from our

ensemble regarding their degree of resilience to switch into a state prone to differentiation. If

Q is larger than a threshold value T , the corresponding DERS-PERS pair is categorised as dif-

ferentiation-primed. By contrast, when Q < T , the DERS-PERS pair is classified as pluripo-

tency-locked.

We first proceed to compare within the whole population (without discriminating among

clusters) those DERSs such that Q � T (differentiation-primed ER landscapes) against

those with Q < T (pluripotency-locked ER landscapes). We take T ¼ 0:7. The results are
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Fig 5. Empirical CDFs for the whole ensemble of DERS parameter sets (magenta lines) for those c1j significantly different between

clusters. This ensemble has been generated according to the methodology explained in Section ER-system ensemble generation and
parameter sensitivity analysis (see also [16]). We also show the partial empirical CDFs corresponding to each of the clusters from Fig 4(a)

(red, green, and blue lines). For reference, we also show the CDF for a uniform distribution (black line).

https://doi.org/10.1371/journal.pcbi.1006592.g005
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shown in S6 Fig. The CDFs of the parameters c11
(unrecruited demethylation), c114

(recruited

deacetylation), and c115
(unrecruited acetylation) are biased towards higher values for the sub-

ensemble associated with differentiation-primed ER landscapes (Q � T ). The requirement

for Q to be Q � T biases the CDF of c116
(recruited acetylation) towards lower values than in

the general population. The interpretation of the results regarding c11
and c115

is clear, since

they encourage the removal of negative marks and the addition of positive marks, respectively,

and thus promote expression of the differentiation gene. The CDFs of c114
and c116

correspond-

ing to differentiation-primed ER landscapes are virtually identical to the CDFs associated with

the general population (see S6 Fig). These features are therefore inherent in bistable behaviour

(see Section General description of the stochastic model of an epigenetically-regulated gene regu-
latory network), rather than being specific to differentiation-primed DERSs.

If we now restrict our analysis to those DERSs within the blue cluster (see Fig 6), we observe

that the parameters whose CDFs differ significantly when splitted into differentiation-primed

and pluripotency-locked are c11
(unrecruited demethylation) and c114

(recruited deacetylation).

As in the analysis in the whole ensemble, only the result regarding c11
is relevant for the analy-

sis of the features yielding differentiation-primed ER landscapes. The remaining CDFs for

those cij not exhibiting significant differences when comparing those DERSs within the blue

cluster giving rise to differentiation-primed behaviour to those behaving like pluripotency-

locked, are given in S7 Fig.

Regarding the PERSs, the results are less compelling. The results are shown in S8 Fig. Our

analysis shows that significative differences can be found between the empirical distributions

of three parameter values: c13
(unrecruited demethylation), c18

(recruited methylation), and

c115
(unrecruited acetylation). PERSs such that Q � T exhibit larger values of all three

parameters.

Fig 6. Empirical CDFs for the DERS parameter sets within the blue cluster for those cij significantly different. This ensemble has been generated

according to the methodology explained in Section ER-system ensemble generation and parameter sensitivity analysis (see also [16]). The DERSs within

the blue cluster have been divided into two subsets: those such that Q < T (SC-locked, blue lines) and those such that Q � T (non-SC-locked, orange

lines), with T = 0.7. For comparison, we plot the CDFs of the whole DERS ensemble (magenta lines), and, for guidance the CDF corresponding to a

uniformly distributed random variable (black lines).

https://doi.org/10.1371/journal.pcbi.1006592.g006
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Ensemble-based strategies for unlocking resilient pluripotency

Our analysis has illustrated which are the key cij giving rise to either pluripotency-locked or

differentiation-primed landscapes, immediately suggesting a number of strategies to unlock

resilient pluripotency states with hindered differentiation. One of our main conclusions is that

states of resilient pluripotency are mostly vinculated to DERS-PERS combinations such that

the DERS belongs to either the blue or the green cluster, since they are the ones exhibiting

pluripotency-locking (low Q). In view of this, a possible strategy in order to encourage differ-

entiation-primed ER landscape consists in changing a selected combination of parameter val-

ues according to a rationale provided by the analysis carried out in the previous sections. Our

results are shown in Fig 7.

One possible strategy consists in first transforming a blue cluster DERS into a green cluster

one, and then completing the DERS reprogramming by transforming the resulting set into a

red cluster DERS, where all DERSs exhibit differentiation-priming. A candidate strategy

involves first changing a parameter whose CDF is significantly different when the blue cluster

is compared with the green cluster. The second step is then to change a parameter that exhibits

significant difference between the green and red cluster. Taking the results of the previous sec-

tion into consideration, we consider the reduction of c111
(unrecruited deacetylation) and the

increase of c13
(unrecruited demethylation). The result of this reprogramming strategy is

shown in Fig 7(a), where we show that a blue cluster DERS is first transformed into a green

cluster one (green square in Fig 7(a)), and then, finally, into a red cluster DERS (red square in

Fig 7(a)). The initial blue cluster DERS has been chosen as the set with the largest value of c111
,

which has been shown to be a significant difference when comparing the blue cluster to the

red one, and the blue cluster to the green one, leading to the idea that this property is linked to

Fig 7. Effect of the different reprogramming strategies of blue cluster DERSs, as evaluated in terms of the statistics of the differentiation time

(τD). (a) Two step reprogramming is illustrated by the green square (first step), which finally becomes the red square (second step). One step

reprogramming is depicted as the red diamond (see Section Ensemble-based strategies for unlocking resilient pluripotency for details). (b) Comparison of

τD for the original DERS and the ones resulting from the reprogramming strategies. We consider a base-line scenario where the number of HMEs is

exactly equal to average, i.e. eHDM = eHDAC = Z. We then compare the simulation results obtained for different scenarios regarding the different

strategies to the base-line scenario. Parameter values: Z = 5 and Y = 15. Other parameter values given in S6 Table.

https://doi.org/10.1371/journal.pcbi.1006592.g007
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the blue cluster (idea which is reinforced because c111
is not significantly different when com-

paring the red and the green cluster).

The efficiency of such a strategy to unlock resilient pluripotency is shown in Fig 7(b) where

we present statistics of the differentiation time, τD, for the original blue cluster DERS and for

the corresponding reprogrammed one (two step reprogramming, red cluster-like). These simu-

lations have been done for the full ER-GRN, using the hybrid multiscale simulation algorithm

described in S1 Appendix (and fully developed in Sections Multiscale analysis of the GRN sys-
tem: WKB approximation and multiscale optimal path theory and Stochastic model reduction
method of the S1 Text). The resulting differentiation times for the ER-GRN with repro-

grammed ER landscape are orders of magnitude smaller than those with original ER-GRN

within the blue cluster DERS, therefore confirming the success of our strategy.

An alternative strategy, that involves changing the value of one parameter only, consists in

increasing the value of c13
(unrecruited demethylation). Such a strategy is not obvious, since

c13
is not one of the parameters whose empirical CDF has significant differences when DERS

in the red cluster are directly compared with those in the blue cluster. However, since the CDF

of c13
is significantly different when both the blue cluster and the red cluster are compared to

the green cluster, it is conceivable that increasing c13
without further intervention could repro-

gram blue cluster DERSs. The result of this reprogramming strategy is shown in Fig 7(a) (red

diamond). Simulation results shown in Fig 7(b) (two step reprogramming) confirm the viabil-

ity of this approach. In fact, based on the statistics of the differentiation time, both strategies

are virtually indistinguishable.

Loss of HDAC activity hinders differentiation in our ER-GRN model

Besides variability associated with cofactor heterogeneity, represented in the ensemble of cij
values, our model allows us to address the issue of variability regarding HME activity. HMEs

are needed for the acetylation and methylation epigenetic modifications to take place, and

their activities are known to be affected by physiological and pathological processes, including

ageing and cancer. Here, we analyse the impact of HDM and HDAC loss of activity on the

dynamics of differentiation. In particular, we simulate differentiation in our ER-GRN model

to obtain statistics of the differentiation time to assess the effect of loss of HME activity. The

simulations shown in this section have all been carried out using the hybrid multiscale simula-

tion algorithm described in the S1 Appendix.

In order to clarify the effect of loss of HME activity on the ER model, we first consider the

phase diagram of its mean-field limit in different situations (see [16] for details). This phase

diagram depicts the closed, bistable and open region for a given ER system, using HMEs activ-

ity as parameters (HDM in the x-axis, HDAC in the y-axis). The results are shown in S9 Fig.

The surface occupied by the bistable region (shaded blue region in S9 Fig) is much larger in

blue cluster than in red cluster DERSs, because of the displacement of the boundary separating

the closed and bistable behaviour. By comparison, the bistability region of the PERSs is nar-

rower than that of the DERSs (see S9(b) and S9(d) Fig). In particular the boundary that sepa-

rates the bistable phase from the closed phase (area at the left of the blue shaded region) is

displaced towards smaller HDM activity (i.e., to the left) in the DERSs phase diagrams.

This property suggests that a possible strategy to promote a differentiation-primed land-

scape (D− P+! D+ P−) would be to decrease HDM activity, as this would drive the PERSs into

its closed phase whilst allowing the DERSs to remain within its bistability region. In order to

assess this, we consider a base-line scenario where the number of HMEs is exactly equal to

average, i.e. eHDM = eHDAC = Z. We then compare different scenarios regarding the abundance

of HDM and HDAC to the base-line scenario.
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Contrary to what could be expected, simulation results show that the strategy of reducing

HDM activity alone beyond the PERSs closing boundary further hinders differentiation. As

can be seen in Fig 8(c), a decrease in HDM activity actually leads to longer differentiation time

(see also [11]). Similarly, Fig 8(a) and 8(b), which show statistics of the differentiation time,

reveal that a decrease in both HDM and HDAC activity also leads to an increment in differen-

tiation times, that is, this strategy fails to decrease the differentiation time below the base-line

scenario. In both cases, such hindrance of differentiation is the product of the increase in the

opening times (τ1+) of the DERSs. This effect occurs because, as HDM and HDAC activity is

reduced, the DERSs are driven towards their closed-bistability boundary. Close to such a

region, the DERSs closed state becomes more stable and thus the corresponding τ1+ increases.

By contrast, further reduction of HDAC activity moves the DERSs system closer to their bis-

table-open boundary, resulting in a reduction of the differentiation time. However, since the

differentiation times remain above those corresponding to the base line HDM and HDAC

activity scenario, we conclude that loss of both HDM and HDAC activity contributes towards

hindering differentiation. Therefore, these results suggest that downregulation of HDM and

HDAC activities, which has been observed in cancer and ageing, respectively, locks the ER

landscapes in states more resilient to differentiation, as the differentiation time increases. This,

in turn, is consistent with the theory that postulates that ageing and cancer may affect the ER

control of cell fate, by locking cells into states disabled to differentiate and consequently, prone

to malignant transformation.

Discussion

Epigenomic remodelling in response to cellular reprogramming can be viewed as a paradig-

matic strategy capable of erasing the hallmarks of ageing at the molecular and cellular level [1,

3, 4, 8]. However, undesirable trade-off constraining phenotypes such as impairment of tissue

repair/wound-healing, tissue dysfunction due to loss of cell identity, and tumorigenesis could

also occur if such epigenetic remodelling is not accompanied by an adequate self-repair of

injury or disease [7]. In this regard, our study provides mathematical and computational

answers to one of the ageing research field’s biggest challenges, namely, the understanding of

Fig 8. Plots showing the effect of the variation of HDM and HDAC on the statistics of the differentiation time (τD). We consider a base-line

scenario where the number of HMEs is exactly equal to average, i.e. eHDM = eHDAC = Z. We then compare the simulation results obtained for different

scenarios regarding the abundance of HDM and HDAC to the base-line scenario, i.e. by changing the values of (eHDM, eHDAC). Parameter values: Z = 5

and Y = 15. Other parameter values given in S5 Table.

https://doi.org/10.1371/journal.pcbi.1006592.g008
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how epigenetic heterogeneity could operate as the fundamental driver of the beneficial versus

deleterious effects of cellular reprogramming.

We are rapidly amassing evidence that, beyond bona fide genetic alterations, non-genetic

stimuli such as inflammation, hypoxia, cell stress, and developmental and metabolic cues, can

promote overly restrictive epigenetic states—capable of preventing the induction of tumour

suppression programmes or blocking normal differentiation—or overly plastic epigenetic

states—capable of stochastically activating oncogenic programmes and non-physiological cell

fate transitions including those leading to the acquisition of stem cell-like states [16, 46].

Indeed, resilience and plasticity begin to be considered as the fundamental epigenetic dimen-

sions that ultimately dictate the capacity of cells, tissues, and organs to undergo successful

repair, degeneration, or malignization via phenotypic variation. In our model, the robustness

or resilience of the cell phenotype attractors throughout the epigenetic landscape was deter-

mined by ER; then, a framework for the generation of the ensemble of ER systems allowed an

ulterior analysis, whereas a multiscale asymptotic analysis-based method for model reduction

enabled us to formulate an efficient numerical scheme to study the behaviour of the stochastic

ER-GRN system. Our approximation, which is closely related to the notion of neutral net-

works formulated to analyse systems with genotype-phenotype maps [60–62], is applicable to

broader scenarios because, by reducing a rather complex stochastic system into a hybrid,

piece-wise deterministic Markov one, it is capable of providing an efficient and scalable,

hybrid numerical method able to simulate more complex ER-GRN systems.

In order to determine the key mechanisms underlying epigenetic plasticity and its connec-

tions with aberrant stem cell-like locked states, we have considered a gene network model of

two mutually-inhibiting genes regulating the phenotypic switch between differentiated and

pluripotent states. Each gene within this regulatory system was acted upon by ER to restrict/

enable its expression capability. Although it might be argued that such a system is too simplis-

tic to describe realistic frameworks, one should acknowledge that mutual inhibition between

two key transcription factors has been shown to control binary cell fate decisions in a number

of biologically relevant situations [30, 63]. In addition, this system serves as a general tool to

understand generic features of the role of multistability in more complex cell fate decision sys-

tems. Specific examples include lateral stabilization during early patterning in the pancreas

(Ngn3–Ptf1a) [64], promotion of differentiation to trophectoderm in mammalian angiogene-

sis (Cdx2–Oct3/4) [65], cellular reprogramming (Oct4–Sox2) [11], and haematopoiesis

(GATA1–PU.1) [66]. Furthermore, our approach might serve as a general tool that can be

applied in a straightforward manner to adequately evaluate the epigenetic-regulatory features

involved in the multistability of larger, more complex cell fate decision systems. In this regard,

it should be noted that the robustness of the open/closed epigenetic states was assessed in

terms of the average transition times and that the structure of DERSs/PERSs clusters was inde-

pendent of the GRN dimensionality. Therefore, robustness analyses of more complex ER sys-

tems would be carried out by merely sampling DERSs/PERSs parameters from the generated

ensemble. Nonetheless, even in our relatively simple case of a gene regulatory circuit involving

solely two genes, the behaviour of the mean-field limit of the GRN exhibited a complex space

with a tristability regime, which included not only the expected stem-locked and differentiated

steady-sates but also the so-called indecision state. From a developmental perspective, the lat-

ter state could serve the purpose of priming cells for differentiation. Perhaps more importantly,

the transitions between the different phases could be triggered by changes related to ER (i.e.,

cofactors of chromatin-modifying enzymes), which thereby operate as bona fidemolecular

bridges that directly connect epigenetic and phenotypic plasticity via translation of changes in

ER states into variations of GRN states.
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Earlier studies provided evidence that the de novo reprogramming potential is higher within

select subpopulations of cells and that such pre-existing epigenetic heterogeneity can be tuned

to make cells more responsive to reprogramming stimuli [16, 40]. Along this line, intra- and

inter-individual variability driven by the local interpretation of metabolic, epigenetic, and

inflammatory regulators might not only reflect the occurrence of different ageing trajectories

in different tissue cell subpopulations but might determine also the de novo responsiveness to

therapeutic strategies aimed to remodel the organismal self-repair capacity for resistance to

damage, stress, and disease [16, 67, 68]. In this regard, by uncovering the regulatory details of

the phenotypic robustness of stem-like epi-states, we have been able to mathematically capture

how epigenetic heterogeneity governs the routes and kinetics to entry and exit from unre-

strained epigenetic plastic states. Thus, a sub-ensemble of ER systems with higher reprogram-

ming potential was found to pre-exist within the ensemble of ER systems compatible with a

terminally differentiated cell state; moreover, such a sub-ensemble could be harnessed to fine-

tune the cellular response to reprogramming-to-stemness stimuli by solely targeting chroma-

tin-modifying enzymes such as HDMs and HDACs, thus confirming and extending earlier

experimental approaches [69]. It is reasonable to propose that epigenetic heterogeneity is a/the

central regulator through which epigenetic plasticity allows cells to stochastically activate alter-

native regulatory programs and undergo distinct cell fate transitions. As such, epigenetic het-

erogeneity is largely responsible for the mechanistic dynamics determining the phenotypic

robustness of cell fate reprogramming (see Fig 9).

A disruption of the homeostatic resilience of chromatin, causing it to become aberrantly

restricted or permissive, has the potential to give rise to each classic cancer hallmark [46].

Intriguingly, a similar disruption of the entry-exit paths and kinetics of the endogenous

injury-repair mechanisms appears to be also the convergent trade-off of a variety of strategies

(e.g., metabolic manipulation, ablation of senescent cells, and cellular reprogramming)

Fig 9. Strategies to unlock pluripotent stem-like states in ageing and cancer. Epigenetic regulation heterogeneity of differentiation genes (DERSs),

but not that of pluripotency genes (PERSs), was predominantly in charge of the entry and exit decisions of the pluripotent stem-like states (blue). The

application of the hybrid numerical method validated the likelihood of epigenetic heterogeneity-based strategies capable of unlocking and directing the

transit from differentiation-refractory to differentiation-primed (red) epistates via kinetics changes in epigenetic factors. (Note: The epigenetic

parameters regulating the entry into robust epi-states throughout the entire ER-GRN system revealed a regime of tristability in which pluripotent stem-

like (blue) and differentiated (red) steady-states coexisted with a third indecisive (green) state). (R: Recruited; U: Unrecruited).

https://doi.org/10.1371/journal.pcbi.1006592.g009
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beginning to be recognised as valuable interventions directed against the ageing hallmarks

[67]. Our current approach reconciles such apparently counterintuitive scenario by illuminat-

ing the occurrence of tunable switches in terms of epigenetic cofactor levels, which are capable

of modifying the nature and direction of cell fate reprogramming. On the one hand, our math-

ematical deconstruction of epigenetic plasticity reveals that epigenetic heterogeneity may

underlie the predisposition of cell populations to pathological reprogramming processes that

cause a permanent, locked stem-like state disabled for reparative differentiation and prone to

malignant transformation. On the other hand, we have computationally validated the likeli-

hood of unlocking aberrant stem-like states disabled for reparative differentiation and drive

them to a correct repair function by manipulating solely the intensity and direction of such

epigenetic control switches. Therefore, we now propose that an ideal ageing-/cancer-targeted

therapeutic approach must be able to correct chronic epigenetic plasticity of damaged/diseased

tissues, but additionally, to “unlock” stem cell-like states to drive tissue regeneration, thereby

preventing the occurrence of the abovementioned constraining phenotypes.

In summary, upon unearthing key regulatory dimensions of epigenetic plasticity in an

unbiased manner, we here offer a conceptual and methodological re-orientation of how thera-

peutically approach pathological cellular reprogramming. As we enter a new era of therapeutic

approaches to target ageing per se [67], our stochastic biomathematical modelling and compu-

tational simulation strategy might be incorporated as a valuable tool for assessing the benefit/

risk ratio of new therapeutic approaches aimed to target and correct the ageing-/cancer-related

perturbations of the epigenome.
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