Waves of Malice: A Longitudinal Measurement of
the Malicious File Delivery Ecosystem on the Web

Colin C. Ife*, Yun Shen', Steven J. Murdoch*, and Gianluca Stringhinii

*University College London, fSymantec Research Labs, *Boston University
{colin.ife,s.murdoch}@ucl.ac.uk,yun_shen@symantec.com,gian@bu.edu

ABSTRACT

We present a longitudinal measurement of malicious file distribu-
tion on the Web. Following a data-driven approach, we identify
network infrastructures and the files that they download. We then
study their characteristics over a short period (one day), over a
medium period (daily, over one month) as well as in the long term
(weekly, over one year). This analysis offers us an unprecedented
view of the malicious file delivery ecosystem and its dynamics.
We find that the malicious file delivery landscape can be divided
into two distinct ecosystems: a much larger, tightly connected set of
networks that is mostly responsible for the delivery of potentially
unwanted programs (PUP), and a number of disjoint network in-
frastructures that are responsible for delivering malware on victim
computers. We find that these two ecosystems are mostly disjoint,
but it is not uncommon to see malware downloaded from the PUP
Ecosystem, and vice versa. We estimate the proportions of PUP-
to-malware in the wild to be heavily skewed towards PUP (17:2)
and compare their distribution patterns. We observe periodicity in
the activity of malicious network infrastructures, and we find that
although malicious file operations present a high degree of volatil-
ity, 75% of the observed malicious networks remain active for more
than six weeks, with 26% surviving for an entire year. We then rea-
son on how our findings can help the research and law enforcement
communities in developing better takedown techniques.

ACM Reference Format:

Colin C. Ife*, Yun Shen', Steven J. Murdoch*, and Gianluca Stringhinii.
2019. Waves of Malice: A Longitudinal Measurement of the Malicious File
Delivery Ecosystem on the Web. In ACM Asia Conference on Computer
and Communications Security (AsiaCCS ’19), July 9-12, 2019, Auckland, New
Zealand. ACM, New York, NY, USA, Article 4, 13 pages. https://doi.org/10.
1145/3321705.3329807

1 INTRODUCTION

Malware delivery has undergone an impressive evolution since its
inception in the 1980s, moving from being an amateur endeavor to
a well-oiled criminal business where, rather than being a cottage
industry, it became specialized with skills traded on underground

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

AsiaCCS’19, July 9-12, 2019, Auckland, New Zealand

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6752-3/19/07...$15.00
https://doi.org/10.1145/3321705.3329807

markets. In pursuing larger and larger populations of victims, mal-
ware authors moved from using floppy disks as their infection vec-
tor [13] to delivering malware as attachments in spam emails [28],
enticing users into opening them through social engineering [23].
Eventually, malware authors started compromising user machines
without the need for explicit user interaction, by exploiting vul-
nerabilities in the victim browser once it visited a malicious web
page (a so-called drive-by download attack [24]). To streamline the
exploitation process, miscreants developed so-called exploit kits,
which are software packages that contain exploits for multiple soft-
ware configurations and can infect as many victims as possible
by delivering the correct exploits based on the victim’s software
configuration [12]. Miscreants also developed pay-per-install (PPI)
schemes [7], in which a specialized actor sets up a network of in-
fected computers (commonly known as a botnet [4]) that are later
rented out to other criminals.

More recently, researchers uncovered a parallel economy that
shares many traits with the malware ecosystem, while being pri-
marily controlled by different actors: potentially unwanted programs
(PUPs) [17, 18, 32]. This category of programs includes software that
is not willingly installed by users and that typically is an annoyance
more than a direct threat to the safety of victims — examples include
adware and browser toolbars. While malware delivery mostly hap-
pens through drive-by downloads, PUP victims are usually tricked
into installing a downloader through social engineering [17]. After
such a downloader is installed, additional components are dropped
through a PPI service [32]. For this reason, files that belong to PPI
services are commonly known as droppers.

Previous research has suggested that, although mostly disjoint,
a consistent number of malicious actors (e.g., PPI operators) serve
both malware and PUP samples. Kwon et al. [20] show that 36.7%
of the droppers that they observed downloaded both malware and
PUPs. Despite this finding, many questions remain unanswered
on the structure, workings, and dynamics of malware delivery net-
works. What does the malicious file delivery network look like?
Are there differences in the network structure of infrastructures
that solely download malware, PUP, or both? How do these infras-
tructures change over time? Answers to such questions could help
the security community better understand this malicious ecosys-
tem, and could expose weak points in these infrastructures for
takedowns.

In this paper, we adopt a data-driven approach to provide a longi-
tudinal characterization of the malware and PUP delivery ecosystem
on the Internet. First, we collect 129 million download events from
millions of real users who downloaded unwanted software over
one year. Our data contains information on the files downloaded,

https://doi.org/10.1145/3321705.3329807
https://doi.org/10.1145/3321705.3329807
https://doi.org/10.1145/3321705.3329807

on the network servers that they were downloaded from, and on
the file that initiated the download. We subsequently model these
download relations as a graph and apply graph analysis techniques
to identify the related network and file components. We then look
at the types of files that these components download, and study
their temporal behavioral characteristics over a short period (one
day) as well as in over a medium period (every day for a period of
one month) and the long term (one day a week for a period of one
year).

Overview of results. We find that the malicious file delivery land-
scape can be partitioned into two disjoint ecosystems: a tightly
connected set of network infrastructures that are mostly respon-
sible for downloading PUPs, and a set of isolated infrastructures
that are mostly responsible for downloading malware. We also
find that the PUP Ecosystem is stable over the long-term (i.e., one
year). In raw numbers, the PUP Ecosystem is responsible for 80% of
suspicious file downloads worldwide. Although previous research
found that PUPs are pervasive in the wild [17], we are the first
ones to compare the prevalence of these type of malicious files to
malware. We estimate the proportion of PUP-to-malware in the
wild - roughly 5:1 in # of SHA-2s, and 17:2 in # of downloads - and
we analyze the characteristics and distribution patterns of their
ecosystems. Confirming results from previous work [20], we show
that these delivery infrastructures are often not responsible for
delivering a single type of malicious files (i.e., PUP or malware),
but instead often deliver both. Over time, we observe the activity
patterns of distribution infrastructures and their lifespans. This pa-
per provides the security community with an unprecedented view
of the characteristics of the malware and PUP delivery ecosystems.
Also, we provide a methodology, with initial results, that identifies
elements (IP addresses, domain names) in a delivery infrastructure
that do not change over time. These can be used to direct takedown
efforts towards those elements that are not volatile and therefore
could have an impact if taken down.

2 DATASET

In this paper, we leverage a dataset from Symantec’s data sharing
platform. This allows us to access the anonymized data collected
by its anti-virus and intrusion detection/prevention products on
millions of end-hosts around the world. These datasets are collected
from users who explicitly opt-in for the data sharing program and
does not include personally identifiable information (PII).

Our dataset contains download activity information from real
hosts for one year between 1 October 2015 and 29 September 2016.
The users that have explicitly opted into this company’s data-
sharing program periodically report metadata information on the
binaries that they download. This dataset offers rich information
regarding the time at which a binary is downloaded, which server
it is downloaded from, and which program initiated the download
activity. If a malicious file 4.exe is downloaded from a website
http://example.org/landing/page, for example, the data will
contain information about the file, as well as the website URL
that 4. exe was downloaded from, and the IP address of the server
93.184.216.34. Note that if this malicious file 4. exe downloaded
other malicious files, we define 4. exe as a dropper. Additionally, if

Sp Sope

Host URL: ' : i THos! URL:
hitp/parent fle.cqm/peth " _¥_http://download.file.com/path/

“Intermediaté URL
http://landifig.page/path N

'\ download N " download
. ; event1 / event2
File1_ File2
SHA-2: ... SHA-2: ...

Figure 1: Example of a download graph with two download
events highlighted.

a dropper malware sample downloads a second malicious file, the
dataset will record information about both the server that the file
is downloaded from and the dropper that initiated the download.

To be more precise, for each download event, our dataset contains
the following information: the timestamp of the download event,
the name, SHA-2 (256 bits) and size (in bytes) of the downloaded
file, the landing page URL and IP address of the server the file
was downloaded from, the SHA-2 of the parent file which initiated
the download, and the referral URL that this parent was originally
referred from (if available). We collect data on a daily basis in
October 2015 (31 days) and, from then on, every Thursday on a
weekly basis from November 2015 to September 2016 (47 days). In
total, the dataset contains 129 million download events consisting
of 21,398,564 unique binaries. These binaries are downloaded from
12,394,454 unique URLs, hosted on 557,429 unique IPs. After IP
filtering (see Section 3.1), these are reduced to 21,388,521 unique
binaries, 12,390,735 unique URLs, and 553,812 unique IPs.

Note that this paper only focuses on malicious file downloads. To
this end, we leverage the reputation score that Symantec associates
to files. We discard any file that has a high reputation score, and
only keep files that are either known to be malware or PUP (e.g.,
using the ground truth maintained by the security company) or
confirmed as malicious by VirusTotal. Note that we consider a file
to be malicious if at least one of the top five AV vendors by market
share (in no particular order, Avast, AVG, Avira, Microsoft, and
Symantec) and a minimum of two other AVs detect it as malicious.
Nelms et al. [22] used a similar technique.

3 METHODOLOGY

This study leverages two stages of analysis: (i) a 24-hour snapshot
analysis, and (ii) a longitudinal analysis. In the first stage, we group
related hosts and files observed over 24 hours, and map the net-
work infrastructures involved in the delivery of malicious files. In
the second stage, we track the evolution and behaviors of these
infrastructures. In this section, we describe these stages in detail.

3.1 Snapshot Analysis

The data processing pipeline for a 24-hour snapshot is as follows: 1)
IP filtering, ii) building the graph, iii) separating components, and
iv) file classification.

IP Filtering. Since this dataset presents a global outlook on down-
load data, files that appear to be generated from the host machine

(localhost) or private IP addresses could be incorrectly inferred as
being part of the same infrastructure. Consequently, we remove
IPv4/v6 addresses that are not valid for public use on the Inter-
net [2]. As a result, the graph-building stage ignores files and URLs
that are downloaded only from and hosted on these IP addresses.
Building the Graph. For each day of our analysis, we take the
download events that happened during that day to build a directed
download graph, which is the basis of our analysis. In particular,
we combine the information contained in the download event in a
directed graph G = (V, E), where V is the vertex list of file nodes
and network nodes. Figure 1 shows an example of this graph struc-
ture. Network nodes are host URLs, referrer URLs, and IP addresses.
E is the respective edge list. A directed edge (v, w) indicates that
node v is related to node w under one of the following conditions:
(i) a parent-file v drops a file w; (ii) a file w is downloaded from
(by precedence as indicated in Figure 1) a referrer URL (landing
page), a host URL, or an IP address v; (iii) a parent-file w is down-
loaded from a host URL v; (iv) a host URL v is associated with a
referrer URL w; and (iv) an IP address v is associated with a host
or referrer URL w. Take download event 1 in Figure 1, for exam-
ple, File; is dropped by Parent file, which was downloaded from
host URL http://parent.file.com/path, hosted on IP address
IP1.In download event 2, it is straightforward to see that Filez was
downloaded from host URL http://download.file.com/path/
hosted on IP,. These two disconnected graphs are connected when
we observe the third download event when File; was downloaded
via referrer URL http://landing.page/path leading to host URL http:
//download.file.com/path/. All downloaded files with the same SHA-
2 are assigned to the same file node.
Separating Components. The primary step towards attributing
files, hosts, and their activities to actors is to separate the directed
download graph into weakly (undirected) connected components,
or CCs. This enables us to identify distribution networks of files
and hosts that have direct interactions with each other, and char-
acterize them as independent structures for a given 24-hour pe-
riod. We divide the graph structure into file-only and network-only
(sub)components, which are the connected components derived
from the file-only and network-only sub-graphs. We define (i) a net-
work infrastructure as a component in the network-only subgraph,
while in the case of a file-only subgraph, (ii) a file infrastructure as
a component consisting of at least two file nodes, and (iii) a lone file
as an isolated node in this subgraph. For example, Figure 1 shows
two network infrastructures, {IP;, HostURL} and {IP,, HostURL,
IntermediateURLY}, one file infrastructure, {ParentFile, File;}, and
a lone file, Filey. This separation into sub-graphs helps us later in
the task of attributing infrastructures to independent actors and
tracking these over time.
File Classification. To further understand the malicious file deliv-
ery ecosystem, we are interested in labeling graph components as
“malware.” “PUP;” or “unclassified,” based on their most common
types of files delivered. VirusTotal [3] is a freely accessible site
that analyzes file submissions across dozens of antivirus engines
and produces detailed reports and detection statistics. Amongst
these statistics are the family labels by which each antivirus engine
classifies the file (e.g., a prominent malware or PUP family).
Simple majority voting could be applied to all labels produced
in a VirusTotal report. However, an issue with this approach is

that antivirus vendors use inconsistent labels for positive sam-
ples, even when the same malware families are detected. For exam-
ple, two engines may generate labels of Adware.Rotator.F and
Adware.Adrotator.Gen!Pac for the same instance of the AdRota-
tor PUP family. These inconsistencies lead to unreliable majority
votes. As a result, Sebastian et al. [26] design and evaluate the
AVClass malware labeling tool to overcome this problem.

In this work, we use the AVClass tool to label each file SHA-2
that generates a VirusTotal response with a family name, and as
likely malware or PUP. Each graph component is then assigned a
malware, PUP, or unclassified label, based on a majority vote on the
most common family it distributes. If VirusTotal classifies a sample
as malicious, but AVClass does not contain its label in its database
of aliases, we label it as a singleton cluster named after its SHA-2.

3.2 Longitudinal Analysis

After mapping the actors involved in malicious file delivery over
one day, we want to understand how stable these distribution in-
frastructures are over time. To this end, we track file-only and
network-only components on a daily and weekly basis (working
from the same day of the week) over an entire year. We also track
the lifespans of these infrastructures over a year, using a weekly
sampling frame, with respect to the first day of our dataset. More
precisely, we do the following:

Snapshot Processing. For each day of data, we generate file-only
and network-only connected components. To achieve this, we re-
peat the steps from Snapshot Analysis in Section 3.1 to build com-
ponents from the overall graphs. We also generate file-only and
network-only sub-graphs and build components from these.
Optimal Signature Selection To track distribution infrastruc-
tures across different days, we need to first characterize each graph
component with a signature: a set of nodes within these compo-
nents which are likely to be temporally stable. Therefore, we need
to determine (i) a good criterion for node stability, and (ii) a suit-
able signature length. We conduct the following experiments to
establish suitable signature characteristics:

(1) Node Centralities. We pursue a suitable criterion for identify-
ing stable nodes through graph percolation, i.e., the breaking down
of a graph component by systematically removing nodes. Graph
percolation [8] is useful in showing how resilient a network is to
disruption, and by what method. We utilize different node central-
ities as the criteria for selecting the node to be removed at each
iteration, with the idea that stable ‘root’ and ‘branch’ nodes (e.g., IP
addresses, hosts, droppers) are likely to be more “influential” than
ephemeral ‘leaf” nodes (i.e., end-user downloads). In this case, we
use node centralities as proxies for “influence” We then conduct
graph percolation on a graph component, via centrality criteria,
until it completely disintegrates. We compare the rates of graph
percolation under different node centralities and select the one with
the highest rate.

(2) Sensitivity Analysis. Besides identifying the ranking of the
nodes most likely to be stable, we also need to determine a suitable
number of nodes to include in the tracking signature when we
attempt to trace infrastructures across days. Intuitively, it is un-
likely that we would need to consider every single node in a given
infrastructure in this matching process. To this end, we conduct a

http://landing.page/path
http://download.file.com/path/
http://download.file.com/path/

sensitivity analysis, using our node selection criterion, along with
a range of signature lengths as we measure the number of infras-
tructures that we can track across a pair of days. We then select a
maximum signature length based on the principle of diminishing
returns, i.e., when the increase in tracking accuracy is insignificant
in comparison to the increase in signature length. We present the
results of these experiments in Section 4.2.
Component Tracking. We have defined how we generate the
signature of each component. Now, we explain how we track these
in time. For any pair of consecutive days, i.e., day i and day i+ 7, we
generate a bipartite graph: a vertex set V;, representing components
from day i, and a vertex set Vj.7, representing components from
day i + 7. Each component is represented by a single vertex, v, with
an associated component signature, s. For example, component v;_;
represents the jth component from day i and has signature s; ;.
Edges represent matches between component signatures when
their intersection is a non-empty set (e.g., si,j N s;47,k # 0). This
representation enables us to generate a simplified, one-to-one map-
ping of matched components via the following rules (in order of
priority):

(1) If v; ; and v;,7 & share an edge, and they have no other
incident edges, we retain this edge as a simple transition.

(2) If v; j shares edges with multiple vertices from V7, the
“best match” is chosen (see below).

(3) If v;47 shares edges with multiple vertices from V;, the
“best match” is chosen.

The “best match” algorithm works as follows (before choosing
randomly):

(1) Retain edge with the smallest difference in component size.

(2) If multiple edges retained, retain edge with the greatest over-
lap of leaf nodes between components (i.e., the same pay-
loads).

Forward-facing transitions are prioritized over backward-facing
ones, trading-off a little tracking reliability for simplicity. The “best
match” algorithm assumes that there is more stability in how many
files a dropper distributes over which files it distributes. This as-
sumption is supported by the observation that malware can undergo
rapid polymorphism [5]. Note that this tracking technique is also
limited in that it oversimplifies the splitting or joining of infras-
tructures across days as straightforward transitions. Nonetheless,
this is sufficient in estimating the activities and lifespans of these
delivery infrastructures, giving lower bounds for such.

In Section 4.2 we provide a longitudinal analysis of our data. In
particular, we focus on the churn of components over time. This
aspect is indeed interesting to understand how ephemeral mali-
cious file operations are and to better understand which mitigation
techniques are more promising against these phenomena.

4 DATA ANALYSIS

As we explained in the previous section, our analysis is in two
stages: first, we look at a single day of data, to better understand
the network and file infrastructures involved in the malicious file
delivery landscape. We then look at multiple days, to see how the
network and file infrastructures evolve. In this section, we illustrate
the results of our analysis in detail.

100

— Eigenvector
— In-degree
— Betweenness
— Out-degree
Degree

80

60

40}

% of original GC size

0 2000 4000 6000 8000 10000 12000
No. of top nodes removed

Figure 2: Decay of the GC by graph percolation under differ-
ent selection criteria. N.B. line order follows graph legend.

4.1 Snapshot Analysis

We build the graph for the first day of our collection period, 1st
October 2015. After the pre-filtering operations described in Sec-
tion 3.1 we obtain a graph G with 1,661,636 nodes and 1,930,648
edges. These nodes consist of 964,998 file nodes (SHA-2s), 385,861
host URL and 218,530 referrer URL nodes (130,630 domains), and
92,247 IP nodes. Each file node represents all download events relat-
ing to a unique file, identified by its SHA-2, with a total of 1,644,906
download events recorded for the first day. We separate the graph
into weakly connected components (see Section 3.1). Consequently,
we generate 58,173 CCs.

We find that a Giant Component (GC) emerges, which accounts
for 80% of download activity, comprising of 786,240 unique files
(1,345,586 download events) distributed through 89,550 domains,
480,110 URLs, and 51,436 IP addresses. The GC comprises network
components and file components interconnected with each other,
such as multiple network infrastructures dropping the same set
of files. To put this into perspective, the next largest non-Giant
component consists of only 2000 nodes. The remainder of download
activity (which we refer to as the Non-Giant Component or NGC)
is attributed to 58,172 independent distribution infrastructures.

Table 1: Top 10 countries by # of GC articulation IP nodes.

Region Art. IP nodes ‘ Region Art. IP nodes
United States 1419 Russian Federation 39
China 268 Canada 31
Netherlands 147 United Kingdom 31
France 114 Luxembourg 28
Germany 53 Brazil 26

Graph structural characteristics. We want to verify whether
the GC identified in our analysis is indeed a well-connected set of
network infrastructures, or if it is an artifact of our methodology. To
this end, we conduct graph percolation as described in Section 3.2,
shown in Figure 2. We find that the GC is fairly strongly connected.
For instance, it is required to remove over 1k (0.08%) of the highest
degree nodes to reduce the size of the GC by more than 50%, and
at least 6k (0.46%) nodes — 5.5k of which are network nodes — to
reduce the size by 80%. This ratio is an extreme example of the

Table 2: Top second-level domains ranked by # of GC net-
work nodes.

Rank e2LD % of hosts | Rank e2LD % of hosts
1 mediafire.com 2.80% 11 d3s8yh4kiladli.cloudfront.net 0.67%
2 msecnd.net 2.40% 12 drp.su 0.64%
3 uploaded.net 1.70% 13 crusharcade.com 0.62%
4 magnodnw.com 1.56% 14 doff.info 0.58%
5 mysimplefile.com 1.03% 15 4shared.com 0.53%
6 softonic.com 1.00% 16 zz-download-zz8.com 0.51%
7 clipconverter.cc 0.84% 17 zz-download-zz10.com 0.50%
8 google.com 0.77% 18 zz-download-zz7.com 0.49%
9 file8desktop.com 0.73% 19 mountspace.com 0.47%
10 up1004.info 0.72% 20 zz-download-zz9.com 0.48%

1.000 00
01001 & e -a In-degree o
< 0.010 Q

g g 70

< 0.001 % 60
S 2

5 0.000 o 50
] =

& 0.000 2 40

~ Aoa S 30

0.000 % = 50

0.000, 10

10 100 1000 10000 5000 10000 15000 20000 25000 30000
Degree No. of top e2LDs removed

Figure 3: Giant Component
degree distribution (com-
plementary cumulative
distribution function).

Figure 4: Decay of the GC
(no IPs) by removal of top
e2LDs.

Pareto principle, which itself states that for many real-world events,
roughly 80% of effects come from 20% of causes.

Following from the graph percolation experiment, we identify
the articulation nodes which form the structural backbone of the
GC. Table 1 shows that, when we focus on IP addresses, the United
States is the biggest regional contributor to this massive distribution
infrastructure. This ranking could indicate where ISP takedown
efforts would be most effective in dealing with unwanted software
distribution. The GC is an approximate scale-free network: Figure 3
shows its degree distribution approximately following a power-law
distribution. It contains 1.3M nodes and 1.6M edges. The diameter
of the GC is 20, meaning that there are 20 hops along the longest
chain of IPs, URLs, and dropped files. The average path length of
the GC is 6.20 (average number of hops between any pair of nodes).
The GC also has a global clustering coefficient of 3.6 X 107>. This
property could be an indication of a tree-like structure for the GC,
with a relatively small number of highly interconnected root nodes,
but many branches and leaf nodes. This conclusion is supported by
the fact that only a very small proportion of nodes — most of which
are hosts — are responsible for the connectivity of most of the GC.
Significance of the GC. Though our initial findings showed that
the GC is a well-connected ecosystem of files and network infras-
tructures, this component could still be an artifact of, for example,
the shared use of IP addresses by different malicious operations, due
to their use of popular hosting providers and content distribution
networks (CDNs). This classification would result in a false connec-
tion of services that are effectively independent in the real world,
e.g., separately owned Amazon EC2 instances being linked to the
same IPs and/or domains. To rule out these scenarios, we conduct
two experiments: first, we rebuild the graph without IP addresses,
and second, we blacklist the most popular effective second-level

domains (e2LDs). We use the Mozilla Public Suffix List! to iden-
tify the e2LDs in our dataset. Note that this list includes common
CDN resources as suffixes (e.g., ca-central-1.amazonaws.com).
We included amazonaws . com as a suffix to separate its service users.

For these verification experiments, we rebuild the graph G with-
out any IP address nodes or URLs with IP addresses as domain
names (e.g., http://119.147.227.164/path/to/file). This results in a
graph of 1,544,062 nodes (7% reduction) and 1,578,585 edges (18%
reduction). After computing the weakly connected graph compo-
nents, we find that the GC is considerably smaller, but remains
stable, with 908,029 nodes (31% reduction) and 1,102,300 edges (32%
reduction). Evidently, IP addresses help form a significant part of the
GC, connecting about 31% of this component. In real terms, shared
IPs connect a significant proportion of the unwanted software dis-
tribution market — potentially an indication of shared or repeated
use of network infrastructure, or these services being illicit, thus
not appearing on the public suffix list. However, these results show
that there is also a strong interconnection between distribution
services through URL-to-URL redirections between hosts, and the
distribution of multiple software per service (one-to-many) and
common software between multiple services (many-to-one).

Next, we categorize the most popular e2LDs by grouping the net-
work nodes (hosts and referrals) that share the same e2LD and rank
them by the number of associated network nodes. Table 2 shows
the top 20 e2LDs. We find that the top GC domains predominantly
belong to popular CDNs, such as MediaFire (7.4k nodes), Windows
Azure (under msecnd.net, 6.4k nodes), Softonic (2.7k nodes), and
Google (2k nodes). An apparent zz-download-zz CDN is also very
prominent, consisting of 2.86% (7.6k nodes) of hosts. As later re-
sults suggest, the unwanted software distribution economy may be
leveraging, if not directly using, the infrastructures of benign and
popular CDNs.

Figure 4 exhibits the exponential decay of the GC as the top
e2LDs are removed in order of decreasing rank. We find that the
GC structure remains resilient to percolation, even after the total
removal of all 30,330 e2LDs in the GC. This result shows that both IP
addresses and popular domains are important for the connectivity
of the GC, but there is still a strong and resilient interconnection be-
tween the files that are distributed within it, as evidenced by 20% of
the GC (180k nodes) remaining after removing all domains and IPs.
That is, droppers also contribute significantly to the proliferation
of unwanted software and are core to the malicious file delivery
ecosystem. Taking into account that the smallest estimate of the
GC is still 90 times the size of the largest non-GC infrastructure
(2k nodes), this evidence strongly suggests the presence of the GC
structure in the malicious software delivery ecosystem, regardless
of potential measurement artifacts. We then study the differences
between the GC and NGC infrastructures.

File distribution of the GC and NGC. After identifying the pres-
ence of two distinct groups of infrastructures, the GC and the NGC
(composed of 58k independent infrastructures), we aim at better
understanding what kind of files are installed as part of the two
ecosystems. We apply the file classification process as described
in Section 3.1. Of the 965k unique files downloaded in this day of

! The Public Suffix List is a cross-vendor initiative to provide an accurate list of domain
suffixes — https://publicsuffix.org/

https://publicsuffix.org/

data, VirusTotal generates analysis reports for only 80k file SHA-2s.
AVClass [26] then processes the VirusTotal results to produce 61k
family labels: 42k are from known families, while 19k are from
unclassified families, which are labeled as “singletons” (see File
Classification in Section 3.1). The remaining 19k of SHA-2s an-
alyzed by VirusTotal had not been classified as malicious at the
time.

The attrition in ground-truth data is undesirable but expected.
Only a small proportion of files are actually submitted to VirusTotal
for analysis, hence the considerably small record size compared
to the total number of files. Of the files for which VirusTotal has
analysis records, some attain no AV detections, hence leading to
AVClass producing no family labels for these SHA-2s. Even for files
that have been detected as potentially malicious, some of them
are only given generic labels by the detecting AV vendors (e.g.,
Trojan.Dropper.Gen). These generic labels are stripped away by
AVClass, leaving only family-specific labels, or when none such
labels exist, singleton SHA-2 labels are used to indicate unclassified
families. Because of this attrition in ground-truth, we characterize
clusters of files that exhibit dropping behaviors using the available
AVClass labels where they are observed. In particular, we use a ma-
jority voting scheme to label each file-only graph component with
its most common family, as well as whether it is likely ‘malware,
‘PUP; or ‘unclassified’ This estimation helps to characterize the
remaining unlabelled but related files.

Figure 5 shows various family distributions for the GC and NGC
ecosystems. A key finding here is that there is a clear difference in
the presence of unwanted software within these two ecosystems:
the GC is primarily dominated by PUP, while the NGC is domi-
nated by malware distribution activities. For the GC, PUP such as
convertad, amonetize, and opencandy conduct the lion’s share
of download activity. Similarly, these families act as prominent
droppers, installing other malicious files on infected computers,
though there is also a considerable malware presence, particularly
with zusy. In the NGC infrastructures, gamarue, for example, is
very effective in both download and dropping activities, as are
other malware families. Also, note that extcrome is labeled as mal-
ware, while this family is actually adware and should, therefore,
be classified as PUP [1]. This is a false positive result of AVClass,
highlighting the imperfection of the AVClass labeler, although such
misclassifications are generally rare in this dataset.

Another interesting observation is in the mixed presence of PUP
and malware droppers and payloads within the GC. Given that the
GC is a single connected component or download infrastructure,
this alludes to a mixed distribution mechanism for PUP and mal-
ware, though it is still PUP-dominated. By majority voting on the
most common family for a given file component (see Section 3.1),
we estimate that the numbers of independent PUP and malware
file delivery operations (i.e., file components) in the GC are roughly
1.5k and 360, respectively (3.2k unclassified), and for the NGC,
190 and 250, respectively (2.9k unclassified). Note that we do not
consider lone files as file delivery operations (i.e., singleton file
components that do not engage in any dropping activities). 82 (1%
of) file delivery operations involve both PUP and malware, which
is in alignment with Kotzias et al. [17] that refer to PUP distribution
and malware distribution as being largely disjoint. However, we
find that a single massive file delivery operation involves both PUP

and malware, and is responsible for the distribution of 61k SHA-2s
(7.7% of the GC) and 394k raw downloads (29% of the GC). This is in
line with the work by Kwon et al. [19], who found that 36.7% of the
droppers that they observed were downloading both malware and
PUPs. To provide context, the next largest delivery infrastructure
only distributes 2k SHA-2s.

We also compute estimates of the proportions of PUP-to-malware
in the wild by identifying SHA-2s of known families, and whether
they are likely malware or PUP. In the overall graph G, the PUP-to-
malware ratios are roughly 5:1 (SHA-2s) and 17:2 (raw downloads).
The proportions of PUP-to-malware in the GC are roughly 8:1 in #
of SHA-2s (95.3% unclassified) and 11:1 in # of raw downloads (74.2%
unclassified). In the NGC, the PUP-to-malware ratios are 1:1.78 in
of SHA-2s (97.4% unclassified) and 1:2.15 in # of raw downloads
(96.1% unclassified). Despite previous work already highlighting
that PUP is more predominant in the wild than it was previously
thought [17], we are the first ones to quantify the ratio of malware
and PUP in the wild.

To summarize, we discovered two file delivery ecosystems. The
GC consists of interconnected file and network infrastructures and
mostly drops PUP, while the NGC is composed of independent
components and mostly drops malware. Because of the GC predom-
inantly dropping PUP and the NGC mostly being responsible for
malware downloads, for the remainder of this paper, we will refer
to the GC as PUP Ecosystem and the NGC as Malware Ecosystem.
Network and file characteristics of the two ecosystems. Fig-
ure 6 shows a structural comparison of the PUP Ecosystem and
Malware Ecosystem sub-graphs. The file in-degree and out-degree
distributions for the PUP and Malware Ecosystems are very similar.
This could be indicative of largely similar distribution patterns be-
ing employed by malware and PUP authors, e.g., the common use
of PPI services. However, the PUP Ecosystem generally has higher
in-degree and out-degree distributions for network nodes. This
result suggests several notions. First, hosts in the PUP Ecosystem
are typically more interconnected (i.e., redirections between hosts)
and/or utilize more IPs than hosts in the Malware Ecosystem. Also,
hosts in the PUP Ecosystem are likely to be more prolific distribu-
tors (e.g., CDNs) than in the Malware Ecosystem, as also shown in
the long-tails. This is likely due to the larger volume of traffic that
these services can attract.

The file SHA-2s dropped per domain distribution shows that
domains in the Malware Ecosystem download significantly fewer
unique files onto victim systems than those in the PUP Ecosystem.
However, the actual number of raw files downloaded by PUP do-
mains is only slightly more. There are several possible explanations
for this. Sites hosting malware could be used by malware authors
to only distribute their own binaries, or by illegitimate PPI infras-
tructures that serve fewer malware customers per domain. The
malware sites could also be distributing a few file SHA-2s before
changing domain names in order to evade detection. On the other
hand, while many of the sites in the PUP Ecosystem may be CDNs
that are accessed explicitly by users to download different types
of software (hence its larger distribution of SHA-2s), more of the
malware-hosting sites could be benign sites that are compromised
and unknowingly hosting exploit kits. In this case, victims would be
infected without consent through silent drive-by downloads (hence
the fewer SHA-2s distributed by Malware Ecosystem domains).

70
= PuP
50000 H
mm Malware 60 $ %071
- =
" =
T 40000 g 50 € 507
3 = &
2 O 40 X 40
S 30000 o -
0
S @ 30 gy
3 20000 T 9
& c 20 a 20
w o
- I) I[I ! o IIII[II
. LI T , 11 ""l“l]. , . .
TUNGHOUEUECXELEXVE=0C > SVTE=QUXNCMUSE 505 >5MT THXUEQXCUXNXIXNWOUUSCOE
8 QLELTE 3252 MR P o] 4 £¢23 Led8oges
SCCo0coETELE3EEEETES 2EENEc23EQET3u5uYed 3 CELs22EF300EcSSNTsE
58835202 Es g g3E §Log==oNgeBLESSNEEEMT gSUTy S NESYSEET S
559 0Googe 3022 EE 9s>2 TE & :3Q58E&E2FEq e 22533 & sgpoagciny
coc STedo o3cd oEF co¢c 28 T5PBJ08FT oy £geo0”8 T elYS555x¥o9
@ W XCwm og X3 [o B @%T 5 = <) O © oc QwHrT
S§8 2 3958 58¢ SESE E3 38%% 3 3 S8E 8 8 5% 23EVER
< > o] [l © c = /=
H £ I 5 2 g £ TaE
3 @ 32 z H]
= o o g c
° - U'_ =4 ° % -
= b=
[}]
ol Wl e
| n
700 12 @ 1ol
o =
“ =
3 600 L £
o Q- & 8H
< 500 o 4 9%
H ° >
S 400 0 a 6
° . L6 S
2 300 = Ja}
] € B S 4
©
© 200 w o
| S 2
- [II[I[[I 2 I II
o LI BB W WM A AN oLIL 0 WM NN i i o LA I I IR MW M|
VXULBTINVE EXECH OB L0 VO U X oE=8go: X5 s VXUB>Y NG EECEE S c0o U8t Y
=9 = V=0 Vo “ = ogT oW ﬂJ =0 o= vouv = O Q
S2e88n559285585308ns Z28388y 59038 208050l e8c0ea595388
sComwmT LS LRo¥w 2%gT £355T SQX 583 S o. o=
OCNOBeE-ac8o5E3ENUD LT SO 55NG Y e © NQ SO=V0 0830 cONTE
=g<S :250a2nmg L >4 o2 H I5ED —QEQ>EN2 - ToB=T b
£ Cg :5022c80®o Rl [E¢ @ S0wy £ cE8>E [[z [}
© X80~ 0 S 02 § 40 @ ~Xm = "o @ ox S=0 c
o o T N ax o 3 [< o ok <
5 238 § g
o 2 Z 9] £
jm 2 e m 2
w
I] R) °
z & Q z

Figure 5: Malware/PUP family distributions. From left to right, figures show: i) top families by # of raw downloads; ii) top
droppers by # of known families dropped; and iii) top known families dropped. The top row is for the Giant Component,

while the bottom row is for Non-Giant Components.

Over 98% of SHA-2s are lone files, as shown by the file component
distributions. Lone files do not engage in any file dropping activities,
nor are they dropped by any other file SHA-2 — they are observed to
be downloaded only directly from hosts. Though component sizes
vary, a majority of file components in both the PUP and Malware
Ecosystems have diameters and average path lengths between 0 and
2 (>99.9% for both), although the file component sizes, diameters,
and average path lengths in the Malware Ecosystem are slightly
larger in general. This explains the very low clustering coefficient of
the PUP Ecosystem (GC) and supports the notion that downloader
graphs are generally very sparse and tree-like, with the Malware
Ecosystem having similar, albeit unconnected, distribution patterns.
Evasion tactics. The distribution of IP addresses per domain pro-
vides an interesting result. While there is evidence of over 90% of
domains having only one IP address each, far more IPs per domain
are used by a significant proportion of the PUP Ecosystem than the
Malware Ecosystem. The high usage of IPs per domains in the PUP
Ecosystem could be evidence of increased use of the fast flux tech-
nique in this ecosystem. However, this could also be attributable to
the significant presence of various CDNss in this ecosystem.

Rossow et al. [25] state that rather than using servers with fast
flux, some pay-per-install operators opt to distribute their drop-
per malware through multiple servers, each hosted on a different
autonomous system (AS). Figure 7 shows the distributions of IPs
and ASes being used to serve droppers. We find a fundamental

difference in the dropping modus operandi between large portions
of the PUP and Malware Ecosystems. While only less than 10% of
droppers in the Malware Ecosystem are distributed across more
than one IP or AS, over 70% of droppers in the PUP Ecosystem are
distributed across more than one IP address, while over 45% are
distributed across more than one AS, indicating the use of this tac-
tic described by [25]. Servers with this abundance of resources are
very likely to be constituents of CDNs. In fact, many of these mali-
cious network infrastructures appear to congregate on well-known
ASes, as shown in Table 3. Note that a single network distribution
infrastructure may operate across multiple ASes.

PPI estimation. We also estimate the number of Pay-per-Install
(PPI) services active during this single day. We define a PPI service
as a network-only component that directly drops more than one
type of malware or PUP family. We only consider known families,
as the families of files with singleton AVClass labels could not be
determined. We also aggregate network components with shared
e2LDs to reduce the number of potential PPI services. As a result,
we estimate a potential lower bound of 215 PPIs operating in the
PUP Ecosystem and 179 PPIs operating in the Malware Ecosystem.
We note that the largest “PPIs” in the PUP Ecosystem and Malware
Ecosystem involve about 99% and 24% of all e2LDs and IP addresses
in their ecosystems, respectively. In real terms, this could further
indicate that PPIs, as we know them, are more highly connected
than once thought, either through shared use of infrastructure or

Fraction (%)

— PUP Ecosystem (In-degree)
0.92} - - PUP Ecosystem (Out-degree)
— Malware Ecosystem (In-degree)
- Malware Ecosystem (Out-degree)

0.90 L L L
0 5 10 15 20 25

1.000

0.995 -
0.990 -

0.985

— PUP Ecosystem i 0.080 |
— Malware Ecosystem

File SHA-2s dropped per domain

I N N N 0.975
20 40 60 80 100 0 2 4 6 8 10
File component size

1.000

0.995 -

0.990 -

0.985 -

0.980

0.975

10 20 30 40 50 0 1 2 3 4 5
Raw downloads per domain File component diameter (undirected)

1.000 T T
C =

0.995 -

0.990 -

0.985 -

0.980

0.975

20 40 60 80 100 00 05 1.0 15 20 25 30
IP addresses per domain File component average path length (undirected)

Figure 6: Structural comparison of PUP and Malware Ecosystems.

File Node Degree
1.00
0.70
0.95
g I 1.00
|
5 0.90 | 0.98
5 P -
8 | 0.96
I
: 0.94
ossf |, 1 092
, 0.90
: 0.88
r- 0.86
0.80 . L L
5 10 15 20
Network Node Degree
1.0

4
©
i
[y
\
|
|
[
\
|
\
1
L
|
1
1
1
i
1
1
|
|
|

e o
N
o
1

Fraction (%)
IS)
o

I

0.5
— IPs (PUP Ecosystem)
0.4 - - ASes (PUP Ecosystem)
03 — IPs (Malware Ecosystem)
- ASes (Malware Ecosystem)
0.2 - - -

L T T
10 20 30 40 50 60 70
Per dropper SHA-2

=)

Figure 7: Distribution of IP addresses/autonomous systems
serving each dropper. Droppers with no traceable IPs or
ASes are omitted.

from one service reselling to another. Note that other inter-host
relationships (such as web links between pages) are not considered.

Finding such a high level of connectivity raises the question:
why does the GC exist? Other works suggest that many different
companies engage in unwanted software distribution and that it
is unlikely that they are in close collaboration. However, arguably,
our data suggests otherwise. It is possible that different affiliates
are distributing the same binaries, or that software authors are
running the same auction systems, leading to the downloads of
these same binaries. For instance, at least 4% of file SHA-2s in the
GC are distributed by more than one host. Alternative hypotheses
are that multiple companies that distribute unwanted software are
actually controlled by a single company, and/or that many CDNs

are acting as resellers unto other resellers, and so on. For example,
a particular network infrastructure consists of 2 IPs and 30 differ-
ent e2LDs, including downloadopencloud.com, opencloudsafe.com,
setupfreesoftware.com, and thesafedownload.com, and, within the
data, most major CDNss are structurally connected in one way or
the other. However, as the data suggests, we can confidently rule
out malware delivery mostly being a set of vertically integrated op-
erations. Instead, it is either one big organized operation (unlikely),
or a well-connected marketplace of infrastructure providers.
Summary of results. In this 24-hour snapshot analysis, we showed
that the malicious file delivery landscape could be partitioned into
two disjoint ecosystems: a tightly connected ecosystem that is
mostly responsible for downloading PUP, and a set of isolated in-
frastructures that are mostly responsible for downloading malware.
We found that the PUP Ecosystem is responsible for 80% of the total
number of suspicious file downloads worldwide and we reckon that
it is likely a well-connected marketplace of infrastructure providers.
We calculated the ratio of malware and PUP appearing in the wild,
and we find that PUP dominates over malware by 17:2 in the num-
ber of files downloaded worldwide. We compared the structures
and distribution techniques of the two ecosystems, finding that
PUP operators are more likely to distribute the delivery of their
malicious files across more IP addresses and autonomous systems.
We also found that IPs from the U.S. are core to the PUP Ecosys-
tem, which could be the most effective target for ISP takedowns.
Using our longitudinal analysis technique, one could go further
in identifying the most stable of these IPs such that those that are
purely illicit are targeted for ISP takedowns, while the benign ones
(e.g., CDNs) are advised to improve their security practices.

Table 3: Top 10 autonomous systems by # of network infras-
tructures hosted (i.e., CCs from network-only graph).

AS No. Organization Region Network Infrastructures
Hosted
16509 Amazon.com Inc. us 2901
15169 Google Inc. Us 2508
14618 Amazon.com Inc. us 1425
16276 OVH SAS FR 1289
4134 China Telecom CN 999
13335 CloudFlare Inc. us 788
20940 Akamai Technologies EU 755
24940 Hetzner Online DE 600
4837 China Unicom CN 567
26496 GoDaddy.com LLC Us 563

Table 4: Sensitivity analysis. | log2(X)] is the variable length
signature with the size being the rounded-down logarithm
of the component size X.

Maximum Signature Length Day-Pair 1 Day-Pair 2

1 32.5% 38.1%
Lloga(X)] 41.1% 46.7%
2 46.5% 51.7%

3 48.0% 53.6%

4 48.2% 53.7%

5 48.2% 53.8%

10 48.3% 53.8%

20 48.3% 53.9%

50 48.3% 53.9%
100 48.3% 53.9%

4.2 Longitudinal Analysis

So far, we have looked at the malicious file delivery ecosystem
over 24 hours. However, many questions remain unanswered on
how such delivery ecosystems evolve. Therefore, in this section,
we analyze the temporal evolution of file delivery networks.

PUP Ecosystem persistence. First, we build a graph for each day.
We find that the PUP Ecosystem (i.e., Giant Component) is stable
over the entire year. This result is important, as prior work [17, 20]
only characterizes PUP and malware ecosystems in the short-term.
As described in Section 3.2, we then compute the network-only and
file-only components from the overall graph, which represent the
network-based and file-based delivery infrastructures.
Infrastructure tracking. We aim to develop robust signatures to
track infrastructures in time. We conducted a graph percolation
experiment (see Figure 2), where we measure how quickly the
GC breaks down using a number of graph influence measures, i.e.,
eigenvector, betweenness, in-degree, out-degree, and overall degree
centralities. Following this experiment, we select out-degree as the
criteria to select influential nodes for infrastructure signatures (see
Section 3.2). In practice, degree and out-degree perform identically,
but out-degree is more efficient memory-wise as it does not include
leaf nodes in the tracking signature, which are redundant.

We conduct a sensitivity analysis of tracking performances with
different maximum signature lengths. Here, we select infrastruc-
tures from two randomly selected pairs of consecutive days in the
data series (i.e., Day-Pair 1: 2015-Oct-22 and 2015-Oct-29, and Day-
Pair 2: 2016-Feb-02 and 2016-Feb-09). A match is defined as an

intersection of a pair of signatures across two days. We then com-
pute the percentage of component signatures matched across these
day-pairs using different signature lengths. Finally, by diminishing
returns, we select a maximum signature length of 5 (see Table 4).

This result means that a graph component can be characterized
by up to five of its top out-degree nodes. An example of a net-
work component signature is { ‘http://groupsetzipmyjob(dot)org/hp/’,
‘107.21.97.98°, 54.225.102.164°, 68.232.34.200°, 74.120.16.179’}. Be-
sides making tracking computationally feasible, this also points
out elements (e.g., IP addresses, DNS domains) that are stable over
time and can, therefore, constitute potential intervention points by
law enforcement agencies (LEAs) and security companies (e.g., for
takedowns).

In our tracking analyses, we only consider file clusters that ex-

hibit dropping behavior as file-side distribution infrastructures. The
churn of the remaining lone files is considered separately as these
are less easily attributable to individual actors. We also track infras-
tructures using two temporal granularities: daily (over a month)
and weekly (same weekday sampled over a year). This approach
allows us to observe in detail the delivery network life-cycles in the
medium-term, while also enabling us to monitor their long-term
trends efficiently.
Churn of infrastructures. Figure 8 shows the daily churn of net-
work and file delivery infrastructures, i.e., the number of infrastruc-
tures that are detected from one day to the next. The daily churn
reveals cyclicity in the network and file distribution infrastruc-
tures, both that are active in download activity (total) and that are
tracked, with a cyclic period of seven days. As 1st October 2015 was
a Thursday, the results show that more distribution infrastructures
are active across weekdays (i.e., Mon-Tue, Tue-Wed, Wed-Thu, and
Thu-Fri) and less across weekends (i.e., Fri-Sat, Sat-Sun, Sun-Mon).
The cyclic download activities during the week could show that the
file distribution patterns of cybercriminals and legitimate providers
alike mirror the network use, download, and work-rest patterns
of people and organizations. In other words, infections increase
during business hours because more potential victims have their
computers on, as already observed by previous work [11, 27, 28].

Figure 9 shows the daily churn for lone files. A lone file is a
file that is dropped directly from network hosts and that does not
engage in any further dropping behavior. On the other hand, we
defined a file-side distribution infrastructure as a file-only compo-
nent that exhibits dropping behavior between files. In comparison
with the churn of file infrastructures (Figure 8), the fluctuations in
the presence of lone files (Figure 9) and network infrastructures
(Figure 8) appear more pronounced. This is due to there being many
more network infrastructures and lone files than file infrastructures,
e.g., lone files constitute 98% of file-components. It should be noted
that the weekly fluctuation in the total and tracked network in-
frastructures may not specifically represent hosts going down or
coming up: it only means that the sensors used in this dataset do
not observe downloads from these hosts.

As shown in Figure 10, the weekly churn of delivery infras-
tructures (sampled every Thursday for a year), omits this weekly
periodicity. However, we observe a large drop in download activity
from 19th November 2015 until 14th January 2016, with a small
peak in activity on the week of 17th to 24th December 2015. We
later investigate this anomaly (see ensuing case study).

120000

1000000

== Total (Network-only)
Total (File-only)

== Tracked (Network-only)
Tracked (File-only)

100000 800000

80000
600000
60000

400000
40000

Number of file SHA-2s

20000 200000

Number of infrastructures

= Total (Network-only)
Total (File-only)

= Tracked (Network-only)

Tracked (File-only)

Number of infrastructures

< Total
s Tracked

0 0 0
39 an® L at® L al® L an® L an® L an® A O a® an® a® L an® | an® A° % oS 0 n® 16 46 16 16
Q’LD‘Q\ QBD,Q\ \’m\p\ \’M\p\ @\\p\ ,ﬂ_\x“‘ 16\\,0\ 3“\\,0\ 01‘\’0‘ 06\\,0\ Xc\‘p‘ x“‘\’w x%‘\’“‘ ’L_L\@\ 16\@\ 3“\@\ 0%‘xo\ an\,\ax\ﬂ,\ \)‘B’L\'LM@\ bs\g"j\ \,6‘()6\1‘5‘“1‘0‘5‘09‘
PN AN RN RN arR et NSNS AN g L e N T L L
LN Ll R AP 1Lt AU RS -1 L L L N T LAY PSR- b Y 2l GaI0F (410710 (010 4 10T Gy

Figure 8: Daily churn of delivery infras- Figure 9: Daily churn of lone file SHA-2s Figure 10: Weekly churn of delivery in-

tructures over a month. over a month.

45000
4 40000
35000
30000
25000
20000
15000
10000

5000

mmm Tracked (Network-only)
Tracked (File-only)

Number of infrastructur

0
QAR IR) 130510018 130 118 148

10,110
RN AR 2o

()
100036 MONO]

Figure 11: Lifespan of delivery infrastructures tracked from
1st October 2015, over a year.

T T T T T

Malware - - — — — — ++HH+H+HH g

PUP r - — — — v+ .

Mixed |+ —— - - - - - — — — P

Unclassified BB — — — —HHHHHHHHHHH R

0 10 20 30 40 50 60
Number of weeks observed

Figure 12: Box plots showing the lifespan of file delivery in-
frastructures.

Lifespan of infrastructures. Figure 11 is the lifespan plot of dis-
tribution infrastructures observed since our first day of analysis
(1st October 2015), with a weekly granularity, showing the activity
decay of these infrastructures over a year. That is, infrastructures
observed on each sampled day are matched with infrastructures
observed on 1st October 2015, where the sampling frame is seven
days. We initially track 40.6k network infrastructures and 3.2k file
infrastructures and find that, of these, at least 30k network infras-
tructures (75%) remain active for over 6 weeks, while 10.5k network
infrastructures (26%) and 320 file infrastructures (10%) remain ac-
tive over a year. We also observed a dip in activity beginning from
between 12th and 19th November 2015. However, the rise in tracked
infrastructures between 17th and 24th December 2015 indicates the
re-emergence of some of the same network and file infrastructures.
This volatility in network and file delivery infrastructures could be

frastructures over a year.

due to these infrastructures going in and out of service (e.g., server
take-downs, ceasing activities, new actors entering the ecosystem).
However, this could also be hosts utilizing fast flux or DGA and/or
prolific droppers polymorphing.

We then look at the lifespan of file delivery infrastructures that
drop only PUP, only malware, or both. Figure 12 shows these obser-
vations. We identify and track 344 confirmed malware-only delivery
infrastructures, 805 PUP-only ones, and 50 infrastructures that de-
liver both PUP and malware. We find that file-side (not host-level)
delivery operations involving malware appear to be longer-lasting
than PUP ones, i.e., file-dropping networks are active for a median
of 5 weeks for malware vs. 3 weeks for PUP. This could be due to
the likelihood that malware is stealthier in their installation and
operation on a victim computer, and/or more resilient to removal
than that of PUP. Mixed operations involving both PUP and mal-
ware appear to be the most enduring. However, the validity of this
result is still questionable due to its sampling biases.

The anomalous drop in download activity. We observe a sub-
stantial drop in download activity between 12th and 19th November
2015. Symantec [30] reports the cessation of activities of the cyber-
criminal group behind the Dyre financial fraud trojan, following
a Russian LEA operation in November 2015. We also observe sig-
nificant drops in the presence of other families including upatre,
amonetize, installcore, eorezo, and convertad.

Summary of results. In this longitudinal analysis, we found that
the PUP Ecosystem is stable in the long-term. We found periodic
download patterns over a week, perhaps in accordance with the
Routine Activities Theory from criminology [10]. We also found
that network infrastructures tend to be quite short-lived, where
75% survive for over 6 weeks, while 26% survive for over a year.
Finally, we presented a case study which denudes the possibility of
common distribution backbones between malware, such as Dyre,
and popular PUP PPIs, such as Amonetize.

5 DISCUSSION

In this paper, we presented a data-driven analysis of the delivery
of malicious files on the Web. Our findings shed some light on
malware and PUP operations more comprehensively than previous
work. In this section, we take a step back and reason over what
our findings mean, and how they could be applied for mitigation
purposes. We then highlight some limitations to our approach.

5.1 Implications of findings

In our study, we found two largely disjoint ecosystems, one respon-
sible for the delivery of PUP and one dedicated to installing malware
on victim computers. We find that the malicious file delivery ecosys-
tem makes considerable use of CDNs, which can make takedown
operations difficult. On the other hand, we identified ASes in which
malicious network infrastructures congregate. This result is con-
sistent with previous research [29] and suggests that ISP-based
interventions can still be a valid method to disrupt malware opera-
tions. In the paper, we presented a methodology to identify network
elements (DNS domains, IP addresses) that do not change over time.
This methodology could be further developed to identify optimal
intervention points that LEAs could target to perform disruption,
solving the fundamental problem of identifying the right elements
to target when performing takedowns, as highlighted by previous
work [21]. Other future works include repeatability experiments
with other (open-source) datasets, and identifying more real-world
stimuli (e.g., ISP takedowns) and MDN adaptations within the data.

5.2 Limitations

As we mentioned, our data-driven analysis has limitations. By ap-
plying graph analysis techniques to the download graph, we obtain
a proxy to what is happening on the victim computers. The type
of analysis that we perform allows us to characterize the opera-
tion of PUP and malware delivery networks, but we cannot be
certain about some of the details of malware operations that go
beyond our study data. For example, by looking at the dropping
behavior of hosts, we may estimate whether they belong to exploit
kit infrastructures or not. However, we do not observe the actual
vulnerabilities being exploited on the host as part of a drive-by
download attack. For this reason, it could be that some of the in-
frastructures that we may consider as exploit kits are just relying
on social engineering. In a similar sense, we are not able to see
auxiliary connections between hosts, such as direct web links.

We identify files using their SHA-2 (256 bits) hash function. This
allows us to reliably distinguish between unique files, e.g., variants
of the same malware family, or to identify the same file in the
wild under different guises, e.g., a malware binary using different
file names. However, this method of identification still presents
complications for packed files. Packing alters the SHA-2 of a file
and so the same binary that is re-packed multiple times would
appear as different unique files. This may manifest in our technique
as a host or dropper delivering multiple files when they are actually
repacked versions of the same file binary.

As an additional limitation, some of our analysis relies on third-
party information such as VirusTotal and the AVClass tool. This
information, however, is not perfect (e.g., some false positive indica-
tions), and, as we have shown, is often incomplete. For this reason,
some of the file components that we identified may have been mis-
classified. We focus our analysis on files with known families. This
helps to mitigate false positive indications from VirusTotal, as each
binary in this dataset that is assigned a family name by AVClass
has at least 2 different AV engines agreeing on the associated mal-
ware/PUP family. This classification excludes AV engines that may
also assign positive indications, but are not taken into account by
AVClass due to them only assigning a generic family name.

6 RELATED WORK

This section aims to provide the reader with an overview of the
different aspects explored by previous research in this area.

6.1 Malicious Payloads

Malware. Malware has been a growing problem for the past three
decades. Previous research focused on studying how malware ob-
fuscates itself to avoid easy detection [9]. Over the years, malware
has been used for many reasons: sending spam emails [28], stealing
banking credentials from infected computers [6, 27], encrypting
victim data and asking for a ransom [16]. The research community
showed that droppers that belong to PPI services often download
prominent malware families [27, 28].

PUP. Recent research shows that PUP is rapidly becoming a crit-
ical problem. For example, two recent papers show that rogue
browser extensions that contain hidden functionalities are on the
rise [14, 15]. Thomas et al. [31] report that 5% of Google users have
installed browser extensions that substitute the advertisements that
they see. Such extensions can be particularly dangerous as rogue ad
networks can be used to infect users with malware through drive-
by download attacks [33]. Thomas et al. [32] provided a systematic
study of PUP prevalence and its distribution through commercial
pay-per-install (PPI) services, mainly focusing on four prominent
downloaders from Amonetize, InstallMonetizer, OpenCandy, and
Outbrowse. Their research results claimed that commercial PPIs
drive over 60 million download attempts per week and knowingly
attempt to evade user protections (e.g., antivirus software). Kotzias
et al. [17] take a different approach, identifying dominant PUP
publisher names from code signing certificates, to study PUP preva-
lence and its distribution through PPI services. The authors claim
that the fundamental difference between malware and PUP is the
distribution mechanism. They argue that malware distribution is
dominated by silent installation through vulnerability exploitation,
while PUPs are installed with the consent of the users.

6.2 Payload Delivery Techniques

The research community identified two main malware delivery
methods: exploit kits and pay-per-install services.

Exploit Kits. Exploit kits have been used for many years to spread
malware. In a nutshell, exploit kits collect a large number of ex-
ploits targeting many versions of operating systems, browsers, and
browser plugins, to make sure that criminals can infect as many
victim computers as possible [12]. One of the earliest exploit kits
is MPack, a PHP-based kit released in late 2006 [12]. The main
functionality of these kits is to gather information on the victim
machine, find vulnerabilities, determine the appropriate exploit,
and, finally, deliver it (e.g., drive-by downloads) and execute the
malicious payload. Grier et al. [12] focused on malware installed
upon a successful browser exploit, and investigated the emergence
of the exploit-as-a-service model for drive-by browser compromise.
They did so by analyzing over 10,000 distinct binaries extracted
from 77,000 malicious URLs. Their study showed that 9 exploit kits,
though a small number, account for 92% of the malicious URLs in
their dataset, 29% of which belong to the Blackhole exploit kit.
Pay-Per-Install (PPI) Services. PPI services have been existing
for years. They originated as services to facilitate the distribution

of advertisements, but have seen significant (malicious) changes
over the years by centering on pushing malware and spyware to
unsuspecting users [28]. A typical PPI ecosystem has three main
actors: a client, a service provider, and an affiliate. Caballero et
al. [7] provided the first large scale measurement of blackmarket
pay-per-install services in the wild. They achieve this by harvest-
ing over a million client executables using vantage points spread
across 15 countries. This work found that 12 out of 20 of the most
prevalent malware families at the time employed PPI services to
buy infections. Kotzias et al. [17] leveraged file dropping graphs to
build a publisher graph and identify specific roles in the ecosystem.
The authors tag roles (e.g., client, service provider, and affiliate) to
each publisher by measuring the in-degree and out-degree of each
cluster in the publisher graph. Publishers with both high in-degree
and out-degree behave like PPI service providers; publishers with
high in-degree but low out-degree are likely advertisers; publishers
with low in-degree and high out-degree are likely affiliates.

7 CONCLUSION

In this paper, we presented the first comprehensive data-driven
analysis of malicious file distribution on the web. We discovered
that there are two disjoint ecosystems responsible for the delivery
of PUP and malware, respectively, and that the PUP ecosystem
is particularly stable over the long-term. Studying the character-
istics of these ecosystems in detail, together with their temporal
dynamics, we found that the PUP ecosystem is responsible for 80%
of suspicious downloads worldwide. We estimated the ratios of
PUP-to-malware in the wild to be 17:2 and differentiated the modus
operandi of file distribution between the two ecosystems. We also
tracked these distribution infrastructures over a year, finding that
75% of malicious network infrastructures survive for over six weeks,
while 26% survive for over a year. Our findings help researchers gain
a better understanding of this ecosystem, and allow us to identify
promising routes for more effective mitigation against the distribu-
tion of malicious software. For instance, we devised a methodology
to identify those elements in a delivery infrastructure that change
slowly over time. In future work, we will explore the possibility of
using such elements (IP addresses, Autonomous Systems, Domain
Names) for performing effective takedown operations.

8 ACKNOWLEDGMENTS

We would like to thank all of our anonymous reviewers. Colin
C. Ife was funded by EPSRC under grant EP/M507970/1. Steven]J.
Murdoch is supported by The Royal Society under grant UF160505.

REFERENCES

[1] Adware/ExtCrome.syek. https://www.avira.com/en/support-threats-summary/
tid/143973/threat/Adware.ExtCrome.syek.

[2] IPv6 martian and bogon filters. https://6session.wordpress.com/2009/04/08/
ipv6-martian-and-bogon-filters/. Accessed: 2018-05-24.

[3] VirusTotal. https://www.virustotal.com.

] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis. A multifaceted approach
to understanding the botnet phenomenon. In Internet Measurement Conference
(IMC), 2006.

[5] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. A view on current
malware behaviors. In LEET, 2009.

H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi, and
L. Wang. On the analysis of the zeus botnet crimeware toolkit. In Privacy Security
and Trust (PST), 2010.

=

[7] J. Caballero, C. Grier, C. Kreibich, and V. Paxson. Measuring pay-per-install: The
commoditization of malware distribution. In USENIX Security Symposium, 2011.

[8] D.S.Callaway, M. E. Newman, S. H. Strogatz, and D. J. Watts. Network robustness
and fragility: Percolation on random graphs. Phy. rev. letters, 85(25), 2000.

[9] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware
malware detection. In IEEE Symposium on Security and Privacy, 2005.

[10] L.E.Cohen and M. Felson. Social change and crime rate trends: A routine activity
approach. American sociological review, 1979.

[11] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding,
detecting, and disrupting botnets. SRUTI, 5:6-6, 2005.

[12] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko,

P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis, et al. Manufacturing com-

promise: the emergence of exploit-as-a-service. In ACM Conference on Computer

and Communications Security (CCS), 2012.

H. J. Highland. The BRAIN virus: fact and fantasy. Computers & Security, 1988.

N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and

K. Thomas. Trends and lessons from three years fighting malicious extensions.

In USENIX Security Symposium, 2015.

[15] A.Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson. Hulk:
Eliciting malicious behavior in browser extensions. In USENIX Security Sympo-
sium, 2014.

[16] A.Kharraz, W. Robertson, D. Balzarotti, L. Bilge, and E. Kirda. Cutting the gordian
knot: a look under the hood of ransomware attacks. In Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2015.

[17] P.Kotzias, L. Bilge, and J. Caballero. Measuring PUP Prevalence and PUP Distri-
bution through Pay-Per-Install Services. In USENIX Security Symposium, 2016.

[18] P. Kotzias, S. Matic, R. Rivera, and J. Caballero. Certified PUP: Abuse in authenti-
code code signing. In ACM Conference on Computer and Communications Security
(CCS), 2015.

[19] B.]. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitras. The dropper effect:

Insights into malware distribution with downloader graph analytics. In ACM

Conference on Computer and Communications Security (CCS), 2015.

B. J. Kwon, V. Srinivas, A. Deshpande, and T. Dumitras. Catching worms, trojan

horses and pups: Unsupervised detection of silent delivery campaigns. arXiv

preprint arXiv:1611.02787, 2016.

Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, and W. Lee. Beheading hydras:

performing effective botnet takedowns. In Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, pages 121-132. ACM, 2013.

[22] T.Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. Webwitness: Investigat-
ing, categorizing, and mitigating malware download paths. In USENIX Security
Symposium, 2015.

[23] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad. Towards measuring and
mitigating social engineering software download attacks. In USENIX Security
Symposium, 2016.

[24] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, N. Modadugu, et al. The

ghost in the browser: Analysis of web-based malware. In HotBots, 2007.

C. Rossow, C. Dietrich, and H. Bos. Large-scale analysis of malware downloaders.

In Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).

2013.

[26] M. Sebastian, R. Rivera, P. Kotzias, and]J. Caballero. Avclass: A tool for massive

malware labeling. In International Symposium on Research in Attacks, Intrusions,

and Defenses (RAID), 2016.

B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer,

C. Kruegel, and G. Vigna. Your botnet is my botnet: analysis of a botnet takeover.

In ACM conference on Computer and communications security (CCS), 2009.

B. Stone-Gross, T. Holz, G. Stringhini, and G. Vigna. The underground economy

of spam: A botmaster’s perspective of coordinating large-scale spam campaigns.

In Workshop on lage-scale exploits and emerging threats (LEET), 2011.

B. Stone-Gross, C. Kruegel, K. Almeroth, A. Moser, and E. Kirda. Fire: Finding

rogue networks. In Annual Computer Security Applications Conference (ACSAC),

2009.

[30] Symantec. Dyre: Operations of bank fraud group grind to halt
following takedown. https://www.symantec.com/connect/blogs/
dyre-operations-bank-fraud- group-grind- halt-following-takedown, ~ 2016.
[Online; accessed 11-August-2017].

[31] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy,

A. Nappa, V. Paxson, P. Pearce, et al. Ad injection at scale: Assessing deceptive

advertisement modifications. In IEEE Symposium on Security and Privacy, 2015.

K. Thomas, J. Crespo, J.-M. Picod, C. Phillips, C. Sharp, M.-A. Decoste, A. Tofigh,

M.-A. Courteau, L. Ballard, R. Shield, N. Jagpal, M. Abu Rajab, P. Mavrommatis,

N. Provos, E. Bursztein, and D. McCoy. Investigating Commercial Pay-Per-Install

and the Distribution of Unwanted Software. In USENIX Security Symposium,

2016.

[33] A.Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and G. Vigna. The
dark alleys of Madison avenue: Understanding malicious advertisements. In
Internet Measurement Conference (IMC), 2014.

==
L=t

[20

[21

[25

[27

[28

[29

[32

https://www.avira.com/en/support-threats-summary/tid/143973/threat/Adware.ExtCrome.syek
https://www.avira.com/en/support-threats-summary/tid/143973/threat/Adware.ExtCrome.syek
https://6session.wordpress.com/2009/04/08/ipv6-martian-and-bogon-filters/
https://6session.wordpress.com/2009/04/08/ipv6-martian-and-bogon-filters/
https://www.virustotal.com
https://www.symantec.com/connect/blogs/dyre-operations-bank-fraud-group-grind
https://www.symantec.com/connect/blogs/dyre-operations-bank-fraud-group-grind
-halt-following-takedown

	Abstract
	1 Introduction
	2 Dataset
	3 Methodology
	3.1 Snapshot Analysis
	3.2 Longitudinal Analysis

	4 Data Analysis
	4.1 Snapshot Analysis
	4.2 Longitudinal Analysis

	5 Discussion
	5.1 Implications of findings
	5.2 Limitations

	6 Related work
	6.1 Malicious Payloads
	6.2 Payload Delivery Techniques

	7 Conclusion
	8 Acknowledgments
	References

