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ABSTRACT

Combined heating, cooling and power (CHCP) systems, so-called trigeneration, are 

widely accepted as more energy-efficient and environment-friendly alternatives to 

traditional separate energy generation. Nevertheless, the tasks of synthesis and 

optimization of trigeneration systems are strongly hampered by the long-term 

uncertainties in energy demands and prices. In this work, we introduce a new scenario-

based model for the stochastic optimization of CHCP systems under uncertainty in several 

process design parameters. Energy generation operators are proposed to ensure the 

optimal sizing and operation of each equipment in each optimization scenario. Our main 

objective is to enhance energy efficiency by synthesizing the most cost-effective CHCP 

system able to operate in wide-ranging scenarios of energy demands and prices. For this 

purpose, uncertain design parameters are modelled as a set of loading and pricing 

scenarios with given probability of occurrence. The set of scenarios contains correlated 

energy prices described through a multivariate Normal distribution, which are generated 

via a Monte Carlo sampling technique with symmetric correlation matrix. The resulting 

stochastic multiscenario MINLP model is solved to global optimality by minimizing the 

expected total annualized cost. A thorough economic risk analysis underlines the 

effectiveness of the proposed methodology. This systematic approach represents a useful 

tool to support the decision-making process regarding system efficiency and robustness.

Keywords: Mixed-integer nonlinear programming (MINLP); Combined heating, cooling 

and power (CHCP) production; Integrated sizing and operation; Correlated data 

uncertainty; Risk management.
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1. Introduction

Combined heating, cooling and power (CHCP) production through trigeneration systems 

has gained considerable traction during the last decade due to its multiple advantages and 

timeliness. Energy efficiency is a flagship of the European Union for the reduction of 

greenhouse gas emissions, climate change mitigation, and lessening of primary energy 

consumption and energy imports. In this light, CHCP systems provide a reliable highly 

energy-efficient solution to address those challenges. Converting around 75–80% of fuel 

sources into useful energy and reducing grid losses in comparison to conventional 

separate production, CHCP systems have the ability to meet thermal and power demands 

through centralized or distributed energy generation [1,2]. In fact, the European Union 

has strongly encouraged the assessment of the potential of cogeneration (or combined 

heating and power – CHP) and trigeneration towards their broad implementation into the 

residential, commercial and services sectors of the member states [3]. A comprehensive 

overview on drivers and definitions, along with the major economic, environmental and 

technological advantages of trigeneration systems is presented in Ref. [4].

The optimal design of CHCP systems can be a complex endeavour. In addition to 

dealing with different energy demands (heating, cooling and electricity) and available 

energy technologies, the tasks of synthesis and optimization must also account for 

uncertainties arising from different sources [5–7]. In CHCP systems design, uncertainties 

encompass intrinsic long-term fluctuations over the plant lifetime in energy demands, fuel 

and electricity prices, as well as energy regulations, to list but a few [8,9]. Disregarding 

uncertainty effects on the system design and operation could lead to suboptimal solutions, 

in which the impaired economic and energy performances would not provide 

longstanding economic viability nor reduce financial risks. Nevertheless, most of the 

research about the optimal design of cogeneration and polygeneration systems still relies 
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on deterministic approaches that cannot capture the stochastic nature of uncertain design 

parameters [1,2,10–15].

Gamou et al. [16] have pioneered the use of continuous random variables in 

stochastic optimization of cogeneration systems, to describe the stochastic behaviour of 

uncertain energy demands. To do so, the authors have applied a sensitivity analysis and 

an enumeration methodology, which revealed that hourly energy loads can be portrayed 

by a Normal distribution with 95% of its area falling in the ±20% average energy demands 

range. A hierarchical optimization algorithm was then proposed to determine the optimal 

sizing problem (upper level) and optimal operating planning (lower level). A related 

stochastic approach has been pursued by Li et al. [17] to address the optimization of 

building CHCP systems under demand uncertainty. Their approach combines Monte-

Carlo simulation method and mixed-integer nonlinear programming (MINLP) 

optimization. Hu and Cho [18] have also studied the optimization of CHCP systems under 

uncertainty in the energy demand. The authors have introduced a probability constrained 

multi-objective programming model, wherein probability constraints are used to ensure 

that the operational reliability complies with the stochastic energy demand. 

Wang and Singh [19] have developed a stochastic multi-objective approach for 

the optimal economic dispatch of CHP systems. The authors have used a particle swarm 

optimization (PSO) algorithm to solve the dispatch problem, while treating electric power 

and heating demands as random decision variables. Ersoz and Colak [20] have 

investigated the effects of long-term economic uncertainties on the operational planning 

of industrial CHCP plants. The authors have employed a genetic algorithm (GA) and a 

non-parametric stochastic approach to improve decision-making process at the 

investment level. Even if metaheuristic algorithms such as PSO and GA present a number 

of advantages, their inability to ensure global (or even local, in some cases) optimal 
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solutions can be a major shortfall in comparison to mathematical programming 

approaches.

Urbanucci and Testi [8] have proposed a two-stage stochastic model for the 

optimal sizing and operation of cogeneration systems, considering the long-term 

uncertainty in energy load demand. Firstly, the authors have employed a probabilistic 

approach based on a dynamic Monte Carlo simulation of the entire life-cycle of the CHP 

system for a more comprehensive risk analysis. Then, multi-objective optimization has 

been performed taking into consideration the operational strategies of Following the 

electric load (FEL) and Following the thermal load (FTL). Their results have showed that 

optimal size and total annual cost savings are significantly impacted by the demand 

uncertainty. Interestingly, the authors report that the optimal sizing solutions obtained 

through the probabilistic approach can be up to 30% smaller than those provided by the 

deterministic one. Yet, it should be noted that the rule-based operating FEL and FTL 

strategies underperform the results attainable by optimization models [15,18]. Finally, the 

same authors have emphasized that further research should focus on more complex 

polygeneration systems with thermal storage, as well as the influence of uncertainty on 

multiple process parameters, and assessment of correlations between the uncertain 

parameters. Their suggestion is aligned with the limitations of the aforementioned works, 

given that generally only a small set of the most important uncertain parameters are 

considered (e.g., uncertainty in energy demands while neglecting energy prices and their 

potential correlations). 

To overcome shortcomings in preceding research, we introduce a new scenario-

based modelling approach for the synthesis and optimization of CHCP systems under 

long-term uncertainty in energy load demands and prices. Our economic-oriented 

optimization model is based upon a general superstructure encompassing distinct 
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equipment units for heating, cooling and electricity generation, along with thermal energy 

storage and bidirectional grid connection. The methodology combines mathematical 

programming and stochastic optimization aimed at enhancing process energy efficiency, 

while accounting for wide-ranging scenarios of energy demands and prices. For this 

purpose, uncertain design parameters are mathematically modelled as a set of different 

scenarios with a given probability of occurrence. To the best of our knowledge, this is the 

first stochastic MINLP-based CHCP model to simultaneously deal with the energy 

demands uncertainty and the correlation between uncertain energy prices within a 

multiscenario optimization approach. The resulting stochastic MINLP model is solved to 

global optimality through the minimization of the expected value for the total annualized 

cost distribution. An illustrative case study based on a hotel complex in the northern 

region of Portugal is performed to evaluate the capabilities of the proposed approach. 

Major contributions and innovative features from this work include: 

(i) The development of a stochastic modelling approach for the cost-effective 

optimization of the integrated sizing and operation of CHCP systems under 

uncertainty, which can be efficiently solved to global optimality by using 

state-of-the-art MINLP solvers.

(ii) The proposition of new energy generation operators to ensure the optimal 

design and operation (on/off status) of each equipment in the entire set of 

optimization scenarios.

(iii) The consideration of all relevant long-term uncertainty sources that can 

affect the system performance, which comprise heating, cooling and 

power demands as well as electricity and natural gas prices.

(iv) The consideration of energy prices as correlated uncertain design 

parameters, which are generated from a multivariate Normal probability 
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distribution via Monte Carlo sampling technique based on a symmetric 

correlation matrix.

(v) The proposition of a scenario generation framework to obtain a set of 

uncertain probabilistic scenarios that appropriately describe the uncertain 

search space within a reduced number of scenarios.

(vi) The comprehensive analysis of stochastic solutions in contrast to those 

obtained from the conventional deterministic approach to demonstrate the 

inaccuracy of the deterministic CHCP system design.

(vii) The in-depth financial risk analysis to support the long-term decision-

making process. 

The paper is structured as follows: In Section 2, we briefly introduce the problem 

statement of optimal design and operation of CHCP systems under long-term uncertainty 

in energy demands and prices. In Section 3, we present the proposed methodology 

regarding the general superstructure definition, scenarios generation framework and 

optimization strategy. The stochastic and deterministic modelling approaches are 

developed in Section 4. In Section 5, we describe the illustrative case study used to assess 

the accurateness of the new optimization method. The financial risk analysis and critical 

appraisal of the uncertain parameters influence on the system cost-efficiency are 

discussed in Section 6. Finally, in the last section, we summarize the main remarks and 

conclusions from this study and provide some directions for future research.

2. Problem statement

The problem of synthesis and optimization of trigeneration (CHCP) systems under long-

term uncertainty in both energy load demands and prices can be formally stated as 

follows. A set of utility streams and energy services (including cooling water, natural gas 
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and electric power) is given with their related costs. In addition, distinct equipment pieces 

are considered for heating, cooling and electricity generation as well as energy storage, 

which include natural gas-fired cogeneration units (reciprocating internal combustion 

engines – ICEs), auxiliary gas-fired boilers (GFBs), absorption chillers (ACHs), and a 

thermal energy storage (TES) tank. All equipment units are provided with known 

technological characteristics (i.e., part-load performance curves, rated capacities and 

nominal efficiencies) and corresponding capital, operating and maintenance (O&M) 

costs. Our main goal is to synthesize the most cost-effective CHCP system able to meet 

end-users thermal and electricity demands, while accounting for a large range of different 

scenarios of energy loads and prices. Thus, we consider the heating, cooling and 

electricity demands along with electricity tariffs and fuel prices as uncertain design 

parameters. The latter are systematically expressed by means of correlated optimization 

scenarios with distinctive loading and pricing alternatives –hereafter, referred to as 

loading and pricing (L&P) scenarios–. It is worth mentioning that the uncertainty sources 

are associated with the significant fluctuations observed in energy demands and energy 

prices over the lifetime of trigeneration systems. Fig. 1 displays the general superstructure 

and the main decision variables proposed for the optimal synthesis, design and operation 

of CHCP systems.

The simultaneous synthesis (equipment selection) and optimization (equipment 

sizing and selection of on/off operating status and partial thermal load) of CHCP systems 

under several sources of uncertainty is a complex task aimed at attaining an optimal plant 

configuration and operational scheduling for the entire set of L&P scenarios at once. The 

optimal solution should correspond to a trigeneration system containing the lowest 

equipment capacities able to efficiently operate in all L&P scenarios with minimal energy 

consumption. Accordingly, the decision variables of the problem are separated into 
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scenario-dependent and scenario independent variables. The latter group contains the 

design variables that are not affected by the uncertain parameters, which comprise all 

equipment sizing variables. Instead, the scenario-dependent variables are highly sensitive 

to the uncertain search space thereby providing a recourse against possible infeasibilities 

that could arise from a particular uncertainty materialization [21]. In this multiscenario 

framework, the operating decision variables (including heating, cooling and electricity 

generation; electricity purchased from and sold to the grid; part-load efficiencies; part-

load performance features) are scenario-dependent optimization variables. In pursuit of 

the aforementioned goal of obtaining the most cost-effective design and operation of 

CHCP systems, we consider the minimization of the expected value for the total 

annualized cost distribution as the objective function. This objective function accounts 

for the capital investment in equipment and O&M expenditures (scenario independent 

decision variables) and operating expenses related to electricity and fuel consumption 

(scenario-dependent variables).

3. Methodology

3.1. Superstructure

As aforementioned, the modelling approach for the synthesis and optimization of CHCP 

systems is based on the general superstructure exhibited in Fig. 1. The superstructure 

embraces several thermal equipment pieces adequately integrated to generate electricity, 

heating and cooling. The equipment units are directly linked to a thermal energy storage 

unit to improve overall plant efficiency. Under such a system configuration, spark ignited 

ICEs fuelled by natural gas are used as prime movers for the simultaneous power and heat 

production into the cogeneration plant. Spark-ignition ICE configurations are well-

established technologies widely applied in industrial facilities, as well as residential and 
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institutional/commercial buildings (e.g., hospitals, hotels, water treatment facilities, to 

name a few) for meeting hot water requirements and/or space heating. Single or multiple 

ICE units –with capacities usually ranging from 10 kW to 18 MW– can be employed in 

cogeneration plants [22]. 

Whereas thermal and electrical load requirements are fulfilled by the ICE units, 

we consider a bidirectional grid connection to allow electricity purchase and sale for 

responding to any power shortage and excess, respectively. In addition, natural gas-fired 

boilers are utilized as auxiliary energy sources to meet energy demands. The main 

components of the trigeneration system also include the TES unit that is operated in 

charging and discharging modes for more efficient energy usage by decoupling thermal 

and power generation. The thermal energy from the TES tank can be either used to 

directly fulfil heating loads or cover cooling demands via ACH units. It should be noted 

that the employment of multiple equipment pieces with discrete sizes and rated capacities 

is allowed for the ICE, GFB and ACH technologies. For simplifying the mathematical 

formulation, we only consider the installation of equivalent units for each technology to 

restrict the number of different part-load performance curves (generally expressed by 

nonlinear and non-convex functions) required in the model.

3.2. Uncertainty characterization and scenarios generation

Fluctuations in energy load demands and energy prices may be significant over the CHCP 

systems lifetime (e.g., 10–20 years). While accurate energy load estimations are difficult 

to forecast within the plant life-cycle period, the intrinsic uncertainty of energy prices can 

also have an important effect on the system energy and economic performances [8,23]. 

For better understanding of how long-term uncertainties can affect the cost-efficiency of 

CHCP systems, we treat all energy demands (including heating, cooling and electrical 
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loads) and energy prices (including natural gas price and electricity purchasing and selling 

tariffs) as uncertain (stochastic) design parameters. Additionally, we consider that 

uncertain price parameters can be correlated within a large-scale timeframe. To do so, we 

assume that all uncertain parameters can follow Normal (Gaussian) correlated (energy 

prices) and/or uncorrelated (energy loads) distributions. Note that multivariate Normal 

probability distributions are widely used in the literature to describe the uncertainty in 

energy loads and prices [8,16,20,23]. In this way, the uncertain parameters are 

mathematically modelled through multivariate Normal probability distributions as a set 

of representative L&P scenarios with known probability of occurrence. It should also be 

noted that the same probability of occurrence is presumed for all L&P scenarios. Hence, 

each L&P scenario expresses a unique combination of random values, or a sole sample, 

extracted from the Normal probability distributions for the uncertain load and price 

parameters. Thus, each L&P scenario describes a discrete value combination of 

uncorrelated energy load parameters (i.e., heating, cooling and electricity demands) and 

correlated price parameters (i.e., natural gas price and electricity purchasing and selling 

tariffs). Energy and economic random values limited by distributions boundaries are 

generated via a Monte Carlo sampling technique with symmetric correlation matrix. The 

Mersenne twister-based algorithm [24] for random values generation was implemented 

in MATLAB. 

As fluctuating electricity and fuel prices, as well as their ratio (often referred to as 

spark spread), can greatly influence the long-term economic viability of CHCP systems 

[15,25,26], we assume that the uncertain energy prices can be correlated in this new 

stochastic approach. The probability density function for the correlated continuous 

random variables , where each one is expressed by a univariate (or 1 2, ,..., dX X X

marginal) Normal distribution can be defined as follows. 
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       (1)         
1

2 1
1 2, ,..., 2 exp 0.5 T

X df X X X X X  


      

In Eq. (1),  denotes the -dimensional vector of expected mean values (nominal) for m d

each random variable ( ).  refers to the covariance matrix ( ), whilst  is its im å d d´ å

determinant.  is a symmetric positive definite matrix wherein the diagonal elements å

contain the variances for each variable ( ), and the off-diagonal elements comprise the 2
is

covariances between variables ( ). It is noteworthy that a diagonal covariance matrix ijs

(i.e., all covariances are null) indicates that there is no correlation between the random 

variables. Hence, the scenario generation framework requires the attribution of the 

covariance matrix in addition to the expected values and variances for the uncertain 

parameters. The off-diagonal elements in the covariance matrix can be obtained from the 

matrix of correlation  given by,ijr

       (2)2 2
ij ij i j   

Since the symmetric correlation matrix contains information about each pair of 

correlated random values, it can be used to describe the interactions between the uncertain 

parameters by setting all off-diagonal elements with values ranging from -1 to 1. In this 

particular case, we set positive correlations for energy prices by assuming typical trends 

of cross-energy European markets [27]. Correlated pricing scenarios obtained from this 

framework by considering a standard deviation of 20% from the expected mean values 

(0.04 US$ (kWh)-1 for the natural gas price and 0.12 US$ (kWh)-1 for the electricity 

purchasing tariff as retrieved from Ref. [28]) and distinct matrix correlation factors are 

depicted in Fig. 2. Although we only consider positive correlations for the uncertain 
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energy prices (here, the uncertain energy demands are generated as a set of uncorrelated 

stochastic parameters), the proposed methodology can be easily extended to account for 

positive and/or negative correlations between any pair (or even group) of random 

variables, without loss of generality of the proposed method. In addition, we consider 

Normal distributions for the sake of simplicity; however, this approach can also handle 

any kind of probability distribution. It is also noteworthy that the set of L&P scenarios 

generated from previous approach along with their related probabilities are used as input 

data to solve the stochastic multiscenario model (presented in next sections), which 

allows obtaining a distribution of results for each scenario-dependent variable.

Some final remarks should be made regarding the well-known concern in 

Stochastic Programming about the required number of scenarios to correctly solve the 

stochastic model. As expected, the model accuracy generally increases as a higher number 

of scenarios is considered during the optimization process. However, the size and 

complexity of the model and, consequently, the CPU time to find feasible solutions also 

increases due to the current algorithmic and computational limitations. Typically, the best 

number of scenarios is chosen by balancing the computational effort with the larger 

number of scenarios for which the difference between two consecutive sets does not 

present significant variations in terms of the optimal solutions found (an interested reader 

is addressed to Law and Kelton [29] for further details on this issue). Hence, additional 

attention should be paid to maintain the number of scenarios to a moderate level to ensure 

that the model can be solved with a reasonable computational cost [5]. 
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3.3. Optimization strategy

Decision-making under uncertainty is a complex task, in which the decision maker needs 

the assistance of effective optimization approaches to deal with the wide range of possible 

alternatives. As deterministic approaches are not able to capture the dynamic behaviour 

of energy demands and prices, our modelling approach relies on a stochastic optimization 

strategy. For reducing the problem size and thereby the computational effort, stochastic 

model optimizations are performed by considering hourly-averaged load and price values 

for descriptive yearly periods (i.e., representing important seasonal weather and prices 

variations) within the available timeframe dataset [30]. As the global optimal solution in 

this type of problem should always correspond to the sum of optima of each timestep –in 

which each optimal solution has no information about previous timesteps–, we consider 

a single optimization problem solved for an entire set of representative scenarios for the 

whole-time domain (see the case study) [8]. As mentioned before, the number of scenarios 

is chosen to be the smallest set which guarantees that the solutions found are completely 

stable and roughly coincident with those achievable when adopting the entire set of hourly 

timesteps (8760 h). In addition, the probabilistic scenarios are generated with standard 

deviations from expected mean values, which are consistent with the energy and price 

peaks measured within the whole-time domain to ensure system reliability. This 

optimization strategy ensures that optimal solutions can be found by using state-of-the-

art MINLP solvers within reasonable computation times. In fact, the global optimum 

cannot be guaranteed if a metaheuristic-based approach is used to solve this problem. The 

mathematical formulation is developed as follows.
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4. Stochastic multiscenario model

The mathematical model for the optimization of CHCP systems under uncertainty is 

developed via a multi-scenario MINLP-based formulation. An economic-oriented 

modelling approach is proposed for the cost-effective synthesis, design and operation, in 

which binary variables represent the discrete decisions about the selection and on/off 

status of each equipment unit at each L&P scenario. The simultaneous model 

encompasses electricity and thermal balances, demand and capacity constraints, 

equipment sizing equations and operating (off-design) performance curves, which should 

be considered to optimize the economic objective function. In the stochastic multiscenario 

approach, the model constraints should explicitly capture the effect of the uncertain 

parameters (including energy demands and prices) on the optimal CHCP system synthesis 

and operation. It is worth mentioning that the sizing-related decision variables are not 

affected by these uncertainty sources. For this reason, equipment capacities are defined 

as scenario independent decision variables. Conversely, all operating performance 

variables are scenario-dependent decision variables. Since both capital and operating 

expenses are considered for the cost-effective optimization of the CHCP system, the 

uncertain design parameters should also affect the objective function. In this work, we 

consider the minimization of the expected total annualized cost as the stochastic objective 

function. The following index sets are defined for better developing of the mathematical 

model.

 
 

/     

/    &

I i i is an equipment unit

S s s is a loading and pricing (L P) scenario




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For assessing the importance of adopting a stochastic programming approach 

rather than a conventional deterministic one, solutions obtained from the stochastic model 

should be compared with those from the deterministic approach. Observe that the 

deterministic model can be directly obtained from the proposed stochastic approach by 

setting a unique optimization scenario. Such a trending scenario is defined by the 

expected mean values for the energy loads and prices within the reference timeframe. The 

deterministic approach allows obtaining an optimal solution regarding the system 

configuration and operating conditions.

4.1. Electricity and thermal demand constraints

The energy demands should be met in all L&P optimization scenarios. For ensuring full 

coverage of electricity demands, the balance constraint (3) is considered.

       (3) , 0     ICE Purchase Sell D
i s s s s

i I
E E E E s S



      

The first term in Eq. (3) stands for the electric power generated by the 

cogeneration units in each L&P scenario , while  indicates the uncertain s S D
sE

parameter of electricity load demand in the  scenario. To deal with possible power  s th

shortages and surpluses, the decision variables  and  are used to allow the Purchase
sE Sell

sE

electricity purchasing from and selling to the grid, respectively. In each scenario, 

electricity can be either purchased from or sold to the grid (this is a plausible assumption, 

since the scenario  also corresponds to a different timestep as discussed before) [8]:s

       (4)0     Purchase Sell
s sE E s S   
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Heating and cooling demand constraints are defined in (5) and (6):

       (5),


    TES ACH D
s i s s

i I
OUT C HQ Q Q s S

       (6), 0     ACH D
i s s

i I
CQ Q s S



    

In inequality (5),  refers to the thermal power (in kW) obtained from the TES
sOUTQ

TES tank for meeting the energy requirements by the set of ACH units and the heating 

demand in each scenario . The variable  is defined as the amount of heat s S ,
ACH
i sCQ

required by each ACH unit  for cooling production in each scenario , whilst the i I s

variable  is the related power production (output) of each ACH unit needed to satisfy ,
ACH

i sQ

the cooling load demand. In addition,  and  are the uncertain parameters of D
sHQ D

sCQ

heating and cooling demands, correspondingly. It is noteworthy that (5) is imposed as an 

inequality constraint to explore possible solutions in which the CHCP system does not 

strictly operate according to the FTL operating strategy. In this case, the surplus heat can 

be removed by exhausting hot gases. Since the production excess of cooling energy is not 

case profitable, the coverage of cooling load demands is imposed as the equality 

constraint shown in Eq. (6) [15].

The electricity production reliability index ( ) in Eq. (7) is used to restrict EPRI

the search space, while ensuring the power production reliability of the cogeneration plant 

[31]. 

       (7),
   

   
 
   D ICE D

s i s s
s S i I s S s S

EPRI E E E
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A value of 0 for this index indicates that the system is able to account for all the 

electric power demand, whereas 1 specifies that the electricity loads are never met. For 

the optimal system design, constraint (8) should be satisfied:

       (8) upperEPRI EPRI

 is the upper bound for the electricity production reliability index. Although this upperEPRI

constraint is not strictly necessary, it generally produces improved economic performance 

solutions.

4.2. Operation priority constraints

As discussed before, the superstructure allows the use of multiple equipment pieces with 

discrete sizes and rated capacities for the ICE, GFB and ACH technologies. However, 

only equivalent units (i.e., with the same part-load performance curves) are considered 

for each technology to simplify the mathematical formulation. For this reason, the 

equipment operation priority should be specified to avoid multiple equal solutions. For 

instance, if two ICE units are required in the cogeneration plant, the selection of the status 

“on” for the first engine and “off” for the second one in a given scenario would provide 

the same amount of electricity generated as if, instead, the status “off” is selected for the 

first unit and “on” for the second one [32]. The equipment functioning priority within the 

trigeneration system is given by the following constraints. 

       (9)
, 1,

, 1,

, 1,

,  

ICE ICE
i s i s

GFB GFB
i s i s

ACH ACH
i s i s

E E

Q Q i I s S

Q Q








   


 
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These constraints define the operation order by ensuring that the  equipment  i th

unit is always selected before the  one. Therefore, they are required to reduce the  1i th

search space and thereby the computational effort by eliminating irrelevant solutions. 

4.3. Cogeneration plant: Internal Combustion Engines (ICEs) 

Let  be the binary variable that indicates the selection and on/off status of each ICE ,s
ICE
iy

unit in the scenario , in which,s

,

1      
0      

,  

ICE
i s

if  the ICE unit i is used in the scenario s
y

otherwise
i I s S


 


  

The cogeneration operator in (10) is used to ensure the optimal selection and 

operation (on/off status) of the ICE unit  within the CHCP system in each scenario i I

.s S
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The decision variable  indicates the fuel (natural gas) consumption by the ,
ICE

i sF

cogeneration unit  in each scenario , while  is the corresponding thermal i I s S ,
ICE
i sQ

production. The electrical  and thermal   , , ,,ICE ICE ICE
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efficiencies of the unit  in each scenario  are obtained from the part-load i I s S

performance curves for ICEs presented in Table 1. Additionally,  and  refer to ICE
iE

ICE
iE

the lower and upper bounds for the electric power production , respectively. Note ,
ICE
i sE

that the electricity generation of each engine should be limited between 50 – 100% of the 

corresponding nominal power capacity. In this work, the nominal capacity of each prime 

mover unit  ( ) lies in the range of 600 to 1600 kW (in 11 different discrete i I ICE
iW

power intervals of 100 kW). Thus, the power capacity selection is given by (11).

     (11)
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Similar energy operators are used for modelling the optimal selection and 

operation (on/off status) of auxiliary GFB and ACH units, which are presented as follows. 

4.4. Heat production: Gas-fired boilers (GFBs)

Let  be the binary variable that indicates the selection and on/off status of each GFB ,
GFB
i sy

in the scenario . Thus, formulation (12) is used to model the optimal operation of s S

GFB units in the CHCP system for each scenario .s S
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 represents the thermal power production that is expressed as a function of the ,
GFB
i sQ

natural gas consumption  of the GFB unit  in each scenario . The GFB ,
GFB

i sF i I s S

efficiency  is given by the part-load performance curve presented  , ,,GFH GFB GFB
i s N i sFF L 

in Table 1. In addition, the parameter  is the upper bound for the thermal production, 
GFB

Q

which corresponds to the rated capacity ( ) of the auxiliary boilers (see Table 2). GFBRQ

4.5. Cooling production: Absorption chillers (ACHs) 

The typical part-load energy performance of a single-effect ACH is given as follows 

[1,33].

     (13)
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 is the coefficient of performance of the ACH unit  in each scenario . ,
ACH

i sCOP i I s S

The thermal consumption  of each ACH unit is obtained as in Eq. (14).,
ACH
i sCQ

     (14), ,      ,  ACH ACH
i s LF i s RTCQ C C Q i I s S     

In Eq. (14),  and  refer to the correction coefficients for the load rate and ,LF i sC TC

cooling water temperature, respectively, as shown in Table 1.
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4.6. Thermal energy storage (TES)

The amount of thermal energy stored in the TES tank at each L&P scenario  is given by s

Eq. (15) [31,34].

     (15)
 
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In which,

     (16), ,
TES ICE GFB
s i s i s

i I i I
INQ Q Q s S

 

    

In Eq. (15),  represents the energy loss coefficient that depends on the thermal 

insulation of the TES tank. Moreover,  is the thermal storage efficiency. The capacity TES

of the TES tank is determined by constraint (17):

     (17)TES TES
sC Q s S  

4.7. Stochastic objective function

The resulting stochastic multiscenario MINLP-based model is optimized through the 

minimization of the expected value of the total annualized cost distribution ( ). The ExpTAC

stochastic objective function can be formally expressed as follows:

     (18)
   

1
min     

. .     . 3 17
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s s
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The parameter  stands for the probability of occurrence of a specific sprob

optimization scenario . We consider the same probability of occurrence for all L&P s

scenarios. The decision variable  represents the total annualized cost distribution of sTAC

the trigeneration system over the different optimization scenarios, which is composed by 

the capital investment in equipment ( ) and operating expenditures ( ) as CAPEX sOPEX

stated by Eq. (19).

     (19)s sTAC CAPEX OPEX s S   

In which,
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   (19b)

Since the capacity of the acquired equipment units must remain unchanged for all 

L&P scenarios, the related capital investment should be defined by a scenario independent 

decision variable. Conversely, the operating expenses should be given by a scenario-

dependent variable to capture the energy consumption variability and ensure system 

flexibility in the uncertain optimization search space. In Eq. (19a),  represents the POC

unitary cost of equipment (in kUS$) running at near ambient-pressure conditions, while

 indicates the cost correction factor based on operating conditions and construction BMF
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materials. In this work, we use the nominal capacity-based cost correlations obtained from 

Urbanucci and Testi [8] for the cogeneration units (ICEs), Couper et al. [35] for the GFB 

units, and Lorestani and Ardehali [31] for the ACH and TES units, to estimate the capital 

investment of each equipment piece required into the trigeneration system. It should be 

noted that the capital cost correlations are updated for the reference year (2017) through 

the Chemical Engineering Plant Cost Index (CEPCI) [36]. The CEPCI ratios, as shown 

in Eq. (19a), are the relative cost index for equipment of the reference year (2017) to the 

year in which the cost correlations were originally presented in literature. Thus, they allow 

to convert the capital costs to the equivalent values in 2017. In this case, the CEPCI index 

ratios for ACH’s and TES’s cost correlations are both considered to be equal to 1. In 

addition, the annualization factor for the capital investment  is obtained as in Eq. (20) acf

[37]:

     (20)   
1

1 1 1t t
acf ir ir ir


       

In which  defines the fractional interest rate per year during the amortization period . ir t

In Eq. (19b),  and  are the uncertain parameters for the cost of natural gas and NG
sC Ptariff

sC

electricity purchasing tariff, respectively, in each L&P scenario obtained through the 

proposed stochastic approach. Moreover, the parameter  refers to the electricity StariffC

selling tariff to the grid, while the variable  represents the operating and O&MC

maintenance expenditures of each equipment.

The resulting multiscenario MINLP model was implemented in GAMS (version 

24.9.2) [38] and solved to global optimality via the deterministic global branch-and-

bound solver ANTIGONE (Algorithms for coNTinuous/Integer Global Optimization of 
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Nonlinear Equations), with the sub-solvers SNOPT and CPLEX 12.7. A computer with 

an Intel® Core™ i5-3570 M 3.4 GHz processor and 8 GB RAM running Windows 10 

was used to solve the case study.

5. Case Study

An illustrative case study is carried out to evaluate the capabilities of the proposed 

stochastic approach for the optimal synthesis, design and operation of CHCP systems 

under uncertainty in energy loads and prices. Fig. 1 depicts the superstructure considered 

for the optimal CHCP system design with thermal energy storage and bidirectional 

electricity grid connection. Table 2 shows the nominal efficiencies and rated capacities 

of the different technologies used for electricity, heating, and cooling generation, as well 

as thermal storage in the trigeneration system. For stochastic optimizations, the natural 

gas price and electricity purchasing tariff are uncertain correlated parameters generated 

via the aforementioned sampling technique as depicted in Fig. 2. Conversely, the 

electricity selling tariff is treated as a known design parameter (deterministic). Thermal 

energy storage with no energy losses is assumed in the CHCP system. The relative cooling 

water temperatures are obtained from Ref. [1]. Additionally, an electricity production 

reliability index of  is considered for all problem optimizations.0.002EPRI

The multiscenario MINLP-based model can be used for different industrial, 

residential, commercial and services applications including single and multiple buildings, 

such as hospitals, hotels, schools, universities, among others. In this work, the case study 

is based on the energy consumption information from a typical hotel and spa facility 

located at the northern region of Portugal. The hotel works on a 24-hour timetable in a 

building area of ~20,000 m2, encompassing nearly 300 guest rooms and suites, conference 

rooms, heated indoor pool, sauna, beauty salon, lounge restaurant and bar, and laundry 
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services. As mentioned before, we adopt an optimization strategy based on hourly-

averaged load and price values obtained from descriptive yearly periods within the 

available timeframe dataset to reduce the problem size and thereby the computational 

effort. In this case study, the consumption data for cooling, heating and electricity loads 

have been obtained from 3 representative weeks in summer, winter and transitional 

seasons [8]. The long-term uncertainty of energy demands and prices is described by a 

set of correlated L&P scenarios generated using the proposed Monte Carlo-based 

sampling technique. To do so, we assume Normal distributions with 20% of relative 

standard deviation from the expected mean values for each uncertain parameter. This 

value is consistent with the 6-consecutive-year data obtained for energy demands and 

prices in the hotel facility reference case. Fig. 3 exhibits the load duration curves of the 

electricity, heating and cooling demands obtained for the case study. Additionally, 

uncertain natural gas costs and electricity tariffs are correlated through a matrix factor (or 

degree of correlation) of +0.8, which is also in accordance with the longstanding energy 

prices correlation detected in the cross-energy European markets [27]. Expected mean 

values for the natural gas price and electricity purchasing tariff, in addition to other 

economic evaluation data, are presented in Table 3.

6. Results and Discussion

6.1. Deterministic vs stochastic results

Firstly, we solve the deterministic model through the minimization of the total annualized 

cost. It should be noted that, in this case, the entire set of energy demands (i.e., heating, 

cooling and electricity loads) and energy prices (i.e., natural gas and electricity purchasing 

and selling tariffs) are known deterministic parameters corresponding to the expected 

mean values. These parameters are used as input data for solving the deterministic model. 
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The optimal configuration obtained for the CHCP system is composed by an ICE unit 

with nominal power capacity of 1300 kW ( ; ), as well as an 0.37ICE
E  0.33ICE

Q 

auxiliary boiler (with rated capacity of 960 kW and thermal production of 933.6 kW) and 

an ACH unit (with rated capacity of 1300 kW and thermal production of 750 kW) required 

to meet heating and cooling loads, respectively. The cogeneration unit is able to account 

for all the electrical demand so that no electricity is either purchased or sold to the grid. 

No energy storage is needed in the system. The total annualized cost for the optimal 

deterministic solution is equal to 2109 kUS$ year-1, which is comprised by 486 kUS$ 

year-1 related to the capital investment and 1623 kUS$ year-1 associated with operating 

expenditures (maintenance and fuel consumption).

Henceforth, the design and optimization of CHCP systems is performed via the 

proposed stochastic multiscenario model. In the stochastic solution, the optimal system 

configuration encompasses a cogeneration plant with power capacity of 1400 kW, in 

addition to an auxiliary boiler (960 kW) and an ACH unit (1300 kW). The increase in the 

ICE unit capacity indicates an adjustment of the system to ensure the optimal operating 

performance in all different scenarios. The system also requires a storage tank with 

capacity for 2862.13 kW of thermal energy. The expected total annualized cost for the 

optimal stochastic solution is 2243 kUS$ year-1, from which 526 kUS$ year-1 is related 

to the capital investment. Fig. 4 depicts the distribution of the total annualized cost of the 

CHCP system obtained through the minimization of the stochastic objective function. 

In the solution under examination, the expected total annualized cost and capital 

investment are, respectively, ~6% and 8% higher than the corresponding deterministic 

optimal solutions. These differences suggest that the total costs of the trigeneration 

system may be underestimated by the conventional deterministic method. Moreover, if 

the equipment capacities obtained via the deterministic model are fixed when solving the 
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stochastic one, the problem becomes infeasible and optimal solutions cannot be found by 

the stochastic approach. This result clearly indicates that the optimal deterministic 

solution provides neither the flexibility nor the cost-effectiveness required by the CHCP 

system to operate under fluctuating demand and price conditions.

As concerns the operational expenses, the distribution obtained via the stochastic 

approach shows that ~42% of the L&P scenarios present values higher than the equivalent 

deterministic solution. Fig. 5 displays the operating expenses distribution throughout the 

different L&P scenarios, where the first 48 scenarios are zoomed in to show the different 

components of the referred cost. In Fig. 5, scenario 2, for example, exhibits operating 

expenses equal to 2626 kUS$ year-1, which is a value nearly 62% greater than that 

estimated by the deterministic model. In such a scenario, 2232 kUS$ year-1 are related to 

fuel consumption by the ICE and GFB units, while the electricity expenses accounts for 

351 kUS$ year-1. Note that the remaining costs are related to maintenance expenditures. 

However, the distribution in the uncertain search space reveals even higher values for 

operating expenses. For instance, the scenario 163 presents operating costs of 3146 kUS$ 

year-1, which is ~94% higher than the deterministic value. 

While no energy storage tank is required in the deterministic solution, the 

stochastic approach provides a thermal storage distribution throughout the L&P scenarios 

as shown in Fig. 6. Similar distributions over the different scenarios are obtained for each 

scenario-dependent decision variable, including the fuel consumption by the ICE and 

GFB units, electricity and thermal generation by the ICE unit, electricity purchase and 

selling and cooling production by the ACH unit, to list a few. Some profiles for energy 

production and consumption are examined in the next section, whilst the remaining 

distributions are not presented here for the sake of brevity. Regardless of the results 

distribution analysed, all energy consumption and production profiles obtained highlight 
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the significant influence of load and price uncertainties on the optimal operating 

performance of CHCP systems. Since the deterministic model is not able to provide 

energy and economic performance distributions, our results strongly emphasize the 

importance of adopting a stochastic approach to deliver robust solutions and capture the 

effects of different types of uncertainty.

6.2. Stochastic CHCP system optimization and risk analysis

For an improved understanding of the broad impact of the uncertainty on the optimal 

CHCP system design and operation, more articulate analysis is required concerning the 

results obtained through the stochastic approach. Fig. 7 (a) illustrates the electric power 

profiles for the electricity generated by the ICE unit, as well as the electricity purchased 

from and sold to the grid and energy demands in 72 distinct scenarios. Fig. 7 (b) shows 

the related profiles for the electricity purchasing tariffs and natural gas prices. Fig. 8 

displays the thermal power profiles for the heating production by the ICE and GFB units, 

and the heating demands in the same 72 distinct scenarios. A thorough examination of 

Fig. 7 reveals that the CHCP system prioritizes the electricity production by the ICE unit 

over its acquisition from the grid. This is an expected result since the natural gas prices 

are, in general, much lower than the electricity tariffs in all scenarios. Overall, the 

electricity purchasing occurs in two main situations: (i) the scenarios present high energy 

demands –i.e., higher than the available capacity of the ICE unit–, even if the energy 

prices are high (e.g., scenario 2, 18 and 36)–; and, (ii) the scenarios present a purchasing 

tariff more competitive than the natural gas price (scenario 5), even if the demands are 

low (scenario 34). In any case, the energy profiles clearly show that the correlated energy 

prices considerably affect the optimal CHCP system performance.
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The financial risk associated with the uncertain search space is assessed by 

considering different standard deviations from the expected mean values of uncertain 

energy loads and prices, as well as distinct correlation degrees for energy prices. Fig. 9 

and Fig. 10 display the cumulative probability curves obtained for the optimal economic 

performance of the CHCP system under low-correlation (+0.1) and high-correlation 

(+0.8) matrix factors, respectively. In both cases, standard deviations of 10%, 20% and 

30% are considered to generate the L&P scenarios. To construct the probability curves, 

the scenarios are sorted in ascending order of their economic performance values. In those 

figures, the vertical axis shows the probability of reaching an economic performance 

(expressed by the total annualized cost) lesser than or equal to a target limit indicated in 

the horizontal axis. To illustrate this, let us assume a target value of 2598 kUS$ year-1 

(upper bound for the 10%-curve) for the system total annualized cost. Thus, Fig. 9 

indicates that the 20% and 30% standard deviation curves have, respectively, ~6% and 

~24% of probability of exceeding the referred economic target. Note that the 10%-curve 

has no probability of exceeding this value. If the decision-maker targets a more ambitious 

goal of 2300 kUS$ year-1, for instance, then the probabilities of exceeding this limit are 

significantly increased to ~40% (10%-curve), ~46% (20%-curve) and ~62% (30%-

curve). 

When assuming higher correlation degrees between energy prices as shown in 

Fig. 10, the probabilities of exceeding the objective of 2300 kUS$ year-1 are slightly 

decreased to ~39% (10%-curve), ~42% (20%-curve) and ~58% (30%-curve). 

Nevertheless, these probabilities can increase as the correlation degree becomes higher 

when considering other target limits. This is the case of the target value of 2500 kUS$ 

year-1, for which the exceeding probabilities are increased from 3% (10%-curve), 15% 

(20%-curve) and 34% (20%-curve), to 4% (10%-curve), 20% (20%-curve) and 36% 
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(20%-curve). The probabilities of exceeding the maximum value obtained for the total 

annualized cost in the 10%-curve (i.e., 2791 kUS$ year-1) are equal to ~8% and ~18% for 

the 20%-curve and 30%-curve, correspondingly. 

Regardless of the correlation degree, these results indicate that the probability of 

exceeding a prespecified value escalates as the standard deviation increases. 

Consequently, a closer inspection of Fig. 9 and Fig. 10 reveals that the assumption of 

higher standard deviations for uncertain design parameters implies a riskier decision-

making attitude. Therefore, if the decision-maker selects the system design defined by the 

10%-curve in Fig. 9, it is ensured that the total annualized cost will not surpass the 

maximum value of 2598 kUS$ year-1. However, this conservative attitude would lead to 

the selection of a system design with an impaired overall economic performance. In this 

case, ~11% of the scenarios in the 30%-curve, for instance, exhibit a total annualized cost 

smaller than the lower limit of 1739 kUS$ year-1 obtained for the 10%-curve. Similar 

conclusions can be drawn from the examination of the curves in Fig. 10. 

Due to the above-mentioned variations in the probabilities of exceeding specific 

targets, the decision-making process according to the correlation degree is not 

straightforward in this case study. Though, the general trend of the curves in both figures 

suggests that the selection of curves with higher correlation degrees (allied to higher 

standard deviations) also involves a riskier decision-making attitude. This result is 

supported by the significant differences found between the extreme solutions (lower and 

upper bounds for the total annualized cost) of the economic performance profiles under 

low and high correlation degrees. We report that the 20%-curve for the high-correlation 

degree (Fig. 10) presents lower and upper bounds around, respectively, 9% and 16% 

higher than the corresponding extreme values in the 20%-curve for the low-correlation 

degree (Fig. 9). This is due to the correlated parameters assuming the lowest (in the lower 
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bound) and highest (in the upper bound) values for both electricity and fuel prices in the 

uncertain search space, leading to extreme pricing scenarios. Still in Fig. 9, we report 

expected total annualized costs equal to 2221 kUS$ year-1 (20%-curve) and 2339 kUS$ 

year-1 (30%-curve). The corresponding values in Fig. 10 are 2243 kUS$ year-1 (20%-

curve) and 2361 kUS$ year-1 (30%-curve). Hence, besides the greater variability observed 

in the total annualized cost distribution for the same level of uncertainty, the expected 

costs also increase as higher correlation degrees are considered between the uncertain 

energy prices. These results demonstrate that energy prices correlations should also be 

taken into consideration during the decision-making process to properly evaluate all the 

effects of the uncertainty on the CHCP system performance. Finally, we report that 

additional risk metrics such as downside risk and worst case for the total annualized cost 

have been applied to solve this problem. However, the solutions found by the multi-

objective optimizations have not shown significant trade-offs between the optimal Pareto 

alternatives.

7. Conclusions

Optimal synthesis, design and operation of trigeneration systems represent a major 

challenge, particularly considering that economic viability and financial risks are 

influenced by long-term uncertainties. For surpassing such difficulties, a novel stochastic 

model for the optimization of CHCP systems under uncertainty in energy loads and prices 

is introduced in this work. Our new economic-oriented approach relies on a stochastic 

multiscenario MINLP model aimed at enhancing system cost-effectiveness, while 

accounting for wide-ranging scenarios of energy demands and prices. For this purpose, a 

set of different probabilistic scenarios of energy loads (heating, cooling and electricity) 

and correlated energy prices (electricity and natural gas) are generated via Monte Carlo 
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sampling technique with a given probability of occurrence. Our optimization model is 

based on a general superstructure including energy production equipment, thermal 

storage and bidirectional grid connection. Energy operators are proposed to guarantee the 

optimal equipment selection and operation in each loading and pricing scenario. The 

resulting model was implemented in GAMS and solved to global optimality through the 

minimization of the expected total annualized cost. We evaluate the capabilities of the 

proposed new approach through an illustrative case study with reference to a Portuguese 

hotel facility. 

To the best of our knowledge, this is the first stochastic multiscenario MINLP-

based model for the optimization of CHCP systems to simultaneously address the energy 

demands uncertainty and the correlation between uncertain energy prices. Major 

contributions from this work can be summarized as follows:

 The new multiscenario modelling approach allows obtaining the most cost-

effective CHCP design able to operate under long-term fluctuating energy 

demands and prices.

 The improved MINLP-based formulation ensures the optimal selection and 

operation (on/off status) of each equipment in the different scenarios.

 The stochastic modelling approach effectively handles the most important 

uncertainty factors all together, and also the correlation between several 

uncertain design parameters.

 The optimization strategy allied to the robust model formulation allows 

efficiently optimizing the problem to global optimality unlike preceding 

literature, which provides enhanced energy-efficiency solutions and 

computational performance.
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 The systematic tool can be used for optimizing a variety of applications such as 

buildings within the residential and commercial sectors, or even in the industry.

 Robust stochastic solutions provide valuable new insights about the uncertainty 

effects on the CHCP system under evaluation, leading to an improved decision-

making process.

Concerning the main results, some important points should be underlined: 

 Our results emphasize the importance of using the stochastic approach over a 

conventional deterministic one to avoid underestimating process costs, and 

provide all flexibility and cost-effectiveness needed by CHCP systems to operate 

under varying loads and prices.

 Energy and economic performance distributions unequivocally indicate that the 

load and price uncertainties considerably affect the optimal design and operation 

of CHCP systems.

 Economic risks analysis reveals riskier decision-making as higher uncertainty 

levels are considered for uncertain design parameters.

 Numerical results also highlight the relevance of the correlation between energy 

prices in the assessment of the uncertainty effects on the CHCP system 

performance.

For the above-mentioned reasons, our systematic approach constitutes a useful 

tool to support decision-makers and planners towards the implementation of more robust 

and cost-effective CHCP systems. Future research will focus on the application of more 

complex probability distributions for each uncertain parameter, as well as studying further 

potential correlations between uncertain parameters (e.g., thermal and electricity demands 

patterns, purchase and sell prices, energy demands and costs, etc.) and their impact on the 

optimal system performance. Additionally, the model extension may introduce 
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multicriteria decision analysis techniques for evaluating the trade-offs between 

conflicting goals including energy and environmental indicators.
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Nomenclature

Acronyms 

ACH Absorption Chiller

CEPCI Chemical Engineering Plant Cost Index

CHP Combined Heating and Power

CHCP Combined Heating, Cooling and Power

FEL Following the Electric Load

FTL Following the Thermal Load

GA Genetic Algorithm

GAMS General Algebraic Modeling System

GFB Gas-Fired Boiler

ICE Internal Combustion Engine

L&P Loading and Pricing

MINLP Mixed-Integer Nonlinear Programming

O&M Operating and Maintenance

PSO Particle Swarm Optimization

TES Thermal Energy Storage

Greek letters

Energy loss coefficient

Efficiency 

Electrical efficiencyE

Nominal efficiencyN

Thermal efficiency Q
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Vector of expected nominal valuesm

Matrix of correlationr

Covariance matrixå

Covariances

Roman letters

Natural gas cost, US$ (kWh)-1 NGC

Electricity purchasing tariff, US$ (kWh)-1 PtariffC

Electricity selling tariff, US$ (kWh)-1StariffC

Thermal capacity storage, kWTESC

Capital cost of investment, kUS$ year-1CAPEX

Correction coefficient for the load rateLFC

Operating and maintenance expendituresO&MC

Coefficient of performanceCOP

Rated performance coefficientRCOP

Unitary cost of equipment, kUS$POC

Correction coefficient for the cooling water temperatureTC

Electric power, kWE

Electricity demand, kW DE

Electricity purchasing from the grid, kWPurchaseE

Electricity selling to the grid, kWSellE

Electricity production reliability indexEPRI

Natural gas consumption, kWF
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Annualization factor for capital costacf

Correction factor for capital costBMF

Fractional interest rate per yearir

Partial load factorFL

Operational expenses, kUS$ year-1OPEX

Probabilityprob

Thermal power, kWQ

Cooling demand, kW D
CQ

Heating demand, kW D
HQ

Rated thermal capacity, kWRQ

Relative cooling water inlet temperature, KT

Amortization period, yearst

Total annualized cost, kUS$ year-1TAC

Expected total annualized cost, kUS$ year-1ExpTAC

Correlated continuous random variableX

Nominal power capacity, kWW

Binary variable that takes the value «1» if a given equipment is y

selected

Subscripts

Equipment uniti

Scenarios
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List of Figure Captions

Figure 1. General superstructure and main decision variables for the trigeneration 

(combined heating, cooling and power – CHCP) system with thermal energy storage and 

bidirectional electricity grid connection. ICE, internal combustion engine; GFB, gas-fired 

boiler; TES, thermal energy storage; ACH, absorption chiller.

Figure 2. Different pricing scenarios generated from a multivariate Normal distribution 

by considering standard deviation of 20% from expected mean values (fuel price: 0.04 

US$ (kWh)-1 and electricity purchasing tariff: 0.12 US$ (kWh)-1†) and: (a) matrix 

correlation factor of +0.1 (low-correlation); and, (b) matrix correlation factor of +0.8 

(high-correlation). 

Figure 3. Load duration curves for the electricity, heating and cooling demands for the 

hotel facility-reference case.

Figure 4. Distribution of the total annualized cost of the combined heating, cooling and 

power (CHCP) system throughout the different loading and pricing scenarios as obtained 

via the proposed stochastic approach. The red dashed line shows the expected value for 

the corresponding stochastic distribution, while the orange continuous line indicates the 

total annualized cost estimated by the deterministic model.

Figure 5. Distribution of the operating expenses of the combined heating, cooling and 

power (CHCP) system throughout the different loading and pricing scenarios as obtained 

via the proposed stochastic approach. The orange continuous line indicates the operating 

†Cost data retrieved from the Eurostat database [28].
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expenses estimated by the deterministic model. The distinct cost components of the 

operating expenses for the first 48 scenarios are shown in the zoomed in distribution.

Figure 6. Distribution of the thermal energy storage throughout the different loading and 

pricing (L&P) scenarios as obtained via the proposed stochastic approach.

Figure 7. Profiles for the: (a) electric power; and, (b) energy prices as obtained via the 

proposed stochastic approach. ICE, internal combustion engine.

Figure 8. Thermal power profiles as obtained via the proposed stochastic approach. ICE, 

internal combustion engine; GFB, gas-fired boiler.

Figure 9. Cumulative probability curves obtained for the optimal economic performance 

of the combined heating, cooling and power (CHCP) system by considering a low degree 

of correlation (+0.1) between energy prices. TAC, total annualized cost.

Figure 10. Cumulative probability curves obtained for the optimal economic 

performance of the combined heating, cooling and power (CHCP) system by considering 

a high degree of correlation (+0.8) between energy prices. TAC, total annualized cost.
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Figure 1. General superstructure and main decision variables for the trigeneration (combined heating, cooling and power – CHCP) system with 

thermal energy storage and bidirectional electricity grid connection. ICE, internal combustion engine; GFB, gas-fired boiler; TES, thermal energy 

storage; ACH, absorption chiller. 
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Figure 2. Different pricing scenarios generated from a multivariate Normal distribution 

by considering standard deviation of 20% from expected mean values (fuel price: 0.04 

US$ (kWh)-1 and electricity purchasing tariff: 0.12 US$ (kWh)-1‡) and: (a) matrix 

correlation factor of +0.1 (low-correlation); and, (b) matrix correlation factor of +0.8 

(high-correlation). 

‡Cost data retrieved from the Eurostat database [28].
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Figure 3. Load duration curves for the electricity, heating and cooling demands for the hotel facility-reference case.
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Figure 4. Distribution of the total annualized cost of the combined heating, cooling and power (CHCP) system throughout the different loading 

and pricing scenarios as obtained via the proposed stochastic approach. The red dashed line shows the expected value for the corresponding 

stochastic distribution, while the orange continuous line indicates the total annualized cost estimated by the deterministic model.
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Figure 5. Distribution of the operating expenses of the combined heating, cooling and power (CHCP) system throughout the different loading and 

pricing scenarios as obtained via the proposed stochastic approach. The orange continuous line indicates the operating expenses estimated by the 

deterministic model. The distinct cost components of the operating expenses for the first 48 scenarios are shown in the zoomed in distribution.
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Figure 6. Distribution of the thermal energy storage throughout the different loading and pricing (L&P) scenarios as obtained via the proposed 

stochastic approach.
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Figure 7. Profiles for the: (a) electric power; and, (b) energy prices as obtained via the 

proposed stochastic approach. ICE, internal combustion engine.
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Figure 8. Thermal power profiles as obtained via the proposed stochastic approach. ICE, internal combustion engine; GFB, gas-fired boiler.
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Figure 9. Cumulative probability curves obtained for the optimal economic performance of the combined heating, cooling and power (CHCP) 

system by considering a low degree of correlation (+0.1) between energy prices. TAC, total annualized cost.
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Figure 10. Cumulative probability curves obtained for the optimal economic performance of the combined heating, cooling and power (CHCP) 

system by considering a high degree of correlation (+0.8) between energy prices. TAC, total annualized cost.
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Table 1

Part-load performance characteristics of the different equipment used in the trigeneration 

system.

Technology Part-load performance curve Reference

ICE

 Electrical efficiency:

 , , ,1.1260 0.1260ICE ICE ICE
Ei s E N i sFL    

 Thermal efficiency:

 , , ,0.8253 0.1747ICE ICE ICE
Qi s Q N i sFL    

 Partial load factor:

, , ,
ICE ICE ICE ICE

i s Ei s i s iFL F W 

[8,39]

GFB

 Thermal efficiency:

 2

, , ,0.0951 1.525 0.6249GFB GFB GFB GFB
i s N i s i sF FL L          

 Partial thermal load factor:

, ,
GFB GFB GFB

i s i sF RL Q Q

[32,40]

ACH

 Thermal consumption:

, ,
ACH ACH
i s LF i s RTCQ C C Q  

 Correction coefficients:

 
 

2

, ,

, 3

,

2

0.015 1.24 0.915

0.66

0.987 0.689 0.702

ACH ACH
i s i s

LF i s
ACH

i s

T

F F

F

L L
C

L

C T T

             
     

 Partial thermal load factor:

, ,
ACH ACH ACH

i s i sF RL Q Q

[1,32]

ICE, internal combustion engine; GFB, gas-fired boiler; ACH, absorption chiller.



ACCEPTED MANUSCRIPT

Table 2

Design parameters for the different equipment units used in the trigeneration system 

[8,31,32].

Technology Parameter Symbol Value [Unit]

Nominal electrical efficiency
,

ICE
E N 0.385 [-]

Nominal thermal efficiency
,

ICE
Q N 0.344 [-]ICE

Nominal capacity ICE
iW 600 – 1600 [kW]

Rated thermal efficiency GFB
N 0.9 [-]

GFB
Rated thermal capacity GFBRQ 960 [kW]

TES Thermal efficiency TES 0.9 [-]

Rated performance coefficient ACH
RCOP 1.24 [-]

ACH
Rated thermal capacity ACH

RQ 1300 [kW]

ICE, internal combustion engine; GFB, gas-fired boiler; TES, thermal energy storage; ACH, absorption 

chiller.
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Table 3

Economic evaluation data considered in the case study. 

Parameter Symbol Value [Unit]

Electricity purchasing tariff (expected mean value) * Ptariff
sC 0.12 [US$ (kWh)-1]

Electricity selling tariff StariffC 0.04 [US$ (kWh)-1]

Natural gas cost (expected mean value) * NG
sC 0.04 [US$ (kWh)-1]

Fractional interest rate per year fi 0.1 [-]

Amortization period t 10 [years]

Working hours per year - 8760 [h]

* Cost data obtained from the Eurostat database [28].
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Highlights

New stochastic model to optimize trigeneration systems under long-term uncertainties.

Loading and pricing scenarios are generated via Monte Carlo-based sampling technique.

Uncertain loads and prices significantly affect the energy and economic performances.

Economic risk analysis reveals riskier decision-making for higher uncertainty levels.

Higher correlations between the energy prices can also imply riskier decision-making.


