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Abstract—This paper presents micro-Doppler analysis and 

classification results from radar measurements of various hand 

gestures. A new database of 6 individuals completing 4 separate 

gestures with over 3,000 repetitions was recorded using a 24 

GHz Ancortek radar system. The micro-Doppler signatures 

from these gestures were generated, features extracted and 

multiple different classifiers applied to this gesture data. A 

typical micro-Doppler classification process aims to use either a 

single range bin of data, average over a series of range bins or 

align all the target signal to a single bin. Different to previous 

techniques, the paper presents a method that uses multiple 

ranges bins to produce a spectrogram per range bin in order to 

represent the observed gesture over all four dimensions of time, 

Doppler, space and polarization. A comparison of the 

traditional and the newly proposed technique is shown and the 

improvements demonstrated are observed to be significant. 

Keywords—Micro-Doppler, Classification, Machine-

Learning, FMCW Radar 

I. INTRODUCTION 

Micro-Doppler signals represent the component of a targets 

signature generated by vibration, rotation and so on 

modulated on top of the main bulk velocity and was first fully 

characterized by V. Chen [1]. These signatures contain a 

great deal of information and this has been exploited for 

broad range of different applications, including Jet Engine 

Modulation (JEM) analysis [2], analysis of ballistic target 

tumbling [3] and discrimination between bird and drone 

targets [4].  

 

In the area of Radio Frequency (RF) sensing of people, [5] 

showed that micro-Doppler analysis of a person’s gait could 

be used to discriminate individuals. Various human activities 

have been classified [6], along with discriminating humans or 

animals [7]. Multistatic radars have successfully been 

deployed for personnel recognition [8], [9]. In addition to 

human targets micro-Doppler has been explored for drone 

classification applications [10]. This recent significant 

increase in micro-Doppler classification research shows that 

it has many real world applications and provides vital 

information from a target unique to radar sensing. 

 

The area of Human Machine Interface (HMI) control is well 

suited to short range low power RF sensors, and currently 

there is a strong trend in exploiting these sensors for diverse 

applications in this area. Companies such as Google [11] and 

Microsoft [12] are both actively researching in this area as 

well as a number of automotive companies. Rival 

technological solutions to RF sensors include optical imaging 

based sensors such as those that work alongside the Leap 

Motion device [13] or a proposed 3D holoscopic camera 

solution discussed in [14]. Radar based sensors do have some 

advantages over optical based devices, these include 

resilience to variations in lighting conditions, reduced 

privacy concerns compared to a camera, the ability to sense 

through clothing (suitable for smart watch or phone 

interaction), and direct measurement of movement without 

the need for depth perception compensation. 

 

This paper focuses on the application of a straightforward 

frequency modulated continuous wave (FMCW) radar sensor 

used to recognize four different gestures from a database of 

six individuals. Unlike previous classification results for 

micro-Doppler shown in [6]–[9] (and many other 

publications) the results presented here maintain the 

dimension of range in the classification process. It was 

hypothesized that maintaining features from multiple range 

bins would improve classification, as different gestures 

would be concentrated differently in the spatial domain. This 

would particularly be true when comparing gestures that have 

little movement in range, such as small hand actions, 

compared to movements that involve the individuals whole 

arm propagating over a number of range bins. 

 

The remaining parts of this paper are as follows. Section II 

describes the experimental setup and database generated for 

this work along with the features extracted, Section III details 

the classifiers that were applied and shows the results from 

this processing by comparing single and multiple range bin 

results from various classifiers and finally Section IV 

concludes this paper and discusses potential future exploits 

for the research. 

 

II. EXPERIMENTAL SETUP AND DATABASE 

In this section, we describe the experimental equipment used 

to generate the data as well as the configuration of the 

geometry of the data capture and hardware settings. The 

amount of data generated for this database is then described 

along with how many individuals, gestures and repetitions 

that were used for classification. Finally, the signal 

processing chain used to analyze data is described, including 

key steps and features that are extracted from the data. 

A. FMCW Radar Hardware 

The radar system used for the experiments was the Ancortek 

SDR-KIT 2400AD2 system. This is a 24 GHz FMCW radar 

that has up to 2 GHz instantaneous bandwidth and 1 ms chirp 

time. The sensor was setup with an output power of +13 dBm 

with horn antennas with 14 dBi gain. It was configured to use 



a single transmit horn antenna in horizontal orientation (H-

pol) and two receive horn antennas arranged in co and cross 

polarization (HH, HV, respectively). The radar was mounted 

on a desk and participants made hand gestures while sitting 

in front of the device at a range of 30 cm to 40 cm from the 

sensor. 

 

The gestures recorded were four different actions; 1st waving 

(3-4 waves of the arm and hand), 2nd clicking (a single action 

between thumb and 2nd finger), 3rd pinching (between thumb 

and index finger) and 4th a swipe action (using the whole arm 

and hand). These gestures can be seen in a set of diagrams 

within Figure 1. The system was set to record 30 seconds of 

data and individuals completed as many repetitions as they 

could within this period. This process was repeated 10 times 

per gesture generating 40 data files for each individual.  

 

 
Figure 1 Hand gestures used (a) Wave (b) Pinch (c) Click 

(d) Swipe 

 

The types of gesture can be subdivided into two groups with 

the waving and swipe actions generating a larger movement 

of arm and hand (perceived range migration) while the click 

and pinch action were more isolated in space (no range 

migration) with only the fingers moving. As we show, this 

distinction will help differentiate the gestures in range, which 

is a primary focus of the analysis of this paper. 

 

These gestures were selected as they represent realistic HMI 

control actions. For example, the waving gesture is already 

utilized with the Xbox Kinetic sensor to initiate control and 

the pinch gesture is commonly used on smart phones to 

control zoom. Therefore, it is of interest if RF sensors are able 

to classify these commonly used actions as part of this newly 

proposed sensing modality. On generating the dataset, it was 

observed that individuals do complete each gesture 

differently and this does produce a diverse signature for the 

same action. This is clearly one of the challenges to the 

automatic recognition of these actions and a final 

implementation of the system may require the ability to learn 

an individual’s actions to maximize classification success. 

This is partly explored via the blind classification analysis 

shown in Section III. 

 

B. Data Pre-Processing 

The database generated includes 6 x 40 separate files from all 

the participants and all the repetitions. These participants are 

be labelled as A to F from now on. Each file was processed 

to produce a range-time matrix that covered the 30 sec 

recording. This was then manually segmented to extract the 

individual repeats within each recording. After this process 

the total database size had ground to 3164 measurements in 

total (6324 if considering both channels HH/HV of recorded 

data).  

Table 1 Table of number of captured gestures per 

person 

Person 
Gesture 

Pinch Click Swipe Wave 

A 70 123 132 80 

B 140 146 132 91 

C 119 165 193 100 

D 88 140 117 99 

E 79 140 180 114 

F 109 175 290 142 

 

The processing flow for each recording can be seen in Figure 

2. The FMCW signals are first formed into each channel of 

data and converted into Range Time Intensity (RTI) 

information. Then each file is then read in to a batch 

processing script which first stage is to filter the data using a 

Moving Target Intensity (MTI) process. The MTI filter 

applied was a 4th order Butterworth filter applied to the raw 

I/Q samples prior to conversion to range domain, further 

information on this processing is shown within [15][16]. This 

filter is used to enhance the moving components of the targets 

within the scene, as these methods are aimed a micro-Doppler 

classification and not on the static range profile information 

of the target present. In order to generate the spectrogram 

information a Short Time Fast Fourier Transform (STFT) is 

then applied with a window length of 0.2 sec and overlap of 

95%. This has previously been shown to generate suitable 

micro-Doppler information for classification purposes [1], 

[5]. 

 

 
Figure 2 Processing flow for each measurement 

 

The data were then process using two different parallel 

techniques. The first was to take a coherent sum of the three 

adjacent range bins where the gesture action occurred in 

space, in order to produce a single summed range bin. This 

coherent summed signal was used to produce a single 

spectrogram. The results from this are labelled single range 

bin for the rest of this paper. The second method kept each of 

these range bins separate, thus maintaining the range 

dimension, and produced a spectrogram per range bin (three 

in total). These results are labelled multiple range bin for the 

rest of the paper. A key focus on this paper is on the 

comparison of these two methods in their ability to 

distinguish the various gestures. 

 

Example plots of the spectrograms produced for four gestures 

is shown within Figure 3. These plots show that there are 

clear differences between the gestures in both Doppler and 



time. The clink and pinch actions happen over a much shorter 

period, while the wave and swipe actions are more spread in 

time. It is important to note that these example plot do show 

a clear difference between classes, but this is not always the 

case across the whole dataset. 

 

 
Figure 3 Example spectrogram of the four gestures (Wave 

/ Pinch / Click / Swipe). Data taken from Person A using 

a single range bin from the co-polar HH channel. 

 

C. Feature extraction  

The data was then processed in order to extract the required 

features in order to successfully classify the different actions. 

This was completed on the single range bin data as well as 

three individual range bins that covered the area of maximum 

SNR of the action and the two adjacent bins. The features that 

were extracted have been obtained from analysis of the 

spectrograms directly. It has been shown that features can be 

extracted from different stages within the processing chain, 

from raw I/Q signals [17] to the RTI or MTI signatures [18]. 

 

Five features were extracted from each gesture example. 

Each of these features are defined within Table I below, 

where S represents the amplitude values for the spectrogram 

matrix with n elements and μ is the mean value for the 

spectrogram power (dB). For the entropy feature, the 

calculation uses the Shannon information definition of 

entropy and the pi value is the probability of of seeing the ith 

possible outcome S. This was obtained from a histogram 

output of the S matrix intensity values. 

 

The eigenvalue based feature was extracted by applying 

Single Value Decomposition (SVD) analysis. The SVD 

analysis of an input matrix A, (with rank of one) can produce 

the following output 

𝐀 = 𝑢𝜎𝜐𝑇 (1) 

 

where u ∈ Rm, υ ∈ Rn, and σ > 0. This can be expanded to 

when matrix A has an arbitrary rank of r, where the matrix 

can be represented by a sum or rank one matrices. The σ 

matrix is commonly known as the singular values and is a 

diagonal matrix on non-negative real numbers. For the 

summation m is the length of the diagonal of the σ matrix. 

An example feature space plot of the mean power of the 

spectrogram (feature 3) and the sum of the σ values (feature 

2) from person A data in the co-polarised channel is shown in 

Figure 4. This plot shows that these two features have a good 

separation in the feature space and should lead to a reasonable 

classification performance. 

TABLE I.  EXTRACTED FEATURE DEFINITIONS 

No Feature Equation 

1 
Spectrogram Summed 

Intensity 
∑𝑆𝑖

𝑛

𝑖=1

 

2 Spectrogram Variance 
1

𝑛
∑((20. log10(𝑺𝒊)) − 𝜇)2
𝑛

𝑖=1

 

3 
Spectrogram Mean 

Power (dB) 

1

𝑛
∑20. log10(𝑺𝒊)

𝑛

𝑖=1

 

4 
Spectrogram SVD – 

Summed Singular Values  
∑𝑑𝑖𝑎𝑔(𝜎𝑖)

𝑚

𝑖=1

 

5 
Entropy of Spectrogram 

Intensity 
−∑𝑝𝑖 log 𝑝𝑖

𝑛

𝑖=1

 

 

 
Figure 4 Example plot of Person A co-polarized features 

2 and 3 plot 

III. CLASSIFICATION  

A. Methods 

The classification processing applied to the obtained features 

was to use four separate classifiers. The classifiers selected 

for this paper were Linear and Quadrature Discriminate 

Analysis (DA) methods, a Random Forest (R-F) Fine-Tree 

mechanism and a K Nearest Neighbor (KNN) classifier with 

K= 5.  These were selected as testing with the quick look 

classification check using the Matlab classificationLearner 

utility showed them to be the most effective. 

  

The DA methods are based around the assumption that the 

selected features are Gaussian distributed and statistically 

independent. For the linear case, the model has the same 

covariance matrix for each class, only the mean values 

change, while for the quadratic case, both the mean and 

covariance of each class can vary.  

 



The R-F classifier used a supervised learning method of 

binary decisions deployed in a tree branched structure which 

enable the categorization of a set of input features. The tree 

is formed by considering all possible split combinations 

which are available from the input samples using an 

optimization criterion to fix these decisions thresholds. The 

optimization aims to minimize the Gini Diversity Index 

(GDI) which is defined as: 

𝑔(𝑛) = 1 −∑𝑝2(𝑘)

𝑘

 (2) 

where g is the GDI, k is the possible classes and p is the 

classification success rate that reached a given node in the RF 

decision tree.  

 

Finally, the KNN classifier calculated the Euclidean distance 

between the test sample and adjacent training samples in the 

feature space. Based on the surrounding training samples that 

are the closest N (5 samples in this case) a decision is made 

on what class the new test sample belongs to. 

 

Each classifier trained on a random subset of the features 

provided and then tested on the remaining data excluding this 

training set. The training subset size varied from 10% to 90% 

in steps of 10% in order to investigate the effects of training 

set on classification success rates. The classification process 

was repeated 100 times to produce an average result for each 

per training percentage size.  

B. Results 

The results from processing either that co-pol or cross-pol 

data from each person using the four classifiers described 

above while taking only a single range bin of data (where the 

SNR of the gesture was maximum) are shown in Figure 5. It 

can be seen that, as a function of training data percentage, the 

linear and quadratic discriminant analysis classifiers were 

approximately flat; while the Random Forest R-F and KNN 

classifiers did improve as the percentage increased from 10 – 

40% and then they leveled off. The best classification result 

of 87% from the single range bin data was obtained by the 

co-pol data with the KNN classifier at the highest training 

percentage of 90%. The cross-pol result maximum success 

was limited to 69% showing a significant disadvantage when 

using this information only. The result of the co-pol channel 

is a reasonably strong classifier success rate considering that 

this is a four class problem with a random chance of 25% and 

that there is a mixture of gestures recorded from different 

individuals which all have their own interpretation on how to 

perform the actions. 

 

The multiple range bin data was then processed in the same 

way, for this analysis there was 3 times the features extracted 

from each range bins spectrogram, the results can be seen in 

Figure 6. These results show a peak classification success rate 

of 89%, which was achieved for the co-pol 90% training size 

result using the KNN classifier. This is very similar to that 

shown for the single range bin case, but it is worth noting that 

the the average classification success was much higher with 

a 10% different in success for the quadrature discriminate 

analysis method. This shows that for lower training set size 

there was a significant increase in classification success, but 

the difference is less noticeable at higher training set sizes. 

The potential reason for not observing a significant increase 

in success rate is that the adjacent range bins features 

extracted contain a high degree of mutual information due to 

the range sidelobes of the processed signal. Therefore, limited 

additional information is obtained; the extent of mutual 

information could be quantified in the future to help evaluate 

this. 

 

Within the outputs from the classifier it was noted that the 

most commonly misclassified outputs were generated when 

differentiating between clicking and pinching. These two 

actions happen over very short time frames and have a much 

less characteristic shape in the Doppler domain so it is 

understandable that they are the most challenging to classify. 

 
Figure 5 Classification success from single range bins 

using 4 classifiers for both co and cross-polarized data 

 
Figure 6 Classification success from multiple range bins 

using 4 classifiers for both co and cross-polarized data 

 

The classifiers were also tested against blind input datasets, 

that have not been included in the training data. For this, data 

from 5 individuals was used to train a classifier and the data 

from the 6th individual was only used to test (not included in 



training process). The results from this varied significantly, 

depending on which blind input dataset was used. Figure 7 

and Figure 8 show the result generated for single and multiple 

range bin data respectively. In both of these cases the blind 

input to all the classifiers was from person F, which the 

training set was gathered from individuals A-E. Within the 

single range bin co-pol data the peak success rate was found 

to be 84%, while in the multiple range bin co-pol data a 96% 

peak was achieved. It is interesting to note that for the 

multiple range bin data we observe an increase in the blind 

classification results and the inverse is seen for the single 

range bin. The multiple range bin result is significantly higher 

than the general result shown in Figure 6. The lowest average 

results were obtained as 61% and 85% for single and multiple 

range bin analysis respectively; both for blind classification 

with person A. This demonstrates that person A may have a 

different signature in comparison to the others in the dataset 

and therefore without including their results in the training 

data you obtain a reduce success rate. 

 

The aim of this analysis was to help understand how effective 

it is against an unknown individual’s gesture. The outputs 

from this can help inform which feature sets and processing 

methods provide the best robust classification techniques 

against unknown users. 

 
Figure 7 Blind Classification success from single range 

bin using 4 classifiers for both co and cross-polarized 

data. The blind input individual was person F. 

IV. CONCLUSIONS 

This paper has shown new radar data generated for this 

publication that was utilized to evaluate classification success 

rates for 4 different gestures by 6 individuals. The data was 

pre-processed in two different ways, one where adjacent 

range bins were coherent summed to produce a single range 

bin and spectrogram while the other method produced a 

spectrogram per range bin (3 in total). These two different 

input datasets were then used to extract features to classify 

the actions. The multiple range bin/spectrogram technique 

was shown to achieve improved classification success rates 

and this difference was emphasized more at reduced training 

set sizes. Analysis was then performed on the resilience of the 

classifier to the situation when an individual was not included 

in the training set data. The multiple range bin processing 

technique showed an increased benefit in these situations and 

achieving up to 96% success rate in one case when person F 

was used in the blind test. 

 

Future work will look to expand this into a real time classifier 

that aims to constantly evaluate spectrograms over the first N 

range bins in front of the radar and then take simple features 

from these spectrograms to continually update the predicted 

gestures that are occurring directly above the RF sensor. 

 
Figure 8 Blind Classification success from multiple range 

bins using 4 classifiers for both co and cross-polarized 

data. The blind input individual was person F. 
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