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Abstract 

Background Information – Falls are associated with high direct and indirect costs, and significant morbidity and 

mortality for patients. Pathological falls are usually a result of a compromised motor system, and/or cognition. 

Very little research has been conducted on predicting falls based on this premise.  

 

Aims – To demonstrate that cognitive and motor tests can be used to create a robust predictive tool for falls. 

 

Methods – Three tests of attention and executive function (Stroop, Trail Making, & Semantic Fluency), a measure 

of physical function (Walk-12), a series of questions (concerning recent falls, surgery and physical function) and 

demographic information were collected from a cohort of 323 patients at a tertiary neurological center. The 

principal outcome was a fall during the in-patient stay (n = 54). Data-driven, predictive modelling was employed to 

identify the statistical modelling strategies which are most accurate in predicting falls, and which yield the most 

parsimonious models of clinical relevance. 

 

Results – The Trail test was identified as the best predictor of falls. Moreover, addition of any others variables, to 

the results of the Trail test did not improve the prediction (Wilcoxon signed-rank p < .001). The best statistical 

strategy for predicting falls was the random forest (Wilcoxon signed-rank p < .001), based solely on results of the 

Trail test. Tuning of the model results in the following optimized values: 68% (± 7.7) sensitivity, 90% (± 2.3) 

specificity, with a positive predictive value of 60%, when the relevant data is available.    

 

Conclusion – Predictive modelling has identified a simple yet powerful machine learning prediction strategy 

based on a single clinical test, the Trail test.  Predictive evaluation shows this strategy to be robust, suggesting 

predictive modelling and machine learning as the standard for future predictive tools. 

 

Words - 284 
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Introduction 

The Cost and Prevalence of Falls, and Falls-related Injury 

Falls are a serious public health concern1, with potentially fatal consequences2, and significant financial 

implications for individuals, and their families3.  In a single year in the USA, there were more than 10,000 fatal falls 

in the elderly population, and an additional 2.6 million medically treated falls-related injuries that were non-fatal, 

which resulted in a direct cost of close to US $20 billion4. In the UK, falls account for over 60% of all hospital in-

patient related safety incidents5, resulting in an annual direct cost of £15 million6, on top of the billions already 

spent on treating falls-related injuries in the community that result in hospital admissions7,8. Some argue that if steps 

are not taken to address this problem, by the year 2030 the number of injuries resulting from falls will have 

increased by 100%9, therefore it is vital that steps are taken to prevent this astronomical rise in cost and harm to all 

the relevant stakeholders.  

 

Clinical Relevance of Predicting Falls 

The current debate in the falls literature is whether probabilistic prediction is clinically useful, and whether 

it is more important than targeting modifiable risk factors10. We argue that these two approaches are not mutually 

exclusive, rather, making sound predictions is actually necessary for planning and evaluating interventions of any 

kind, including those targeted at risk factors11.  

 

State of the Art and Challenges in Predicting Falls 

 The STRATIFY Tool is the gold standard predictive tool for falls in geriatric patients. Although widely 

used in the UK, has not been improved upon in two decades12,13, due to two notorious key issues, which we explain 

and address in our study: 

  (I) Reproducibility – replication studies have repeatedly failed to reproduce the reported 

good performance of the initial STRATIFY validation study14. This is due to the missing statistical 

evaluation in terms of expected performance on new, unseen data – which we address by predictive 

modelling and predictive model evaluation, including a precise quantification of expected future 

performance in a similar setting. 

  (II) Interpretability – it has remained unclear what the STRATIFY Tool actually measures in 

terms of cognitive ability or physical function. Three of the five questions record confusion, visual 
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impairment, and frequent toileting, which, at best, are proxy measurements. We instead use direct 

measures of cognitive and physical function, such as the Trail test and the Walk-12, which are 

well-validated and readily interpretable. 

 

Paradigm Shift I: Predictive Modelling 

Descriptive modelling, such as in traditional linear/logistic regression analysis, aims to fit the data well 

and is powerful for identifying associations present in the data.  

However, they often turn out to be too closely fitted to the data analyzed and do not generalize well to new, 

unseen data – this phenomenon is known as overfitting. We argue that this well-known phenomenon explains the 

supposed loss of predictiveness and accuracy in replication studies14 better than additional, hypothetical changes in 

the patient collective.  

On the other hand, models obtained by predictive model selection often contain less variables and 

generalize more robustly. The main difference between exploratory/descriptive and predictive modelling does not lie 

in the type of models applied (for example, linear or logistic regression models occur in both), but in how. The 

predictive modelling paradigm has led to the development of a number of non-linear modelling techniques found in 

the machine learning community such as kernel methods or random forests which are specifically designed to 

produce models that generalize well. Furthermore, the underlying theory15 provides explicit meta-methods to 

quantitatively estimate accuracy on unseen data, which is used to identify the best models and most informative 

variables, as opposed to descriptive approaches which rely on quantifying how accurately the model describes the 

available data.  Our proposed solution is shift into the superior modelling paradigm, and subsequent evaluation of 

the results in terms of their out-of-sample error/predictive error.  

There are prior instances of assessing falls models via predictive evaluation16; however, to our knowledge, 

our work is the first instance where predictive model selection is employed not only to identify types of models but 

also the most relevant and clinically useful variables.  

 

Paradigm Shift II: Direct Measurements of Neuropsychological and Physical Function 

The current state-of-art in predicting falls assesses patients based on risk factors such as age, urinary 

urgency, or walking impairment. We argue that these risk factors are in fact proxy measurements of cognitive 

and physical function. For example, the association between age and falls, can be thought of as a result of 
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declining executive function and attention17, and reduced mobility18, which both occur as we grow older. Both 

UTI-associated urinary urgency and the associated cognitive deficits can exacerbate the risk associated with any 

reductions in physical mobility19.  

Hence we propose the use of direct measurements of cognitive and physical function instead; a 

premise that the literature has alluded to increasingly often over the last few years20. In our study, we consider the 

Stroop Colour-Word test, the Trail Making test, a Semantic Fluency test as direct measurements of cognitive 

function, and a PROM of physical function. 
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Material and Methods 

 

Neuropsychological Data 

 The test battery (described in appendix) consisted of neuropsychological tests of attention and executive 

function (Stroop Colour-Word tests, the Trail Making tests, and a Semantic Fluency test), a PROM (Patient 

Reported Outcome Measure) of motor function (Walk-12), three questions relating to past 1 month’s medical 

history (undergone surgery; change in physical function; and, fallen over), and demographic data. Data was 

collected from a convenience sample (see appendix for recruitment details) of 323 patients from 3 neurosurgical, 3 

neurological, and 2 neuro-rehabilitation wards, at a tertiary neuroscience center (summary statistics presented in 

appendix). The principal outcome in the prospective study was whether a patient fell (n = 54) or not during their 

in-patient stay (inclusion/exclusion criteria, cohort demographics, and summary statistics can be found in 

appendix). A fall was defined as a suspected, reported or witnessed incident, which consisted of unintentional 

contact with the ground (or intermediary object, which halted their progression to the floor, e.g. a wall), by any 

part of the body, except the feet. The additional distinction of recurrent falling has been disregarded in this study as 

a single fall is sufficient to cause injury.   

Predictive Modelling 

 A predictive benchmark analysis (described in appendix) was carried out to identify which method can 

most reliably predict whether a patient is likely to fall. For each prediction strategy, goodness of prediction is 

estimated by repeatedly splitting the data into a training sample on which the model is fitted and a test sample which 

mimicks “new” data, and on which the model is evaluated by comparing its predictions to the actual labels (faller vs 

non-faller). 

 All prediction strategies are compared on the same training/test splits, so that differences in performance 

can be attributed to the prediction strategy. The results of the predictive analysis are quantitative measures of how 

reliable each prediction strategy is in predicting new data, in terms of mean misclassification error (MMCE), 

sensitivity (= True Positive Rate), specificity (= True Negative Rate), precision (= Positive Predictive Value), and 

F1 score ( = 2 TP/(2 TP + FN + FP)). 
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 The prediction strategies considered are different combinations of (i) the types of models used 

(summarized in table Y) and (ii) selected sub-sets of all variables in the data set to use in prediction. Different sets of 

variables are defined by using some or all of demographics, one or several of the three neurophysiological tests 

(Stroop, Trail, Semantic), and the Walk-12 PROM. For example, a (i) logistic regression model using (ii) 

demographic variables only. 

 Standard errors for prediction error statistics were computed by Jackknife resampling on the test folds. 

The performance of two strategies was considered significantly different at 5% significance level of a Wilcoxon 

signed-rank test conducted on the paired sample of bootstrapped (by the Jackknife) error statistics on the test folds. 

A strategy was considered to predict better than an uninformed guess if had a significantly lower MMCE than the 

uninformed predictor of always predicting “non-faller”. 

 Receiver Operator Characteristics (ROC) of prediction strategies were computed by varying the threshold 

for the predictive probability of the respective methods. Bootstrap confidence bands were computed for the false 

positive rate (= 1 – specificity) at a 5% level of confidence. 

 

Ethical Considerations and Data Protection 

 Guidance on the nature of the study was sought from the UK Health Research Authority (HRA) who 

determined that the appropriate designation was ‘Service Development’. The study was subsequently vetted by 

hospital governance and R&D groups. Patient (oral) consent to participate in the study was obtained and recorded 

in the clinical notes. Data analysis was conducted on a completely anonymised dataset. Non-anonymized data was 

stored securely for use by the patient’s clinical team, accessible only through the hospitals secured severs. 
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Results 

 An overview of all of the results obtained in our predictive analysis can be found in the appendix. Below 

we present a selection of these results, focusing on the four most pertinent findings.  

1. The Trail test, by itself, produces the best predictions. Moreover, addition of other 

neuropsychological, demographic, or physical function-related variables, to the Trail test data, 

doesn’t improve the model. 

 Table 1 presents the goodness of prediction obtained from using only the demographical variables or 

variables from the three neuropsychological tests, or the Walk-12. The prediction goodness is reported for the 

best method, among those reported in the appendix. It may be observed that the trail test makes the best 

predictions (Wilcoxon signed-rank p < .001), though it should be mentioned that each neuropsychological test is 

missing for a different and substantial set of patients (around 1/3), therefore differences in measures of prediction 

goodness may in principle arise not only from the prediction strategy but also from the different patient sample. 

However, adding any of the other variables does not significantly improve the goodness of prediction (Wilcoxon 

signed-rank residuals p < .001) on the subsets of patients on which such predictions are possible (see appendix). 

Table 1: Best possible prediction from the five different variable sets.  

For each of the five variable sets (demographics and four neuropsychological tests, columns), the following are 

reported: the (subjectively chosen) best strategy of prediction for that variable set (second column), and measures of 

prediction goodness for that strategy, including Jackknife-estimated standard errors (five rightmost columns). 

Goodness of prediction is on the full population which has all variables predicted from available. 

 

Dataset 
Utilized 

Best 
Method 

Mean 
Misclassificatio
n Error (MMCE) 

Sensitivity Specificity Precision F1 - Score 

Demographics SVM (Gauss) 0.139 (± .019) 0.153 (± .049) 0.996 (± .004) 0.833 (± .118) 0.231 (± .075) 

Stroop test Naïve Bayes 0.153 (± .025) 0.508 (± .084) 0.924 (± .020) 0.585 (± .091) 0.371 (± .080) 

Trail test 
Random 
Forest 

0.117 (± .022) 0.550 (± .083) 0.958 (± .015) 0.758 (± .085) 0.619 (± .071) 

Semantic LDA 0.161 (± .023) 0.245 (± .067) 0.965 (± .013) 0.604 (± .121) 0.311 (± .080) 

Walk – 12 LDA 0.169 (± .024) 0.100 (± .045) 0.990 (± .007) 0.700 (± .230) 0.153 (± .074) 
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2. The best statistical strategy for predicting falls appears to be a random forest. 

 Table 2 presents the goodness of prediction for selected prediction strategies on the patients which have 

the trail test available, hence differences are directly attributable to the method used. The results clearly 

demonstrate that the optimal (MMCE) values are produced by the random forest method, when compared with 

the logistic regression or majority prediction (Wilcoxon signed-rank on residuals p < .001). Moreover, the trail 

test appears superior to simple demographic data, such as age, which are well documented risk factors for falls 

across both model types (Wilcoxon signed-rank on residuals p < .001). Figure 1 compares the receiver operating 

characteristics (ROC) for the two Logistic Regression baselines as well as the Random Forest method.  

Table 2: Comparison of selected methods on patients with available trail test. 

The rows are different prediction strategies, determined by which method is used (first column), and which variables 

are predicted from (second column. Measures of prediction goodness for that strategy, including Jackknife-estimated 

standard errors (five rightmost columns). Goodness of prediction is on the population which has the trail test 

available. Note that all patients with trail test available also have the demographics variables available. 

Method Data Utilized 
Mean 

Misclassification 
Error (MMCE) 

Sensitivity Specificity Precision F1 - Score 

Random 
Forest 

Trail Test 0.117 (± .022) 0.550 (± .083) 0.958 (± .015) 0.758 (± .085) 0.619 (± .071) 

Demographics 0.166 (± .026) 0.200 (± .068) 0.976 (± .012) 0.667 (± .148) 0.293 (± .089) 

Logistic 
Regression 

Trail Test 0.150 (± .025) 0.400 (± .081) 0.953 (± .016) 0.675 (± .104) 0.487 (± .081) 

Demographics 0.199 (± .028) 0.033 (± .027) 0.976 (± .012) 0.167 (± .223) 0.040 (± .047) 

Majority 0.184 (± .027) 0.000 (± .000) 1.000 (± .000) - 0.000 (± .000) 
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3. The random forest strategy on the trail test is still the best method to predict falls after 

accounting for missing data. 

 The above paragraphs show that random forest on the trail test can reliably predict falls on the patients 

who have a trail test recorded. Since the fact that a trail test recorded may introduce a bias, it needs to be checked 

how the predictive approach generalizes to the whole population. For this, prediction strategies which would use 

a trail test are replaced by the majority prediction (no fall) whenever the trail test is not available. It can be 

observed that the Random Forest utilizing Trail test data is still excellent in this real world setting, predicting 

better (Wilcoxon signed-rank on residuals p < .001) than the other methods considered. 

Table 3: Comparison of selected methods on the full patient population. 

The rows are different prediction strategies, determined by which method is used (first column), and which variables 

are predicted from (second column. Measures of prediction goodness for that strategy, including Jackknife-estimated 

standard errors (five rightmost columns). Goodness of prediction is on the full population. Whenever a trail test is not 

available for a prediction strategy that otherwise uses the trail test, a majority prediction is performed. 

Prediction Model 
Mean 

Misclassification 
Error (MMCE) 

Sensitivity Specificity Precision F1 - Score 

Random Forest Tuned (Trail Test Population)  

& Majority (Remaining Population) 
0.119 (± .018)  0.409 (± .067) 0.975 (± .009) 0.758 (± .085)  0.508 (± .069) 

Random Forest (Demographic Data)  0.157  (± .020) 0.080 (± .036) 0.990 (± .006) 0.667 (± .218) 0.125 (± .061) 

Logistic Regression (Trail Test Population)  

& Majority (Remaining Population) 
0.140 (± .019) 0.294 (± .062) 0.972 (± .010) 0.675 (± .104) 0.392 (± .072) 

Logistic Regression (Demographic Data) 0.160 (± .020) 0.000 (± .000) 1.000 (± .000) - 0.000 (± .000) 

Majority  0.160 (± .020) 0.000 (± .000) 1.000 (± .000) - 0.000 (± .000) 

Figure 1 – The Receiver Operating Characteristics (ROC) 
for Random Forest and Logistic Regression based 
classifiers  

The data sets upon which the following ROCs are based was the 
restricted data set consisting of those with trail data (excluding 
those for which the trail data was missing). The figure illustrates 
the second conclusion that the random forest (RF) based predictor 
appears to be superior to that of logistic regression (LogReg) when 
both utilize only the Trails data. Moreover, both of these models 
are superior to the baseline model of demographic (Demog) data 
(consisting of common risk factors for falls) and the logistic 
regression, which suggests that direct cognitive and 
neuropsychological measurement (Trail) appear to improve 
predictive capabilities, at least in our dataset. The Area under the 
ROCs (AUROCs) are LogReg on Demog (0.65), LogReg on Trail 
(0.78), and RF on Trail (0.87). 
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4. Altering the predictive threshold allows us to produce a highly specific and sensitive tool 

 Threshold tuning allows us to trade off specificity for sensitivity of the random forest model. For 

example, on the trail sub-group, we are able to achieve 68% (± 7.7) sensitivity, 90% (± 2.3) specificity, 0.600 

(± 7.6) precision, and 0.630 (± 0.063) F1-score. On the whole population where trail test data can be missing 

one obtains the following values: 51% (± 6.9) sensitivity, 94% (± 1.4) specificity, 0.600 (± 0.076) precision, 

and 0.533 (± .062) F1-score. When overall accuracy is the desired outcome, the model described here is capable 

of a maximum of 76% precision (PPV), with only a modest reduction in sensitivity (Table 2 and 3). 
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Discussion 

This study describes what we believe is the first attempt to develop a tool for falls prediction that uses 

cognitive variables in a predictive modelling context. The predictive paradigm, coupled with our unique data set, 

has identified a single cognitive test – the trail test – as the most informative predictor for falling in a neurological 

population with an unprecedented degree of accuracy, sensitivity and specificity. This is in stark contrast to 

previous models including a large number of variables and lower predictive power, and suggests that our initial 

hypothesis regarding the interpretability and reproducibility have been a justified concern.  

 

Falls Prediction Tools in Context 

The current gold standard measure in falls prediction is the STRATIFY questionnaire13,21. There are two 

further, more recent tools to predict falls in a neurological population: Yoo et al. use a combination of risk factors 

(including assessment of gait, and insight into gait ability) coupled with logistic regression analysis22; Kabeshova et 

al., have identified a neural network that is able to predict falling18. A summary of these three methods is 

displayed in Table 4. 

Table 4: Comparison with state-of-art methods on acute neurological populations.  

Name/Method 
Prediction 

Strategy 
Sens. Spec. PPV Predictive Interpretable Useable 

 
Reference 

Proposed method 
Random Forest on 

Trail Test  
68%  

(± 7.7%)  
90%  

(± 2.3%)  
60% 

(± 7.6)  
Yes Yes Yes Above 

STRATIFY 
Logistic regression on 

Risk Factors data 
67%  57%  

9.3% 
(Yoo et al)  

No No Yes [14] 

Yoo et al., 2015 
Logistic regression on 

Prospective Risk 
Factors data 

84.4%  86%  16.4% No Yes No 
[21]  

*Note: The fall rate 
was 3%* 

Kabeshova et al., 
2016 

NEAT on Prospective 
Risk Factors data 

48.2 % 88.0% 65.1% 
 

Yes 
 

No 
 

No 
[18] 

 

Columns are, from left to right: the name of method; how it predicts: sensitivity/specificity/PPV as reported in the 

manuscript, hence some are without confidence intervals as they have not been predictively evaluated. A question 

mark “?” is used when the statistic in question was not reported. Next, three questions are proposed: whether 

predictive validation was employed for the method; whether the prediction is clinically/neurologically interpretable; 

and finally, whether applying the method in clinical practice is easy and straightforward based on the infrastructure 

provided.  
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Our approach improves on the state-of-the-art, as reported above, in a number of ways: 

 

Accuracy in a clinical context. Methods with low specifity are not useful in a clinical neurological setting 

where the majority of patients do not fall- since a low specificity model in practice will lead to wasted resources 

(e.g. staff time, cost of any interventions), and even may induce a fear of falling, which can be more detrimental 

than actually falling with regards to health-related quality of life23. Further, for the purpose of directing scarce 

resources, the positive predictive value (PPV) of the other strategies is quite low. Our model is capable of a 

maximum PPV of 76% (Table 2 and 3). Hence, in terms of accuracy, we are able to offer the best tool available. 

 

Usability in a clinical context. Our prediction is based solely on the trail test which can be easily conducted 

without the patients even leaving their beds. Hence it can be applied in everyday practice similar to the 

STRATIFY tool, while the other approaches would require a larger number of variables measured. 

 

Predictive reliability. Predictive error estimation guarantees that the performance will not degrade, as long as 

the strategy is applied to a similar population – unlike for example the STRATIFY tool or non-predictive logistic 

regression where this has been observed before. Of course it remains to be seen whether it is the models or only 

the predictive modelling strategy that generalizes well to new types of populations. 

 

Scientific parsimony. Our predictive model is parsimonious and well-interpretable: the fact that the trail test 

in itself allows the best prediction is scientifically interesting and points towards a number of hypotheses that may 

lead to novel insights on the interaction of human cognitive abilities and falling, or more generally overall risk 

assessment in a neurological population. 

 

Strengths, Weaknesses and Further Research 

 One of the main limitations of this study is a result of the data being collected in a single tertiary centre 

that covered acute neurological, neurosurgical, and neurorehabilitation care, suggesting that the generalization of 

these results should be considered carefully. Specifically, the neurorehabilitation population of patients 

represented less than 10% of the total, and faller cohorts, and therefore, we would argue that if this tool is 

utilized by other hospitals which may have a different composition of patients, the predictive accuracy on the 
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particular population needs to be checked first – this can be done easily by running the code we have provided in 

appendix F and checking the estimated statistics of prediction goodness on new data.  A subtler question to 

answer is whether the final models transfer easily between population, or whether it is the best strategy (e.g., trail 

test & random forest) which can yield a different model for each hospital. 

Efficacy in a dedicated neurorehabilitation unit remains to be demonstrated, and this represents an important 

avenue for future research.   

 The main strength of this study is that our model is based on direct measurements of cognition, rather 

than proxy measurements, which are likely to be more affected by confounding factors. Moreover, the 

information collected in our study is already collected in the course of a clinical work-up for many patients in the 

in-patient neurological setting. For example, the Trail Making test is part of the standard neuropsychological 

evaluation at the hospital in which this study was conducted, and is widely recognized as being useful in stroke 

patients for a number of reasons24. The burdens associated with data collection are greatly reduced in such a 

situation, because it allows for recycling of information that is already generated for other uses.   

 

Implications for Policy Makers, and Clinicians 

The primary implication of this study is that a novel, highly sensitive and specific tool, for predicting falls 

in the acute neurological population, which surpasses the capabilities of the other tools available in this setting, is 

now available to policy makers and clinicians. However, we argue that the results presented here are important, 

not only because of their predictive power, but also because they demonstrate the efficacy of the two paradigm 

shifts we described earlier. In future studies, prediction models should be focus more acutely on the theoretical 

relevance of the data collected, with regards to the outcome being predicted, as was originally highlighted as being 

important. It is only then, that the true power of these modern statistical techniques will be fully realized.  

 

Conclusion  

 Although we must be cautious in making any definitive conclusions, it seems reasonable to suggest 

machine learning could improve the predictive faculties of future generations of predictive tools. Furthermore, 

the highly notable predictive power associated with the use of direct measurements of cognitive function 

highlights an important avenue for future research in falls risk prediction. 
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Cohort, Demographics, inclusion/exclusion criteria, and 
statistical analysis 

 

Patient Recruitment  

 Data was collected between the 17
th

 November 2014 and 17
th

 December 2014 at the National Hospital 

for Neurology & Neurosurgery, a tertiary neuroscience centre from a prospective cohort of 323 patients from 3 

neurosurgical, 3 neurological, and 2 neuro-rehabilitation wards.  

The exclusion criteria for the study included: non-fluency of English, inability to provide informed 

consent because of severe cognitive impairment, communication difficulties, severe mood or behavioral 

problems, and specific contra-indication for each test that have been highlighted in appendix Table 1. 

 

Demographics 

 The mean time from admission to testing was 4.46 days (s.d. 8.66) for the prospective cohort. The 

demographics for the fallers and non-fallers were then compared using two-tailed t-tests. The p-value, 

illustrating the degree of significance in the difference between fallers and non-fallers, has been reported. Age, 

number of years of formal education and ethnicity did not significantly differ between the faller and non-faller 

cohorts. However, there were significantly more men (p<0.05) in the non-faller cohort and the vast majority of 

both groups identified as white ethnicity (Table S3).  

 

Statistical Analysis  

 The scores on all three neuropsychological tests were described using 6 number summaries (minimum, 

1
st
 and 3

rd
 quartile, median, mean, and maximum values). The mean of the sets for the fallers and non-fallers 

were then compared using two-sided t-tests. The p-value, illustrating the degree of significance in the difference 

between fallers and non-fallers mean score, has been reported. The error scores, composite scores, etc. were all 

analyzed similarly. 
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Method - Predictive Benchmark Analysis 

 A predictive benchmark analysis was carried out to find a method which can reliably predict whether a 

patient is likely to fall. The result of the predictive analysis, for each method, is an estimate of how reliable the 

method is in predicting on new data (as opposed to classical, descriptive analysis which estimate how well a model 

fits existing data). 

 In a predictive benchmark analysis, a number of prediction strategies are compared. Those prediction 

strategies are specified by the following: 

(a) Which variable is predicted (the so-called target variable or target outcome). Here, this is always 

whether the patient has fallen or not. 

(b) Which variables the prediction is based on (the so-called covariates or features). Here, the 

selection is made from among the three different neuropsychological tests, a PROM of physical 

function, and demographic data, as detailed in [table S4 - 8]. 

(c) Which statistical or machine learning method is used for prediction. Table S1 contains an 

overview over the different methods used. The methods considered may be roughly divided in 

“classical” models such as logistic regression, and “machine learning” methods such as random 

forests, though this distinction is more historical than principled. The majority predictor, 

which always predicts that a patient did not fall, plays an important role: it is added as a 

“stupid”/uninformed baseline, since only in comparison to such a baseline one can say that the 

other method is better than a random guess. 

Implementation 

 The experiments were performed using the R (v 3.2.0) statistical software suite and the mlr (v 2.7) 

machine learning library. Full code from our analysis can be downloaded from the attached link [to be added after 

publication]. Data set is available in a censored and variable-reduced form (to prevent de-anonymization by 

diagnosis code) via the same link [to be added after publication]. A full version is available upon request. 
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Table S1. Overview of prediction methods used in the benchmark analysis.  
 

 

Validation set-up 

 In order to assess how well the prediction strategies, predict fallers on new, unseen data, a validation 

experiment in performed which mimics exactly that process: each strategy is used to fit parameters of the method 

on part of the data, the so-called training data. Prediction is then performed on other part of the data, the test 

data, which plays the role of the new data. Goodness of prediction is evaluated by comparing the prediction (here: 

whether the patient falls) to the true target variable on the test data. All methods are compared on the same 

training/test splits, hence significant differences may be attributed to the method. 

 This way of evaluation is standard to estimate the predictive goodness of a prediction strategy and is 

called out-of-sample validation, predictive model evaluation, or independent test set validation. Several set-ups for 

validation experiments which guarantee accurate estimation of the prediction error are well-known (see Hastie 

Predictive Strategy 
Purpose for utilizing 

the strategy 
Prediction rationale 

Literature references for 
specific technical details 

Logistic Regression 

Statistical models often 
considered “classical”. 

Logistic regression 
would be the standard 

explanatory/descriptive 
strategy for modelling 

falls in our setting. 

Standard logistic regression models the log-odds of falling 
as a linear function in the selected covariates. 

(Hastie et al, section 4.4)1 
(Cox, 1958)2 

Linear Discriminant Analysis 
(LDA) 

LDA attempts to separate the two classes of fallers and 
non-fallers by a linear functional which minimizes in-class 

variance while maximizing between-class variance. 

(Hastie et al, section 4.3)1 
(Fisher, 1936)3 

Naïve Bayes 

Naïve Bayes classifiers probabilistically predict  
falling/non-falling from the covariates based on Bayes’ 
theorem, under the simplifying but possibly inaccurate 

assumption that the covariates are independent. 

(Hastie et al, section 6.6.3)1 

(Maron & Kuhns 1960)4 

Kernel Support Vector Machine  
 (soft-margin C-SVC with linear 

kernel or Gaussian kernel) 

Three modern machine 
learning methods 

considered to be some 
of the best general-

purpose classifiers that 
exist. 

Support vector classifiers construct a hyperplane to 
separate (most) fallers and non-fallers with maximum 
margin. We employ the frequently used kernel variant 
which allows for a non-linear separating hyperplane. 

(Hastie et al, section 12)1 

(Cortes & Vapnik, 1995)5 

Random Forests 

The random forest classifier constructs a large number of 
decision trees based on the covariates to predict whether 

the patient falls. The decision trees are aggregated 
(“bagged”) to overcome the known predictive deficiency 

(“overfitting”) of a single decision tree classifier. 

(Hastie et al, section 15)1 

(Breiman, 2001)6 

Neural Networks 

Neural network classifiers construct a complex 
classificiation function with a particular substitution 

structure inspired by real world neural networks. The 
function is fitted to the data by gradient descent; the 

structure of the network varies greatly in literature, we 
use the two standard variants in mlr (nnet, avvnet)  

(Hastie et al, section 11)1 
(Werbos, 1974)7 (Parker, 1985)8 

Majority Prediction  

A “simple guess” for 
later quantitative 

comparisons “better 
than a simple guess” 

Predicts that no patient is going to fall. N/A 



 22 

section 7)1. Our validation set-up is specified by the following: 

(a)  How the training/test splits are selected: 10-fold cross-validation, on the population of patients that 

have answered all questions in the neuropsychological tests that were used. For example, if the 

prediction is made from trail test variables only, the validation is done on all patients who have a 

full trail test. 

(b) How goodness of prediction is measured. It is standard to uses multiple performance measures to assess 

the quality of our results. The measures of predictive goodness reported are: the mean 

misclassification error (MMCE), sensitivity, specificity, precision and F1-Score (harmonic mean of 

sensitivity and precision). Falling is considered as the positive level of the target variable. 

(c)  How goodness of prediction is compared between methods. Samples of prediction errors may be 

obtained from the Jackknife samples of error statistics, in each of the ten test samples. These are 

union-aggregated and used to obtain error bars/confidence intervals for error measures by the 

Jackknife estimator of variance. The samples are naturally paired between methods predicting 

from the same sample of patients, therefore they may be used to obtain non-parametric 

significances of whether one method is better than a second. Note that this method of error 

estimation may be biased and underestimate errors 

response variances of the error statistics. 

Pre-processing and tuning 

 Prior to prediction, all variables were normalized to have 

zero mean and standard deviation one on the training set. Whenever 

an advanced prediction strategy required tuning of parameters, this 

was done by 3-fold cross-validation grid-tuning inside the training set. 

See figure S1 for a list of the tuning grids employed. Note that all 

pre-processing and tuning has to take place on the training set only, 

to correctly mimic the process of predicting on new data. Otherwise 

information on the new data would be implicitly used already in a 

phase where such data has not been yet seen.

 
Figure – S1: Tuning Grids 

 
Linear SVM: 
ps = makeParamSet( 
makeDiscreteParam("C", values = 2^(-4:4))         # 
C parameter of the SVM 
) 
 
Gaussian SVM 
ps = makeParamSet( 
makeDiscreteParam("C", values = 2^(-
2:2)),            # C parameter of the SVM 
makeDiscreteParam("sigma", values = 2^(-
2:2))      # Bandwidth of the Gaussian kernel 
) 
 
Random Forest 
ps = makeParamSet( 
makeDiscreteParam("ntree", values = 
c(100,250,500,1000,2000))  # Number of the trees 
used in the forest 
) 
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Table S2 – Descriptions of the Three Neuropsychological Testing Paradigms, the Physical Function PROM, and Resulting Variables 

Measure 
Description 

(Adapted from Zomeren & Spikman, 

2003)9 

Variables Cognitive Processes  

Stroop Colour-
Word Test 

 
Original Citation –  

Stroop, 193510 
 

Variant Utilized –  
Trenerry et al., 198911 

Part 1 – Word Reading 
 
Participants are presented with the first of two 
cards, and are asked to read the words on the 
page. The stimulus on the first card consists of 
112 words in three columns. The word can be 
any of the following four colours: Blue, 
Green, Red or Tan, and is printed in a colour 
of ink that does not correspond to the word. 

Raw – 
1. Words read in 1 & 2 minutes 
2. Errors on word reading 

 
Calculated – None Specific Contraindications – 

If the participant needs visual aids to 
read, ensure that they are used 
during testing. 
If the participant is too visually 
impaired or has a condition, such as 
colour blindness, abandon testing. 
 
Notes – 
The maximum score is 112 

 

Part 1 – Word Reading 
(Error scores not relevant to stated 
cognitive process) 
 
Attentional Process: An operational 
level task measuring the speed of 
information processing. 
 
 
Part 2 – Colour Naming 
(Error scores related to stated cognitive 
process) 
 
Executive Functions: Response 
Inhibition  
 
Attentional Process: A tactical level task 
measuring focused attention  
 
 

 

Part 2 – Colour Naming 
 
The second part of the test is referred to as the 
interference task, and in this instance the 
participant is asked to name the colour of ink 
in which the word is printed. An identical card 
to that which was presented in the first part is 
presented to the participant with the new 
instructions. 

Raw – 
1. Colours named in 1 & 2 minutes 
2. Errors on colour naming 
3. Colour naming error corrections 

 
Calculated – 

4. Proportion of Errors Corrected 
5. Number of colours named in 2 

minutes divided by the number 
of words reads in 2 minutes  



 24 

Trail Making 
 

Original Citation - 
Army Individual Test 

Battery, 194412 

 
Variant Used –  

Reitan, 198613 

 
Part A – Number Task 
 
The participant is presented with the stimulus 
and asked to draw a line joining consecutively 
numbered circles from 1 -25, as quickly as 
they can. 
 

Raw –  
1. Time taken to complete number 

task 
2. Errors on number task 

 
Calculated - None 

Specific Contraindications – 
The test must be completed using 
the participant’s dominant arm 
therefore hemi-paresis on the 
dominant side is a contra-indication. 
Severe visual deficits is also a contra-
indication 
 
Notes – 
The test is to be abandoned if 
incomplete after 300 seconds. And 
errors in this situation are recorded 
as an unknown 

Part A – Number Task 
(Error scores not relevant to stated 
cognitive process) 
 
Attentional Process: An operational 
level task measuring the speed of 
information processing 
 
 
Part B – Number/Letter Task 
((Error scores related to stated cognitive 
process) 
 
Executive Function: Fluid 
Intelligence/Multitasking 
 
Attentional Process: A tactical level task 
measuring focused attention 
 
  

Part B – Number/Letter Task 
 
The participant is presented with the second 
stimulus and asked to draw a line joining 
consecutively numbered (1-13) and lettered 
circles (A-L), by alternating between the two 
types of sequences. 

Raw –  
1. Time taken to complete 

number/letter task 
2. Errors on number/letter task 

 
Calculated – 

3. Time to complete number/letter 
task divided by the time to 
complete number task 

 
Semantic Fluency 

 
Original Citation – 

Thurstone, 193814 

 
Variant Used – 

Described in Strauss et 
al., 200615 

Participants are asked to name as many animals 
as they can in a minute. Participants are told 
they can use any letter of the alphabet and do 
not need to go in any particular order. 

Raw –  
1. Number of animals 
2. Number of repetitions  

 
Specific Contraindications –  
For certain severely aphasic or 
dysphasic individuals, circumstances 
should be evaluated to determine 
whether this test is appropriate.  
 

Number of Animals -  
Executive Function:  
 
Attentional Process: A tactical level task 
measuring focused attention & an 
operational level task measuring the 
speed of information processing.  
 
Error Scores –  
Related to certain diagnoses, such as 
dementias (Straus et al., 2006)15 

Walk – 12 
Hobart et al., 200316 

12 questions with a 5 point Likert scale 
regarding walking, and walking-related ability. 

Raw –  
1. The individual score on each 

question 
 
Calculated – 

2.  The summed score for the entire 
questionnaire 

Specific Contraindications –  
For certain severely aphasic or 
dysphasic individuals, circumstances 
should be evaluated to determine 
whether this test is appropriate.  
 

NA 
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Table S3 – Cohort Demographics  

Demographic Data 
Fallers 
N = 54 

Non-Fallers 
N = 284 

Sex   

Male 46.3% 59.7 % 

Female 53.7% 40.3 % 

Ethnicity*   

White 77.8% 77.4% 

Asian 9.26% 14.2% 

Black 7.41% 4.60% 

Afro-Caribbean 3.70% 2.09% 

Mixed 1.85% 1.67% 

Age   

<19 0.00% 0.35% 

19 - 29 11.1% 8.45% 

29 - 39 5.56% 15.5% 

39 - 49 18.5% 14.8% 

49 - 59 25.9% 20.4% 

59 - 69 18.5% 17.3% 

69 - 79 11.1% 16.5% 

79 - 89 9.26% 6.34% 

89 – 99 0.00% 0.35% 

Mean [95% Confidence Interval] 55.4 [50.7, 60.2] 54.7 [52.5, 56.9] 

Years of Education^   

Mean [95% Confidence Interval] 13.1 [12.1, 14.1] 13.4 [12.9, 14.0] 

Diagnoses 

1. Undefined; 2. Achondroplasia; 3. Ankylosing Spondylitis; 4. Autonomic Diseases & Disorders; 5. Brain Tumor – 
Frontal; 6. Brain Tumor – Cerebellar; 7. Brain Tumor – Occipital; 8. Brain Tumor – Other; 9. Brain Tumor – Parietal; 
10. Brain Tumor – Temporal; 11. Cauda Equina Syndrome; 12. Central Cord Syndrome & Syringomyelia; 13. Cerebral 

Palsy; 14. Chiari Malformation; 15. Chronic Fatigue Syndrome; 16. Cognitive Decline; 17. Cushing’s Disease & 
Syndrome; 18. Depressive Disorders; 19 Dropped Head Syndrome; 20. Drug Abuse; 21. Dystonia – Focal; 22. Epilepsy; 

23. Encephalopathy; 24. Functional Movement Disorder; 25. Guillian Barre Syndrome; 26. Headache & Migraine; 27. 
Hydrocephalus; Intrancranial Hypertension; 29. Motor Neuron Disease; 30. Multiple Sclerosis; 31. Myasthenia Gravis; 

32. Myelopathy – Cervical; 33. Myelopathy – Lumbar; 34. Myelopathy – Other; 35. Myelopathy – Thoracic; 36. 
Myopathy; 37. Neuropathy; 38. Other Neurovascular Disorder/Disease; 39. Parkinson’s & Parkinson’s-like Disorders; 

40. Phenylkentonuria; 41. Foot Drop; 42. Schizophrenia; 43. Spina Bifida; 44. Spinal Stenosis; 45. Spinal Tumor – 
Lumbar; 46. Spinal Tumor – Thoracic; 47. Stiff Person Syndrome; 48. Stroke; 49. SUNA & SUNT; 50. Tremor – 

Dystonic; 51. Tuberculosis; 52. Tumor – Other. 

*Ethnicity reported in line with the standardized classification used by the office for national statistics
17

.  
^ Total number of years in primary, secondary, further &/or higher education.
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Summary Statistics for Raw Data 
Note: significances in this appendix are not post-hoc/multiple testing corrected 

 
Table S4 – Non-Faller and Faller Summary Statistics, Discrete variables. Last column is Fallers vs non-Fallers, as measured by Pearson’s Chi-squared test. 

 

 
Table S5 -Non-Faller and Faller Summary Statistics, Trail test. Last column is Fallers vs non-Faller means, as measured by Student’s t-test. 

Test Population 
Sample Size 

(Participants) 
Yes No 

Significance 
(Chi-squaredtest) 

Theatre in the last month? 
Faller 54 31 23 

4.6 x 10-1 

Non-Faller 283 144 139 

Fallen in the last month? 
Faller 54 29 25 

4.6 x 10-4 

Non-Faller 283 80 203 

Physical function change in the last month? 
Faller 54 43 11 

1.8 x 10-3 

Non-Faller 283 158 125 

Test Population 
Sample Size 

(Participants) 
Minimum 1st Quartile Median 

 
Mean 

3rd Quartile Maximum 
Significance 

(t-test) 

Time to Complete Part A (Seconds) 
Faller 39 15.0 49.0 76.0 80.43 90.5 300.0 

3.0 x 10-5 

Non-Faller 172 14.0 26.0 34.0 42.51 48.0 131.0 

Number of Errors - Part A 
Faller 38 0.0 0.0 0.0 1.10 1.0 3.0 

1.2 x 10-2 

Non-Faller 172 0.0 0.0 0.0 0.93 0.0 2.0 

Time to complete Part B (Seconds) 
Faller 39 42.0 176.0 253.0 200.71 294.5 300.0 

3.9 x 10-8 

Non-Faller 171 32.0 84.0 131.0 121.57 191.0 300.0 

Number of Errors - Part B 
Faller 38 0.0 0.3 2.0 1.27 3.0 8.0 

2.0 x 10-4 

Non-Faller 168 0.0 0.0 0.0 0.80 1.0 7.0 

Time to Complete Part B / Time to 
Complete Part A 

Faller 38 1.0 2.4 2.8 2.79 4.2 10.5 
4.3 x 10-1 

Non-Faller 171 1.6 2.5 3.6 2.97 4.6 7.9 
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Table S6 – Non-Faller and Faller Summary Statistics, Stroop Colour-Word Tests. Last column is Fallers vs non-Faller means, as measured by Student’s t-test. 

 
Table S7 – Non-Faller and Faller Summary, Semantic Fluency Tests. Last column is Fallers vs non-Faller means, as measured by Student’s t-test. 

Test Population 
Sample Size 

(Participants) 
Minimum 1st Quartile Median 

Mean 
3rd Quartile Maximum 

Significance 
(t-test) 

Number of Animals 
Faller 44 5.0 10.0 14.0 15.70 18.0 29.0 

8.5 x 10-7 

Non-Faller 209 3.0 15.0 19.0 19.77 25.0 38.0 

Number of Repetitions 
Faller 44 0.0 0.0 1.0 0.91 2.0 4.0 

4.6 x 10-3 

Non-Faller 205 0.0 0.0 0.0 0.64 1.0 3.0 

Test Population 
Sample Size 

(Participants) 
Minimum 1st Quartile Median 

Mean 
3rd Quartile Maximum 

Significance 
(t-test) 

Number of Words Read in 1 Minute - Part 
A 

Faller 37 20.0 49.0 66.0 78.15 104.0 112.0 
7.7 x 10-7 

Non-Faller 178 21.0 93.0 112.0 98.23 112.0 112.0 

Number of Words Read in 2 Minutes - 
Part A 

Faller 37 38.0 100.0 112.0 103.42 112.0 112.0 
4.7 x 10-3 

Non-Faller 180 46.0 112.0 112.0 111.27 112.0 112.0 

Number of Errors - Part A 
Faller 37 0.0 0.0 0.0 0.85 1.0 7.0 

1.2 x 10-1 

Non-Faller 180 0.0 0.0 0.0 0.99 1.0 6.0 

Number of Corrected Errors - Part A 
Faller 37 0.0 0.0 0.0 0.42 1.0 2.0 

5.6 x 10-1 

Non-Faller 180 0.0 0.0 0.0 0.35 0.0 4.0 

Number of Colours Identified in 1 Minute 
- Part B 

Faller 37 4.0 26.0 36.0 38.00 51.0 70.0 
1.3 x 10-4 

Non-Faller 174 20.0 42.0 50.0 47.27 59.8 112.0 

Number of Colours Identified in 2 
Minutes - Part B 

Faller 37 9.0 54.0 72.0 73.78 100.0 112.0 
1.4 x 10-4 

Non-Faller 174 35.0 82.3 100.0 88.84 112.0 112.0 

Number of Errors - Part B 
Faller 37 0.0 2.0 3.0 3.91 5.0 12.0 

5.2 x 10-4 

Non-Faller 174 0.0 0.0 1.0 2.45 3.0 10.0 

Number of Corrected Errors - Part B 
Faller 37 0.0 1.0 2.0 2.31 3.0 7.0 

3.7 x 10-2 

Non-Faller 174 0.0 0.0 1.0 1.70 2.0 8.0 
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Table S8 – Non-Faller and Faller Summary, Walk-12 Test. Last column is Fallers vs non-Faller means, as measured by Student’s t-test. 

Test Population 
Sample Size 

(Participants) 
Minimum 1st Quartile Median 

Mean 
3rd Quartile Maximum 

Significance 
(t-test) 

Question 1 
Faller 50 0.0 2.3 4.0 3.88 5.0 5.0 

9.5 x 10-3 

Non-Faller 204 0.0 1.0 3.0 2.91 4.0 5.0 

Question 2 
Faller 50 0.0 2.0 5.0 4.28 5.0 5.0 

1.8 x 10-1 

Non-Faller 204 0.0 1.0 4.0 3.34 5.0 5.0 

Question 3 
Faller 50 0.0 2.0 4.0 3.81 5.0 5.0 

2.3 x 10-2 

Non-Faller 204 0.0 1.0 3.0 2.89 4.0 5.0 

Question 4 
Faller 50 0.0 2.0 4.0 3.53 5.0 5.0 

1.2 x 10-1 

Non-Faller 204 0.0 1.0 3.0 2.95 4.0 5.0 

Question 5 
Faller 50 0.0 2.0 3.5 3.53 5.0 5.0 

2.6 x 10-1 

Non-Faller 204 0.0 1.8 3.0 2.87 4.0 5.0 

Question 6 
Faller 50 0.0 3.0 4.5 4.19 5.0 5.0 

6.7 x 10-2 

Non-Faller 204 0.0 2.0 3.0 3.29 5.0 5.0 

Question 7 
Faller 50 0.0 2.3 4.5 4.13 5.0 5.0 

4.9 x 10-2 

Non-Faller 204 0.0 2.0 3.0 3.17 4.0 5.0 

Question 8 
Faller 50 0.0 1.0 4.0 3.72 5.0 5.0 

1.8 x 10-1 

Non-Faller 204 0.0 1.0 3.0 2.83 5.0 5.0 

Question 9 
Faller 50 0.0 1.0 4.0 3.91 5.0 5.0 

6.1 x 10-2 

Non-Faller 204 0.0 1.0 2.0 2.68 5.0 5.0 

Question 10 
Faller 50 0.0 3.0 5.0 4.13 5.0 5.0 

6.5 x 10-2 

Non-Faller 204 0.0 2.0 3.0 3.27 5.0 5.0 

Question 11 
Faller 50 0.0 3.0 4.0 4.09 5.0 5.0 

6.7 x 10-2 

Non-Faller 204 0.0 1.0 3.0 3.14 5.0 5.0 

Question 12 
Faller 50 0.0 4.0 5.0 4.44 5.0 5.0 

8.7 x 10-3 

Non-Faller 204 0.0 1.0 4.0 3.25 5.0 5.0 
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All Predictive Analysis Results (Table S9) 

Variable Utilized Population Method 
Mean 

Misclassification 
Error (MMCE) 

Sensitivity Specificity Precision F1 - Score 

Demographics  

All 

Logistic Regression 0.160 (±0.020) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

Linear Discriminant 
Analysis 

0.160 (±0.020) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

SVM (Linear) 0.160 (±0.020) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

SVM (Gauss) 0.139 (±0.019) 0.153 (±0.049) 0.996 (±0.004) 0.833 (±0.118) 0.231 (±0.075) 

Random Forest 0.157 (±0.020) 0.080 (±0.036) 0.990 (±0.006) 0.667 (±0.218) 0.125 (±0.061) 

Naïve Bayes 0.163 (±0.020) 0.113 (±0.044) 0.975 (±0.009) 0.500 (±0.150) 0.162 (±0.065) 

Neural Net 0.169 (±0.020) 0.230 (±0.058) 0.948 (±0.013) 0.496 (±0.099) 0.245 (±0.068) 

avNNet 0.160 (±0.020) 0.190 (±0.054) 0.965 (±0.011) 0.450 (±0.118) 0.249 (±0.070) 

Trail 

Logistic Regression 0.199 (±0.028) 0.033 (±0.027) 0.976 (±0.012) 0.167 (±0.223) 0.040 (±0.047) 

Linear Discriminant 
Analysis 

0.189 (±0.027) 0.083 (±0.045) 0.976 (±0.012) 0.458 (±0.218) 0.109 (±0.072) 

SVM (Linear) 0.184 (±0.027) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

SVM (Gauss) 0.170 (±0.026) 0.125 (±0.056) 0.988 (±0.008) 0.714 (±0.199) 0.200 (±0.086) 

Random Forest 0.166 (±0.026) 0.200 (±0.068) 0.976 (±0.012) 0.667 (±0.148) 0.293 (±0.089) 

Naïve Bayes 0.180 (±0.027) 0.333 (±0.079) 0.928 (±0.020) 0.517 (±0.104) 0.371 (±0.080) 

Neural Net 0.204 (±0.028) 0.200 (±0.068) 0.929 (±0.020) 0.338 (±0.115) 0.206 (±0.079) 
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avNNet 0.205 (±0.028) 0.258 (±0.073) 0.916 (±0.021) 0.425 (±0.105) 0.317 (±0.079) 

Strrop Stroop 

Logistic Regression 0.153 (±0.025) 0.367 (±0.080) 0.953 (±0.016) 0.633 (±0.111) 0.454 (±0.084) 

Linear Discriminant 
Analysis 

0.153 (±0.025) 0.392 (±0.082) 0.947 (±0.017) 0.608 (±0.106) 0.462 (±0.082) 

SVM (Linear) 0.149 (±0.025) 0.225 (±0.069) 0.988 (±0.0008 0.833 (±0.140) 0.343 (±0.092) 

SVM (Gauss) 0.192 (±0.027) 0.050 (±0.038) 0.971 (±0.013) 0.133 (±0.199) 0.057 (±0.063) 

Random Forest 0.182 (±0.027) 0.258 (±0.072) 0.941 (±0.018) 0.463 (±0.121) 0.307 (±0.083) 

Naïve Bayes 0.153 (±0.025) 0.508 (±0.084) 0.924 (±0.020) 0.585 (±0.091) 0.534 (±0.075) 

Neural Net 0.205 (±0.028) 0.467 (±0.084) 0.865 (±0.026) 0.451 (±0.080) 0.441 (±0.072) 

avNNet 0.163 (±0.026) 0.450 (±0.084) 0.924 (±0.020) 0.560 (±0.095) 0.475 (±0.078) 

Trail Trail 

Logistic Regression 0.150 (±0.025) 0.400 (±0.081) 0.953 (±0.016) 0.675 (±0.104) 0.487 (±0.081) 

Linear Discriminant 
Analysis 

0.154 (±0.025) 0.425 (±0.082) 0.941 (±0.018) 0.675 (±0.099) 0.514 (±0.078) 

SVM (Linear) 0.169 (±0.026) 0.217 (±0.068) 0.970 (±0.013) 0.679 (±0.146) 0.278 (±0.087) 

SVM (Gauss) 0.160 (±0.026) 0.283 (±0.075) 0.964 (±0.014) 0.620 (±0.123) 0.360 (±0.086) 

Random Forest 0.117 (±0.022) 0.550 (±0.083) 0.958 (±0.015) 0.758 (±0.085) 0.619 (±0.071) 

Naïve Bayes 0.164 (±0.026) 0.550 (±0.083) 0.899 (±0.023) 0.638 (±0.083) 0.566 (±0.070) 

Neural Net 0.173 (±0.027) 0.600 (±0.081) 0.876 (±0.026) 0.597 (±0.077) 0.578 (±0.067) 

avNNet 0.169 (±0.026) 0.442 (±0.083) 0.917 (±0.021) 0.654 (±0.092) 0.498 (±0.076) 
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Semantic Semantic 

Logistic Regression 0.164 (±0.024) 0.200 (±0.062) 0.971 (±0.012) 0.583 (±0.135) 0.271 (±0.080) 

Linear Discriminant 
Analysis 

0.161 (±0.023) 0.245 (±0.067) 0.965 (±0.013) 0.604 (±0.121) 0.311 (±0.080) 

SVM (Linear) 0.176 (±0.024) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

SVM (Gauss) 0.164 (±0.024) 0.115 (±0.049) 0.990 (±0.007) 0.792 (±0.199) 0.159 (±0.077) 

Random Forest 0.169 (±0.024) 0.245 (±0.067) 0.956 (±0.014) 0.528 (±0.117) 0.310 (±0.078) 

Naïve Bayes 0.173 (±0.024) 0.270 (±0.069) 0.946 (±0.016) 0.550 (±0.109) 0.337 (±0.077) 

Neural Net 0.165 (±0.024) 0.245 (±0.067) 0.961 (±0.014) 0.537 (±0.119) 0.313 (±0.079) 

avNNet 0.161 (±0.023) 0.265 (±0.069) 0.960 (±0.014) 0.656 (±0.115) 0.347 (±0.079) 

Walk-12 Walk-12 

Logistic Regression 0.182 (±0.025) 0.100 (±0.045) 0.975 (±0.011) 0.583 (±0.186) 0.153 (±0.070) 

Linear Discriminant 
Analysis 

0.169 (±0.024) 0.100 (±0.045) 0.990 (±0.007) 0.700 (±0.230) 0.153 (±0.074) 

SVM (Linear) 0.178 (±0.025) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

SVM (Gauss) 0.178 (±0.025) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

Random Forest 0.241 (±0.028) 0.145 (±0.054) 0.894 (±0.022) 0.248 (±0.063) 0.165 (±0.062) 

Naïve Bayes 0.408 (±0.032) 0.665 (±0.073) 0.576 (±0.035) 0.268 (±0.041) 0.375 (±0.050) 

Neural Net 0.190 (±0.025) 0.020 (±0.023)  0.980 (±0.010) 0.200 (±0.223) 0.020 (±0.042) 

avNNet 0.224 (±0.027) 0.100 (±0.045) 0.924 (±0.019) 0.130 (±0.099) 0.107 (±0.060) 
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All Variables All Variables 

Logistic Regression 0.235 (±0.037) 0.500 (±0.104) 0.825 (±0.037) 0.485 (±0.091) 0.444 (±0.085) 

Linear Discriminant 
Analysis 

0.138 (±0.030) 0.567 (±0.103) 0.933 (±0.024) 0.694 (±0.108) 0.572 (±0.088) 

SVM (Linear) 0.130 (±0.030) 0.417 (±0.102) 0.980 (±0.013) 0.875 (±0.117) 0.503 (±0.0103) 

SVM (Gauss) 0.198 (±0.035) 0.000 (±0.000) 0.991 (±0.010) 0.000 (±0.000) 0.0000 (±0.000) 

Random Forest 0.131 (±0.030) 0.433 (±0.103) 0.971 (±0.016) 0.815 (±0.118) 0.510 (±0.099)  

Naïve Bayes 0.166 (±0.033) 0.667 (±0.100) 0.877 (±0.032) 0.610 (±0.095) 0.597 (±0.081) 

Neural Net 0.201 (±0.035) 0.600 (±0.103) 0.853 (±0.034) 0.550 (±0.096) 0.522 (±0.085) 

avNNet 0.147 (±0.031) 0.700 (±0.097) 0.894 (±0.030) 0.607 (±0.095) 0.614 (±0.079) 

Trail + 
Demographics 

Trail + 
Demographics 

Logistic Regression 0.132 (±0.024) 0.450 (±0.083) 0.957 (±0.015) 0.735 (±0.093) 0.498 (±0.076) 

Linear Discriminant 
Analysis 

0.132 (±0.024) 0.475 (±0.083) 0.951 (±0.016) 0.707 (±0.091) 0.514 (±0.074) 

SVM (Linear) 0.165 (±0.026) 0.225 (±0.071) 0.969 (±0.013) 0.628 (±0.138) 0.264 (±0.068) 

SVM (Gauss) 0.204 (±0.028) 0.0000 (±0.000) 0.976 (±0.012) 0.0000 (±0.000) 0.0000 (±0.000) 

Random Forest 0.136 (±0.024) 0.450 (±0.083) 0.952 (±0.016) 0.693 (±0.094) 0.493 (±0.076) 

Naïve Bayes 0.160 (±0.026) 0.558 (±0.082) 0.898 (±0.023) 0.575 (±0.081) 0.537 (±0.069) 

Neural Net 0.152 (±0.025) 0.658 (±0.077) 0.885 (±0.025) 0.602 (±0.075) 0.586 (±0.063) 

avNNet 0.132 (±0.025) 0.575 (±0.081) 0.928 (±0.020) 0.671 (±0.082) 0.553 (±0.067) 
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Trail + Stroop Trail + Stroop 

Logistic Regression 0.189 (±0.033) 0.500 (±0.094) 0.895 (±0.029) 0.638 (±0.099) 0.515 (±0.082) 

Linear Discriminant 
Analysis 

0.201 (±0.034) 0.433 (±0.093) 0.897 (±0.029) 0.629 (±0.104) 0.460 (±0.086) 

SVM (Linear) 0.174 (±0.032) 0.300 (±0.086) 0.966 (±0.017) 0.817 (±0.138) 0.350 (±0.098) 

SVM (Gauss) 0.221 (±0.035) 0.067 (±0.047) 0.967 (±0.017) 0.333 (±0.230) 0.083 (±0.076) 

Random Forest 0.179 (±0.032) 0.367 (±0.091) 0.942 (±0.023) 0.800 (±0.121) 0.455 (±0.092) 

Naïve Bayes 0.180 (±0.0032) 0.533 (±0.094) 0.895 (±0.029) 0.610 (±0.097) 0.534 (±0.081) 

Neural Net 0.201 (±0.034) 0.600 (±0.092) 0.853 (±0.034) 0.511 (±0.087) 0.512 (±0.076) 

avNNet 0.201 (±0.034) 0.500 (±0.094) 0.878 (±0.031) 0.551 (±0.096) 0.489 (±0.082) 

Trail + Semantic  Trail + Semantic 

Logistic Regression 0.152 (±0.027) 0.433 (±0.066) 0.951 (±0.018) 0.742 (±0.104) 0.503 (±0.082) 

Linear Discriminant 
Analysis 

0.158 (±0.028) 0.467 (±0.066) 0.937 (±0.021) 0.708 (±0.100) 0.520 (±0.080) 

SVM (Linear) 0.180 (±0.029) 0.325 (±0.081) 0.943 (±0.019) 0.643 (±0.119) 0.363 (±0.087) 

SVM (Gauss) 0.186 (±0.029) 0.275 (±0.076) 0.950 (±0.018) 0.560 (±0.132) 0.290 (±0.089) 

Random Forest 0.146 (±0.027) 0.517 (±0.087) 0.944 (±0.019) 0.722 (±0.097) 0.553 (±0.078) 

Naïve Bayes 0.158 (±0.028) 0.667 (±0.082) 0.888 (±0.027) 0.645 (±0.081) 0.613 (±0.067) 

Neural Net 0.152 (±0.027) 0.650 (±0.084) 0.901 (±0.025) 0.688 (±0.083) 0.596 (±0.069) 

avNNet 0.146 (±0.027) 0.575 (±0.086) 0.930 (±0.022) 0.707 (±0.091) 0.588 (±0.074) 
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Trail + Walk-12 Trail + Walk-12 

Logistic Regression 0.185 (±0.030) 0.475 (±0.089) 0.897 (±0.026) 0.518 (±0.094) 0.467 (±0.079) 

Linear Discriminant 
Analysis 

0.149 (±0.028) 0.542 (±0.089) 0.926 (±0.023) 0.668 (±0.094) 0.567 (±0.077) 

SVM (Linear) 0.184 (±0.030) 0.217 (±0.073) 0.963 (±0.016) 0.595 (±0.155) 0.270 (±0.093) 

SVM (Gauss) 0.191 (±0.030) 0.117 (±0.058) 0.978 (±0.013) 0.500 (±0.270) 0.147 (±0.089) 

Random Forest 0.143 (±0.027) 0.450 (±0.089) 0.955 (±0.018) 0.722 (±0.103) 0.516 (±0.084) 

Naïve Bayes 0.299 (±0.035) 0.717 (±0.080) 0.696 (±0.040) 0.378 (±0.061) 0.490 (±0.063) 

Neural Net 0.210 (±0.031) 0.567 (±0.088) 0.845 (±0.031) 0.478 (±0.061) 0.500 (±0.073) 

avNNet 0.174 (±0.029) 0.417 (±0.088) 0.926 (±0.023) 0.556 (±0.105) 0.450 (±0.084) 

Demographics All (Trail) 

LogReg + Majority 0.169 (±0.020) 0.033 (±0.019) 0.986 (±0.007) 0.167 (±0.0223) 0.040 (±0.034) 

LDA + Majority 0.163 (±0.020) 0.070 (±0.032) 0.986 (±0.007) 0.458 (±0.218) 0.094 (±0.054) 

SVM(lin) + Majority 0.160 (±0.020) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

SVM(Gauss) + Majority 0.152 (±0.020) 0.090 (±0.040) 0.992 (±0.005) 0.714 (±0.199) 0.152 (±0.066) 

RF + Majority 0.149 (±0.0019 0.143 (±0.049) 0.985 (±0.007) 0.667 (±0.148) 0.229 (±0.072) 

Naive Bayes + Majority 0.158 (±0.020) 0.243 (±0.059) 0.957 (±0.0012 0.517 (±0.104) 0.309 (±0.070) 

Neural Net + Majority 0.172 (±0.021) 0.143 (±0.049) 0.958 (±0.012) 0.338 (±0.115) 0.172 (±0.065) 

AvNNet + Majority 0.173 (±0.021) 0.193 (±0.054) 0.95 (±0.013) 0.425 (±0.105) 0.261 (±0.067) 
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Trail All (Trail) 

LogReg + Majority 0.140 (±0.019) 0.294 (±0.062) 0.972 (±0.010) 0.675 (±0.104) 0.392 (±0.072) 

LDA + Majority 0.143 (±0.019) 0.309 (±0.063) 0.965 (±0.011) 0.675 (±0.099) 0.411 (±0.071) 

SVM(lin) + Majority 0.152 (±0.010) 0.162 (±0.049) 0.982 (±0.008) 0.679 (±0.146) 0.225 (±0.071) 

SVM(Gauss) + Majority 0.146 (±0.019) 0.223 (±0.056) 0.979 (±0.009) 0.620 (±0.123) 0.296 (±0.073) 

RF + Majority 0.119 (±0.018) 0.409 (±0.067) 0.975 (±0.009) 0.758 (±0.085) 0.508 (±0.069) 

Naive Bayes + Majority 0.149(±0.019) 0.412 (±0.067) 0.939 (±0.014) 0.638 (±0.083) 0.472 (±0.066) 

Neural Net + Majority 0.154(±0.020) 0.449 (±0.068) 0.926 (±0.016) 0.597 (±0.077) 0.483 (±0.063) 

AvNNet + Majority 0.152 (±0.020) 0.333 (±0.064) 0.951 (±0.013) 0.654 (±0.092) 0.407 (±0.069) 

None All Majority 0.160 (±0.020) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 

None Trail Majority 0.184 (±0.027) 0.000 (±0.000) 1.000 (±0.000) - 0.000 (±0.000) 
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