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Abstract
Urban systems are composed by complex couplings of several components, and more particularly

between the built environment and transportation networks. Their interaction is involved in the emer-
gence of the urban form. We propose in this chapter to introduce an approach to urban morphology
grasping both aspects and their interaction. We first define complementary measures, study their em-
pirical values and their spatial correlations on European territorial systems. The behavior of indicators
and correlations suggest underlying non-stationary and multi-scalar processes. We then introduce a
generative model of urban growth at a mesoscopic scale. Given a fixed exogenous growth rate, pop-
ulation is distributed following a preferential attachment depending on a potential controlled by the
local urban form (density, distance to network) and network measures (centralities and generalized ac-
cessibilities), and then diffused in space to capture urban sprawl. Network growth is included through
a multi-modeling paradigm: implemented heuristics include biological network generation and gravity
potential breakdown. The model is calibrated both at the first (measures) and second (correlations)
order, the later capturing indirectly relations between networks and territories.

Keywords : Urban Morphology; Road Network Topology; Spatial Correlations; Urban Morphogenesis;
Reaction-diffusion; Co-evolution

1 Introduction

1.1 Urban morphology

The structure of urban systems determine their functional properties at several scales, and the urban
morphology both participates in the emergence of urban functions and determines how they evolve and
how they are used by the agents (Batty and Longley, 1994). For example, relationships between urban
form, mobility practices and sustainability of metropolitan areas can be established (Le Néchet, 2010).

Several approaches can be taken to study urban morphology. At the microscopic scale, in operational
urbanism for example, urban morphology is defined as “the characteristics of the material form of cities
and fabrics” (Paquot, 2010). A similar positioning is taken by architecture, considering forms at the scale
of buildings (Moudon, 1997). At the mesoscopic scales, Tsai (2005) introduces indicators to quantify
urban form, considered as the spatial distribution of population. Le Néchet (2009) recalls the necessity
of a multi-dimensional measure. It is however possible to obtain a robust description of urban form with
a small number of independent indicators by a reduction of the dimension (Schwarz, 2010). It is also
possible to use indexes from fractal analysis, such as for example systematically applied by Chen (2016)
to classify urban forms. Other more original indexes can be proposed, such as by Lee et al. (2017) which
use the variations of trajectories for routes going through a city to establish a classification and show that
it is strongly correlated with socio-economic variables. An other entry is through the topology of urban
networks, and more particularly road networks, for which (Lagesse, 2015) gives a broad overview. Finally,
geographers also consider at the macroscopic scale the spatial distribution of cities and their populations
as the form of the urban system (Pumain, 2011).
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The link between urban morphology and the topology of the underlying relational network has been
suggested in a theoretical approach by Badariotti et al. (2007). D’Acci (2015) models cities as isobenefit
lines for agents, and suggests in opening the link between the distribution of amenities and networks
and flows, highlighting the open question of co-evolutive processes between the urban form and spatial
networks, in the sense of circular causalities.

There is to the best of our knowledge no contribution in the literature considering the interaction
between the built environment and networks as an intrinsic process of the emergence of the urban form.
This chapter thus aims at sketching an exploration of this concept at the mesoscopic scale, through em-
pirical data analysis and modeling. More precisely, our contribution is twofold: (i) we introduce indicators
quantifying simultaneously the morphology of population spatial distribution and the topology of road
networks, and study empirically their values and spatial correlations, including thus the interactions be-
tween both in the quantification of the form; (ii) we describe and explore a model of urban morphogenesis,
aiming at capturing these interaction processes in the emergence of the form.

The rest of this chapter is organized as follows. We first detail the rationale of our approach to urban
form, in particular the scale and objects considered. The second section develops the methodology used
to quantify urban form, from the point of view of morphological indicators, network topology indicators,
and their correlations. Empirical results for Europe are then described, to then be used to calibrate a
model of urban morphogenesis that we detail and explore. We finally discuss potential developments and
applications of this work.

1.2 Urban morphology and interactions between networks and territories

Through relocation processes, sometimes induced by networks, we can expect the latest to influence the
distribution of populations in space (Wegener and Fürst, 2004). Reciprocally, network characteristics can
be influenced by this distribution. We propose therefore here to study a coupled approach to the urban
form, given by synthetic indicators for these two subsystems, and by correlations between these indicators.
At the scale of the system of cities, the spatial nature of the urban system is captured by cities position,
associated with aggregated city variables. We propose to work here at the mesoscopic scale, at which the
precise spatial distribution of activities is necessary to understand the spatial structure of the territorial
system. We will therefore use the term of morphological characteristics for population density and the
road network.

The choice of “relevant” boundaries for the territory or the city is a relatively open problem which will
often depend on the question we are trying to answer (Páez and Scott, 2005). This way, Guérois and Paulus
(2002) show that the entities obtained are different if we consider an entry by the continuity of the built
environment (morphological), by urban functions (employment area for example) or by administrative
boundaries. Boeing (2017a) furthermore shows that statistics of network measures significantly change
when the scale of study switches from neighborhood to cities and metropolitan areas. Similarly, Cottineau
et al. (2017) show that scaling exponents also strongly depends on boundaries and thresholds chosen to
define the urban area.

To tackle this ontological issue of the object under study, we (i) stay at a high resolution; and (ii)
compute field values with a small enough offset to obtain continuous values. At the chosen scale, we
can assume that territorial characteristics, for population and network, are locally defined and vary in an
approximately continuous way in space. We will compute therefore the indicators on spatial windows of
fixed size, taken of the order of magnitude of 100km (in practice 50km, following Raimbault (2018) with
furthermore shows a low sensitivity of indicators when comparing with windows of 30 and 100km), but
with a small enough offset. Thus, the construction of fields of morphological indicators will allow us to
endogenously reconstruct territorial entities through the emergent spatial structure of indicators at larger
scales.

2



2 Measuring morphology: method

We detail in this section the indicators used to quantify morphology, both for population distribution
(urban morphology) and for network topology.

2.1 Urban morphology

Our quantification of the urban form in itself, in the sense of properties of the spatial distribution of
populations, is taken from a previous work developed in Raimbault (2018). We recall here the formal
definition of morphological indicators. We work with gridded population data (Pi)1≤i≤N2 , whereM = N2,
dij is the euclidian distance between cells i, j, P =

∑M
i=1 Pi the total population and P̄ = P/M the average

population per cell. We use the following indicators: (i) rank-size slope γ, expressing the degree of hierarchy
in the distribution; (ii) entropy of the distribution (Le Néchet, 2015), given by

E =

M∑
i=1

Pi
P
· ln Pi

P
(1)

(iii) spatial-autocorrelation given by Moran index (Tsai, 2005) defined as

I = M ·
∑

i 6=j wij
(
Pi − P̄

)
·
(
Pj − P̄

)∑
i 6=j wij

∑
i

(
Pi − P̄

)2 (2)

where the spatial weights are taken as wij = 1/dij ; and (iv) average distance between individu-
als (Le Néchet, 2009) given by

d̄ =
1

dM
·
∑
i<j

PiPj
P 2
· dij (3)

where dM is a normalisation constant taken as the diagonal of the area on which the indicator is
computed in our case.

The first two indexes are not spatial, and are completed by the last two that take space into account.
Following Schwarz (2010), the effective dimension of the urban form justifies the use of all.

2.2 Network Measures

We consider network aggregated indicators as a way to characterize transportation network properties on
a given territory, the same way morphological indicators yielded information on urban structure. They
are assumed thus to capture another dimension of urban form. We propose to compute some simple
indicators on same spatial extents as for population density, to be able to explore relations between these
static measures.

Static network analysis has been extensively documented in the literature, such as for example through
the typology of urban street networks obtained by Louf and Barthelemy (2014) on a cross-sectional study of
cities. Similarly, Moosavi (2017) uses techniques from deep learning to establish a typology of urban road
networks for a large number of cities across the world. The questions behind such approaches are multiple:
they can aim at finding typologies or at characterizing spatial networks, at understanding underlying
dynamical processes in order to model morphogenesis, or even at being applied in urban planning such as
Space Syntax approaches (Hillier and Hanson, 1989). We aim here at characterizing urban morphological
properties.

We introduce indicators to have a broad idea of the form of the network, using a certain number of
indicators to capture the maximum of dimensions of properties of networks, more or less linked to their
use. These indicators summarize the mesoscopic structure of the network and are computed on topological
networks obtained through simplification steps that will be detailed later. If we denote the network with
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N = (V,E), nodes have spatial positions ~x(V ) and populations p(v) obtained through an aggregation of
population in the corresponding Voronoï polygon, and edges E have effective distances l(E) taking into
account impedances and real distances (to include the primary network hierarchy). We then use:

• Characteristics of the graph, obtained from graph theory, as defined by Haggett and Chorley (1970):
number of nodes |V |, number of links |E|, density d, average length of links d̄l, average clustering
coefficient c̄, number of components c0.

• Measures directly related to distances within the network: diameter r, euclidian performance v0
(defined by Banos and Genre-Grandpierre (2012)), average length of shortest paths l̄.

• Centrality measures: these are aggregated at the level of the network by taking their average and
their level of hierarchy, computed by an ordinary least squares of a rank-size law, for the following
centrality measures:

– Betweenness centrality (Crucitti et al., 2006), average b̄w and hierarchy αbw: given the distri-
bution of centrality on all nodes, we take the slope of a rank-size adjustment and the average
of the distribution.

– Closeness centrality (Crucitti et al., 2006), average c̄l and hierarchy αcl.

– Accessibility (Hansen, 1959), which is in our case computed as a closeness centrality weighted
by populations: average ā and hierarchy αa.

Network performance is close to the rectilinearity measure (straightness) proposed by Josselin et al.
(2016), which show that it efficiently differentiates rectilinear networks and radio-concentric networks, that
are both recurring urban networks. Our indicators are conceived to capture network topology but not the
use of the network: developments with suited data could extend these analyses to the functional aspect of
networks, such as for example performance measures computed by Trépanier et al. (2009) using massive
data for a public transportation network.

2.3 Correlations

Local spatial correlations are computed on spatial windows gathering a certain number of observations,
and thus of windows on which indicators have been computed. We denote by l0 the resolution of the
distribution of indicators. The estimation of correlations in then done on squares of size δ · l0 (with δ
which can vary typically from 4 to 100). Correlations are estimated using a standard Pearson estimator.
Our approach is equivalent to computing geographically weighted correlations (Brunsdon et al., 2002) with
a heaviside window.

δ gives simultaneously the number of observations used for the local estimation of correlation, and
the spatial range of the corresponding window. Its value thus directly influences the confidence of the
estimation. We can indeed derive the behavior of the correlation estimator as a function of the size of the
sample. Under the assumption of a normal distribution of two random variables X,Y , then the Fisher
transform of the Pearson estimator ρ̂ such that ρ̂ = tanh(ẑ) has a normal distribution. If z is the transform
of the real correlation ρ, then a confidence interval for ρ is of size

ρ+ − ρ− = tanh(z + k/
√
N)− tanh(z − k/

√
N) (4)

where k is a constant. As tanh z = exp(2z)−1
exp(2z)+1 , we can develop this expression and reduce it. We obtain

ρ+ − ρ− = 2 · sinh (2k/
√
N)

cosh (2z) + cosh (2k/
√
N)

(5)

Using the fact that coshu ∼0 1 + u2/2 and that sinhu ∼0 u, we indeed obtain that
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ρ+ − ρ− ∼N�0 k
′/
√
N (6)

This expected asymptotic confidence interval will be of use when studying the behavior of correlations
as a function of δ.

3 Empirical application

We can now give implementation details and results for the application of this method to local territorial
systems of Europe. All source code and results for this section are available on the open repository of the
project at https://github.com/JusteRaimbault/CityNetwork/tree/master/Models/StaticCorrelations.

3.1 Urban morphology

As this work extends Raimbault (2018), the empirical values of morphological indicators for population
distribution are taken from it. We recall that the implementation of indicators must be done carefully,
since computational complexities can reach O(N4) for the Moran index for example: we use convolution
through Fast Fourier Transform, which is a technique allowing the computation of the Moran index with
a complexity in O(log2N ·N2).

Indicators are computed on 50km width square windows with grids of resolution 500m, computed from
the Eurostat population dataset (EUROSTAT, 2014). According to Batista e Silva et al. (2013) which
details its construction, our aggregation should allow us to avoid biases at high resolutions. The spatial
distribution of indicators unveils typical local and regional regimes, which Raimbault (2018) synthesizes
using unsupervised learning. They typically contain a metropolitan regime, a medium-sized city regime,
a rural regime (split in two between North and South), a mountainous regime.

3.2 Network Topology

3.2.1 Data preprocessing

The implementation of network indicators require a preprocessing from raw data, that we detail first. We
assume to work only with the road network. Indeed, data for the current road network is openly available
through the OpenStreetMap (OSM) project (OpenStreetMap, 2012). Its quality was investigated for
different countries such as England (Haklay, 2010) and France (Girres and Touya, 2010). It was found to
be of a quality equivalent to official surveys for the primary road network. We will however simplify the
network at a sufficient level of aggregation to ensure the robustness of results.

The network constituted by primary road segments is aggregated at the fixed granularity of the density
grid to create a graph. It is then simplified to keep only the topological structure of the network, normalized
indicators being relatively robust to this operation. This step is necessary for a simple computation of
indicators and a thematic consistence with the density layer.

Recent tools such as the one proposed by Boeing (2017b) provide algorithms to operate an extraction
of network topology. The algorithm we use is very similar but is necessary as our approach necessitates
special tuning for the following points: (i) aggregation of data at the level of raster cells, which resolution
can be variable; and (ii) construction of networks on significant areas (continental scale), made possible
in our case by a parallelization of the computation.

We keep only the nodes with a degree strictly greater or smaller than two, and corresponding links, by
taking care to aggregate the real geographical distance when constructing the corresponding topological
link. Given the order of magnitude of data size (for Europe, the initial database has ' 44.7 · 106 links,
and the final simplified database ' 20.4 · 106), a specific parallel algorithm is used, with a split-merge
structure. It separates the space into areas that can be independently processed and then merged. We
detail it in the following.
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3.2.2 Network Simplification Algorithm

We detail here the road network simplification algorithm from OpenStreetMap data. The general work-
flow is the following: (i) data import by selection and spatial aggregation at the raster resolution; (ii)
simplification to keep only the topological network, processed in parallel through split/merge.

OSM data are imported into a pgsql database (Postgis extension for the management of geometries
and to have spatial indexes). The import is done using the software osmosis Osmosis (2016), from an
image in compressed pbf format of the OpenStreetMap database (the dump was retrieved from http:
//download.geofabrik.de, in July 2016). We filter at this stage the links (ways) which posses the tag
highway, and keep the corresponding nodes.

The network is first aggregated at a 100m granularity in order to be consistently used with population
grids. It furthermore allows to be robust to local coding imperfections or to very local missing data. For
this step, roads are filtered on a relevant subset of tags, that we take within motorway, trunk, primary,
secondary, tertiary, unclassified, residential. For the set of segments of corresponding lines, a link
is created between the origin and the destination cell, with a real length computed between the center of
cells and a speed taken as the speed of the line if it is available.

The simplification is then operated the following way:

1. The whole geographical coverage is cut into areas on which computations will be partly done through
parallel computation (split paradigm). Areas have a fixed size in number of cells of the base raster
(200 cells).

2. On each sub-area, a simplification algorithm is applied the following way: as long as there still are
vertices of degree 2, successive sequences of such vertices are determined, and corresponding links
are replaced by a unique link with real length and speed computed by cumulation on the deleted
links.

3. As the simplification algorithm keeps the links having an intersection with the border of areas, a fu-
sion followed by a simplification of resulting graphs is necessary. To keep a reasonable computational
cost, the size of merged areas has to stay low: we take merge areas composed by two contiguous
areas. A paving by four sequences of independent merging allows then to cover the full set of joints
between areas, these sequences being executed sequentially.

We have then at our disposition a topological graph given by the links between cells of the base
raster, having distance and speed attributes corresponding to the underlying real links. This topological
graph for Europe has been made available as an open database on the dataverse repository at https:
//doi.org/10.7910/DVN/RKDZMV.

3.2.3 Empirical values of network indicators

Network indicators have been computed on the same areas as urban form indicators, in order to put them
in direct correspondance and later compute the correlations. We show in Fig. 1 a sample for France.

The spatial behavior of indicators unveils local regimes as for the urban form (urban, rural, metropoli-
tan), but also strong regional regimes. They can be due to the different agricultural practices depending
on the region for the rural for example, implying a different partition of parcels and also a particular orga-
nization of their serving. For network size, Brittany is a clear outlier and rejoins urban regions, witnessing
very fragmented parcels (and a fortiori also of a land property fragmentation in the simplifying assumption
of corresponding parcels and properties). This is partly correlated to a low hierarchy of accessibility. The
South and the East of the extended Bassin Parisien are distinguishable by a strong average betweenness
centrality, in accordance with a strong hierarchy of the network.

The same way as for urban form, this spatial variability suggests the search of variables regimes of
interactions between indicators, as we will do for later through their correlations.
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Figure 1: Spatial distribution of network indicators. We show indicators for France, in correspon-
dance with morphological indicators described previously. We give here the average betweenness central-
ity b̄w, the hierarchy of closeness centrality αcl, the average clustering coefficient c̄ and the number of
nodes |V |.
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Figure 2: Examples of spatial correlations. For France, the maps give ρ
[
b̄w, γ

]
, correlation between

the average betweenness centrality and the hierarchy of population (Left) and the first component of the
reduced matrix (Right).

3.3 Effective static correlations and non-stationarity

3.3.1 Spatial correlations

We show in Fig. 2 examples of correlations estimated with δ = 12 in the case of France. With 20
indicators, the correlation matrix is significantly large in size, but the effective dimension (the number of
components required to reach the majority of variance) is reduced: principal components analysis shows
that 10 components already capture 62% of the variance, and the first component already captures 17%,
what is considerable in a space where the dimension is 190.

The Fig. 3 gives the spatial distribution for all Europe, for a sample of correlations between indicators:
ρ[αcl, I], ρ[γ, α], ρ

[
b̄w, γ

]
, ρ[αbw, αcl], ρ

[
|V | , l̄

]
, ρ[γ, rγ ] (with rγ adjustment coefficient for γ). We see

interesting structures emerging, such as the hierarchy and its adjustment which exhibit an area of strong
correlation in the center of Europe and negative correlation areas, or the number of nodes and the path
length which correlate in mountains and along the coasts (what is expected since roads do several detours
in such topographies) and have a negative correlation otherwise.

It is possible to examine within the correlation matrix the bloc for urban form, for the network, or for
crossed correlations, which directly express a link between properties of the urban form and of the network.
For example, a certain correspondence between average betweenness centrality and morphological hierarchy
that we obtain allows to understand the process corresponding to the correspondance of hierarchies: a
hierarchical population can induce a hierarchical network or the opposite direction, but it can also induce
a distributed network or such a network create a population hierarchy - this must be well understood in
terms of correspondence and not causality, but this correspondance informs on different urban regimes.
Metropolitan areas seem to exhibit a positive correlation for these two indicators, as shows the Fig. 2, and
rural spaces a negative correlation.

In order to give a picture of global relations between indicators, we can refer to the matrix obtained
for δ = ∞: for example, a strong population hierarchy is linked to a high and hierarchical betweenness
centrality, but is negatively correlated to the number of edges (a diffuse population requires a more spread
network to serve all the population). However, it is not possible this way to systematically link indicators,
since they especially strongly vary in space.

Furthermore, to give an idea of the robustness of the estimation, we investigate for the correlations
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Figure 3: Spatial correlations for Europe. The estimation is done here with δ = 12.
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estimated on the full dataset (corresponding to δ =∞) the relative size of confidence intervals at the 95%
level (Fisher method) given by |ρ+−ρ−||ρ| , for correlations such that |ρ| > 0.05. The median of this rate
is at 0.04, the ninth decile at 0.12 and the maximum at 0.19, what means that the estimation is always
relatively good compared to the value of correlations.

This suggests a very high variety of interaction regimes. The spatial variation of the first component
of the reduced matrix confirms it, what clearly reveals the spatial non-stationarity of interaction processes
between forms, since the first and second moments vary in space. The statistical significance of stationarity
can be verified in different ways, and there does not exist to the best of our knowledge a generic test for
spatial non-stationarity. Zhang and Zhou (2014) develop for example a test for rectangular regions of any
dimension, but in the specific case of point processes. We use here the method of Leung et al. (2000) which
consists in estimating through bootstrap the robustness of Geographically Weighted Regression models.
These will be developed below, but we obtain for all tested models a significant non-stationarity without
doubt (p < 10−3).

3.3.2 Variations of the estimated correlations

We show in Fig. 4 the variation of the estimation of correlation as a function of window size. More
precisely, we observe a strong variation of correlations as a function of δ, what is reflected in the average
value of the matrix given here (which extends for example from ρ(4) = 0.22 to ρ(80) = 0.12 for average
absolute cross-correlations). An increase of δ leads for all measures a shift towards positive values, but also
a narrowing of the distribution, these two effects resulting in a decrease of average absolute correlations,
which approximatively stabilize for large values of δ.

Such a variation could be a clue of a multi-scalar behavior: a change in window size should not influence
the estimation if a single process would be implied, it should only change the robustness of the estimation.
Let sketch in a simplified case how this link can be done. To simplify, we consider processes with two
characteristic scales which linearly superpose, i.e. which can be written as

Xi = X
(0)
i + X̃i (7)

with X(0)
i trend at the small scales with a characteristic evolution distance d0, and X̃i signal evolving

at a characteristic distance d � d0. We can then compute the decomposition of the correlation between

two processes. We assume that Cov
[
X

(0)
i , X̃j

]
= 0 for all i, j, and denoting εi =

σ
[
X

(0)
i

]
σ[X̃i]

the rate be-

tween standard deviations of trend and signal. Developing the correlation ρ [X1, X2] by bilinearity and
developing the resulting expression at the first order under the assumption that εi � 1 gives the following
approximation

ρ [X1, X2] =
(
ε1ε2ρ

[
X

(0)
1 , X

(0)
2

]
+ ρ

[
X̃1, X̃2

])
·
(

1− 1

2
(ε21 + ε22)

)
(8)

The overall correlation is thus corrected by both an attenuation and an interference factor.
Let apply this result to our problematic. We observe the following reasonable assumptions: (i) for

areas with a size smaller than the stationarity scale of correlations (which we have shown empirically to
exist at least for some indicators), estimating the covariance of noise should be equivalent on any smaller
window in terms of estimator values; (ii) trends, if they exist, have a very low variance, i.e. εi � 1; (iii)
trends are uncorrelated. Combining these three hypotheses with Eq. 8 implies that ρ(δ) should decrease
with δ if they are verified.

This confirms in this ideal case the observed empirical variation in Fig. 4. A formal demonstration of
this hypothesis for more general type of processes and less restricting assumptions remains however out
of the scope of this work.

An other signature of a possible multi-scalarity is shown by the variation of the normalized size of
the confidence interval for correlations, which in theory under an assumption of normality should lead
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Figure 4: Variation of correlations with scale, for correlations computed on Europe. (Top)
Average absolute correlations and their standard deviations, for the different blocs, as a function of δ;
(Bottom) Normalized size of the confidence interval δ · |ρ+ − ρ−| (confidence interval [ρ−, ρ+] estimated
by the Fisher method) as a function of δ.
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δ · |ρ+ − ρ−| to remain constant, since boundaries vary asymptotically as 1/
√
N ∼ 1/

√
δ2 as obtained

in Eq. 6, follows the direction of this hypothesis of processes superposed at different scales as proposed
previously.

Thus, processes are non-stationary, and this stylized insight suggests that they are the product of the
superposition of processes at different scales. We however recall that the notion of multi-scalar process is
otherwise very broad, and can manifest itself in scaling laws for example (West, 2017). An approach closer
to the one we took is given by Chodrow (2017) which measures intrinsic scales to segregation phenomenons
by using measures from Information Theory.

3.3.3 Typical scales

Table 1: Interrelations between network indicators and morphological indicators. Each rela-
tion is adjusted by a Geographically Weighted Regression, for the optimal range adjusted by AICc.

Indicator Model Range (km) Adjustment (R2)
Average distance d̄ d̄ ∼ v0 11.6 0.31
Entropy E E ∼ v0 8.8 0.75
Moran I I ∼ v0 8.8 0.49
Hierarchy γ γ ∼ v0 8.8 0.68
Average betweenness b̄w b̄w ∼ I 12.3 0.58
Average closeness c̄l c̄l ∼ I 13.9 0.26
Performance v0 v0 ∼ E 8.6 0.86
Number of nodes |V | |V | ∼ E 8.6 0.88

We also propose to explore the possible property of multi-scalar processes by the extraction of endoge-
nous scales in the data. A Geographically Weighted Principal Component Analysis (GWRPCA) Harris
et al. (2011) as exploratory analysis suggests weights and importances that vary in space, what is in con-
sistence with the non-stationarity of correlation structures obtained above. There is no reason a priori
that the scales of variation of the different indicators are strictly the same. We propose thus to extract
typical scales for crossed relations between the urban form and network topology.

We implement therefore the following method: we consider a typical sample of indicators (four for
each aspect, see the list in Table 1), and for each indicator we formulate all the possible linear models
as a function of opposite indicators (network for a morphological indicator, morphological for a network
indicator), aiming at directly capturing the interaction without controlling on the type of form or of net-
work. These models are then adjusted by a Geographically Weighted Regression (GWR) with an optimal
range determined by a corrected information criteria (AICc), using the R package GWModel (Gollini
et al., 2013). For each indicator, we keep the model with the best value of the information criteria. We
adjust the models on data for France, with a bisquare kernel and an adaptative bandwidth in number of
neighbors.

Results are presented in Table 1. It is first interesting to note that all models have only one variable,
suggesting relatively direct correspondances between topology and morphology. All morphological indi-
cators are explained by network performance, i.e. the quantity of detours it includes. On the contrary,
network topology is explained by Moran index for centralities, and by entropy for performance and the
number of vertices. There is thus a dissymmetry in relations, the network being conditioned in a more
complex way to the morphology than the morphology to the network. The adjustments are rather good
(R2 > 0.5) for most indicators, and p-values obtained for all models (for the constant and the coefficient)
are lower than 10−3. Concerning the scales corresponding to the optimal model, they are very localized,
of the order of magnitude of ten kilometers, i.e a larger variation than the one obtained the correlations.
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This analysis confirms thus statistically on the one hand the non-stationarity, and on the other hand give
a complementary point of view on the question of endogenous scales.

4 Urban morphogenesis model

After having characterized empirically urban morphology from the point of view of interactions between
the built environment and networks, we propose to gain indirect knowledge on processes involved in the
emergence of the form through modeling, by introducing a model of urban morphogenesis which aims at
capturing empirical results obtained above.

4.1 Model rationale

Urban settlements and transportation networks have been shown to be co-evolving, in the different the-
matic, empirical and modeling studies of territorial systems developed up to here. As we saw, modeling
approaches of such dynamical interactions between networks and territories are poorly developed. We
propose in this section to realize a first entry at an intermediate scale, focusing on morphological and
functional properties of the territorial system in a stylized way. We introduce a stochastic dynamical
model of urban morphogenesis which couples the evolution of population density within grid cells with a
growing road network.

The general principles of the model are the following. With an overall fixed growth rate, new population
aggregate preferentially to a local potential, for which parameters control the dependence to various
explicative variables. These are in particular local density, distance to the network, centrality measures
within the network and generalized accessibility. Rui and Ban (2014) shows in the case of Stockholm the
very strong correlation between centrality measures in the network and the type of land-use, what confirms
the importance to consider centralities as explicative variables for the model at this scale. We generalize
thus the morphogenesis model studied in Raimbault (2018), with aggregation mechanisms similar to the
ones used by Raimbault et al. (2014). A continuous diffusion of population completes the aggregation to
translate repulsion processes generally due to congestion. Because of the different time scales of evolution
for the urban environment and for networks, the network grows at fixed time steps: a first fixed rule ensures
connectivity of newly populated patches to the existing network. Different network generation heuristics
are then included in the model, which are expected to be complementary. The Fig. 5 summarizes the
general structure of the morphogenesis model.

4.2 Model description

The model is based on a squared population grid of size N , whose cells are defined by populations (Pi).
A road network is included as a vectorial layer on top of the grid, similarly to Raimbault et al. (2014).
We assume at the initial state a given population distribution and a network.

The evolution of densities is based on a utility function, influenced by local characteristics of the urban
form and function, that we call explicative variables. Let xk(i) be a local explicative variable for cell i,
which will be among the following variables: population Pi; proximity to roads, taken as exp(−d/dn)
where d is the distance by projection on the closest road, and dn = 10 is fixed; betweenness centrality;
closeness centrality; accessibility.

For the last three variables, they are defined as previously for network nodes, and then associated to
cells by taking the value of the closest node, weighted by a decreasing function of the distance to it, i.e. of
the form xk = x

(n)
k (argminj d(i, j)) ·exp (−minj d(i, j)/d0), with x

(n)
k the corresponding variable for nodes,

the index j being taken on all nodes, and the decay parameter d0 is in our case fixed at d0 = 1 to keep the
property that network variables are essentially significant at close distances from the network. We consider
then normalized explicative variables defined by x̃k(i) = xk(i)−minj xk(j)/(maxj xk(j)−minj xk(j)).

The utility of a cell is then given by a linear aggregation following
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Figure 5: Structure of the co-evolution model at the mesoscopic scale.

Ui =
∑
k

wk · x̃k(i) (9)

where x̃k are the normalized local explicative variables, and wk are weight parameters, which allow to
weight between the different influences. Alternatives to this simple utility function include for example
Cobb-Douglas functions, what are equivalent to a linear aggregation on the logarithms of variables.

A time step of model evolution includes then the following stages.

1. Evolution of the population following rules similar to Raimbault (2018). Given an exogenous growth
rate NG, individuals are added independently following an aggregation done with a probability
Uαi /

∑
k U

α
k , followed by a diffusion of strength β to neighbor cells, done nd times.

2. Network growth is done through multi-modeling as proposed by Raimbault (2017b) and explored
by Raimbault (2018b), knowing that this takes place is the time step is a multiple of a parameter
tN , which allows to integrate a differential between temporal scales for population growth and for
network growth. The different heuristic used for adding links are: (i) nothing (baseline); (ii) random
links; (iii) deterministic potential breakdown; (iv) random potential breakdown (Schmitt, 2014); (v)
cost-benefits (Louf et al., 2013); (vi) biological network growth (Tero et al., 2010).

The fact that the aggregation of population follows a power law of the utility provides a flexibility in
the underlying optimization problem by agents, since as Josselin and Ciligot-Travain (2013) recall, the use
of different norms in spatial optimal location problems corresponds to different logics of optimization.

The parameters of the model that we will make vary are then: (i) aggregation-diffusion parameters
α, β,Ng, nd; (ii) the four weight parameters wk for the explicative variables, which vary in [0; 1]; network
growth parameters for the different heuristics (see Raimbault (2018b)). Output model indicators are the
urban morphology indicators, topological network indicators, and lagged correlations between the different
explicative variables.
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4.3 Simulation results

The model is implemented in NetLogo, given the heterogeneity of aspects that have to be taken into
account, and this language being particularly suitable to couple a grid of cells with a network. Urban
morphology indicators are computed thanks to a NetLogo extension specifically developed. Source code
and results for the modeling part are available at https://github.com/JusteRaimbault/CityNetwork/
tree/master/Models/MesoCoevol.

We propose to focus on the ability of the model to capture relations between networks and territories,
and more particularly the co-evolution. Therefore, we will try to establish if (i) the model is able to
reproduce, beyond the form indicators, the static correlation matrices computed previously; and (ii) the
model produces a variety of dynamical relations in the sense of causality regimes developed by Raimbault
(2017a).

The model is initialized on fully synthetic configurations, with a grid of size 50. Configurations are
generated through an exponential mixture in a way similar to Anas et al. (1998): Nc = 8 centers are
randomly located, to which a population is attributed following a scaling law Pi = P0 · (i + 1)−αS with
αS = 0.8 and P0 = 200. The population of each center is distributed to all cells with an exponential
kernel of shape d(r) = Pmax exp (−r/r0) where the parameter r0 is determined to fix the population at
Pi, with Pmax = 20 (density at the center). We have indeed Pi =

∫∫
d(r) =

∫ 2π
θ=0

∫∞
r=0 d(r)rdrdθ =

2πPmax
∫
r r · exp (−r/r0) = 2πPmaxr

2
0, and therefore r0 =

√
Pi

2πPmax
. An initial network skeleton is

generated by sequential closest components connection.
We explore a Latin Hypercube Sampling of the parameter space, with 10 repetitions for around 7000

parameter points, corresponding to a total of around 70000 model repetitions, realized on a computation
grid by using the OpenMole model exploration software (Reuillon et al., 2013). The simulation results are
available at http://dx.doi.org/10.7910/DVN/OBQ4CS.

4.3.1 Static and dynamical calibration

The model is calibrated at the first order, on indicators for the urban form and network measures, and at
the second order on correlations between these. We introduce an ad hoc calibration procedure in order to
take into account the first two moments, that we detail below. More elaborated procedures are used for
example in economics, such as Watson (1993) which uses the noise of the difference between two variables
to obtain the same covariance structure for the two corresponding models, or in finance, such as Frey
et al. (2001) which define a notion on equivalence between latent variables models which incorporates the
equality of the interdependence structure between variables. We avoid here to add supplementary models,
and consider simply a distance on correlation matrices. The procedure is the following.

• Simulated points are the ones obtained through the sampling, with average values on repetitions.

• In order to be able to estimate correlation matrices between indicators for simulated data, we make
the assumption that second moments are continuous as a function of model parameters, and split
for each heuristic the parameter space into areas to group parameter points (each parameter being
binned into 15/k equal segments, where k is the number of parameters: we empirically observed
that this allowed to always have a minimal number of points in each area), what allows to estimate
for each group indicators and the correlation matrix.

• For each estimation done this way, that we write S̄ (indicators) and ρ[S] (correlations), we can then
compute the distance to real points on indicators dI(Rj) = d(S̄, Rj) and on correlation matrices
dρ(Rj) = d(ρ[S], ρ[Rj ]) where Rj are the real points with their corresponding correlations, and d an
euclidian distance normalized by the number of components.

• We consider then the aggregated distance defined as d2A(Rj) = d2I(Rj) + d2ρ(Rj). Indeed, the shape
of Pareto fronts for the two distances considered suggests the relevance of this aggregation. The real
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Figure 6: Calibration of the morphogenesis model at the first and second order. (Top Left)
Simulated and observed point clouds in a principal plan for urban morphology indicators. (Top Right)
Simulated and observed could points in a principal plan for network indicators. (Bottom Left) Simu-
lated and observed point clouds in a principal plan for all indicators. (Bottom Right) Distributions of
distances on correlations dρ, for the different heuristics.
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point closest to a simulated point is then the one in the sense of this distance.

The Fig. 6 summarizes calibration results. Morphological indicators are easier to approach than net-
work indicators, for which a part of the simulated clouds does not superpose with observed points. We find
again a certain complementarity between network heuristics. When considering the full set of indicators,
few simulated points are situated far from the observed points, but a significant proportion of these is
beyond the reach of simulation. Thus, the simultaneous capture of morphology and topology is obtained
at the price of less precision.

We however obtain a good reproduction of correlation matrices as shown in Fig. 6 (histogram for dρ,
bottom right). The worse heuristic for correlations is the biological one in terms of maximum, whereas
the random produces rather good results: this could be due for example to the reproduction of very low
correlations, which accompany a structure effect due to the initial addition of nodes which imposes already
a certain correlation. On the contrary, the biological heuristic introduces supplementary processes which
can possibly be beneficial to the network in terms of independence (or following the opposed viewpoint
be detrimental in terms of correlations). In any case, this application shows that our model is able to
resemble real configurations both for indicators and their correlations.

4.3.2 Causality regimes

We furthermore study dynamical lagged correlations between the variations of the different explicative
variables for cells (population, distance to the network, closeness centrality, betweenness centrality, acces-
sibility). We apply the method of causality regimes introduced in Raimbault (2017a). The Fig. 7 sum-
marizes the results obtained with the application of this method on simulation results of the co-evolution
model. The number of classes inducing a transition is smaller than for the RDB model, translating a
smaller degree of freedom, and we fix in that case k = 4. Centroid profiles allow to understand to ability
of the model to more or less capture a co-evolution.

The regimes obtained appear to be less diverse than the ones obtained by Raimbault (2017a) or
for a macroscopic model of co-evolution by Raimbault (2018a). Some variables have naturally a strong
simultaneous correlation, spurious from their definitions, such as closeness centrality and accessibility, or
the distance to the road and the closeness centrality. For all regimes, population significantly determines
the accessibility. The regime 1 corresponds to a full determination of the network by the population. The
second is partly circular, through the effect of roads on populations. The regime 3 is more interesting,
since closeness centrality negatively causes the accessibility: this means that in this configuration, the
coupled evolution of the network and the population follow the direction of a diminution of congestion.
Furthermore, as population causes the closeness centrality, there is also circularity and thus co-evolution
in that case. When we locate it in the phase diagram, this regime is rather sparse and rare, contrary for
example to the regime 1 which occupies a large portion of space for a low importance of the road (wroad ≤
0.3). This confirms that the co-evolution produced by the model is localized and not a characteristic
always verified, but that it is however able to generate some in particular regimes.

5 Discussion

5.1 Quantifying urban form

We have first shown empirically the non-stationarity of interactions between the morphology of the dis-
tribution of populations and the topology of the road network. Various developments of this analysis are
possible.

Population density grids exist for all regions of the world, such as for example the ones provided
by Stevens et al. (2015). The analysis may be repeated on other regions of the world, to compare the
correlation regimes and test if urban system properties stay the same, keeping in mind the difficulties
linked to the differences in data quality.
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Figure 7: Causality regimes for the co-evolution model. (Top) Trajectories of classes centers in
terms of ρ[τ ] between the different explicative variables. (Bottom) Phase diagram of regimes in the pa-
rameter space for wk, represented here as the variation of diagrams for (wbw, wcl), along the variations of
wroad (in rows) and of wpop (in columns).
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The research of local scales, i.e. with an adaptive estimation window in terms of size and shape for
correlations, would allow to better understand the way processes locally influence their neighborhood. The
validation criteria for window size would still be to determine: it can be as above an optimal range for
explicative models that are locally adjusted.

The question of ergodicity, crucial to urban systems (Pumain, 2012), should also be explored from
a dynamical point of view, by comparing time and spatial scales of the evolution of processes, or more
precisely the correlations between variations in time and variations in space, but the issue of the existence
of databases precise enough in time appears to be problematic. The study of a link between the derivative
of the correlation as a function of window size and of the derivatives of the processes is also a direction to
obtain indirect informations on dynamics from static data.

Finally, the search of classes of processes on which it is possible to directly establish the relation between
spatial correlations and temporal correlations, is a possible research direction. It stays out of the scope of
this present work, but would open relevant perspectives on co-evolution, since it implies evolution in time
and an isolation in space, and therefore a complex relation between spatial and temporal covariances.

5.2 Modeling urban morphogenesis

We have then proposed a co-evolution model at the mesoscopic scale, based on a multi-modeling paradigm
for the evolution of the network. The model is able to reproduce a certain number of observed situations
at the first and second order, capturing thus a static representation of interactions between networks and
territories. We are therefore able to produce the emergence of the urban form in a coupled way, suggesting
the relevance of this approach.

It also yields different dynamical causality regimes, being however less diverse than for the simple
model studied by Raimbault (2017a): therefore, a more elaborated structure in terms of processes must
be paid in flexibility of interaction between these. This suggests a tension between a “static performance”
and a “dynamical performance” of models.

An open question is to what extent a pure network model with preferential attachment for nodes would
reproduce results close to what we obtained. The complex coupling between aggregation and diffusion
(shown by Raimbault (2018)) could not be easily included, and the model could in any case not answer
to questions on the coupling of the dynamics.

5.3 Implications for policies

Although remaining theoretical and stylized in the case of the model, our results could give useful insights
for policies. First, in terms of empirical computation of correlations, a direct interpretation of their values
can inform on the underlying dynamics of the territorial system and suggest issues on which planners
must be alerted: for example, a high positive correlation between population hierarchy and network
betweenness hierarchy will imply structural congestion effects. The coupling with sustainability indicators
such as Le Néchet (2010) does with energy consumption, could also provide useful insights for a sustainable
territorial planning. Secondly, a more refined calibration of the model should allow understanding better
territorial dynamics in precise cases: for example, focusing on the best network heuristic would provide the
most probable processes ruling network evolution, and make experiments on these (e.g. implementing them
differently by changing their parameters, or replacing with other processes), given performance indicators.
This last point is of a particular interest, as it could provide insights into the combination of top-down
(planned) and bottom-up network evolution processes, as both are included in the model.

Conclusion

We have introduced a novel methodology to quantify urban form by coupling the built environment (cap-
tured by the spatial distribution of population) with road networks, which uses corresponding indicators

19



and their spatial correlations. We studied their empirical values for Europe and the behavior of correla-
tions as a function of scale. This coupled approach was complemented by a morphogenesis model based on
a co-evolution paradigm which precisely considers strong relations between both aspects. The calibration
of the model on empirical data suggests that such coupled processes indeed occur in the emergence of the
urban form and function. The two complementary axis of this work therefore pave the way towards more
integrative approaches to urban morphology.
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