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Abstract: 

 

Advances in technical radiotherapy have resulted in significant sparing of organs at risk 

(OARs), reducing radiation-related toxicities for patients with cancer of the head and neck 

(HNC).  Accurate delineation of target volumes (TVs) and OARs is critical for maximising 

tumour control and minimising radiation toxicities. When performed manually, variability in 

TV and OAR delineation has been shown to have significant dosimetric impacts for patients 

on treatment. Auto-segmentation (AS) techniques have shown promise in reducing both 

inter-practitioner variability and the time taken in TV and OAR delineation in HNC.  

Ultimately, this may reduce treatment planning and clinical waiting times for patients.  

Adaptation of radiation treatment for biological or anatomical changes during therapy will 

also require rapid re-planning; indeed, the time taken for manual delineation currently 

prevents adaptive radiotherapy from being implemented optimally.  We are therefore 

standing on the doorstep of a transformation of routine radiotherapy planning via the use of 

artificial intelligence.  In this article, we outline the current state-of-the-art for AS for HNC 

radiotherapy in order to predict how this will rapidly change with the introduction of 

artificial intelligence.  We specifically focus on delineation accuracy and time saving. We 

argue that, if such technologies are implemented correctly, AS should result in better 

standardisation of treatment for patients and significantly reduce the time taken to plan 

radiotherapy. 
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Introduction: 

 

  

To parallel the significant advances made in recent decades in technical radiotherapy 

delivery, we are currently standing on the threshold of a transformation in routine 

radiotherapy via the use of artificial intelligence.  Recent advances in computing power, 

algorithms and in big data collection and analysis are already resulting in an explosion of 

new applications in other fields of health, including radiology and ophthalmology.  In this 

article, we outline the current state-of-the-art for auto-segmentation for head and neck 

cancer radiotherapy in order to predict how this will imminently and rapidly change with the 

introduction of artificial intelligence. 

 

Intensity-modulated radiotherapy (IMRT) enables the delivery of a conformal radiation dose 

distribution to target volumes (TVs) in head and neck cancer (HNC). The implementation of 

IMRT has resulted in significant sparing of organs at risk (OARs) compared to 2D- or 3D-

conformal radiotherapy, reducing radiation-related toxicities. Radiation-induced xerostomia 

is the most commonly reported grade ≥2 late toxicity of HNC radiotherapy (1–3). It can 

result in difficulties in speech and swallowing, and the development of dental caries (2). 

Randomised clinical trial data have shown that sparing of the parotid gland with IMRT can 

reduce the rate of grade 2 xerostomia significantly one year after treatment (3). Swallowing 

dysfunction is the most common grade ≥3 late toxicity of HNC radiotherapy (4). Dose to 

pharyngeal constrictor muscles and the supraglottic larynx have been shown to be directly 

associated with late dysphagia (4–6). 

  

Studies have shown that tumour control and radiotherapy toxicities are highly correlated 

with the accuracy of TV and OAR delineation (7,8). Steep dose gradients can occur outside 

the planning target volume (PTV), and structures that are not specifically delineated in IMRT 

as avoidance structures can receive significant absorbed radiation doses (9). 

  

Accurate delineation of OARs is clearly important.  However, delineation of TVs and OARs in 

HNC is a time-consuming and labour-intensive process that is typically undertaken by a 

clinical/radiation oncologist and/or radiographer/dosimetrist. According to published 



evidence, it takes an average of 2.7 to 3 hours to delineate a full set of TVs and OARs in a 

HNC patient (10–21). This human resource commitment is increasingly difficult to manage in 

health care systems on account of increasing demands for radiotherapy and shortages of 

adequately trained staff (22,23). 

  

Moreover, the evolution of radiation therapy requires treatment to be adapted 

anatomically or biologically due to changes in the patient or the tumour during a course of 

therapy, termed adaptive radiotherapy.  This requires rapid replanning and dosimetry, not 

only between fractions but ultimately during a fraction of radiotherapy in real-time.  

Repeated offline planning, which is the current standard, requires recontouring of the TVs 

and OARs followed by replanning of the optimal dosimetry.  The time currently required to 

delineate OARs and TVs is a barrier to adaptive radiotherapy and therefore a barrier to the 

field of radiation oncology moving forward.  

  

A major issue for quality assurance in radiotherapy is variation in outlining between 

practitioners and between centres.  Manual delineation of TVs and OARs in HNC has also 

been shown to result in significant inter- and intra-practitioner variability; indeed, these 

differences may exceed planning and setup errors (10,24). This variation is not theoretical 

only: It has been shown that inter-practitioner variability in delineating OARs results in 

significant dosimetric impact for the patient (25). 

  

Auto-segmentation (AS) software may aid the planning process and at least partially resolve 

some of these issues. AS has the potential to be time-saving, to reduce inter- and intra-

practitioner variability and to permit online adaptive radiotherapy planning during a course 

of treatment.  As shown in Figure 1, atlas-based auto-segmentation (ABAS) can be used, 

including hybrid auto-segmentation (HAS) techniques, or deep learning models (26). In this 

paper, we review the published literature on the use of ABAS, HAS and MBAS in the 

delineation of TVs and OARs in HNC, with a specific focus on delineation accuracy and time 

saving. 

  

  

  



Methodology: 

 

The search strategy for identification of studies was designed to ensure that the maximum 

number of studies in AS planning were included. Five databases were searched: EMBASE, 

PubMed, Science Direct, Google Scholar and arXiv.  Original articles and reviews published in 

English between January 2005 and December 2018 were included. On account of the 

evolution of AS technology with reference to health, articles referring to AS prior to 2005 

were not included. The following search terms were used: 

1. Auto-segmentation AND (contouring OR organ-at-risk OR critical organs OR critical 

structure OR target OR head and neck patients); 

2. Same search terms limited to search dates. 

This initial search identified 569 abstracts.  The title and abstract for each resulting citation 

were screened for relevance to this work and  to avoid duplicated results. This resulted in 

the removal of 505 abstracts that did not present data on the evaluation of AS in HNC OAR 

or target volume delineation. Full articles were obtained on the remainder via University 

College London journal access. Sixty-two potentially eligible studies were assessed for 

relevance, quality and content by RS (radiation oncologist with 20 years experience) and MK 

(radiation oncologist with 7 years experience). Further searches and cross-checks of the 

reference lists of these articles were not performed. Data extraction and evaluation were 

conducted on the 33 articles assessed to be of direct relevance to this article.  

  

Participants of eligible studies were aged 18 years or more with histologically proven HNC, 

with intent to treat with IMRT. All HNC sites and histological types were eligible if they used 

CT planning. Studies using conventional two-dimensional (2D) planning, 3D conformal 

radiotherapy (CRT) and paediatric HNC patients were excluded. 

  

Due to the lack of published data, clinical outcomes were not studied. For this review, the 

outcomes of time saving and delineation accuracy were explored primarily. Additionally, if 

recorded, the influence of other external factors (observer variability, AS strategies adopted 

and stage of disease) was also noted. 

  



For all studies, the gold standard (or “ground truth”) manual delineation (MD) volumes were 

compared with the AS volumes. The techniques used to perform these comparisons varied 

but included the Dice similarity coefficient (DSC), mean surface distance (MSD), Hausdorff 

surface distance (HSD), sensitivity and specificity analyses and receiver operator 

characteristics (ROC) curves. Further details on these techniques can be found in the 

Supplementary Material section. 

  

Results 

  

Atlas-Based Auto-Segmentation (ABAS) 

  

ABAS is a technique that propagates volumes from an atlas onto a patient image dataset via 

deformable image registration. Single-ABAS techniques make use of a single dataset of pre-

defined elective nodal TVs and OARs (gold standard segmentations). The combination of 

data from multiple atlases (multi-ABAS) can be performed to reduce the risk of significant 

variability in anatomy between the atlas and patient datasets. These multiple separate auto-

segmentations can then be combined to form a population-based average atlas. 

Alternatively, a simultaneous truth and performance level estimation (STAPLE) or similarity 

and truth estimation for propagated segmentations (STEPS) algorithm can be used to fuse 

the data from multiple atlases simultaneously. These algorithms have been programmed to 

fuse the multiple atlases in different ways. Using the STAPLE algorithm, all atlases carry the 

same weight, whereas with STEPS, only the top-ranked atlases are used during the fusion 

process, thereby discarding the atlases with the least anatomical similarity to the patient 

(27). 

 

OAR and TV delineation 

 

A large number of the identified studies evaluated the geometric accuracy of ABAS 

techniques for OAR and TV delineation, as shown in Table 1. The metrics used for these 

evaluations and the range of performance reported in these studies are outlined in Table 2. 

 



Hoang Duc et al undertook a comparison of the multi-ABAS techniques using the STAPLE 

and STEPS algorithm for the delineation of OARs in 100 HNC cases (16). STEPS outperformed 

STAPLE for large OAR structures such as the brainstem, spinal cord and parotid glands, but 

not for the smaller OARs of the visual pathway, including globes and optic chiasm. Several 

other studies have used the STAPLE algorithm to compare single- and multi-ABAS 

techniques. Teguh et al. showed that multi-ABAS consistently outperformed single-ABAS in 

the delineation of lymph node levels and OARs, with higher DSC and smaller MSD values in 

both N0 and N+ patients (18). Yang et al used the STAPLE algorithm to evaluate delineation 

of low-risk elective clinical target volumes (CTVs) in cases of unilateral tonsillar cancers 

(stage T1-4a, N0-2b). Overall, multi-ABAS performed at least comparably, if not superiorly, 

to the single-best atlas method, but without the need to identify the best atlas (15). A 

similar comparison of single-ABAS and multi-ABAS was undertaken by Hoogeman et al. 

Manual delineation of nodal levels I-V and OARs in ten HNC patients were used to construct 

the atlas. Multi-ABAS performed better than single-ABAS in nodal levels (DSC 0.65 vs 0.62) 

and OARs (0.50-0.78 vs 0.32-0.71) (28). Stapleford et al performed a study using STAPLE for 

the delineation of bilateral nodal CTVs in five HNC cases. Five clinicians performed manual 

CTV delineation, and the STAPLE algorithm was used to combine these volumes into a 

reference standard. Compared to the STAPLE-defined reference volumes, the DSC of AS 

volumes compared well with that of MD (DSC 0.76 versus 0.79 respectively) (29).  A further 

study of the STAPLE algorithm in the delineation of the parotid glands alone showed similar 

results (30). 

 

Levendag et al performed a study of multi-ABAS in ten HNC cases in which the atlas for each 

case was created from the other nine MD contours using a ‘leave-one-out’ method. DSC was 

0.6 for unedited AS contours, which improved to 0.7 after manual editing (20). A similar 

study was performed by Han et al, in which DSC values ranged from 0.65 for the level III 

nodes, to 0.90 for the mandible for unedited AS contours (31). 

 

Several studies have evaluated the performance of commercially available multi-ABAS 

software programmes. Gresswell et al performed a study using MIM-Maestro version 6.5.8 

(PLACE). Patients were added sequentially into an in-house ABAS. They showed that the 

similarity of the in-house ABAS to the reference contours (defined by DSC and mean 



distance to agreement) increased as more patients were added to the atlas. This was offset 

by a slight increase in time to auto-populate the structures (an average of 23 seconds with 

each added patient) (32). Sims et al undertook a study of an ABAS system which uses an 

expectation maximisation algorithm to determine the mean OAR contour from 45-patient 

atlas library (ISOgray system  by DOSIsoft, version 3.1). ABAS contours performed worse 

than edited ABAS contours, with systematic errors of this ABAS system identified including 

the over-estimation of the size of the parotid gland (19). La Macchia et al performed a study 

comparing the performance of three commercially available ABAS systems (ABAS 2.0, CMS-

Elekta, Stockholm, Sweden; MIM 5.1.1, MIMVista Corp, Cleveland, Ohio; VelocityAI 2.6.2, 

Velocity Medical Systems, Atlanta, Georgia). Although differences in performance were seen 

between systems, the absolute values of such differences were modest (34). 

 

On-gantry cone-beam CT (CBCT) is the most commonly used modality for image-guided RT 

(IGRT), but signal/noise ratio is significantly lower than with regular fan-beam CT images. 

This can limit the ability of ABAS techniques to delineate structures including target volumes 

(21). Zhang et al studied automated segmentation for online adaptive RT by using the 

patient’s own planning CT image and contours as the atlas for single-ABAS. They obtained 

DSC values of approximately 0.8 and mean surface distances of 1 mm (SD <2 mm) for most 

OARs (21). The concept of using the patient’s own CT dataset as an atlas for ABAS has also 

been investigated in patients receiving radiotherapy for lung cancers using 4DCT. Laub et al. 

used manual delineation of lung tumour target volumes and OARs on the 0% respiratory 

phase CT dataset as the reference atlas for propagation to the other nine phases of the 

4DCT dataset (35). 

 

Liu et al performed a study of a multi-ABAS technique in an adaptive radiotherapy pathway. 

They studied the performance of the Advanced Medical Imaging Registration Engine 

(ADMIRE) v1.05 (Elekta Software) on three separate CT datasets: pre-treatment planning CT, 

in-treatment planning CT, and a cone-beam CT (CBCT). Auto-contours generated by ADMIRE 

were compared with manual contours on the pre-treatment CT to evaluate their accuracy. 

Similar registration accuracy was achieved for intra-patient CT-to-CBCT deformable 

registration compared to intra-patient CT-to-CT deformable registration (36). 

 



Irrespective of the method of fusion in multi-ABAS, its reliability remains dependent on the 

similarity between the underlying atlases and the patient. Large deformations of anatomy 

caused by HNC are difficult to correct for with registration algorithms. 

 

Time saving 

 

One of the main potential benefits of AS is in the reduction of time spent in the manual 

delineation of OARs and TVs. Several of the ABAS studies above also measured manual 

interaction time, with the aim to evaluate whether manual editing of AS contours was a 

more time-efficient process than full manual delineation.  

 

In the study performed by Hoang Duc et al., there was a reduction in manual interaction 

time of 61% with manual editing of STEPS contours in comparison with fully manual OAR 

delineation (16). Teguh et al. produced ABAS contours in 7 minutes, but these required an 

additional 66 mins of editing (of which 31 minutes was for the nodal levels). Nevertheless, 

this compared favourably with MD contours, which took 180 minutes (18). Stapleford et al 

investigated single-ABAS for nodal CTV delineation. Physicians saved on average 11.5 

minutes per patient by editing AS contours, equating to a 35% reduction in delineation time 

(29). Similar reductions were found by Daisne et al in both N0 and N+ cases (24). In the 

study performed by Levendag et al, manual delineation of TVs and OARs took 180 minutes 

versus 53 minutes for manual editing of ABAS contours (20). 

 

The VelocityAI system studied by Sjöberg et al demonstrated a clear benefit in terms of time 

saving, with segmentation time reducing from 42.3 minutes for MD to 21.4 minutes for 

edited AS contours. However, not a single segmented structure was approved without 

editing (37). The comparison of three different commercially available ABAS systems 

performed by La Macchia et al demonstrated a range of time saving performance (69-113 

minutes versus 163 minutes for MD) (34). In contrast, Ingle et al showed that the time saved 

amending AS OAR contours produced by the BrainLab iPlan® tool (25.2 minutes) was offset 

by the additional time taken to manually edit AS nodal volumes (24.9 minutes) (38).  

 

 



Dosimetric impact 

 

As detailed above, there is a range of performance observed with different ABAS systems in 

the geometric accuracy of delineation of different OARs and CTVs in HNC patients. However, 

it is important to understand the dosimetric impact of these geometric inaccuracies.  In an 

international study of inter-clinician OAR delineation variability and its dosimetric impact, 32 

different centres delineated OARs on a single CT dataset. Significant variations in dose were 

found for parotid glands, brainstem and spinal cord. This translated into differences in Dmean 

of parotids of up to 50% and into more than 20% in brainstem Dmax (25).  Voet et al 

performed a dosimetric evaluation comparing ABAS and edited ABAS contours performed 

by two independent observers. Clinically acceptable IMRT plans were constructed using the 

ABAS (unedited) plans.  With regards to PTV coverage, the plans were evaluated for V95 – 

volume receiving 95% of prescribed dose; and D99 – near minimum dose in PTV. The edited 

volumes were larger by a mean of 8.7%. These edits led to a reduction in V95 of 7.2% ± 5.4% 

(1SD), and a mean reduction in D99 of 14.2 Gy. Even for DSC >0.8 and mean contour 

distances <1 mm, reductions in D99 of up to 11 Gy were observed (25). Similar findings have 

been reported by Tsuji et al, who evaluated the dosimetric impact of AS for adaptive IMRT. 

Evaluation of auto-contoured structures showed a significantly lower mean dose coverage 

of the manually delineated gross tumour volume (GTV) and CTV (26).   

 

It is clear from these studies that, even when geometric differences between ABAS and 

edited contours are small, there is nevertheless a significant impact of adjusting the 

contours on the final clinically-relevant radiation dose distribution to target volumes. Indices 

of geometric similarity are of limited value in predicting TV coverage and plan quality. 

 

 

Interobserver variability 

 

The study by Sims et al included ground truth manual delineations performed by two 

clinicians. A comparison was made of the coefficient of variation (CV) between the two 

clinicians’ MD contours and their edited AS contours. Lower CV values were obtained for all 

investigated OARs with edited AS contours, most notably in delineation of the brainstem 



(CV 0.12 versus 0.46), illustrating the potential benefits of AS at reducing interobserver 

variability (19). 

 

In Stapleford et al, five radiation oncologists manually delineated bilateral neck CTVs. An AS 

contour set was generated and then manually edited by the physicians to make them 

acceptable for planning. The STAPLE algorithm was used to combine the collections of 

contours, and the overlap of individual MD or edited AS contours with the STAPLE contours 

were analysed. Overall, the average DSC was higher for the edited-AS group than the MD 

group (0.89 versus 0.79), and MSD lower (1.8mm versus 2.8mm), indicating reduced 

interobserver variability with edited AS contours. The most dramatic differences were seen 

in delineated CTV volume, with a reduction in percentage false positive volume from 9% to 

3% in the edited AS group (29).  

 

However not all studies have shown a clear reduction in interobserver variability with the 

use of AS techniques. The study performed by Ingle et al using the BrainLab iPlan® tool 

compared the performance of two clinicians in MD and edited AS delineation of nodal CTVs 

and OARs in five HNC patients (see Table 1 for details). There was no difference found in 

interobserver variability in the delineation of nodal CTV in the two groups, with mean 

percentage difference between the volumes delineated by the two clinicians being 4.26% 

with MD versus 4.22% with edited AS contours (37). 

 

  

 

Hybrid Auto-Segmentation (HAS) 

  

Model-based approaches can compensate somewhat for the lack of reliable image 

information (low soft tissue contrast, artefacts, insufficient image content) by imposing 

prior shape constraints in the segmentation process. This is typically done by statistical 

analysis of reference ground truth (gold standard) segmentations. Combining the 

advantages of local low-level features and global high level prior shape information in this 

way is a potentially beneficial technique for achieving a more reliable and robust AS. 

  



For model-based approaches, deformable models of anatomical structures are often 

represented by flexible triangulated meshes, where the shape is designed to be close to the 

average shape of the structure in question. It can also possibly cover variations in shape by 

using techniques such as principle component analysis. In addition to shape, knowledge 

about the characteristic grey-value range, gradient direction, and strength of the region of 

interest can be incorporated into the model. In practice, this is often performed by manual 

drag-and-drop techniques which may require manual editing by using special mesh 

manipulation tools (27). 

  

In order to work in a fully automated manner, model-based approaches can be combined 

with ABAS, where the patient dataset is registered with a reference image (single ABAS), or 

an averaged population containing some ground truth segmentations. Such hybrid 

approaches combine image registration and segmentation into a common framework 

where evolution of deformable models can act as a registration constraint, or be used to 

compensate for residual differences after the registration step. 

  

OAR and TV delineation 

 

The only prospective randomised double-blind in silico study of AS has been performed by 

Walker et al (8). Their study aimed to evaluate acceptability of individual OAR contours 

produced by HAS alone, versus HAS with manual editing. They studied a smart probabilistic 

image contouring engine (SPICE) HAS algorithm, which performs an initial registration, then 

a dense deformable registration, and then probabilistic (model-based) refinement. There 

was no statistically significant difference in the edited AS and MD contours, but the 

unedited HAS contours were significantly different for all OARs other than spinal cord and 

mandible.  The authors concluded that HAS is a promising tool for workflow efficiency 

improvement, but human oversight remains critical for patient safety.  

 

The SPICE algorithm was also evaluated by Thomson et al (39). OARs were manually 

delineated by five clinicians in ten cases. The STAPLE algorithm was used to create a 

reference standard from all five separate MD structure sets. The SPICE contours, modified 

SPICE contours and separate MD contours were then compared with the reference STAPLE 



contours. Without editing, DSC values were significantly lower for SPICE than MD in all 

OARs. Best performance of SPICE was seen in the parotid and submandibular glands with 

DSC 0.79 and 0.80 respectively. Manual modification of SPICE contours was still inferior to 

MD contours, with significantly lower mean DSC values (39). Comparable performance was 

found by Zhu et al in an evaluation of SPICE for OAR delineation in 32 HNC patients. 

Performance ranged from DSC 0.70 in submandibular glands to 0.96 for brain (40). 

 

The advantages of adding intensity modelling to multi-ABAS was evaluated by Fortunati et al 

(41). They investigated this HAS technique in 18 patients receiving hyperthermia and 

radiotherapy treatment for HNC. The addition of intensity modelling to produce HAS 

contours outperformed multi-ABAS in all studied OARs other than brainstem and spinal 

cord. However, the addition of intensity modelling did not consistently improve maximum 

surface error (41). Therefore, larger errors made by AS are caused by inaccurate spatial prior 

models and this cannot be solved by adding intensity modelling. 

  

An alternative HAS approach was investigated by Qazi et al (27). Atlas contours were used 

to guide a deformable registration algorithm. These models were then automatically fine-

adjusted by a boundary refinement approach using a probabilistic mask. Segmentation was 

started at the global level (ABAS), and then refined down to voxel-level classification. 

Combining the advantages of local low-level features and global high level prior shape 

information is a potentially beneficial technique for achieving a more reliable and robust AS.  

DSC values for the OARs ranged from 0.93 (mandible) to 0.83 (parotid and submandibular 

glands) (27). The authors used a single, randomly selected atlas, so their technique could 

potentially be improved further by incorporating atlas selection, or combination of multiple 

atlases using the STAPLE algorithm. 

 

The benefits of the addition of a model based approach to ABAS has also been investigated 

by Fritscher et al. They undertook a study of HAS in which they combined multi-ABAS with 

geodesic active contours (GAC) and statistical appearance models (SAM) for the delineation 

of the brainstem and parotid glands in HNC. The addition of the model approach showed 

statistically significant improvement when compared with the multi-ABAS technique alone. 



Results for delineation of the brainstem with the HAS approach versus multi-ABAS alone 

were: DSC 0.87 vs 0.85; MSD 1.1 mm vs 1.3 mm; HSD 8 mm vs 10 mm (42).  

 

Time saving 

 

The potential benefits of HAS techniques for time saving in the delineation of HNC volumes 

have been evaluated by two studies with contrasting results. Along with evaluating the 

acceptability of contours created by SPICE, the second primary aim of the study by Walker 

et al was to determine the workflow feasibility and time saving of SPICE. A 30.9% time 

reduction was found comparing edited HAS contours with MD (19.7 vs 28.5 mins) (8). In 

contrast, the evaluation of SPICE performed by Thomson et al showed no observed time 

saving. The average MD time for delineation of OARs was  14.0 mins, compared with 16.2 

mins for modification of SPICE contours (39). 

 

 

Interobserver variability 

 

The HAS study performed by Fortunati et al did not involve manual editing of AS contours, 

but instead compared the unedited performance of multi-ABAS, multi-ABAS with intensity 

modelling (HAS), and MD performed by three observers. Their HAS technique showed 

better robustness to variations in atlas labelling compared with multi-ABAS alone. 

Furthermore, the addition of intensity modelling improved the segmentation reproducibility 

compared with human observer’s segmentations (40). 

 

Thomson et al compared SPICE contours, with and without manual editing, with MD 

delineation performed by five observers to assess interobserver and inter-technique 

variability. Editing of SPICE contours did reduce variability, but there was still a higher 

degree of variability seen between SPICE and MD contours than between the two most 

discordant manually delineated contours for all OARs studied. 

 

No studies of the dosimetric impact of HAS were identified. 

 



 

 

Deep learning-based algorithms 

 

The development of deep learning-based algorithms for radiotherapy planning in HNC has 

focused primarily on geometric accuracy of target volume and OAR delineation. No studies 

were identified in our literature search that evaluated these techniques for time saving, 

dosimetric impact or interobserver variability in HNC. Our search did reveal one study (43) 

that evaluated the impact of deep learning-based algorithms on TV and OAR dosimetry, but 

this study was performed in brain tumour patients, and is discussed below.  

 

OAR and TV delineation 

 

Ibragimov et al (44) performed the first evaluation of a deep learning-based algorithm for 

segmentation of OARs in HNC CT images. They used convolutional neural networks (CNN) 

that were trained using ground truth contours in reference CT images. Deep learning 

techniques such as CNNs have demonstrated impressive performance in computer vision 

and medical image analysis applications (45). CNNs first study the appearance of regions of 

interest in a training set of segmented images. CNNs take input images and pass them 

through a sequence of learning functions or layers that extract and recognise consistent 

intensity patterns and make a pixel-wise prediction according to these patterns. CNNs can 

take spatial information and relationships into account by analysing neighbouring pixels 

together. In this study, a Markov random fields algorithm was then used to smooth the 

obtained classification results. Cavities in the volume were removed using dilate-erode 

operations. The resulting MBAS OAR volumes in 50 cases were evaluated for accuracy of 

delineation of a number of OARs (Table 1). A wide variation in the geometric accuracy of the 

technique was found, ranging from 0.90 for the mandible and 0.87 for the spinal cord, to 

0.34 for the optic chiasm. More challenging is the presence of metallic dental restorations, 

which can hamper identification of the borders of the mandible, but also corrupt the 

appearances of surrounding structures such as parotids, tongue, submandibular glands. 

CNNs were able to correctly model the composition of low and high intensity voxel groups 

that characterise dental artefacts, an ability that is beyond ABAS techniques. CNNs 



performed less well than existing algorithms in delineating the submandibular glands (DSC 

0.71). This is due to lack of distinguishable intensity features, and the fact that ABAS 

deformation is relatively restricted and will roughly identify the position, whereas CNN 

relies purely on image intensities around glands (44). As with ABAS techniques, CNNs rely 

considerably on the quality and representativeness of the training dataset. 

 

Fritscher et al. (46) presented an approach in three steps. First, they pre-align the images by 

using an affine transformation that register them with respect to an available reference 

atlas. Second, they extract 2D orthogonal patches in the sagittal, coronal, and axial plane, 

for each structure of interest. Finally, they apply their CNN. This CNN contains three 

pathways, one for each plane, which learn their specific low-level features, followed by a 

common sequence of fully connected layers. Segmentation is carried out by applying this 

network at different locations, using input patch sizes of 31 x 31 pixel planes. Experiments 

have been made to segment parotid gland, submandibular gland, and optic chiasm, 

obtaining a DSC of 0.81, 0.65, and 0.52 respectively. 

 

Močnik et al (47) proposed a bimodal method that segments parotid glands using both CT 

and MR images, based on the fact that these glands have better visibility in MR scans. In 

order to combine these two modalities, image registration is done as a first step, 

transforming the MR image according to the reference CT image. The resultant two aligned 

3D images are the input of a CNN. The CNN used here presents several resemblances to that 

of Fritscher et al (46). The results showed that the proposed approach combining both CT 

and MR modalities obtained a DSC of 0.79, whereas using CT alone obtained a DSC of 0.77. 

 

Ren et al (48) proposed another CNN-based approach for the segmentation of the chiasm 

and the left and right optic nerves from CT images. Similar to previous studies, they 

performed image registration as a pre-processing, and used a CNN-based network to classify 

the central voxel of the patch provided as an input. However, their proposed approach 

contains some novelty. Firstly, the network takes as input patches of different scales 

centred at the same voxel. Secondly, the overall method is composed of a sequence of 

interconnected CNNs that keep refining the predictions made by previous CNNs. The 

authors use two different networks, one for segmenting chiasm, and another for 



segmenting both left and right optic nerves. The results using four iterations of this scheme 

obtain the best results, achieving a DSC of 0.56 for chiasm, and 0.72 and 0.70 for the left 

and right optic nerves. 

 

Men et al performed a study of the performance of an end-to-end deep deconvolutional 

neural network (DDNN) for segmentation of gross tumour volumes and clinical target 

volumes in cases of nasopharyngeal carcinoma. 184 patients were chosen as a training set 

to adjust the parameters of DDNN, and the technique was tested on 46 patients. DDNN 

achieved mean DSC values ranging from 0.62 for metastatic nodal GTV to 0.83 for CTV. The 

authors attributed the relatively poor performance of DDNN in the metastatic nodes to the 

considerable difference in shape, volume and location between patients, and they expect 

DDNN performance to improve with further expansion of the training dataset and 

combination of MR images (49). 

 

It should be noted that investigators of brain tumour segmentation have included some 

OARs of relevance to HNC.  Agn et al (43) propose a generative model which leverages prior 

information about the anatomy and the imaging process.  The approach is composed of two 

stages.  The first one models the likelihood of the input data given the segmentation labels 

by means of Gaussian mixture models.  The second part models the segmentation prior, 

which includes prior knowledge constraints.  The authors explore two ways of modelling 

this.  They test this approach on 3 datasets, including 2015 BRATS (50), obtaining 

comparable results to CNN-based models.  The authors also performed a dosimetric 

evaluation that showed some significant differences in dosimetry between the AS and MD 

volumes for some but not all of the OARs and TVs evaluated. Overall, significant differences 

to treatments could be expected if automatic segmentation were to be used when 

optimising the radiotherapy dose plan. Due to the limited size of the datasets available, it is 

currently unclear how well their approach would transfer to a larger training set in 

comparison to CNNs.   

 

Two recent studies are worthy of particular mention.  In the AnatomyNet, an end-to-end, 

atlas-free, three dimensional squeeze-and-excitation U-Net (3D SE U-Net), fast and fully 

automated whole-volume HNC anatomical segmentation for 9 structures was achieved from 



a training set of 261 HNC CT images.  AnatomyNet takes only 0.12 seconds to segment all 9 

organs.  Compared to previous AS methods, this approach improved DSC by 3.3% on 

average (51).   

 

The most exciting landmark in the field is the recent demonstration that 3D U-Net 

architecture deep learning can achieve performance metrics similar to experts in delineating 

a wide range of HNC OARs.  The model was trained on a dataset of 689 CT scans acquired in 

routine clinical practice.  Its generalisability has been suggested by applying the model to 24 

CT scans available from the Cancer Imaging Archive collected at multiple international sites 

previously unseen to the model (52).  This application of deep learning appears to hold 

significant potential as a major step forward compared to the limitations of ABAS and HAS 

methods. It is a high priority for application to other datasets, including clinical evaluation 

and dosimetry as validation for clinical scenarios. 

  

  

Conclusions: 
  

There is no doubt that automatic image segmentation will play a critical role in the future of 

clinical radiotherapy planning, particularly to facilitate the implementation of adaptive 

radiotherapy techniques into routine clinical practice.  Ultimately, for intra-fraction adaptive 

radiotherapy to be optimal, auto-segmentation of critical organs for any part of the body 

should only take seconds and should not require significant editing by experts. This has to 

be the goal for the investigators making progress in this field of study. 

  

At least eleven auto-contouring software solutions are currently available commercially 

(53), with varying claims on their potential for lowering the segmentation time and reducing 

inter-observer variability.  The studies reviewed here report varying degrees of success with 

some structures being clinically acceptable while others require considerable manual 

editing.  In general, AS performs well for the delineation of the brainstem, spinal cord and 

parotid glands. It shows moderate levels of performance for the optic apparatus, cochleae 

and elective nodal groups. It performs poorly for volumetric delineation of tumour gross 

target volumes as well as in situations of abnormal anatomy, such as in the post-operative 



setting.  Deep learning approaches appear to hold the greatest potential for addressing 

these limitations. 

  

There are a number of limitations to the ABAS approach (54). The deformable image 

registration is never perfect, the contrast in the images between boundaries of organs may 

be indistinct leading to errors in the deformation, and the image registration algorithm 

might not sufficiently account for anatomical deformation. Multiple atlases can be 

employed, but these algorithms make their decision based on the set of contours alone, 

without reference to the underlying image data. If there is a random error between the 

deformed atlases at a point on the surface of an organ to be segmented, then the greater 

the likelihood of a systematic error. Unfortunately, having more atlases does not always 

mean better segmentation. Overall, ABAS accuracy is highly dependent on the similarity of 

the atlas and the underlying patient and inaccurate delineation may result in time-

consuming manual post-processing or treatment error. 

  

As new technologies are tested, it is important to use the best metrics.  A description of 

metrics for comparing contours has been reviewed previously (55-57). The Dice similarity 

coefficient (DSC) is used widely but is very difficult to interpret because its value is 

dependent on the volume being compared and it gives no indication of the distance 

between the two contours. The normalised dice similarity coefficient (nDSC) simultaneously 

removes the dependence on volume and also attaches a clinical significance to the 

discrepancy. The mean distance to agreement gives a better indication of the magnitude of 

the error in terms of distance (52), but it can also be misleading in terms of clinical impact.  

Valentini and colleagues (58) recommend the development of a combination of 

conformation scores, metric elements and clinical risk assessment into a new class of indices 

that would provide a more robust tool for the evaluation of a test contour against a 

reference contour.  They also emphasise the necessity of building up a reliable ‘‘gold 

structure set’’ which will represent the unique benchmark of the study and will be the 

referral contour to which all other contours should be compared with. Gold standard 

structure sets in HNC have been published by Brouwer et al (59) with regard to OARs, and 

Gregoire et al (17) with regard to the delineation of lymph node levels and related CTVs in 

the node-negative neck. 



 

In addition to time saving and improved workflow, application of the new technologies 

should also perform comparisons between multiple operators, or between manual 

delineations and auto-contouring, to show improved standardisation and reduced error 

between operators and between centres.  Discrepant contouring practices between 

radiation oncologists within an institution and between institutions is a current limitation to 

the field of radiation oncology.  

 

In conclusion, although we are currently standing on a very exciting threshold of a 

transformation in routine radiotherapy via the use of artificial intelligence, implementation 

of time-saving AS needs to be optimal. AS should facilitate the adoption of international 

consensus guidelines across centres to result in more favourable and more standardised 

routine clinical practice.  These advances represent a real opportunity to improve outcomes 

for patients, akin to the application of quality assurance in clinical trials that has improved 

clinical outcomes for patients taking part in radiotherapy trials (60).  
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Figure Legends 

 

Figure 1: Overview of techniques used for auto-segmentation. 

Autosegmentation can be atlas-based or deep learning.  Within atlas-based 

techniques, model performance is expected to improve from single-atlas to 

multi-atlas to hybrid approaches. 


