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The selective attention for identification model (SAIM) is an established

model of selective visual attention. SAIM implements translation-invariant

object recognition, in scenes with multiple objects, using the parallel distrib-

uted processing (PDP) paradigm. Here, we show that SAIM can be

formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback

to combine top-down information (i.e. object knowledge) with bottom-up

sensory information. By contrast, predictive coding implementations of

Bayesian inference use inhibitory feedback. By formulating SAIM as a pre-

dictive coding scheme, we created a new version of SAIM that uses

inhibitory feedback. Simulation studies showed that both types of architec-

tures can reproduce the response time costs induced by multiple objects—

as found in visual search experiments. However, due to the different

nature of the feedback, the two SAIM schemes make distinct predictions

about the motifs of microcircuits mediating the effects of top-down afferents.

We discuss empirical (neuroimaging) methods to test the predictions of the

two inference architectures.
1. Introduction
In 2003, Heinke & Humphreys [1] introduced the selective attention for identi-

fication model (SAIM) to model translation-invariant object identification in

multiple object scenes. A foundational assumption of SAIM is that the brain

implements a soft constraint satisfaction as implemented by the parallel distrib-

uted processing (PDP) paradigm [2]. This led to a neural network architecture

with feedback loops that enable an interaction between top-down information

(i.e. knowledge about objects stored in an object identification stage) and

bottom-up information (i.e. sensory information). Heinke and Humphreys

demonstrated that SAIM could explain a broad range of empirical phenomena

typically associated with selective visual attention, such as the effects of spatial

cuing, object-based selection and the response time costs of recognizing mul-

tiple objects. Furthermore, SAIM could account for deficits in selective visual

attention, such as visual neglect, visual extinction and the influence of

knowledge on visual neglect.

In short, SAIM suggests that many ‘attentional’ phenomena can be

explained as an emergent property of object identification (i.e. perceptual infer-

ence) in multiple object scenes. As far as we know, this level of success remains

unrivalled by any other model. Subsequent work by Heinke and colleagues
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Figure 1. EM-SAIM’s architecture. The three networks, Knowledge Network,
Contents Network and Selection Network, have different functions: the Knowl-
edge Network identifies the contents of the FOA by activating the best-
matching template unit. The Contents Network maps a section of the input
image into the FOA. The Selection Network determines the location of this
section (see details in the main text). The arrows between the modules indicate
the direction of message passing between the networks. (Online version
in colour.)
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[3–5] demonstrated that extensions of SAIM could reproduce

findings from visual search experiments, deal with natural

colour images [6] and perceptual grouping [7]. Finally, by

modifying the constraints to reflect action possibilities

(i.e. affordances), it was possible to incorporate affordances

in multiple object scenes [8]. It is also worth noting that

SAIM’s mechanisms are based on nonlinear dynamics that

are formally similar to those used in dynamic neural fields

(e.g. [9–13]). The latter reference is particularly relevant in

the current context, because it considers the use of lateral

interactions to engineer neurodynamic architectures for one-

shot learning of visual objects using bottom-up recognition

under top-down predictions. The common theme here is a

dynamical implementation of a universal prior in object rec-

ognition; namely, that only one object (i.e. the winning or

selected hypothesis) can cause sensory input at any one

time. This fundamental prior is generally mediated by lateral

interactions in neuronal schemes. The winner-take-all (WTA)

interactions—implicit in SAIM—play the same role as lateral

connections in neural field formulations.

The aim of this paper is to relate SAIM to a predictive pro-

cessing framework for modelling action and perception;

namely, the free-energy principle of Friston et al. (e.g.

[14–17]; see [18,19]). A prima facie inspection suggests that

Bayesian principles advocate a similar computational archi-

tecture to that employed by SAIM: both architectures are

hierarchical, and both contain feedback loops. This paper

offers a mathematical analysis of how these two architectures

are related. In brief, we show that SAIM can be derived from

first principles (i.e. the free-energy principle). However,

SAIM assumes a different ‘generative model’ compared to

those typically used in schemes like predictive coding. A cru-

cial consequence of this difference is that SAIM’s feedback

loops are excitatory, while predictive coding schemes lead

to inhibitory feedback loops (i.e. subtracting predictions

from sensory input to form prediction errors). To facilitate a

direct comparison between these two architectures, we

derived a new version of SAIM—error prediction

(EP)-SAIM—which uses the generative model usually

adopted in predictive coding. We then present stimulation

studies comparing the two models and produce (quantitat-

ive) predictions for future (EEG or fMRI) studies. In short,

this work develops a formalism to address an important

and long-standing systems neuroscience question: does the

brain combine sensory information with prior knowledge

using excitatory or inhibitory feedback?

To clarify the arguments, especially for those unfamiliar

with SAIM, we first present a slightly revised version of

SAIM. To highlight the contrasting assumptions about the

feedback loops, we will call this version excitatory matching

(EM)-SAIM. We then replicate a key finding from the founda-

tional paper that introduced SAIM. Using simulations, we

illustrate EM-SAIM’s ability to perform object identification

in multiple object scenes. Moreover, these simulations show

that EM-SAIM reproduces the well-known multiple object

cost; i.e. the increased time it takes to detect a target object

with increasing numbers of non-target objects. This ubiquitous

empirical finding is an emergent property of SAIM’s WTA

mechanism. The evidence for multiple object cost comes

from visual search experiments (e.g. [20]; see [21] for a

review). Here, we reproduce these results using the EM ver-

sion of SAIM. Having established the validity of this EM

scheme, we then reformulated the soft constraints in SAIM
as free-energy minimization—to produce a prediction error

(PE)-SAIM. We then repeated the simulation studies using

the same (synthetic) stimuli to establish its construct validity,

in relation to EM-SAIM. Finally, we compare and contrast

the simulation results to identify key aspects of belief updating

that may enable the two versions to be disambiguated, using

empirical measures of neuronal evidence accumulation

(e.g. EEG or fMRI). The MatLab code for the simulation studies

reported in this paper can be found in the Github repository

https://github.com/SAIM-models/EMvPE.

This paper does not aim to advance our understanding of

selective visual attention per se; e.g. by comparing predictive

coding and SAIM formulations of attention (e.g. [22,23]).

Rather, we hope to lay the foundations for empirical work

that will disambiguate between these convergent formu-

lations (see General discussion). Finally, we have tried

to keep the mathematics accessible for readers without a

mathematical background.

2. The excitatory matching (EM)-SAIM
Before presenting the mathematical derivation of EM-SAIM,

we provide an overview of the EM-SAIM architecture

(figure 1; for an illustration). After considering the mathemat-

ical details, we then highlight how an EM-SAIM differs from

the original SAIM. We conclude this section by demonstrating

that EM-SAIM can reproduce multiple object costs.

2.1. Overview
EM-SAIM selects an object by mapping a region in the input

image into a ‘focus of attention’ (FOA) (figure 1). The map-

ping is implemented through the Contents Network and is

translation invariant. This means that no matter where an

object appears in the input scene, it can be mapped into the

FOA. The Selection Network determines which region in the

https://github.com/SAIM-models/EMvPE
https://github.com/SAIM-models/EMvPE
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input image is mapped into the FOA. The Selection Network
identifies this region by activating units in a layer that corre-

sponds to locations in the input image (figure 1). The output

of the Contents Network is passed onto the Knowledge Network.

The Knowledge Network is equipped with template units that

store templates of known (i.e. recognizable) objects. This net-

work compares the templates and the input from the Contents
Network with a simple template matching. Given the results

of this template matching, the Knowledge Network activates

the best-matching template unit. This reflects the identity of

the selected object—the object in the Contents Network.

In addition to these bottom-up pathways, EM-SAIM also

possesses top-down pathways. Note these top-down path-

ways are mandated by the soft constraint satisfaction

approach described below. The top-down pathway from

the Knowledge Network to the Contents Network adds a

weighted sum of the templates to the activation in the

FOA (excitatory feedback). The weighting is determined

by the activation of the template units. In other words, the

feedback directs the FOA to focus on the content of the Con-
tents Network. The top-down connections from the Contents
Network to the Selection Network underwrite a correlation

of the Contents Network with the input image. The result of

the correlation is feed into the Selection Network. Again—as

with the feedback from Knowledge Network to Contents Net-
work—this correlation rests on excitatory feedback. Since

the Selection Network implements a WTA mechanism, this

input directs the Selection Network’s attention to the location

in the input image that best matches the content of the

Contents Network.

It is important to note that EM-SAIM does not achieve

object identification instantaneously. Rather, object identi-

fication evolves over time. Initially (if we assume that there

is no foreknowledge about the objects in the scene), the

template units have same activation; the Contents Network
is set to an equally weighted summation of template

units and the Selection Network has equal activation

across all image locations (i.e. no spatial bias). Sub-

sequently, EM-SAIM begins the selection process and

identification process in parallel, eventually converging

to a point attractor, in which no unit changes its activation.

At that point, EM-SAIM is said to have selected and

identified an object.
2.2. Mathematical derivation
Our implementation of EM-SAIM is based on the energy

function minimization scheme introduced by Hopfield &

Tank [24]. In this scheme, the desired outputs of a network

are expressed in terms of constraints; e.g. template matching

as a constraint on the object identification in the knowledge

network. Network dynamics can then be expressed as a gra-

dient descent on an energy function E(y) of the output

activity y of the neurons. The energy function comprises a

mixture of distinct energy functions, where the minimum of

each component satisfies a particular constraint. This ensures

the network dynamics implement a form of soft constraint

satisfaction. The general form of EM-SAIM uses the gradient

descent described by Hopfield & Tank [24]

t _xi ¼ �
@E(y)

@yi
: ð2:1Þ
Here, _xi is the transmembrane potential of the ith neuron

(or neural population), yi is their firing rate activation and t is

the membrane time constant. The activation and depolariz-

ation are linked through a well-known sigmoid (activation)

function: yi¼ f ðxiÞ¼1=ð1þ e�m(xi�s)Þ.
To ensure a level of biological plausibility, SAIM’s energy

function includes an energy component for every neuron

or unit

Emem(y) ¼ 1

t

XN

i

ðyi

0

f�1(zi)dzi : ð2:2Þ

The gradient descent on this term leads to neuronal

dynamics that emulate a leaky postsynaptic membrane.1

Another energy component, that is central to SAIM, is the

WTA energy function

EWTA(y) ¼ a
2

XN

i

yi

 !
� 1

 !2

�b
X

i

(yi Ii): ð2:3Þ

Here, Ii are the inputs to the ith neuron or neuronal

population. This WTA energy function produces compe-

tition among neurons, in which the neuron with the

largest input becomes activated—to nearly one (i.e. the

winning unit), while all remaining neurons tend to zero.

The first term corresponds to the constraint that the sum

of all neuronal activities is equal to one; while the

second term (i.e. input term) implies the constraint that

the response of the neuron with the greatest input is maxi-

mal. The addition of the two ensures a WTA behaviour,

where a and b weight the two constraints; allowing either

constraint to dominate. The ensuing WTA behaviour is a

nice illustration of soft constraint satisfaction. This energy

function is important for the Knowledge Network, where

the best-matching template is indicated by the highest

input—and for Selection Network, as we will see later. It

is also important to note that a change of the sign of the

input term turns the WTA into a loser-take-all where the

neuron with the smallest input wins the competition.

This mechanism is important for PE-SAIM.

To ensure that EM-SAIM satisfies all constraints imposed

by its constituent networks, the energy functions for each net-

work are combined to provide an objective function for the

entire network

Etotal(YSN, XCN, yKN) ¼Emem(YSN, XCN, yKN)þ ESN(YSN)

þ ECN(XCN, YSN)þ EKN(yKN) :

ð2:4Þ

In other words, each network implements a constraint that

is specified in terms of its unique energy function, while

every neuron tries to minimize the total energy function:

Etotal. Here, ESN is the energy function for the Selection Network,

ECN is the energy function for the Contents Network and EKN is

the energy function for the Knowledge Network (i.e. superscripts

SN, CN and KN stand for Selection Network, Contents Network
and Knowledge Network, respectively).

The arguments of the energy functions, YSN and yKN, are

the outputs of the Selection Network and the Knowledge
Network, respectively, and XCN is the output of the Contents
Network. The use of X here indicates that—in contrast with

the Knowledge Network and the Selection Network—we drop

the sigmoid function in the Contents Network. This follows
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Figure 2. Input images and templates. The simulations used three
input images and two templates in the Knowledge Network. The three
input images were two single-object images (þ and 2) and one two-object
image (þ/2). The two templates perfectly matched the two objects.
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because the Contents Network represents continuous valued

sensory signals. Also note the use of matrix notation for the

Contents Network and the Selection Network outputs, which

are two-dimensional matrices. By contrast, the Knowledge
Network output is a one-dimensional vector. In the following,

we will consider each individual energy function and the

constraints it satisfies in detail.

2.2.1. Knowledge network
The Knowledge Network implements template-based object

identification through a scalar product

xtemp
k ¼

XM,M

i,j

xCN
ij wk

ij: ð2:5Þ

Here, M is the size of the FOA and wk
ij is the template of

the kth template neuron or unit. The size of each template is

the same as the size of the FOA. Examples of templates can be

found in the simulations below (figure 2). The Knowledge Net-

work constraint ensures that the best-matching template unit is

activated, while the remaining units are suppressed. The WTA

energy function implements this constraint

EKN(yKN) ¼ aKN

2

XK

k

yKN
k

 !
� 1

 !2

�bKN
XK

k

yKN
k xtemp

k : ð2:6Þ

2.2.2. Contents network
The Contents Network receives an input from Sigma-pi units

(i.e. modulatory synaptic interactions) which combine the

activation in the selection network and the visual field to

realize a translation-invariant mapping

ICN
mn ¼

XN,N

ij

ySN
iþm,jþn yVF

ij : ð2:7Þ

Here, N is the size of the input image and yVF
kl is the input

image. Contents Network constraint ensures that the output

units of the Contents Network reflect the output of the

Sigma-pi units

ECN(XCN, YSN) ¼ �bCN
XM,M

ij

xCN
ij ICN

ij : ð2:8Þ
2.2.3. Selection network
The Selection Network implements one constraint, which

ensures that only one location is selected. Here, we used

the first term of the WTA energy function

ESN(YSN) ¼ aSN

2

XN,N

lm

ySN
lm

 !
� 1

 !2

: ð2:9Þ
This concludes our description of the network-specific

energy components that constitute the total energy.

To simulate the processing of visual input, the total

energy is minimized using a gradient descent scheme with

the form of equation (2.1). In detail, we used an Euler

approximation, with the addition of biological noise, of the

sort implied by drift diffusion models (e.g. [25])

xi(t) ¼ xi(t� 1)� @Etotal(Y(t� 1))

@yi
þ ji ; ji ¼ N(0, s): ð2:10Þ

Here, ji is the noise term with variance s. The resulting

energy gradients for each network can then be expressed as

follows (using direct calculation):

Selection Network

@Etotal(YSN, XCN, yKN)

@ySN
nm

¼ xSN
nm þ aSN:

XN,N

i,j

ySN
ij

0
@

1
A� 1

0
@

1
A

� bCN:
XM,M

ij

xCN
ij :yVF

n�i, m�j : ð2:11Þ

Contents Network

@Etotal(YSN, XCN, yKN)

@xCN
nm

¼ xCN
nm � bCN:

XN,N

i,j

ySN
iþn,jþm yVF

ij

� bKN:
XK

k

yKN
k :wk

nm: ð2:12Þ

Knowledge Network

@Etotal(YSN, XCN, yKN)

@yKN
k

¼ xKN
k þ aKN:

XK

i

yKN
i

 !
� 1

 !

� bKN:
XM,M

j, i

xCN
ij :wk

ij: ð2:13Þ

The terms in bold font (i.e. input terms in equation (2.3))

represent feedback from higher networks to lower networks;

i.e. from the Knowledge Network to the Contents Network

and from Contents Network to Selection Network. These

terms follow from the gradient descent and show that

feedback connections are required for soft constraint satisfac-

tion. Crucially, these feedback connections constitute a

positive (i.e. excitatory) feedback (see table 1 for the circuit

diagram of the implicit message passing and connections).

For example, responses in the Contents Network xCN
mn will

descend the gradient in equation (2.12), and will therefore

increase with the activity of units in the higher Knowl-

edge Network yKN
k . Similarly, unit responses in the

Selection Network ySN
nm increase with the source of

descending projections from the Contents Network xCN
nm .
2.3. Comparing EM-SAIM with the original SAIM
EM-SAIM incorporates two changes that lend it a greater bio-

logical plausibility than the original implementation. The first

is the inclusion of Brownian noise. This not only makes

EM-SAIM more biological plausible but enables it to simulate

variations in response time commonly found in behavioural

experiments. The second change concerns the feedback connec-

tions. In the original SAIM, the feedback from the Knowledge
Network was conveyed directly to the Selection Network. In EM-

SAIM, the Knowledge Network now projects to the Contents



Table 1. Graphical illustration of feedback connections. These circuit diagrams illustrate how equations (2.11) and (2.12) for EM-SAIM and equations (3.3) and
(3.4) for PE-SAIM map onto neural message passing and circuitry. Circles denote hypothetical neuronal populations, while the arrows correspond to connections.
Excitatory connections are shown in black and inhibitory connections are shown in red. The small blue (crossed) circles denote a modulatory synaptic interaction
(Sigma-pi units). These graphical illustrations illustrate why EM-SAIM can be seen as being mediated by excitatory feedback while PE-SAIM uses inhibitory
feedback to implement a disinhibition via prediction error units. (Online version in colour.)

PE-SAIMEM-SAIM

xnm
CN

xnm
CN xnm

CN

xnm
CN

εkij
KN

εnm
CN

εnm
CN

yk
KN yk

KN

yij
SN

ynm
SN

ynm
SN

yij
VF

yij
SN

yij
VF

yij
VF yij

VF

winner take
all

loser take
all

C
on

te
nt

s 
N

et
w

or
k

Se
le

ct
io

n 
N

et
w

or
k

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20180344

5

Network and the Contents Network projects to the Selection
Network. This change creates a more plausible architecture,

given that feedback tends to target input brain region (e.g. [26]).

This revised feedback architecture retains the top-down

modulation of the selection process, albeit in a more indirect

way. To fully understand neurobiological premise of this

argument, it is worth noting that SAIM’s networks can be

related to the what-pathway and the where-pathway (see [1]

for a more detailed discussion). According to this interpret-

ation, the Knowledge Network and the Contents Network
correspond to brain regions in the what-pathway (ventral

pathway), while the Selection Network corresponds to areas

in the where-pathway (dorsal pathway), the posterior parietal

cortex. Hence, if the Knowledge Network and the Contents
Network are in the ventral pathway, feedback connections

between these two networks better reflect known anatomical

connections (as opposed to feedback connections to the

Selection Network as in the original SAIM).
2.4. Simulation results
We first performed validation simulations to ensure

EM-SAIM can replicate the simulations of multiple object

cost in terms of reaction times, as reported in Study 2 of
Heinke & Humphreys [1]. As in the original study, we used

two objects, 2 and þ (cross) (figure 2). These objects also

formed the templates in the Knowledge Network. The reaction

times were simulated by measuring the number of time steps

it takes for a template unit to pass a threshold (see appendix

A for parameters). The multiple object cost was simulated by

contrasting the reaction times for input images with one

object (þ or 2) with input images with two objects, þ and

2. In empirical experiments, such as visual search tasks, mul-

tiple object costs are demonstrated with more objects (e.g.

[20]; see [3] for a simulation study). However, for the purpose

of this work, a simple set-up is sufficient to establish that EM-

SAIM reproduces SAIM’s cardinal behaviour. Figure 3 shows

an example of a typical simulation for three input images:

þ/2, single 2 and single þ.

These examples show that EM-SAIM can reproduce the

multiple object cost. Also, as in the original SAIM, EM-SAIM

exhibits a top-down bias towards the þ, as the combined tem-

plates match better with theþthan the 2. We also conducted a

study with 20 simulations for each input image, to establish

there was a statistically significant difference between the

three conditions (figure 4). We applied a t-test to the simu-

lation results and found a significant difference between þ/2

and single þ (t38¼ 11.40; p , 0.001) and between þ/2 and
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Figure 3. Three exemplar simulation results for multiple object costs with
EM-SAIM. The graphs show the time course of the activation for the FOA
and the two template units in the Knowledge Network. The reaction
times were measured by determining the number of iterations it takes for
a template unit to pass a threshold (0.9). As expected, the results show
that EM-SAIM’s reaction times were slower for the two-objects image
(1013 iterations) than for the two single-object images: þ (687 iterations)
and 2 (777 iterations).
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single 2 (t38¼ 5.34; p , 0.001) (and between 2 and single þ
(t38¼ 27.85; p , 0.001)). Crucially, the reaction time for þ/2

was slower than for single þ and single 2.

In summary, these simulation results suggest that

EM-SAIM reproduces the key result from the original SAIM

simulations. In addition to the original SAIM simulations, the

new (EM) version can also reproduce the natural variation of

reaction times found in experiments with humans. Also,

despite the addition of neuronal noise, none of the 40 single

stimuli simulations showed an error and the þ/2 simulations

always identified the cross. Note that the exact numerical out-

come of the simulations, such as the variation of reaction times,

depends on the parameter settings. Nevertheless, a broad

range of parameter settings produce the findings present

here. We will return to the issue of numerical evaluation of

the model in the discussion section of PE-SAIM.

2.5. Interpreting selective attention for identification
model within the active inference framework

In this section, we consider the links between the above for-

mulation of visual processing within the PDP framework
and current formulations based upon predictive coding and

the Bayesian brain. In brief, we will see that both SAIM and

approximate Bayesian inference can be described in terms

of minimizing an energy function. The particular energy

function used in Bayesian formulations corresponds to vari-

ational free energy (also known as an ‘evidence bound’ in

machine learning). Variational free energy is a function of

data and a generative model (i.e. a probabilistic model of

how data are generated from causes, such as visual objects).

In what follows, we show that the energy function used by

SAIM can be interpreted as a variational free energy under

a particular generative model. This means SAIM can be for-

mulated in terms of Bayesian inference under a particular

model of how visual data were generated. Furthermore, it

means the computational architecture described in the pre-

vious section can be compared in a formal way to the

architectures used in Bayesian schemes.

Casting SAIM in terms of variational free-energy mini-

mization is much simpler than one might suppose. The

free-energy principle considers how the Bayesian brain

hypothesis (see [27] for a review) may be implemented in

the brain. According to the free-energy principle (and in

line with the Bayesian brain hypothesis), the brain is thought

to use a generative model to infer the hidden (i.e. latent)

causes of sensory signals. These models are characterized as

‘generative’ in the sense that they describe how the latent

causes generate signals. In the course of the inference process,

the brain is assumed to update representations (as encoded

by a posterior probability density) of the latent causes via a

minimization of ‘free energy’. This belief updating, evidence

accumulation or inference process can be illustrated using

SAIM’s object identification.

Let us assume the generative model of object identification

comprised the templates used in SAIM. Hence, for each phys-

ical object (e.g. two, crosses, etc.), the templates represent the

latent causes of sensory signals in the input image. Given

these sensory signals, the minimization of the free energy pro-

duces a posterior probability density for each template—

reflecting the probability that the sensory signals are caused

by the corresponding object. On this view, the templates corre-

spond to prior beliefs about the latent causes of sensory signals

that are recovered from sensory data through Bayesian belief

updating. This belief updating can be expressed as a gradient

descent on variational free energy.

An important point to note here is that the free energy

minimized during inference is a single quantity (i.e. a func-

tional of the posterior probability density and sensory

input) that is specified by the generative model. In other

words, the free energy is a global objective function

analogous to SAIM’s total energy function—and in both

approaches, the energy has to be minimized. Hence, SAIM

is, in effect, an instantiation of the free-energy principle.

Moreover, a gradient descent on the free-energy functional

implements the inference by optimizing the posterior

distribution (e.g. [16]). In short, SAIM’s gradient descent is

formally consistent with the free-energy principle. In

addition, one can regard SAIM’s soft constraint satisfaction

as equivalent to probabilistic inference under certain prior

beliefs (i.e. constraints on the way visual data are generated).

Note that SAIM’s inference process does not yield a

representation of uncertainty, but simply a point estimate of

the posterior. In Bayesian terms, this corresponds to a

maximum a posteriori estimate. In terms of the free-energy
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principle, SAIM inverts a hierarchical Bayesian model, where

the Contents Network, Selection Network and Knowledge Net-
work encode the posterior expectations and hierarchical

(also known as empirical) priors. Interestingly, the WTA con-

straints in SAIM can be regarded as implementing the prior

belief that only one object can be in one place at a time.

Having noted a formal equivalence between SAIM’s

energy minimization approach and the free-energy principle,

one can now ask: what is SAIM’s underlying generative model?

In the free-energy approach, the probabilistic generative model is

linked and energy through a Gibbs measure

ln p(YVF,mjm) ¼ �E(YVF,mjm), ð2:14Þ

where YVF denotes sensory signals and m are the expected

causes of sensory signals under a generative model m. To

reverse engineer the probabilistic representation in EM-SAIM,

consider the energy function of EM-SAIM

ln p(YVF, YSN, XCN, yKN) ¼� ESN(YSN)� ECN(XCN, YSN)

� EKN(yKN): ð2:15Þ

This equation can be separated into network-specific com-

ponents, which correspond to the empirical and full priors of

the generative model2

p(YVF, YSN, XCN, yKN)

¼ p(YVF, jYSN, XCN)p(XCNjyKN)p(YSN)p(yKN), ð2:16Þ

with the likelihood and prior from the Selection Network
becoming

ln p(YVF, jXCN, YSN) ¼ bCN
XM,M

mn
xCN

mn

XN,N

ij

ySN
iþm,jþn yVF

ij ð2:17Þ

and

ln p(YSN) ¼ � aSN

2

XN,N

ij

ySN
ij

0
@

1
A� 1

0
@

1
A

2

, ð2:18Þ

and the empirical prior from the Content Network becoming

ln p(XCNjyKN) ¼ bKN
XK

k

yKN
k

XM,M

ij

xCN
ij wk

ij ð2:19Þ

and

ln p(yKN) ¼ � aKN

2

XK

k

yKN
k

 !
� 1

 !2

, ð2:20Þ

where the prior from the Knowledge Network p(yKN) is a full

prior.

These equations show that SAIM’s generative model is for-

mally distinct from those used in predictive coding, which uses
Gaussian priors to ensure the priors are conjugate with the

approximate (Gaussian) posterior (this is known as the Laplace

assumption in Bayesian statistics). Under Gaussian assump-

tions, the likelihood and empirical priors above would have

quadratic forms. However, it is immediately evident that the

generative model implicit in SAIM has a much richer form.

For example, the full priors in equations (2.18) and (2.20)

show that EM-SAIM’s model assumes a sparse probability

density over the causes in the Selection and Knowledge Networks.

This follows because these prior energies are minimized when

one of the latent (non-negative) causes are one and the rest are

zero. This sort of non-Gaussian prior is commonly employed in

LASSO (least absolute shrinkage and selection operator)

regression analyses (see Discussion). We will now look

more closely at this form and elaborate a variant of SAIM

whose empirical priors can be expressed in terms of squared

prediction errors.
3. The PE-SAIM
In the previous section, we formulated SAIM in terms of free-

energy minimization under a particular generative model

that entails non-Gaussian empirical priors, in contrast with pre-

dictive coding models that usually assume Gaussian forms. In

this section, we modify EM-SAIM by adopting Gaussian

assumptions in the generative model (called PE-SAIM) and

examine whether this new version can replicate the multiple

object cost findings above. Under Gaussian assumptions, the

free-energy components can be expressed as squared prediction
errors. In SAIM, this applies to two levels: the Contents Network,

which predicts the activation in the input image modulated by

the Selection Network via Sigma-pi units

ln p(YVFjXCN, YSN) ¼ � bCN

2

XM,M

nm
(eCN

nm )2 ð3:1Þ

and eCN
nm ¼

XN,N

ij

ðyVF
ij ySN

iþn,jþmÞ � xCN
nm ,

and the Knowledge Network which predicts the content of the

FOA

ln p(XCNjyKN) ¼ � bKN

2

XK,M,M

kij

(eKN
kij )2 ð3:2Þ

and eKN
kij ¼ xCN

ij � yKN
k wk

ij:

As noted earlier, the use of xCN
ij (rather than yCN

ij ) reflects

the fact that the Contents Network uses a linear output function.

Finally, note that in PE-SAIM, the two WTA priors (i.e. soft-

max) becomes a loser-take-all (i.e. softmin)—as the Selection
Network and Knowledge Network need to select the best
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Figure 5. Three exemplar simulation results for the multiple object costs
with PE-SAIM. The graphs show the time course of the activation for the
FOA and the two template units in the Knowledge Network. The reaction
times were measured by determining the number of iterations it takes for
a template unit to pass a set threshold (0.56). As expected, the results
show that PE-SAIM’s reaction times were slower for the two-objects image
(1159 iterations) than for the two single-object images:þ(271 iterations)
and 2 (267 iterations).
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predictors; i.e. minimize prediction error. To minimize free

energy, we again used an Euler scheme for gradient descent,

retaining biological noise as in EM-SAIM. The requisite gradi-

ents for each network or hierarchical level can be derived by

direct calculation from the above expressions:

Selection Network

@Etotal(YVF, YSN, XCN, yKN)

@ySN
nm

¼ xSN
nm þ aSN

XN,N

ij

ySN
ij

0
@

1
A� 1

0
@

1
A

þ bCN
XM,M

ij

eCN
ij yVF

n�i m�j: ð3:3Þ

Contents Network

@Etotal(YVF, YSN, XCN, yKN)

@xCN
nm

¼ xCN
nm � bCN eCN

nm þ bKN
XK

k

eKN
knm :

ð3:4Þ

Knowledge Network

@Etotal(YVF, YSN, XCN, yKN)

@yKN
k

¼ xKN
k þ aKN

X
i

yKN
i

 !
� 1

 !

þ bKN
XN,N

ij

(eKN
kij ) wk

ij: ð3:5Þ

These equations map onto a neural architecture as illus-

trated in table 1. The summaries of neuronal message

passing in table 1 illustrate why EM-SAIM can be seen as

being mediated by excitatory feedback, while PE-SAIM uses

inhibitory feedback to implement a disinhibition via predic-

tion error units. For example, the influence of xCN
nm on ySN

nm is

mediated by two inhibitory connections (via eCN
nm ); namely, an

inhibition of inhibition. As in the equations for EM-SAIM, we

used bold to indicate the feedback terms between networks.

However, in contrast with EM-SAIM, the feedback terms are

mediated by prediction errors (i.e. the e terms in equations

(3.1) and (3.2)) that implement an inhibitory (i.e. negative) influ-

ence of higher levels on the low levels. This inhibitory feedback

is mandated by the formation of prediction errors. For example,

the gradient descent implied by equation (3.4) means that units

in the content network xCN
nm increase when prediction errors

eKN
knm decrease. In short, by introducing prediction errors, we

effectively reverse the sign of the coupling between successive

levels in the hierarchy.

This architecture is consistent with generic predictive

coding schemes, in which the prediction errors at any level

in a predictive coding hierarchy are formed by subtracting

predictions to create a prediction error or mismatch. Before

considering the implications for neuronal message passing

in the brain, we need to first establish the construct validity

of the PE-SAIM in relation to the multiple object cost.

3.1. Simulation results and discussion
Figures 5 and 6 show simulation results that demonstrate

PE-SAIM can also replicate the two-object cost. The t-test

confirmed a significant difference between þ/2 and single þ
(t38 ¼ 17.09; p , 0.001) and between þ/2 and single 2 (t38 ¼

16.52; p , 0.001) (and between 2 and single þ (t38 ¼ 24.00;

p , 0.001)). Furthermore, none of the 40 single stimuli simu-

lations showed an error and the þ/2 simulations always

selected the cross. Hence, both variants of SAIM can reproduce
the qualitative multiple object costs. This is pleasing in the

sense that it establishes a construct validity of the two schemes.

In other words, both EM-SAIM and PE-SAIM can reproduce

the finer (psychophysical) details of perceptual synthesis in

recognizing multiple objects in visual scenes in a biologically

plausible fashion. However, this presents an interesting chal-

lenge if we wanted to establish which offers the best account

of neuronal message passing in real visual hierarchies. Recall

from above that a key architectural difference between the

two schemes is the use of top-down predictions to select the

most likely explanation for sensory input in fundamentally

different ways. The EM scheme uses excitatory feedback to

ensure top-down constraints are satisfied in lower levels,

while the PE scheme employs top-down predictions to form

prediction errors using inhibitory feedback.
4. Comparing PE-SAIM with EM-SAIM
It is important to note that these particular simulation results

depend on our particular choice of parameters.3 For both net-

works, the parameters were chosen to ensure significant
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Figure 6. Simulation results for PE-SAIM from 20 runs for stimulus. There was significant difference between þ/2 and single þ; and between þ/2 and single 2. Hence,
PE-SAIM can produce the same results as EM-SAIM (see main text for details).
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reaction time cost effects in the absence of recognition errors.

On the other hand, it would have been possible to generate

simulation results where reaction costs are paired with recog-

nition errors. Even though this observation is not crucial to

make the point that, in principle, both models can replicate

the two-object cost, it suggests the choice of parameters can

modify the performance of object recognition in a measurable

way. In turn, this affords the opportunity to compare the

ability of the two schemes to explain empirical (e.g. psycho-

physical) data. This sort of comparison usually uses

Bayesian model comparison. Bayesian model comparison

has been used to disambiguate different models of choice be-

haviour and generally rests upon computing Bayes factors

that score the evidence for one model over another, given

the same data [28] (see [29] for a review). In brief, the Bayes

factor assesses which model is better at generating a given

dataset, considering all plausible parameter settings (under

some generally uninformative prior over the parameters).

For the purpose of evaluating the two implementations of

SAIM, Bayesian model comparison could leverage trade-offs

between recognition accuracy and reaction time costs (similar

to the effects observed in our simulations) by varying the

number of objects and the discriminability of the stimuli. In

this setting, it might be possible to use the two models to fit be-

havioural accuracy and response times, by optimizing model

parameters. In principle, it would then be possible to compare

the evidence for both schemes in empirical response data.

The simulations also illustrate an interesting point about the

representation of the selected object in FOA. Despite the fact

that there are no perfect representations of the selected object,

both SAIMs can make correct decisions. This is the case because

the ‘two’ can be easily discriminated from the ‘cross’. Note a

perfect representation is not necessary as the task does not

require it. Moreover, EM-SAIM’s representation is less accurate

than PE-SAIM’s representation. This difference has the poten-

tial to distinguish between the two models. For instance, in an

empirical study, participants could be required not only to

find a certain object, but also to identify specific features of

that object. Our simulations predict that inference under EM-

SAIM would produce more errors than PE-SAIM. However,

as noted above, this may depend the parameter settings,

which would have to be optimized for any given choice behav-

iour, thereby enabling Bayesian model comparison to ascertain

which model is the best account of empirical data.

Apart from these behavioural assessments, PE-SAIM and

EM-SAIM can also generate neuronal responses of the sort

measured by EEG or fMRI. Most current methods of measur-

ing neuronal activity are indirect and depend on which

physiological process (e.g. dendrite depolarization, axonal

firing, haemodynamics, etc.) the respective method (EEG,
fMRI, etc.) can measure. To simulate neuronal responses,

we omitted the Contents Network—as its activation depends

on ‘pixilated inputs’. We summed the output activation and

the input activation (as defined by equations (2.11), (2.13),

(3.3) and (3.5)) for the Selection Network and the Knowledge
Network. We excluded the activation from the softmax/

softmin equations in these calculations. The resulting

neuronal response reflects activation in dendritic trees and

axons, while ignoring activation of inhibitory interneurons.

Figure 7 shows the resulting time courses of activations for

both models. They suggest that it may be possible to dis-

tinguish between the two models: for EM-SAIM, the results

suggest a reduction in activity in both areas, while for

PE-SAIM, they evince an increase. These results may come as

a surprise for some readers: given that PE-SAIM tries to mini-

mize prediction error, a reduction in activity might have been

expected; while for EM-SAIM, the opposite effect might have

been expected. The counterintuitive results with EM-SAIM

can be explained relatively easily. The initial state of EM-

SAIM uses a weighted combination of templates in the Knowl-
edge Network and Contents Network. This combined template

matches with the two objects in the input image (but the

match is better for ‘cross’ than for ‘two’). As the selection pro-

cess proceeds, this match declines as only the ‘cross’ in the

input is matched—and the ‘two’ template in the Knowledge Net-
work ceases to match. The increase in activation in PE-SAIM

needs some more detailed unpacking. Initially, the combined

template produces a top-down prediction that generates a

better match for the ‘cross’ than the ‘two’. The Selection Network
starts to bias the FOA towards the ‘cross’. Subsequently, this

bias leads to a mismatch with the top-down prediction leading

to an increased activation (i.e. prediction error). As the Knowl-
edge Network starts generating the improved prediction—by

selecting the cross—the increase in the prediction error declines

in the input of the Knowledge Network. However, as the ‘two’

template produces a non-matching prediction, the overall

error does not fall back to zero. A similar effect can be observed

for the Selection Network. Even though the FOA generates a pre-

diction matching the ‘cross’ in the input, the mismatch with the

‘two’ leads to higher activation. These results highlight the

complicated nature of evoked responses when both prediction

error and attentional selection are in play (see [30–32] for

empirical examples in fMRI and EEG).

Other neuroimaging methods to exploit these sorts of simu-

lations empirically could focus on disambiguating between

excitatory and disinhibitory responses to top-down afferents.

There are a number of candidates that one could consider.

First, one could use the laminar specificity of forward and

backward (bottom-up and top-down) connections in conjunc-

tion with laminar-specific fMRI to make predictions about
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the neuronal correlates of attentional effects [33]. Another

approach would be to use frequency tagging to measure atten-

tional effects on steady-state electrophysiological responses

(e.g. [34]). There are also several examples in the literature

that use dynamic causal modelling to disambiguate between

inhibitory and excitatory connections in cortical hierarchies

[35–41]. In brief, dynamic causal modelling entails fitting

empirical (usually EEG—but see [42], for example, using

fMRI) data—in the form of evoked responses—using a neural

mass model with lamina-specific coupling [35,43]. One can

then evaluate the evidence for competing architectures by spe-

cifying different patterns of connectivity within and between

the neural masses that constitute electromagnetic sources (i.e.

equivalent current dipoles). After the models have been fitted,

the model evidence (i.e. the probability of the empirical data

under each model) can be evaluated and used to adjudicate

among different architectures. In principle, one could use

exactly the same technology to test models that had different

time constants—as well and different inhibitory or excitatory

effects (e.g. [35]). This would involve comparing equivalent

models with different priors over the synaptic time constants

or effective connectivity in question (i.e. the influence of des-

cending or feedback afferents to a primary visual source). In

this setting, dynamic causal modelling will also have to con-

sider that PE-SAIM assumes not only feedback loops between

regions but also within layers (see the error terms in equations

(3.4) and (3.5)). Recent invasive data, addressing the alternative

architectures for predictive coding, also offer the intriguing

possibility of testing the alternative predictions about the

nature of feedback (see [44] for an example).

5. General discussion
The aim of the paper was to examine how SAIM’s soft con-

straint satisfaction—using energy minimization—relates to the

free-energy minimization of approximate Bayesian inference.

To facilitate this comparison, we first created a new version of

SAIM: EM-SAIM includes slightly more biologically plausible

features than the original SAIM but crucially, for the purpose

of this paper, is based on the same architecture and a formally

similar energy function. We then ensured that EM-SAIM can

reproduce the multiple object cost. Subsequently, we showed

that SAIM’s energy minimization can be interpreted in terms

of Bayesian inference to a point estimator (i.e. maximum a
posteriori estimate). We also noted that the ensuing probabilistic

inference implements a soft constraint satisfaction, whereby

empirical and full priors furnish the requisite constraints. By

reverse engineering EM-SAIM’s energy function, we showed

that EM-SAIM’s generative model uses a sparse prior of the

sort commonly found in sparse regression models. It is worth

noting that this type of prior is employed in methods such as

the LASSO regression (e.g. [45]) and independent component

analysis (e.g. [46]). The upshot of using this sort of prior is

that it favours sparse representations of data. Furthermore, in

EM-SAIM, the WTA forces the representation to become a

local representation. Crucially, this generative model differs

from the generative models used in predictive coding and

related Bayesian filtering formulations of visual processing.

These formulations normally employ a generative model

based on Gaussian assumptions. Therefore, we replaced the

empirical priors in EM-SAIM’s architecture with a Gaussian

form (i.e. log probabilities that are proportional to squared pre-

diction errors) to show that PE-SAIM is also able to simulate the

multiple object cost.

Our simulations suggest that EM-SAIM and PE-SAIM are

quantitatively indistinguishable, in terms of their predictions

of behavioural (psychophysical) responses. However, with

suitable experimental designs, the two models can be used

to model empirical data quantitatively. If this is feasible,

Bayesian model comparison should be able to disambiguate

the two schemes using recognition accuracy and reaction

times (e.g. [28,29]). We further observed that EM-SAIM and

PE-SAIM make quite different predictions about neuronal

responses in terms of belief updating. EM-SAIM suggests

that excitatory feedback loops mediate the behavioural effects

we have illustrated, while PE-SAIM implies inhibitory feed-

back loops. Hence, these models seem to make distinct

predictions about the physiology of feedback connections.

At first glance, EM-SAIM appears to be more consistent

with the well-known physiology of excitatory (glutamatergic)

feedback connections in the cortex (e.g. [47]). However, these

feedback connections target inhibitory interneurons. Hence, it

is possible that feedback connections can also mediate the

construction of prediction error (see [16,43,48,49] for detailed

arguments). Therefore, our current knowledge of physiology

does not definitively disambiguate the two architectures. On

the other hand—and as discussed above—it may be possible

to distinguish between the two architectures empirically;
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leveraging the fact that the two models make different predic-

tions for excitatory or inhibitory nature of top-down afferents.

The two types of feedback motifs may generate different

dynamics (with different time constants). It is therefore

conceivable that laminar-specific fMRI, dynamic causal mod-

elling or frequency-tagged EEG, in conjunction with Bayesian

model comparison, might allow us to disambiguate the two

architectures using non-invasive techniques in humans (see

[50] for a contemporary discussion of empirical predictions

for invasive studies). Finally, it is worth noting that both

models make different predictions in terms of their prefer-

ence for familiar versus novel stimuli.4 EM-SAIM would

prefer familiar stimuli, while PE-SAIM would prefer novel

stimuli (that elicit greater prediction errors). Interestingly, a

recent study by Park et al. [51] found a category-specific

(i.e. faces versus natural scenes) preference that could provide

an interesting paradigm within which to test the two models.

The microcircuits for predictive coding motifs in table 1

speak to disinhibition as the physiological mechanism for the

effect of descending or backward connections (indicated by

the double red lines in table 1). There is growing interest and

evidence for disinhibitory mechanisms of this sort (reviewed

in [32,48,50]). This evidence comes in part from recent invasive

studies using optogenetic characterizations of inhibitory inter-

neurons. Microcircuit motifs that use disinhibition have been

found in several cortical regions [52]: in brief, vasoactive intes-

tinal peptide positive (VIPþ) interneurons are thought to

provide disinhibitory control, by targeting parvalbumin posi-

tive (PVþ) and somatostatin positive (SOMþ) interneurons

that otherwise inhibit target excitatory neurons [53]. This

synaptic architecture is supported by evidence from rodent

studies, showing that optogenetic inhibition of SOMþ and

PVþ interneurons reduces the inhibitory effect of descending

projections to V1 from cingulate cortex. Conversely, optoge-

netic inhibition of VIPþ interneurons enhances the effect of

projections from cingulate cortex [54]. In humans, disinhibitory

effects can be observed when neocortical GABA is reduced

using brain stimulation, both physiologically and functionally

[55]. In short, the balance of empirical evidence points to the dis-

inhibitory motifs that implied by a PE-SAIM like architecture.

The dialectic between excitatory and inhibitory feedback

has been discussed in the literature at length (see [56–58]).

For example, Kersten et al. [57] have formulated the dichotomy

in terms of the ‘shut up’ versus ‘stop gossiping’ interpretations

of Bayesian object perception. Intuitively, the shut up version

corresponds to inhibitory top-down influences that ‘explain

away’ any representations at lower levels to reduce the level

of prediction error activity. Conversely, the suppression of

activity in lower levels when something can be predicted

may be better explained by top-down augmentation of the

best representation that suppresses all competing expectations.

Sometimes, the dichotomy is motivated by contrasting predic-

tive coding with Grossberg adaptive resonance theory (ART)

(e.g. [59]; see also Kay & Phillips’s [60] coherence INFOMAX

for a similar point; or Bowman et al.’s [61] salience detector).

According to ART, the excitatory feedback loop is particularly

important in the induction of strong ‘resonance’ to foster learn-

ing. Hence, the ART resembles EM-SAIM’s architecture in

terms of excitatory feedback.

Having established how SAIM is related to hierarchical

Bayesian inference under the free-energy principle, it is

worth returning to SAIM’s domain of enquiry, modelling

phenomena typically associated with selective visual
attention. Predictive coding like formulations of attention intro-

duce an additional variable that has to be optimized; namely,

the amplitude of random fluctuations in sensory input—or

its inverse called ‘precision’. This is a key quantity in engineer-

ing formulations of predictive coding (e.g. Kalman filtering). In

this context, precision corresponds to the Kalman gain; namely,

the gain or weight afforded prediction errors during belief

updating. Crucially, the precision itself can be predicted.

According to Feldman & Friston [22] and Kanai et al. [23], atten-

tion is realized as optimizing precision. In brief, top-down

predictions of precision can select which prediction errors are

effectively boosted, such that they have a greater influence on

belief updating at higher levels of the hierarchy. This is thought

to be the computational homologue of attention in predictive

coding. Crucially, the top-down predictions of precision have

an excitatory effect—in contrast with the inhibitory top-down

feedback used to form prediction errors per se. When one con-

siders predictions of precision, in the context of predictive

coding formulations of attention, one has to consider both

excitatory and inhibitory top-down feedback. Crucially, the

excitatory top-down influences that mediate precision are

modulatory or nonlinear in nature—in virtue of the fact that

they modulate prediction errors. Interestingly, this speaks to

the nonlinearities inherent in PE-SAIM.

In conclusion, attention is intricately linked with perceptual

inference. Interestingly, this assumption is strikingly similar to

the influence of SAIM’s Selection Network using Sigma-pi units.

Hence, it should be relatively straightforward to modify PE-

SAIM and let the Selection Network modulate prediction error

rather than the sensory information. We cannot foresee any

problems in terms of functionality of this new PE-SAIM and

anticipate it should behave in a similar way to the PE-SAIM

described above. We will consider the formal relationship

between precision and the role of the Selection Network in

SAIM in a subsequent paper—and pursue the implications

for the functional anatomy of visual attention.
Data accessibility. The MatLab scripts for the publication can found on
Github: https://github.com/saim-models/EMvPE.git.

Authors’ contributions. A.K.A. and M.A. helped with the mathematics
and commented on drafts. K.Y. and D.H. conducted the simulation
studies. K.F. and D.H. conceived the study and drafted the manu-
script. All authors gave final approval for publication.

Competing interests. We declare we have no competing interests.

Funding. K.F. is funded by a Wellcome Trust Principal Research Fellow-
ship (no. 088130/Z/09/Z).

Acknowledgements. The authors would like to thank Howard Bowman,
University of Kent and Ulrik Beierholm, University of Durham for
the insightful discussions during the preparation of this paper. We
would also like to thank the reviewers for invaluable help with
several conceptual and technical issues.
Endnotes
1An intuitive explanation of this component is that its partial
derivative ‘removes’ the integral leaving only the term �f�1(yi).
The ensuing link between x and y turns this term into a leak
term: (�xi).
2Empirical priors are priors that are themselves parametrized by
random variables. Empirical priors are part of any hierarchical
generative model, with full priors at the highest level.
3This is also true for the fact that EM-SAIM exhibits lower levels of
noise than PE-SAIM.
4We would like to thank the second reviewer for this idea.
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Appendix A. Parameter values
EM-SAIM

network parameter name value

threshold for reaction time 0.7

maximal duration of simulation 1500

Knowledge Network tKN 1000

aKN 10

bKN 0.1

sKN 3.0

mKN 30

sKN 6� 1024

Contents Network tCN 600

bCN 0.5

sCN 8� 1024

Selection Network tSN 200

aSN 15

sSN 0

mSN 5

sSN 0.0014

network parameter name value

threshold for reaction time 0.56

maximal duration of simulation 2300

Knowledge

Network

tKN 2000

aKN 20

bKN 1.5

sKN 8

mKN 50

sKN 7� 1024

Contents Network tCN 500

bCN 4

sCN 5 � 1024

Selection Network tSN 5000

aSN 100

sSN 5

mSN 100

sSN 2.86� 1024
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26. Lamme VAF, Supèr H, Spekreijse H. 1998
Feedforward, horizontal, and feedback processing in
the visual cortex. Curr. Opin. Neurobiol. 8,
529 – 535. (doi:10.1016/S0959-4388(98)80042 – 1)

27. Knill DC, Pouget A. 2004 The Bayesian brain: the
role of uncertainty in neural coding and
computation. Trends Neurosci. 27, 712 – 719.
(doi:10.1016/j.tins.2004.10.007)

28. Kass RE, Raftery AE. 1995 Bayes factors. J. Am. Stat.
Assoc. 90, 773 – 795. (doi:10.1080/01621459.1995.
10476572)

29. Bishop CM. 2006 Pattern recognition and machine
learning. New York, NY: Springer.

30. Kok P, Rahnev D, Jehee JFM, Lau HC, de Lange FP.
2012 Attention reverses the effect of prediction in
silencing sensory signals. Cereb. Cortex 22,
2197 – 2206. (doi:10.1093/cercor/bhr310)

31. Kok P, Jehee JFM, de Lange FP. 2012 Less is more:
expectation sharpens representations in the primary
visual cortex. Neuron 75, 265 – 270. (doi:10.1016/j.
neuron.2012.04.034)

32. Auksztulewicz R, Friston K. 2015 Attentional
enhancement of auditory mismatch responses: a
DCM/MEG study. Cereb. Cortex 25, 4273 – 4283.
(doi:10.1093/cercor/bhu323)

33. Lawrence SJD, Formisano E, Muckli L, de Lange FP.
In press. Laminar fMRI: applications for cognitive
neuroscience. Neuroimage. (doi:10.1016/j.
neuroimage.2017.07.004)

34. Colon E, Legrain V, Mouraux A. 2014 EEG frequency-
tagging to dissociate the cortical responses to
nociceptive and non-nociceptive stimuli. J. Cogn.
Neurosci. 26, 2262–2274. (doi:10.1162/jocn_a_00648)

35. Bastos AM, Litvak V, Moran R, Bosman CA, Fries P,
Friston KJ. 2015 A DCM study of spectral
asymmetries in feedforward and feedback
connections between visual areas V1 and V4 in the
monkey. Neuroimage 108, 460 – 475. (doi:10.1016/
j.neuroimage.2014.12.081)

36. Boly M et al. 2011 Preserved feedforward but
impaired top-down processes in the vegetative
state. Science 332, 858 – 862. (doi:10.1126/science.
1202043)

37. Brown H, Friston K. 2012 Dynamic causal modelling
of precision and synaptic gain in visual
perception—an EEG study. Neuroimage 63,
223 – 231. (doi:10.1016/j.neuroimage.2012.06.044)

38. Brown H, Friston KJ. 2012 Free-energy and illusions:
the cornsweet effect. Front. Psychol. 3, 43. (doi:10.
3389/fpsyg.2012.00043)

39. Fogelson N, Litvak V, Peled A, Fernandez-del-Olmo
M, Friston K. 2014 The functional anatomy of
schizophrenia: a dynamic causal modeling study of
predictive coding. Schizophrenia Res. 158,
204 – 212. (doi:10.1016/j.schres.2014.06.011)

40. Moran RJ, Jones MW, Blockeel AJ, Adams RA,
Stephan KE, Friston KJ. 2015 Losing control under
ketamine: suppressed cortico-hippocampal drive
following acute ketamine in rats.
Neuropsychopharmacology 40, 268 – 277. (doi:10.
1038/npp.2014.184)

41. Pinotsis DA et al. 2014 Contrast gain control and
horizontal interactions in V1: a DCM study.
Neuroimage 92, 143 – 155. (doi:10.1016/j.
neuroimage.2014.01.047)

42. Friston KJ, Li B, Daunizeau J, Stephan K. 2011
Network discovery with DCM. Neuroimage 56,
1202 – 1221. (doi:10.1016/j.neuroimage.2010.12.039)

43. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries
P, Friston KJ. 2012 Canonical microcircuits for
predictive coding. Neuron 76, 695 – 711. (doi:10.
1016/j.neuron.2012.10.038)

44. Schwiedrzik CM, Freiwald WA. 2017 High-level
prediction signals in a low-level area of the
macaque face-processing hierarchy. Neuron 96,
89 – 97. (doi:10.1016/j.neuron.2017.09.007)

45. Tibshirani R. 1996 Regression shrinkage and
selection via the lasso. J. R. Stat. Soc. Ser. B 58,
267 – 288.

46. Bell AJ, Sejnowski TJ. 1995 An information
maximisation approach to blind separation and
blind de-convolution. Neural Comput. 7,
1129 – 1159. (doi:10.1162/neco.1995.7.6.1129)

47. Sherman SM, Guillery RW. 1998 On the actions that
one nerve cell can have on another: distinguishing
‘drivers’ from ‘modulators’. Proc. Natl Acad. Sci. USA
95, 7121 – 7126. (doi:10.1073/pnas.95.12.7121)
48. Shipp S. 2016 Neural elements for predictive
coding. Front. Psychol. 7, 1792. (doi:10.3389/fpsyg.
2016.01792)

49. Shipp S, Adams RA, Friston KJ. 2013 Reflections on
agranular architecture: predictive coding in the
motor cortex. Trends Neurosci. 36, 706 – 716.
(doi:10.1016/j.tins.2013.09.004)

50. Keller GB, Mrsic-Flogel TD. 2018 Predictive
processing: a canonical cortical computation. Neuron
100, 424 – 435. (doi:10.1016/j.neuron.2018.10.003)

51. Park J, Shimojo E, Shimojo S. 2010 Roles of
familiarity and novelty in visual preference
judgments are segregated across object categories.
Proc. Natl Acad. Sci. USA 107, 14 552 – 14 555.
(doi:10.1073/pnas.1004374107)

52. Letzkus JJ, Wolff SB, Luthi A. 2015 Disinhibition, a
circuit mechanism for associative learning and
memory. Neuron 88, 264 – 276. (doi:10.1016/j.
neuron.2015.09.024)

53. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ,
Kepecs A. 2013 Cortical interneurons that specialize
in disinhibitory control. Nature 503, 521 – 524.
(doi:10.1038/nature12676)

54. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang
WC, Jenvay S, Miyamichi K, Luo L, Dan Y. 2014
Selective attention. Long-range and local circuits for
top-down modulation of visual cortex processing.
Science 345, 660 – 665. (doi:10.1126/science.1254126)

55. Koolschijn RS, Emir UE, Pantelides AC, Nili H,
Behrens TEJ, Barron HC. 2019 The hippocampus and
neocortical inhibitory engrams protect against
memory interference. Neuron 101, 528 – 541.
(doi:10.1016/j.neuron.2018.11.042)

56. Petro LS, Muckli L. 2017 The laminar integration of
sensory inputs with feedback signals in human
cortex. Brain Cogn. 112, 54 – 57. (doi:10.1016/j.
bandc.2016.06.007)

57. Kersten D, Mamassian P, Yuille A. 2004 Object
perception as Bayesian inference. Annu. Rev.
Psychol. 55, 271 – 304. (doi:10.1146/annurev.psych.
55.090902.142005)

58. Kogo N, Trengove C. 2015 Is predictive coding theory
articulated enough to be testable? Front. Comput.
Neurosci. 9, 111. (doi:10.3389/fncom.2015.00111)

59. Grossberg S. 2013 Adaptive resonance theory: how
a brain learns to consciously attend, learn, and
recognize a changing world. Neural Netw. 37,
1 – 47. (doi:10.1016/j.neunet.2012.09.017)

60. Kay JW, Phillips WA. 2011 Coherent infomax as a
computational goal for neural systems. Bull.
Math. Biol. 73, 344. (doi:10.1007/s11538-010-
9564-x)

61. Bowman H, Filetti M, Wyble B, Olivers C. 2013
Attention is more than prediction precision. Behav.
Brain Sci. 36, 206 – 208. (doi:10.1017/
S0140525X12002324)

http://dx.doi.org/10.1017/S0140525X12000477
http://dx.doi.org/10.1017/S0140525X12000477
http://dx.doi.org/10.3758/s13414-014-0825-x
http://dx.doi.org/10.3758/s13414-014-0825-x
http://dx.doi.org/10.3389/fnhum.2010.00215
http://dx.doi.org/10.1098/rstb.2014.0169
http://dx.doi.org/10.1126/science.3755256
http://dx.doi.org/10.1126/science.3755256
http://dx.doi.org/10.1162/neco.2008.12-06-420
http://dx.doi.org/10.1162/neco.2008.12-06-420
http://dx.doi.org/10.1016/S0959-4388(98)80042&ndash;1
http://dx.doi.org/10.1016/S0959-4388(98)80042&ndash;1
http://dx.doi.org/10.1016/S0959-4388(98)80042&ndash;1
http://dx.doi.org/10.1016/j.tins.2004.10.007
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1093/cercor/bhr310
http://dx.doi.org/10.1016/j.neuron.2012.04.034
http://dx.doi.org/10.1016/j.neuron.2012.04.034
http://dx.doi.org/10.1093/cercor/bhu323
http://dx.doi.org/10.1016/j.neuroimage.2017.07.004
http://dx.doi.org/10.1016/j.neuroimage.2017.07.004
http://dx.doi.org/10.1162/jocn_a_00648
http://dx.doi.org/10.1016/j.neuroimage.2014.12.081
http://dx.doi.org/10.1016/j.neuroimage.2014.12.081
http://dx.doi.org/10.1126/science.1202043
http://dx.doi.org/10.1126/science.1202043
http://dx.doi.org/10.1016/j.neuroimage.2012.06.044
http://dx.doi.org/10.3389/fpsyg.2012.00043
http://dx.doi.org/10.3389/fpsyg.2012.00043
http://dx.doi.org/10.1016/j.schres.2014.06.011
http://dx.doi.org/10.1038/npp.2014.184
http://dx.doi.org/10.1038/npp.2014.184
http://dx.doi.org/10.1016/j.neuroimage.2014.01.047
http://dx.doi.org/10.1016/j.neuroimage.2014.01.047
http://dx.doi.org/10.1016/j.neuroimage.2010.12.039
http://dx.doi.org/10.1016/j.neuron.2012.10.038
http://dx.doi.org/10.1016/j.neuron.2012.10.038
http://dx.doi.org/10.1016/j.neuron.2017.09.007
http://dx.doi.org/10.1162/neco.1995.7.6.1129
http://dx.doi.org/10.1073/pnas.95.12.7121
http://dx.doi.org/10.3389/fpsyg.2016.01792
http://dx.doi.org/10.3389/fpsyg.2016.01792
http://dx.doi.org/10.1016/j.tins.2013.09.004
http://dx.doi.org/10.1016/j.neuron.2018.10.003
http://dx.doi.org/10.1073/pnas.1004374107
http://dx.doi.org/10.1016/j.neuron.2015.09.024
http://dx.doi.org/10.1016/j.neuron.2015.09.024
http://dx.doi.org/10.1038/nature12676
http://dx.doi.org/10.1126/science.1254126
http://dx.doi.org/10.1016/j.neuron.2018.11.042
http://dx.doi.org/10.1016/j.bandc.2016.06.007
http://dx.doi.org/10.1016/j.bandc.2016.06.007
http://dx.doi.org/10.1146/annurev.psych.55.090902.142005
http://dx.doi.org/10.1146/annurev.psych.55.090902.142005
http://dx.doi.org/10.3389/fncom.2015.00111
http://dx.doi.org/10.1016/j.neunet.2012.09.017
http://dx.doi.org/10.1007/s11538-010-9564-x
http://dx.doi.org/10.1007/s11538-010-9564-x
http://dx.doi.org/10.1017/S0140525X12002324
http://dx.doi.org/10.1017/S0140525X12002324

	Excitatory versus inhibitory feedback in Bayesian formulations of scene construction
	Introduction
	The excitatory matching (EM)-SAIM
	Overview
	Mathematical derivation
	Knowledge network
	Contents network
	Selection network

	Comparing EM-SAIM with the original SAIM
	Simulation results
	Interpreting selective attention for identification model within the active inference framework

	The PE-SAIM
	Simulation results and discussion

	Comparing PE-SAIM with EM-SAIM
	General discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	Appendix A. Parameter values
	References


