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ABSTRACT: Surface X-ray diffraction has been employed to
quantitatively determine the geometric structure of an X-ray-induced
superhydrophilic rutile-TiO2(110)(1 × 1) surface. A scatterer, assumed
to be oxygen, is found at a distance of 1.90 ± 0.02 Å above the five-fold-
coordinated surface Ti atom, indicating surface hydroxylation. Two
more oxygen atoms, situated further from the substrate, are also included
to achieve the optimal agreement between experimental and simulated
diffraction data. It is concluded that these latter scatterers are from water
molecules, surface-localized through hydrogen bonding. Comparing this
interfacial structure with previous studies suggests that the super-
hydophilicity of titania is most likely to be a result of the depletion of surface carbon contamination coupled to extensive surface
hydroxylation.

■ INTRODUCTION

Ever since Wang et al.’s discovery that UV irradiation of titania
results in a superhydrophilic surface,1 there has been a great
deal of effort to both exploit and understand this novel
phenomenon. Significant success has been achieved in the
former of these two goals, with applications including self-
cleaning windows and antifogging mirrors.2−5 In contrast,
uncertainty still remains as to the origin of the super-
hydrophilicity. Currently, there are a number of potential
explanations to be found in the literature,1,3,6−10 but none are
supported by compelling experimental evidence. For example,
it is proposed that the superhydrophilicity is simply a result of
the removal of surface carbon contamination.6 Other
researchers suggest that modification of the surface struc-
ture/chemistry of the titania substrate (e.g., surface hydrox-
ylation) underpins this macroscopic property.9 Longer range
structural changes are also purported to be important,
including the formation of nanoscale hydrophobic and
hydrophilic domains.1,11,12 Here we directly address this
topic, employing surface X-ray diffraction (SXRD) to
quantitatively determine the structure of a model titania

surface, rutile-TiO2(110), that exhibits superhydrophilicity
induced through X-ray exposure.
Previously, Shirasawa et al. (SEL) have undertaken SXRD

measurements from rutile-TiO2(110) to identify changes in
surface structure associated with the UV-induced hydrophobic-
to-hydrophilic transition.13 They report that the application of
a wet chemical preparation (WCP) recipe to the substrate
resulted in a hydrophobic (1 × 1) surface termination, which
became hydrophilic upon UV irradiation. It is suggested that
this transition is associated with the presence of surface
hydroxyls (OH), as surface five-fold-coordinated titanium
atoms (Ti5c) and bridging oxygens (Ob) become hydroxylated
following the exposure to UV light. Figure 1 illustrates the
changes in interface geometry concluded in ref 13.
In this Article, we revisit the structure of the super-

hydrophilic rutile-TiO2(110)(1 × 1) surface. A WCP method
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is again employed for sample preparation, but with X-rays
being used to induce superhydrophilicity. Similar to ref 13, the
surface is found to be extensively hydroxylated, including OH
bound to Ti5c. The diffraction data acquired in this study,
however, resemble much more closely those acquired from the
hydrophobic termination in ref 13. As argued in detail below,
this somewhat unexpected finding suggests that the analysis
and interpretation of SEL13 require revision.

■ EXPERIMENTAL METHODS
Concerning sample preparation, a previously published WCP
recipe14 was applied to the rutile-TiO2(110) substrate (10 ×
10 × 1 mm sample from PI-KEM), which is known to produce
a well-ordered (1 × 1) surface termination. In brief, this
procedure involves sequential sonication in acetone, ethanol,
and deionized water and then annealing in air at ∼973 K for
∼90 min. Subsequently, the sample is immersed in aqua regia
solution (3:1 by volume ratio of concentrated HCl and
HNO3) at room temperature for ∼45 min. The final UV-ozone
treatment step described in ref 14 was not undertaken in this
study. Please note that the TiO2 sample remained transparent
following the application of this WCP recipe, indicating that
there was no bulk reduction.15

Upon the completion of surface preparation, surface
hydrophilicity was evaluated by delivering a small droplet of
deionized water to the TiO2(110) surface using a syringe/
hypodermic needle. Once the contact angle of the deposited
droplet had been determined by visual inspection, the sample
was blown dry with high-purity nitrogen. The sample was then
transferred to the diffractometer located in EH1 of beamline
I07 at the Diamond Light Source synchrotron facility for
SXRD measurements. It was mounted in an X-ray transparent
(cylindrical Kapton window) environmental cell. Once the cell
was closed up, high-purity helium was flowed through it for the
duration of the SXRD measurements. It should be noted that it

was not possible to monitor either oxygen or water vapor
concentration within the cell.
SXRD data were collected at an incidence angle of 1° with

the substrate at room temperature using a photon energy of hv
= 17.7 keV and a 2D Pilatus photon detector. A systematic
series of X-ray reflections was acquired from the sample; that
is, for a given (h,k) integer, data were measured as a function of
l to facilitate the generation of so-called crystal truncation rods
(CTRs). h, k, and l are the reciprocal lattice vectors. They are
defined with reference to the real-space (1 × 1) unit cell of the
(110) surface, described by lattice vectors (a1, a2, a3) which are
parallel, to the [11̅0], [001], and [110] directions, respectively;
a1 = a3 = a√2, and a2 = c, where a = 4.593 Å and c = 2.958 Å
are the lattice constants of the tetragonal rutile crystal
structure. A surface-sensitive reflection (i.e., one that is located
well away from any bulk Bragg peak), namely, (−1, 0, 0.9), was
recorded at regular intervals to monitor the surface integrity.
To facilitate fully quantitative structure determination, the

raw 2D diffraction images were integrated, including back-
ground removal, and corrected16 to enable plots of structure
factor versus perpendicular momentum transfer for each CTR
to be compiled. This procedure generated a total of 1068
nonequivalent reflections from eight distinct CTRs. The ROD
software17 was employed to simulate these data, with structural
(and nonstructural) parameters being refined to achieve the
overall best fit between experiment and theory. Reduced χ2 was
used to evaluate the goodness of fit, which is defined as
follows18
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N is the number of measured structure factors, P is the number
of parameters optimized during fitting, and Fi

exp(hkl) and
Fi
th(hkl) are the experimental and theoretically calculated

structure factors, respectively. σi
exp(hkl) is the uncertainty

associated with Fi
exp(hkl). χ2 behaves such that a value of 1

indicates that experiment and theory are essentially coincident,
with agreement decreasing with increasing χ2. The quoted
precision of each fitted parameter is determined by systemati-
cally varying the parameter about its optimal value and for each
step optimizing all other parameters, until χ2 has increased by
1/(N − P) from its minimum value.18

■ RESULTS AND DISCUSSION
The application of our WCP recipe to the rutile-TiO2(110)
sample resulted in a deionized water contact angle of ∼80°.
This value is consistent with that reported in ref 14 for a (1 ×
1) surface termination subsequent to immersion in aqua regia
but not exposed to UV-ozone treatment. Following exposure
to I07’s photon beam, the contact angle was found to fall to
essentially 0°; that is, a superhydrophilic transition was
induced by X-ray exposure. All diffraction measurements
were undertaken with the rutile-TiO2(110)(1 × 1) surface in
this state; a contact-angle measurement at the end of data
collection indicated that a value of 0° was maintained
throughout this period. Data from the (−1, 0, 0.9) reference
reflection also revealed no substantive surface degradration.
Figure 2 shows four of the experimental CTRs acquired in

the current study (black markers with error bars), together
with equivalent data collected by SEL13 from rutile-TiO2(110)
following UV exposure (blue markers with error bars). A
priori, as both data sets were recorded from superhydrophilic

Figure 1. Ball-and-stick models showing the UV-induced (hydro-
phobic to hydrophilic) changes in interface geometry for rutile-
TiO2(110), as concluded by SEL from SXRD data.13 Red spheres are
Ti atoms and darker (lighter) blue spheres are substrate (adsorbate)
oxygen atoms. H atoms (pink spheres) are depicted, although they
were not explicitly included in SEL’s structure determination. Possible
hydrogen bonds are indicated by dashed lines.
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surfaces, it was expected that they would be very similar.
However, there are significant differences. For example, the
local maxima in our data at (0, 1, ∼3) and (1, 0, ∼2), are not
replicated in those from SEL. In contrast, our CTR profiles are
much more comparable to those reported by SEL for their pre-
UV exposure (hydrophobic) surface. These data are also
shown in Figure 2 as red markers with error bars. We note that
on an adsorbate-free rutile-TiO2(110)(1 × 1) surface,
prepared in ultrahigh vacuum (UHV), the aforementioned
local maxima are associated with significant displacements of
surface atoms away from their bulk positions;19 that is, they are
not a direct signature of surface hydrophilicity. An absence of
such features may be a result of either a more bulk-like
termination or surface roughening.
Considering the qualitative comparison outlined above, it

was expected that fitting of our experimental SXRD data would
result in the hydrophobic structure determined by SEL,13

where molecular H2O is bound atop Ti5c (see Figure 1). Figure
3 shows the best fit (blue line) achieved using SEL’s
hydrophobic structure as a starting point and simply allowing
the displacement of both atomic positions and nonstructural
parameter values. As indicated by χ2 = 2.60, as well as visual
inspection, the experiment−theory agreement is far from

perfect, suggesting that the correct structural solution had not
been found. On this basis, we explored other potential surface
terminations, including those consistent with the presence of
surface hydroxyls. The resulting overall best fit to the
experimental CTRs is shown in Figure 3 (red line). To
achieve this fit, 78 parameters were optimized, that is, 51
atomic coordinates, 21 Debye−Waller (DW) factors, a scale
factor, surface roughness (β), three fractional occupancies, and
surface fraction. The corresponding χ2 is 1.05; that is, there is
an excellent level of agreement between the experimental and
simulated data.
The optimum geometry of the first few atomic layers

emerging from the best fit to the experimental CTR profiles is
depicted in Figure 4. Selected corresponding interatomic

distances are listed in Table 1. A ball-and-stick model showing
all atoms displaced during fitting is shown in Figure S1, along
with a complete list of the optimized coordinates, DW factors,

Figure 2. Comparison of the (0, 1, l), (1,0, l), (1, 1, l), and (2, 0, l)
experimental CTRs acquired from X-ray-induced superhydrophilic
rutile-TiO2(110) in the current study with data from SEL.13 Current
study: black markers with error bars; pre-UV exposure from SEL:13

red markers with error bars; post-UV exposure from SEL:13 blue
markers with error bars. Profiles are systematically offset for clarity.

Figure 3. Comparison of experimental CTR data (black markers with
error bars), acquired from X-ray-induced superhydrophilic rutile-
TiO2(110), and theoretical best-fit simulations. Solid blue line
indicates the best fit achieved following relaxation of the hydrophobic
structure reported by SEL.13 Solid red line indicates the overall best
fit, with β = 0.24 and a surface fraction of 0.96.

Figure 4. Ball-and-stick models of the X-ray-induced superhydrophilic
rutile-TiO2(110) surface structure determined from SXRD data.
Perspective (top) and plane (bottom) views are shown. Red spheres
are Ti atoms, and darker (lighter) blue spheres are substrate
(adsorbate) oxygen atoms. H atoms (pink spheres) are depicted,
although they were not explicitly included in the structure
determination. Possible hydrogen bonds are indicated by dashed
lines. The numerical labeling of the atoms is employed in Table 1 and
Table S1 for identification purposes. Symmetry-paired atoms are
denoted by *.

Table 1. Selected Interatomic Distances Derived from
Atomic Coordinates (Table S1) of Optimized
Superhydrophilic TiO2(110)(1 × 1) Structure

atoms interatomic distance (Å)

O(3′)−O(2′) 2.70 ± 0.06
O(3′)−O(1′) 2.65 ± 0.05
O(2′)−O(1) 2.68 ± 0.03
O(1′)−Ti(2) 1.90 ± 0.02
O(1)−Ti(1) 1.83 ± 0.02
O(2)−Ti(1) 1.98 ± 0.02
O(2)−Ti(2) 1.95 ± 0.02
O(3)−Ti(1) 1.94 ± 0.01
O(4)−Ti(2) 1.94 ± 0.01
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and fractional occupancies in Table S1. Neglecting the details
of atomic relaxation, the surface mimics the stoichiometry and
geometry of bulk-terminated rutile-TiO2(110)(1 × 1) but is
decorated with oxygen species. Focusing on Ti5c (labeled
Ti(2)), an adsorbed oxygen atom (labeled O(1′)) is located
atop at a distance of 1.90 ± 0.02 Å, which is consistent with
the presence of a bound terminal hydroxyl (OHt).

20,21 The
experimental distance from ref 20 is 1.95 ± 0.03 Å, with a
moderately longer distance of 2.07 Å being obtained from
molecular dynamics calculations.20 Two additional non-
substrate oxygen atoms (labeled O(2′) and O(3′)) are at
somewhat greater distances from the topmost substrate atoms.
O(2′) is 2.68 ± 0.03 Å above the bridging oxygen atom
(labeled O(1)), with O(3′)’s nearest neighbor being O(1′) at a
distance of 2.65 ± 0.05 Å. These interatomic separations
suggest that oxygen atoms O(2′) and O(3′) arise from water
molecules, which are localized through hydrogen bonding.22

For illustrative purposes, we have included H atoms in Figure 4
but stress that these species were not explicitly included during
the generation of simulated SXRD data due to their negligible
X-ray scattering.
Given the optimized structure displayed in Figure 4, it is

interesting to compare this result with other pertinent studies.
Focusing initially on SEL’s work,13 the present diffraction data
are very similar to those acquired from their hydrophobic
surface, as demonstrated in Figure 2. Because our surface is
superhydrophilic, as a result of X-ray exposure, this agreement
presents a conundrum. One plausible explanation, arising from
discussion with SEL,13 is that the ∼1 mm2 footprint of the X-
ray beam employed for their SXRD measurements induced
superhydrophilicity only in this region. Hence the water
contact-angle measurement, where the droplet employed
covered a much larger surface area, did not reveal this local
X-ray-induced superhydrophilicity. It should be noted that on
I07 almost the entire sample surface would have been exposed
to the X-ray beam during alignment and measurement.
On the basis that SEL’s pre-UV-exposure surface is

superhydrophilic in the area probed by the X-ray beam, then
one further issue requires resolution. Specifically, despite the
similar experimental data, the discrepancy between our
optimized structure and SEL’s needs to be understood, for
example, the variation in the Ti(2)−O(1′) distance (1.90 ±

0.02 versus 2.09 ± 0.03 Å13). To this end, our experimental
data set (eight CTRs) was reduced to match that of SEL (six
CTRs), and fitting was undertaken. Under these conditions, we
were able to effectively model the data with SEL’s hydrophobic
structure. On this basis, it is evident that fewer experimental
CTRs leads to a local χ2 minimum, resulting in a significantly
different surface structure.
One other matter emerging from the preceding discussion is

the origin of the UV-induced change in CTR profiles observed
by SEL.13 Assuming that their pre-UV data is acquired from a
superhydrophilic area of the rutile-TiO2(110) surface, then the
observed changes cannot be accounted for by a hydrophobic−
hydrophilic transition. This deduction implies that UV-
irradiation leads to additional interfacial modification; that is,
a unique surface structure is formed upon exposure to UV
light. Currently, this suggestion is essentially conjecture, but is
worthy of further investigation.
Having reconciled the results of this study with those of

SEL,13 a comparison of the geometry of the current
superhydrophilic termination with those reported for interfaces
formed by the exposure of UHV-prepared TiO2(110)(1 × 1)
to liquid water (H2O(l)) is worthwhile.20 Figure 5 compares
the current optimum structure (TiO2(110):Super) to that
elucidated with SXRD following dipping of TiO2(110)(1 × 1)
into H2O(l) and measuring ex situ in UHV (TiO2(110):Dip-
H2O(l)) as well as that determined for TiO2(110) submerged
in H2O(l) (TiO2(110):Sub-H2O(l)). These three structures are
similar but not identical. For example, both TiO2(110):Super
and TiO2(110):Sub-H2O(l) exhibit oxygen atoms consistent
with hydrogen-bonded H2O molecules, although their
configuration differs; such scatterers are not evident in the
TiO2(110):Dip-H2O(l) data due to the acquisition in UHV.
Turning to Ti5c, for each structure displayed in Figure 5, the
distance to the atop oxygen atom is consistent with
hydroxylation (Ti5c−OHt). However, TiO2(110):Super dis-
plays a slightly shorter Ti5c−OHt distance (1.90 ± 0.02 Å)
than either TiO2(110):Dip-H2O(l) or TiO2(110):Sub-H2O(l)
(1.95 ± 0.03 Å). This variation may be a result of the former
substrate being essentially fully oxidized, whereas the latter two
were somewhat reduced as a result of substrate preparation in
UHV.

Figure 5. Ball-and-stick models of the optimum interfacial structures determined from SXRD for X-ray-induced superhydrophilic rutile-TiO2(110)
(current study), rutile-TiO2(110) subsequent to dipping in H2O(l),

20 and rutile-TiO2(110) submerged in H2O(l).
20 Side (top) and plane

(bottom) views are shown. Red spheres are Ti atoms, and darker (lighter) blue spheres are substrate (adsorbate) oxygen atoms. Selected
interatomic distances are annotated. Fractional occupancies of adsorbate oxygen atoms are indicated by the values inscribed on the lighter blue
spheres.
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Regarding the origin of the X-ray-induced superhydrophi-
licity of titania, the current SXRD data rule out the coexistence
of hydrophilic and hydrophobic domains, as analysis indicates
that almost the entire surface adopts the same geometry; that
is, surface fraction is 0.96. It should be emphasized that the
present study cannot be used to definitively rule out the
existence of such domains on UV-exposed titania. Further-
more, because the diffraction data from TiO2(110):Dip-H2O(l)
were acquired in UHV from a surface not irradiated with either
UV or X-rays during dipping, the mere presence of OHt cannot
be directly related to photoinduced superhydrophilicity. Given
this result, one could suggest that the simple removal of surface
carbon most likely underpins this property.6 It is, however,
notable that the fractional occupancy of OHt (O(1′)) for
TiO2(110):Super is approximately double that for either
TiO2(110):Dip-H2O(l) or TiO2(110):Sub-H2O(l), that is,
1.00 compared to 0.45 and 0.50, respectively, as indicated in
Figure 5. Hence, increased surface hydroxylation may play a
role in TiO2 superhydrophilicity, coupled to the loss of surface
carbon. We remark that in ref 20 ab initio modeling suggests
that the presence of OHt is a result of (near) surface defects
driving surface H2O dissociation. Because the substrate in the
current study is not expected to possess any significant
concentration of defects, the hydroxyl species must arise from
elsewhere. Almost certainly, it is photon-induced (or photo-
excited electron) chemistry that produces these OHt
adsorbates, which may be the reason that a higher coverage
is achieved; we note that this increase in surface hydroxylation
is not simply related to carbon removal, as the surfaces in ref
20 are reported to be relatively carbon-free (≤0.1 monolayer).
Finally, we would like to comment on a recent elegant study

suggesting that air- or aqueous-solution-exposed rutile-
TiO2(110) is commonly decorated by carboxylate species.23

On the basis that SXRD is not a spectroscopic probe, there is
always the potential for misidentification of adsorbates,
especially those exhibiting similar X-ray scattering character-
istics (e.g., C and O). For the current study, however, we argue
that this is not the case. Supporting evidence is two-fold. First,
Auger spectra acquired from a superhydrophilic rutile-
TiO2(110) surface, prepared following our WCP recipe,
show no discernible carbon signal.14 Second, SXRD data
were acquired from a superhydrophilic surface, which is
inconsistent with the presence of adsorbed carboxylates.6,23

■ CONCLUSIONS

To summarize, SXRD data have been acquired from an X-ray-
induced superhydrophilic rutile-TiO2(110)(1 × 1) surface. It is
concluded that the five-fold-coordinated surface Ti atom is
hydroxylated, as indicated by the presence of an atom, assumed
to be O, at a distance of 1.90 ± 0.02 Å. There is also evidence
of hydrogen-bonded H2O molecules, which are located
somewhat further from the substrate surface. The examination
of the current structure, in tandem with previous work,14,20

suggests that the X-ray-induced superhydrophilicity of titania is
likely to be a result of both the depletion of surface carbon and
increased surface hydroxylation.
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