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ABSTRACT 1 
 2 
Spherical Linear Interpolation (SLERP) has long been used in computer animation to 3 

interpolate movements between two 3D orientations. We developed a forward kinematics 4 

(FK) approach using quaternions and SLERP to predict how frogs modulate jump kinematics 5 

between start posture and takeoff.  Frog limb kinematics have been studied during various 6 

activities, yet the causal link between differences in joint kinematics and locomotor variation 7 

remains unknown.  We varied 1) takeoff angle from 8 to 60 degrees; 2) turn angle from 0 to 8 

18 degrees; and 3) initial body pitch from 0 to 70 degrees.  Simulations were similar to 9 

experimentally observed frog kinematics.  Findings suggest a fundamental mechanism 10 

whereby limb elevation is modulated by thigh and shank adduction.  Forward thrust is 11 

produced by thigh and proximal foot retraction with little contribution from the shank except 12 

to induce asymmetries for turning.  Kinematic shifts causing turns were subtle, marked only 13 

by slight counter-rotation of the left versus right shank as well as a 10% timing offset in 14 

proximal foot adduction.  Additionally, inclining initial body tilt influenced the centre of 15 

mass trajectory to determine direction of travel at takeoff.  Most importantly, our theory 16 

suggests firstly that the convergence of leg segment rotation axes toward a common 17 

orientation is crucial both for limb extension and for coordinating jump direction; and, 18 

secondly, the challenge of simulating 3D kinematics is simplified using SLERP because frog 19 

limbs approximately follow linear paths in unit quaternion space.  Our methodology can be 20 

applied more broadly to study living and fossil frog taxa as well as to inspire new control 21 

algorithms for robotic limbs. 22 

 23 
 24 
1.0  INTRODUCTION 25 

 26 



A frog’s ability to perform varied locomotor behaviours (e.g. jumping, swimming, walking) 27 

is a hallmark among Anurans.  Their multi-functionality has been explored from the 28 

perspective of motor recruitment (d’Avella and Bizzi, 2005; Emerson, 1979; Gillis and 29 

Biewener, 2000; Kamel et al., 1996) as well as foot-substrate interactions (Nauwelaerts et al., 30 

2005; Nauwelaerts and Aerts, 2003) as a model for how muscular forces interact with the 31 

external environment to determine behaviour (Kargo and Rome, 2002; Kargo et al. 2002; 32 

Aerts and Nauwelaerts, 2009; Clemente and Richards, 2013; Gillis, 2000; Richards, 2011; 33 

Richards and Clemente, 2013, 2012).   However, no study has provided a 3D kinematics 34 

analysis to explain how individual limb segments must move differently to achieve diverse 35 

behaviours.  Consequently, we lack direct mechanical evidence to assess how the most basic 36 

anatomical features (e.g. absolute limb lengths, limb segment proportions and limb posture) 37 

might influence locomotor multi-functionality in frogs. 38 

 39 

To understand locomotor versatility, one could first use kinematics analysis borrowed from 40 

robotics (e.g. Murray et al., 1994) to map the relationship between joint extensions and body 41 

movements.  Secondly, one could record animals performing multiple behaviours, then apply 42 

the kinematics map to resolve how specific joint rotations individually contribute to motion 43 

of the body (Richards et al., 2017).  In practice, this approach is restricted by behaviours 44 

animals choose within their natural ability, the limits of which are challenging to elicit in the 45 

laboratory (Astley et al., 2013).  Moreover, determining the effect of a single parameter on 46 

performance is difficult because animals often modulate several parameters simultaneously.  47 

For example, frogs change their initial posture, their forelimb extension and their leg 48 

kinematics (Richards et al., 2017; Wang et al., 2014) to increase takeoff angle.  To solve the 49 

above problems we use a theoretical kinematics approach where we can dictate the range of 50 

performance and test certain parameters in isolation of others.   51 



 52 

We developed a quaternion-based theoretical forward kinematics approach based on a 53 

computer animation technique called “spherical linear interpolation” (SLERP; Shoemake, 54 

1985; see below for further details).  Briefly, SLERP is a powerful technique whereby in-55 

between motion between landmark time points (i.e. keyframes) can be smoothly interpolated 56 

to fill in gaps.  For example, an animated character with an initial posture can be smoothly 57 

moved to a final posture by SLERPing between initial-final keyframes.  Despite some 58 

disadvantages such as sharp accelerations with multiple (>2) keyframes (Dam et al., 1998), 59 

SLERP has a key advantage of mathematical and algorithmic simplicity, making its 60 

implementation compact and straightforward.  Given the great interest in frogs as a model for 61 

understanding muscle function and muscle-tendon dynamics (e.g. Roberts & Marsh, 2003; 62 

Azizi & Roberts, 2010; Astley, 2016) we use SLERP to explore three behaviours 63 

representing a subset of a frog’s entire locomotor repertoire: 1) straight jumping to different 64 

heights; 2) turning jumps at a fixed height; and 3) straight jumping to a fixed height with 65 

variable initial body angles.  Recent findings suggest that final takeoff angle is predicted by 66 

the pre-launch initial posture (Wang et al., 2014) as well as by the launch phase kinematics of 67 

the limbs (Richards et al., 2017).  Our theoretical approach enabled us to independently 68 

manipulate pre-jump and takeoff posture to isolate the influence of kinematics from the 69 

effects of start posture.  We tested the following hypotheses: H1) The final limb 70 

configuration can be extrapolated (in quaternion space) from the start posture with 71 

knowledge of the target body axis orientation at takeoff.  H2) Increased downward rotation 72 

(adduction) is necessary and sufficient to increase jump steepness.  In particular, greater 73 

inclination of the pre-jump body posture (Wang et al., 2014) may contribute to increased 74 

jump steepness, but only when followed by increased adduction of the limb segments 75 



throughout the jump compared to shallower jumps. H3) A turn to one side is caused by 76 

reduced motion on that side and greater joint extension on the opposite side.  77 

 78 

Adding to the current tools available in biomechanics, the current study introduces a 79 

powerful method to analyse biological motion with only a simple set of mathematical rules.  80 

Such tools are a crucial complement to experiments because they not only permit exploration 81 

of behaviours that are not necessarily observed in vivo, but also they allow isolated 82 

manipulation of certain parameters whilst holding all else consistent.  Our analysis of how 83 

limb kinematics influences overall body behaviour in frogs is a step towards future 84 

examination of torque modulation (and ultimately muscle forces and neural control) to 85 

coordinate behaviour.   For example, our technique can be used to make reasonable 86 

predictions of limb motion in absence of experimental data (e.g. for extinct, rare or 87 

endangered species).  Beyond biology, the novel application of SLERP could be applied as a 88 

high-level motion program for bio-robotic limbs (i.e. to produce limb segment trajectories to 89 

be enforced by low-level torque-position controllers).   In addition to the applications of our 90 

method, we also discuss biological findings demonstrating that diverse jumping behaviours 91 

can be generated from a single “jump kinematics template”. 92 

 93 
2.0  THEORETICAL BASIS  94 

2.1 Quaternion-based forward kinematics approach 95 

To simulate different locomotor behaviours we defined a “joint coordination solver” to: 1)  96 

approximate locomotor kinematics; and 2) modulate the kinematics to achieve different 97 

behaviours.  The solver is based on experimental observations demonstrating that jumping 98 

frogs re-orient the axes of rotation of their leg joints; the axes move towards a common 99 

alignment which determines takeoff angle (Richards et al. 2017; Fig. 1B-C, SI Movie 1).  100 

Given these findings, frog jumping kinematics could be simulated by rotating the joint axes 101 



towards a common alignment, thus driving leg extension toward a target direction. We 102 

established that our solver obey the coordination rules: 1) rotate the body segments towards 103 

the target by the shortest path; 2) rotate the limb segments towards a common target 104 

orientation; and 3) alter the target jump direction at takeoff to change the jump behaviour.  If 105 

our rules approximate realistic jump kinematics (compared to those observed during in vivo 106 

experiments) then we have gained insight into the actual coordination mechanisms that real 107 

frogs may employ.  108 

 109 

To simulate frog jumping, we avoid standard forward kinematics approaches using Euler 110 

angles.  Briefly, a sequence of 3 cumulative rotations (Euler angles) about Cartesian X-Y-Z 111 

axes (in any chosen order) parameterize 3D rotation.  For the present study, Euler rotations 112 

are cumbersome because there exist multiple combinations of angle values leading to the 113 

same rotation.  Moreover, they suffer from singularities which can lead to numerical 114 

instability in simulations (Dam et al., 1998) and potentially unnatural motion. 115 

 116 

To avoid the problems of Euler angles, we instead used quaternion SLERP.  A quaternion is a 117 

vector of 4 numbers encoding the angle of rotation about a 3D rotation axis; it contains the 118 

same information as a set of XYZ Cartesian axes defining a reference frame.  Analogous to a 119 

rotation matrix, a quaternion can perform 3D rotation.  There are two important quaternion 120 

properties not shared by rotation matrices.  Firstly, a quaternion represents pure rotation, as 121 

opposed to a composition of three Euler rotations.  Secondly quaternions can be normalised 122 

to 4D unit vectors (unit quaternions).  Thus all quaternions, and therefore all 3D rotations, 123 

reside on the surface of a 4D sphere; moving between any two rotations is achieved simply 124 

by traversing the locally shortest arc along the hypersphere surface.  This SLERP technique 125 

(Shoemake, 1985) revolutionised computer animation due to its simplicity and robustness.  126 



 127 

SLERP is also useful for kinematics analysis because it analytically solves the locally 128 

minimum rotation between two orientations (Fig. 2), accomplishing coordination rule 1.  129 

Because of linearity on the hypersphere, we can extrapolate easily.  We can then simulate 130 

movement by using a linear extrapolation in unit quaternion space, accomplishing 131 

coordination rule 2.  Finally, the direction of extrapolation is determined by the common 132 

orientation to which the segments must converge, accomplishing coordination rule 3.  133 

Applying the rules of the solver, one can analytically determine all kinematics leading to 134 

takeoff knowing only the initial posture a priori. More precisely, the mathematical topology 135 

of quaternions allows us to extrapolate the final posture from the initial posture.  We will 136 

refer to our approach as limbSLERP.  137 

 138 

2.2 Animal model system 139 

Our model was based on the morphology and jumping kinematics of Kassina maculata 140 

Duméril 1853 (the African red-legged running frog).  As described in previous publications 141 

(Richards et al. 2017), skin markers placed on the joints (hip, knee, ankle and tarsometatarsal 142 

[TMT]) were assumed to represent locations of the joint centres of rotation; as confirmed by 143 

numerous dissections, the overlying skin is tightly bound to the bones and soft tissues of the 144 

knee, ankle and TMT joints and movement of the skin marker relative to the joint is 145 

negligible. 3D limb kinematics during jumping were recorded using high-speed video 146 

cameras and digitized in MATLAB (Mathworks, Natick, USA) using open source scripts 147 

(Hedrick, 2008).  Based on μCT scanning, we used the position of the hip joint as a proxy for 148 

the centre of mass (COM; Porro et al., 2017). 149 

2.3 Assumptions, definitions and conventions 150 



To avoid confusion, we use the following definitions for kinematics.  We treated each body 151 

segment as a line, excluding the fore limbs.  A single segment, torso, was used to represent 152 

the main body of the frog (head + thorax + abdomen + pelvis).  Local reference frames were 153 

defined for each body segment (torso, thigh, shank, proximal foot [tarsus], distal foot), each 154 

defining a local Z axis (Fig. 1A) aligned with the segment long axis.  Each reference frame 155 

originates at the proximal endpoint of its segment (origins at the snout, hip, knee, ankle, TMT 156 

for the segments torso, thigh, shank and proximal foot segments, respectively).  Pose is a 157 

segment’s orientation + XYZ position (e.g. the thigh oriented at a given angle originating at 158 

the distal end of the torso).  Configuration is a list of poses defining the posture of all of the 159 

body segments at a single point in time.  Importantly for the current study, we distinguish 160 

between path and trajectory.  Here, a path is a particular continuum of poses (or 161 

configurations) traced by an individual segment (or the whole limb) between an initial and 162 

final pose (or configuration), without regard for time.  For an example in 2D, the end point of 163 

a pair of segments connected by a hinge joint has the path of an arc traced between the flexed 164 

and extended positions.  For the present study, a trajectory is a path traced through time.  In 165 

the 2D case above, an example trajectory (among infinite possibilities) could be a constant 166 

angular velocity increase along the arc path.  An alternative trajectory along the same path 167 

could involve a sinusoidal change in angle such that the trajectory is an oscillating forwards-168 

backwards motion along the path of the arc.  Scope is the entire range of motion of the limb, 169 

i.e., all possible paths of all segments between any chosen start or end configuration.  For the 170 

present study, scope is constrained only by requiring fixed Euclidean distances between 171 

adjacent body segments.  For example, frogs of the same species would share a similar scope 172 

of motion due to their shared segment length proportions, whereas a morphologically distinct 173 

species would have a different scopes of motion.  For simplicity, all joints are assumed to be 174 

“ball joints” which rotate freely but do not translate (see Discussion).    175 



 176 

For the present study we avoid analysis of joint angles in the traditional sense.  We do not 177 

decompose rotation into flexion-extension, abduction-adduction, internal-external rotation 178 

corresponding to Euler angles about local Cartesian axes (e.g. Kargo & Rome, 2002).  179 

Rather, we work with pure 3D rotations in quaternion form and refer to “extension” and 180 

“flexion” as the opening or closing of a joint, regardless of the orientation of the segments.   181 

More formally, we define “flexion-extension” as a scalar angle within a plane defined by two 182 

connected limb segments, regardless of their orientation in space.  For example, vectors 183 

representing the thigh and shank form an invisible plane that can tilt as the femur rotates 184 

about its axis.  We say that the knee is “extending” if the shank is moving away from the 185 

thigh, regardless of the plane’s orientation.  In practice, extension can be calculated by the 186 

angle between two 3D vectors (Eq. A1) representing two adjacent body segments 187 

(disregarding long-axis rotation).  Alternatively, extension can be calculated as a 4D angle 188 

between two quaternions (by the same equation) representing the local reference frames of 189 

two adjacent segments.  We later quantify a segment orientation with respect to the global 190 

vertical and horizontal planes (see Section 3.5) rather than with respect to adjacent segments.   191 

 192 

 193 

2.4 Unit quaternions and SLERP 194 

Unless otherwise noted, all quaternions in the current work will be unit quaternions and all 195 

angles will be in radians.  Unit quaternions have the form 196 

𝐪 = [cos (
𝜃

2
) , 𝑎𝑖̂ sin (

𝜃

2
) , 𝑎𝑗̂ sin (

𝜃

2
) , 𝑎𝑘̂ sin (

𝜃

2
) ] 

(1) 

where â is a unit vector for the axis of rotation and i, j, k are its x, y, z components.   is the 197 

rotation angle about the axis of rotation (in 3D space).  Spherical Linear Interpolation 198 

(SLERP; Shoemake, 1985) is a method to interpolate intermediate positions between two unit 199 



quaternions, q1 and q2.  It was developed for efficiently and smoothly computing paths of 200 

moving objects for computer animation.  An interpolated quaternion (qI) is calculated as 201 

follows. 202 

𝐪𝐈(𝒒𝟏,𝒒𝟐,𝜏) = 
𝐪𝟏 sin [(1 − 𝜏) θ] + 𝐪𝟐 sin(𝜏 θ)

sin (θ)
 

(2) 

Where  is relative time between 0 and 1, and  is the 4D angle between q1 and q2 203 

(Appendix A).  At the endpoints =0 or =1, the above equation reduces to qI = q1 or qI = 204 

q2, respectively.  For intermediate values of , qI is the weighted average of q1 and q2 in 205 

unit quaternion space. 206 

 207 

3.0 FORWARD KINEMATICS ALGORITHM: limbSLERP 208 

3.1 Workflow outline 209 

Our workflow is summarized in the following steps:  1) “Quaternionization”:  The initial 210 

posture of the left leg and body is “quaternionized” to express each ith body segment as a 211 

quaternion, qi. 2)  Path planning: A target (endpoint) COM location and body orientation is 212 

chosen and expressed as a quaternion, qtarget. Using the quaternionized limb as a starting 213 

point, a path of 3D kinematics is solved analytically using SLERP to derive the segment 214 

paths required to move the body towards the target. 3)  Kinematic extrapolation: Using 215 

continuously varying time, , the quaternionized limb is “SLERPed” towards the target until 216 

the target body pose is reached. 217 

 218 

3. 2 Quaternionization 219 

The orientation of each leg segment (thigh, shank, proximal foot and distal foot) was 220 

expressed as a quaternion relative to the adjacent proximal segment.  For the torso, we used 221 

the z-axis [0, 0, 1] as a fixed global reference vector vref.  Thus, to describe the local 222 

orientations for each of the 5 body segments, we gathered all quaternions into a vector, Q, 223 



containing the 5 quaternions calculated above.  Using this convention, a “null” rotation of 0º 224 

(q = [1, 0, 0, 0]) would result in two adjacent segments aligned end-to-end along their long 225 

axes.  For example, at the null position, (each element of Q = [1, 0, 0, 0]), all segments would 226 

be aligned end-to-end along the global z-axis (Fig. 1A inset).  As another example, for a 90º  227 

protraction of the left hip (but no rotation at other joints), the femur orientation would point 228 

to the left side of the body.  Since the orientation of the shank is defined with respect to the 229 

thigh, no relative rotation would be required for the shank (qthigh,shank = [1, 0, 0, 0]), and 230 

similarly for the remaining segments (SI Movie 2).   231 

 232 

The starting pose for jumping was quaternionized from the first video frame from an example 233 

trial collected from a previous data set (Richards et al., 2017).  At each time sample we have 234 

P, a matrix containing XYZ coordinates for ns number of segments (i.e. ns rows X 3 235 

columns) ordered from proximal to distal.  The point of ground contact (i.e. distal foot) is the 236 

Cartesian origin, XYZ = [0, 0, 0].  Moving from proximal to distal, P is converted to V, a 237 

matrix of local segment vectors (PV): 238 

𝐕 = [𝐯𝐢,𝐢+𝟏 … , 𝐯𝐧𝐬−𝟏,𝐧𝐬] = [𝐩𝐢+𝟏 − 𝐩𝐢 … , 𝐩𝐧𝐬−𝟏 − 𝐩𝐧𝐬] (3) 

which become 239 

𝐕 = [𝐯𝐭𝐨𝐫𝐬𝐨, 𝐯𝐭𝐡𝐢𝐠𝐡, 𝐯𝐬𝐡𝐚𝐧𝐤, 𝐯𝐩𝐫𝐨𝐱.𝐟𝐨𝐨𝐭, 𝐯𝐝𝐢𝐬𝐭.𝐟𝐨𝐨𝐭] (4) 

then each vector is converted to quaternions using the transformation, 240 

𝐯𝟏 →
𝒒𝐯𝟏,𝐯𝟐

𝐯𝟐 
(5) 

creating local reference frames such that each qi represents the orientation of qi relative to  241 

qi-1. 242 

 243 

Finally, the entire left limb (expressed as a set of vectors, V) is quaternionized to Q, a vector 244 

of quaternions representing the postural configuration of the limb at a given time (VQ). 245 



𝐐 = [𝐪𝐢,𝐢+𝟏 … , 𝐪𝐧𝐬−𝟏,𝐧𝐬] =  [𝐪𝐭𝐨𝐫𝐬𝐨 … , 𝐪𝐩𝐫𝐨𝐱.𝐟𝐨𝐨𝐭] (6) 

The whole procedure of quaternionization (PQ) is detailed in Appendix B. 246 

 247 

3.3 Path planning 248 

Firstly, the start pose of the left leg, Q0, was calculated from the first video frame of an 249 

example jump experimental trial.  Secondly, a target end pose (e.g. takeoff) Q1 must be given 250 

to allow SLERP to compute the intermediate kinematics between Q0 and Q1.  If both start 251 

and takeoff postures are known, the kinematics of a jump can be SLERPed between the two 252 

poses to approximately reconstruct experimentally collected data.  For the present study we 253 

wish to produce a hypothetical range of takeoff poses beyond those observed experimentally.  254 

Thus, the final limb configuration (Q1) is not known, but rather extrapolated from Q0.  To 255 

extrapolate, we assume that the final configuration (Q1) lies somewhere between the initial 256 

(Q0) and a fully straightened leg.  Since extrapolation is essentially a guess based on this 257 

assumption, Q1 must be modified later as explained below.  Q1 was determined in three steps. 258 

1) The body heading and orientation at takeoff were specified by an elevation angle, , in the 259 

vertical plane and a turn angle, , in the horizontal plane. These angles were used to make a 260 

first guess regarding the composition of Q1.  Specifically, varying takeoff targets were chosen 261 

with respect to a nominal takeoff configuration (takeoff pitch = 33º; yaw = 0) representing an 262 

exemplar trial from experimental recordings.  2) The relative duration of the interpolated 263 

kinematics was adjusted to prevent the leg from over-extending to a fully straight posture 264 

(see below). 3) The kinematics of the opposite (right) leg were solved by mirroring Q1 to 265 

yield Q1R. Because turns are asymmetrical, small additional adjustments were made using 266 

inverse kinematics (Appendix B).  267 

 268 

The calculations are as follows.   269 



Path planning step 1: A desired takeoff elevation angle, , was expressed as a quaternion 270 

about the body pitch axis ([1, 0, 0]; see Fig. 3A): 271 

𝒒𝒑𝒊𝒕𝒄𝒉 = [cos (
𝜓 − 𝜋/2

2
) , sin (

𝜓 − 𝜋/2

2
) , 0, 0 ] 

(7) 

Note that an offset angle of -/2 was added in order to define   with respect to horizontal as 272 

done previously (i.e.  = 0 is a horizontal jump; Richards et al., 2017).  Importantly, 273 

determines the orientation of the torso axis at the instant of takeoff, but does not dictate the 274 

orientation of the centre of mass velocity vector.  Regardless, steeper pitch angles will result 275 

in steeper jumps (i.e. greater jump height at the moment of takeoff).  For the present study, 276 

we use “steep”, “high jump”, “high pitch”, “high elevation” synonymously to refer to a large 277 

value resulting in greater vertical displacement at takeoff. 278 

 279 

Similarly, a desired turn angle,  was chosen about the yaw axis ([0, 0, 1]; see Fig. 3B): 280 

𝒒𝒚𝒂𝒘 = [cos (
𝛼

2
) , 0, 0, sin (

𝛼

2
) ] (8) 

The two quaternions were then multiplied to give a target rotation composed of a pitch 281 

followed by a yaw rotation: 282 

𝒒𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒒𝒚𝒂𝒘⨂𝒒𝒑𝒊𝒕𝒄𝒉 (9) 

Where ⨂ denotes quaternion multiplication.  As a nominal simulation we chose a 283 

representative jump reaching 33º elevation at takeoff (Richards et al., 2017) with no turning 284 

( = 0.576;  = 0).  Q1 was then defined: 285 

𝑸𝟏 = [𝐪𝐭𝐨𝐫𝐬𝐨, 𝐪𝐭𝐡𝐢𝐠𝐡, 𝐪𝐬𝐡𝐚𝐧𝐤, 𝐪𝐩𝐫𝐨𝐱.𝐟𝐨𝐨𝐭, 𝐪𝐝𝐢𝐬𝐭.𝐟𝐨𝐨𝐭] = [𝐪𝒕𝒂𝒓𝒈𝒆𝒕, 𝐪𝟎, 𝐪𝟎, 𝐪𝟎, 𝐪𝟎] (10) 

Where q0 is the null rotation resulting in a 0 angle between adjacent segments. Since all 286 

quaternions describe relative rotations between segments, q0 simply means straight 287 

orientation with respect to the proximal segment.  Importantly, Q1 is a crude guess which sets 288 

the direction of motion, but not necessarily the destination configuration.  Our theory 289 



proposes that as limb segment orientations move towards the null orientation (i.e. straight), 290 

the limb will extend via joint angle trajectories that minimize overall motion (via SLERP).  291 

However, frogs do not fully extend their legs prior to takeoff (Richards et al., 2017).  292 

Accordingly, we allow simulations to move towards Q1, but are never allowed to reach Q1 293 

by adjusting (see below).   Otherwise, the posture at takeoff would be a fully extended limb 294 

(Fig. 1A, inset).   295 

 296 

Path planning step 2: SLERP was used to interpolate the COM displacement throughout the 297 

jump.   298 

𝐐𝐈𝝉 = [𝐪𝐈𝐭𝐨𝐫𝐬𝐨, … , 𝐪𝐈𝐪𝐝𝐢𝐬𝐭.𝐟𝐨𝐨𝐭]𝜏
 (11) 

As explained above, we never allowed the interpolation to reach  =1. Instead, the 299 

interpolation was stopped at time ’ when the angle between the torso and thigh segment 300 

reached ~130º to mimic the configuration of the limb just prior to takeoff (Fig. 3B from 301 

Richards et al., 2017).  ’ was then used for path planning step 3.  We define Q1’ as the final 302 

configuration at  = ’. 303 

 304 

To summarize steps 1 & 2, Q0  is first sampled from recorded data - it is the only parameter 305 

known from experimental observation.  Then, extrapolation (in unit quaternion space) is used 306 

to guess Q1 which is later refined to Q1’.  Importantly, neither Q0 nor Q1 alone contain 307 

information regarding leg kinematics - they only specify configurations at two separate 308 

moments in time to bracket the jump.  However, as soon as both Q0 and Q1 are defined, the 309 

full kinematics of the jump are known (i.e. all trajectories for all body segments) simply by 310 

substituting a time value () into Eq. 11. Along this interpolated path exists a limb 311 

configuration (Q1’ at =’) that brings the torso midline axis close to the target.  Therefore, 312 

the final target pitch and yaw are specified, but the configuration of the leg segments is 313 



unknown a priori. Thus, our procedure requires extrapolation to guess the final configuration 314 

at a single time point (takeoff), but uses interpolation to derive the motions in between the 315 

two time points.  If both Q0 and Q1 are known, extrapolation would not be needed - one could 316 

skip directly to the interpolation in step 2. 317 

 318 

Path planning step 3:  319 

Firstly, each ith point along the left side of the body was mirrored about the midline body axis 320 

using a reflection matrix  321 

[

𝑥𝑟

𝑦𝑟

𝑧𝑟

1

]

𝑖

= 𝐑𝒓𝒆𝒇𝒍𝒆𝒄𝒕 ∙ [

𝑥
𝑦
𝑧
1

]

𝑖

 

(12) 

where Rreflect is a 4x4 matrix (Kovács, 2012; Appendix A) and xr, yr, zr are the reflected XYZ 322 

coordinates. Secondly, for turning simulations, the left and right leg kinematics are 323 

necessarily asymmetric.  To solve the asymmetric leg kinematics for turns, the body segment 324 

orientations of the mirrored limb were adjusted using an iterative inverse kinematics (IK; 325 

Appendix C) algorithm.  Briefly, IK calculates the minimum changes in joint angles required 326 

to move the limb endpoint to a target.  In the current study, the target was the left hip and the 327 

right limb’s endpoint was the right hip.  At each time point, the right limb (mirrored) was 328 

incrementally moved towards the left leg until the two halves join at the hip.   Although not 329 

always necessary (i.e., for symmetric jumps, see Discussion), this IK adjustment was applied 330 

to all simulations.  331 

 332 

3.4 Kinematic interpolation 333 

The previous steps yield a nominal final pose, Q1’, from which we can vary the takeoff 334 

direction of the torso/limbs to simulate jumps of varying steepness and degree of turning.  335 

Using Eqn’s 7-10 we modify the nominal simulation by choosing takeoff pitch and yaw 336 



angles relative to the nominal condition.  Specifically, we alter Q1 by modifying its first row 337 

which is qtarget. 338 

 339 

Because we are using linear interpolation in unit quaternion space, linearly advancing the 340 

time from =0 to =1 produces linear changes in the orientation of each body segment with 341 

time.  Thus, a linear increase in  results in constant rotational velocity (Shoemake, 1985) 342 

which is unrealistic for jumps which require acceleration throughout (Marsh, 1994).  This 343 

problem is solved simply by using a nonlinear function for .  Without altering the kinematics 344 

paths derived above, interpolation time can be defined using a function, T, such that the slope 345 

constantly increases (hence constant increase of velocity).  At least a second order curve (e.g. 346 

T = 2) is needed to guarantee acceleration of the COM throughout.  Given that in vivo 347 

acceleration patterns are not constant (Roberts & Marsh, 2003), we used a higher order 348 

function based on the computed displacement from our representative nominal jump using 349 

the location of the hip as a proxy for the COM (Richards, 2017), normalized the data by 350 

maximum displacement then fit it to a 4th order polynomial to create a function for T.   351 

𝑇(𝜏) = 𝑎  + 𝑏 ∗ τ2 + 𝑐 ∗ τ3 + 𝑑 ∗ τ4 (13) 

 352 

where  is the adjusted relative time (0< ≤’) with fit coefficients a=0.019, b= 0.145, 353 

c=1.383 and d= -0.549.  To perform kinematic extrapolation, T is substituted for  in Eq. 11.  354 

 355 

3.5 Analysis of simulated kinematics 356 

All analysis for the present study was performed in Mathematica 10 (Wolfram, Hanborough, 357 

UK).  Quaternion interpolation was implemented using two programming loops.  The “outer 358 

loop” repeats for nt time samples and selects a relative time value  (0< ≤’) at an arbitrary 359 

sampling interval, dt,  (e.g. dt = 0.01 to give nt = 100 time samples).  For each incremental 360 



value of , the “inner loop” repeats for ns iterations for each body segment.  Within this inner 361 

loop, qI for each segment (Eq. 11) is calculated and gathered into a vector QI at the given , 362 

yielding a ns X 4 matrix of quaternion values.  The lowest matrix dimension is always 4 363 

representing the 4 numbers in each quaternion.  The completion of both loops yields an nt X 364 

ns X 4 matrix storing one QI for each time point.  Finally, quaternionization is performed in 365 

reverse (QP) to yield a set of 3D body segment vectors that are assembled end-to-end to 366 

construct the schematic body configuration at time  (Appendix B) analogous to an 367 

experimentally collected 3D kinematics data set. 368 

 369 

Following kinematic interpolation, simulated limb segment kinematics were analysed using a 370 

similar approach as on experimental data (see Richards et al. 2017).  Two metrics were used 371 

to quantify kinematic differences between varied behaviours: 4D angles and limb segment 372 

orientations in polar coordinates.  4D angles were used as a scalar measure of “rotational 373 

distance” between two orientations.  By analogy, the distance travelled along the surface of a 374 

sphere (in 3D) can be measured as a scalar angle between any two positions on the surface.  375 

One can similarly measure a scalar distance between any two 4D unit vectors whose tips lie 376 

on the surface of a 4D sphere.  Since all 3D rotations, when expressed as unit quaternions, 377 

reside on the surface of a 4D sphere, any two orientations are represented by two points on 378 

the 4D sphere.  Similar to the 3D analogy, scalar “distance” between two orientations can be 379 

represented by the 4D angle between them (Eq. A1).  Whereas 4D angles indicate rotational 380 

displacement, limb segment polar angles describe orientation by treating each segment as the 381 

radius about an imaginary sphere centred at its joint of origin.  For example, one can imagine 382 

the hip joint as the centre of a sphere whose radius is the femur.  The polar orientation of the 383 

femur is then described by two angles: 1) A protraction-retraction angle in the horizontal 384 

plane and 2) an abduction-adduction angle relative to the vertical (z) axis (Fig. 3): 385 



 386 

 387 

Where x, y and z are Cartesian coordinates of a given segment vector (e.g. Vthigh from Eq. 4 388 

for calculating thigh retraction-protraction and abduction-adduction).  Note that the /2 389 

offsets are for convenience such that the retraction angle sweeps rearward from the torso 390 

midline and adduction sweeps downward from the horizontal plane. 391 

 392 

4.0 RESULTS 393 

4.1 Simulated versus observed jump kinematics 394 

Compared to data collected experimentally (Richards et al., 2017), jump kinematics predicted 395 

by limbSLERP produced similar patterns when expressed as 4D angles (Fig. 4).  Using the 396 

current convention of “quaternionization”, a 4D angle of 0 indicates that a segment is at the 397 

“zero” position; i.e. the segment’s long axis is aligned with that of the proximal segment.  398 

Note this zero position is a theoretical extreme which is not anatomically possible (see 399 

below).  In both experimental and simulated jumps, 4D angles decreased through time 400 

indicating that the entire limb extends (i.e. “straightens”) as each segment’s orientation 401 

converges towards a common orientation.  For all segments except the proximal foot, 402 

SLERPed simulations followed trajectories within the variation of trajectories observed in 403 

vivo.  The proximal foot showed the same downward trend, but at consistently lower values 404 

than natural frog kinematics indicating that the proximal foot remained slightly “straighter” 405 

with respect to the femur compared to experimental observations (Fig. 4C).  Discrepancies 406 

between simulation and real kinematics perhaps result from using external skin markers 407 

(Richards et al., 2017). Despite negligible relative motion between skin and underlying joints 408 

𝑟𝑒𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒(𝜃) =  𝑡𝑎𝑛−1(
𝑦

𝑥
) −

𝜋

2
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(see above), a pair of external markers per segment is not sufficient to reconstruct as a proxy 409 

for internal bone motion which our theory simulates.  Additionally, our model does not 410 

account for small translations possibly occurring at the knee joint (Kargo et al., 2002) which 411 

might cause the observed angular offset (see Discussion). 412 

 413 

4.2 Simulated modulation of jump performance 414 

From an identical starting configuration based on experimentally collected data (Richards et 415 

al., 2017), qtarget was varied to modulate both the vertical steepness of jump angle (pitch) and 416 

the turning angle (yaw).  Three contrasting takeoff targets were chosen: Nominal takeoff 417 

configuration (takeoff pitch = 33º; yaw = 0), a steep jump (pitch = 60º; yaw = 0) and a left 418 

turn (pitch = 15º; yaw = -18º).  Note that we used a shallow pitch to allow turns to occur 419 

mainly in the horizontal plane.  This allowed us to reduce confounding effects of “banking 420 

turns” (i.e. rolling about the torso axis) to better isolate the kinematic mechanism of turning. 421 

Animations from simulations show smooth motion of the body segments extending to carry 422 

the torso towards the target orientation (Fig. 5; SI Movie 3).  For the three example cases, 423 

kinematics were qualitatively similar; extension of the main driving joints can be seen clearly 424 

in top view for the hip and knee (Fig 5, second row) and in side view for the ankle (Fig 5, 425 

third row).  For the nominal simulation, the hip, knee, ankle and TMT joints underwent a net 426 

extension (max angle – min angle) of 80, 93, 80 and 37º, respectively.   Notably, magnitudes 427 

of joint extension remained consistent across different jumps; total excursion in terms of 3D 428 

and 4D angles (see Section 3) varied within only a few degrees difference from the nominal 429 

extension values (nominal values ± 1 to 5º versus 1 to 14º for varying pitch versus yaw).  The 430 

consistent amount of extension across simulated behaviours suggests that limb segment 431 

orientation governs jump trajectory (rather than differential magnitudes of joint extension).  432 



Thus, the present analysis focuses on how varying degrees of upward, forward and medio-433 

lateral motion of limb segments can modulate the jump path.   434 

 435 

To observe the relative contribution of upward/downward versus forward/rearward versus 436 

medial/lateral segment motions for the example cases above, each segment was decomposed 437 

into polar coordinates to quantify orientations in terms of retraction angle (caudal-directed 438 

rotation to push the body forward) or adduction angle (downward rotation to push the body 439 

upward; Fig. 6).  During straight jumps and turns, all leg segments (thigh, shank, proximal 440 

and distal foot) retracted and adducted throughout jumps (except the shank which adducted, 441 

but remained at a fixed retraction angle; Fig. 6A&B).   442 

 443 

4.3 Theoretical kinematics comparing a nominal jump, a steep jump and a left turn 444 

For straight jumps, protraction-retraction and abduction-adduction kinematics were nearly 445 

symmetrical between left and right legs.  However, SLERP introduced slight lateral drift of 446 

the body midline axis (Fig. 5B&F) which caused a small asymmetry in segment kinematics 447 

(see Discussion).  Regardless for steep jumps, both left and right legs showed a reduction in 448 

the extent of retraction, particularly for the thigh and proximal foot which were reduced by 449 

~50º and ~90º, respectively, with the shank retraction nearly constant.  In contrast, adduction 450 

for the thigh and shank segments increased by ~14º and ~26º, respectively, but decreased by 451 

~15º for the proximal foot. 452 

 453 

During simulated turns, left and right legs extended with subtle asymmetries (Fig. 6A vs. B; 454 

Fig. 7).  Unexpectedly, there was no dramatic right leg bias in either retraction or adduction 455 

angles.  There were three notable subtle asymmetries.  Firstly, the thigh and proximal foot 456 

segments retracted to a greater extent in the left leg.  Secondly, the left shank protracted 457 



slightly (“pulling” the limb towards the inside of the turn) whereas the right shank retracted 458 

slightly (“pushing” the limb leftwards; Fig. 7A).  Thirdly, the right proximal foot adducted 459 

earlier and to a greater extent than the left (Fig. 7B).  460 

 461 

4.4 Theoretical kinematics of modulating jump height and turn angle 462 

To better understand how kinematics are modulated, we simulated a hypothetical range of 463 

takeoff pitch angles (with no turning) and a range of turning angles (at fixed takeoff pitch).  464 

Over the range of pitch angles, retraction of the thigh and proximal foot segments decreased 465 

dramatically ~50º and 130º, respectively, from the shallowest to the steepest jumps (Fig. 8A).  466 

In contrast, adduction excursion for the thigh and shank segments increased ~50º over the 467 

range of pitch angles revealing a forward kinematic mechanism of exchanging retraction for 468 

adduction to increase takeoff pitch. 469 

 470 

For turning we swept the left leg turn angle from positive (right turn) to negative (left turn) to 471 

cause a functional shift from the outside leg (“pushing” the leg toward the opposite side) to 472 

the inside leg (“pulling” the leg into the turn).  Surprisingly, thigh and proximal foot 473 

retraction increased as turn angle decreased (i.e. “pushed” more on the inside of the turn).  474 

The shank kinematics, however, shifted ~30º from retraction (left leg turning right) to 475 

protraction (left leg turning left), with negligible protraction or retraction at 0º turn angle 476 

(Fig. 8B).   477 

 478 

4.5 The influence of jump preparation angle (initial pitch angle) 479 

To test the influence of the ‘jump preparation angle’ (Wang et al., 2014), we chose a fixed 480 

target takeoff pitch of 60º (yaw = 0) whilst varying the initial pitch angle of the body segment 481 

(at =0).  Across a range of initial pitch angles of 0 (horizontal) to ~75º (nearly vertical), the 482 



paths of the segment rotations changed, causing shifts in the final direction of centre of mass 483 

(COM) velocity at takeoff (Fig. 9).  At low preparation angles (< 45º), the simulation would 484 

leave the ground moving upwards and backwards, despite a body axis heading of 60º 485 

pointing upwards/forwards.  In contrast, preparation angles above 45º caused forward/upward 486 

motion at takeoff.  Over the range of initial angles, the COM takeoff velocity angle decreased 487 

sharply, reaching an optimum of 60º at a preparation angle of ~47.5º where the body would 488 

continue in the target direction.  489 

 490 

5.0 DISCUSSION 491 
 492 
5.1 limbSLERP predicts jump kinematics 493 

The goal of the present study was threefold:  Firstly, we aimed to create a 494 

mathematical/computational method to predict limb motion from simple geometric 495 

information such as limb segment proportions and their connections.  Our use of SLERP is 496 

novel because, to our knowledge, it provides one of the simplest sets of mathematical rules 497 

that predict realistic limb motion in the absence of detailed physical, anatomical and 498 

physiological constraints.  It is intended as a first step to provide predictions and insights to 499 

assist the development of more rigorous dynamics analyses (forward dynamics; inverse 500 

dynamics; musculoskeletal simulation) to follow. Secondly, we intended to establish a 501 

theoretical framework to simulate frog hind limb kinematics over a range of jumping 502 

performance.  Our aim was not to faithfully reproduce or fit experimental data.  Rather, we 503 

created a template model with minimal mathematical constraints capturing the essential traits 504 

of a frog jump (Fig. 4) to probe for insights into the coordination of movement.  Thirdly, we 505 

sought to tease apart whether pre-jump posture versus dynamic modulation of leg kinematics 506 

are most crucial in steering the COM forwards, upwards or laterally.  During jumps, frogs 507 

naturally vary their takeoff pitch angle (Kargo & Rome, 2002; Wang et al., 2014; Richards et 508 



al., 2017; Porro et al., 2017) as well as their turn angle (C.T. Richards & L. B. Porro, 509 

unpublished observations). Whilst controlling for initial pre-jump posture, we tested whether 510 

a set of simple coordination rules could reproduce frogs' natural pitching and turning 511 

behaviours. 512 

The success of limbSLERP for simulating realistic kinematics, despite its simple assumptions 513 

and neglect of dynamics (i.e. forces), stems from two principles we hypothesise to be crucial 514 

for frog jumping.  Firstly, based on experimentally observed behaviour (Richards et al., 2017; 515 

SI Movie 1), the joint axes of rotation converge prior to takeoff.  Secondly, the limb 516 

kinematics between the start and end configurations result from the minimisation of segment 517 

rotation.  Theoretically, there exist infinite paths along which the limb segments could travel 518 

between start and end postures.  However, from a kinematics perspective (without knowing 519 

the dynamics) our theory proposes that the most sensible path is that which minimises 520 

motion.  Supporting our first hypothesis (H1) the above coordination principles approximate 521 

natural kinematics (Fig. 4), providing evidence that frogs may coordinate their limb 522 

movements by converging rotation axes and economising motion. 523 

 524 

 5.2 Theoretical evidence for how frogs modulate jump height and turn angle 525 

Current findings suggest that changes in leg segment adduction had the strongest direct effect 526 

on takeoff height supporting hypothesis H2.  As expected, greater downward rotation of 527 

segments, particularly the thigh and shank, “pushed” the body upwards to cause steeper 528 

jumps for a given functional leg length (Fig. 6C & 8A) similar to experimentally observed 529 

jumps (Richards et al., 2017).  Although simulations predicted little adduction contribution 530 

from the proximal foot, this does not imply that the ankle joint is inactive.  Inverse dynamics 531 

analysis indicates that increased torque from the ankle and hip drive steeper jumps (Porro et 532 



al., 2017).  Thus, increased thigh and shank adduction are likely powered by torques at the 533 

hip and ankle, respectively.  In exchange for greater adduction, retraction decreased (Fig. 6A 534 

& 8A) to translate the body upwards rather than forwards (SI Movie 3).  Notably, altering the 535 

pre-jump body pitch did not influence the ability to reach the target jump orientation.  Rather, 536 

adjustment of initial body inclination enabled the simulation to travel in the direction that the 537 

body was pointed (i.e. aligning the body orientation with heading; Fig. 9).  We speculate that 538 

inclining the pre-jump body angle not only is an indicator of fore limb push off (Wang eat al., 539 

2014), but also is a mechanism to aide neuro-muscular control of takeoff velocity.  This is 540 

because appropriate inclination of the initial body posture allows the limb to travel in the 541 

direction of its body simply by straightening the limb.  Using an analogy to reinforce this 542 

point, we imagine a toy robot which must be programmed with joint angle trajectories.  If the 543 

hobbyist wishes to program a steeper jump, doing so with a higher initial body pitch will 544 

simplify the programming of the hindlimb kinematics.  For the most extreme takeoff 545 

steepnesses, the cumulative rotations of all segments caused the COM to accelerate 546 

backwards (Fig. 9).  Although such strong backwards motion is unlikely in vivo, real frogs do 547 

generate short periods of rearwards force as they shift their weight and pitch their body 548 

rearwards during the steepest jumps (Porro et al., 2017) which could theoretically be 549 

corrected by inclining the body prior to launch. 550 

 551 

The joint kinematics for turns did not behave as expected.  Instead of greater retraction on the 552 

outside (right) limb segments, thigh and proximal foot retraction increased more on the left 553 

(Fig.  6A), becoming greater with sharper turns (Fig. 8B).  Although this increased retraction 554 

is counterintuitive, further inspection reveals that it likely has little impact on overall limb 555 

kinematics due to shifts in adduction.  The greatest change in retraction occurs at the 556 

proximal foot; however, this segment also undergoes greater adduction approaching ~90° 557 



(vertically downwards) which nearly cancels any impact of retraction. Using a globe analogy, 558 

adduction/abduction is analogous to moving north/south on a globe whereas protraction-559 

retraction refers to east/west.  When a segment is adducted to 90° (i.e. at the South Pole by 560 

our definition) protraction-retraction has no effect on segment orientation in the same sense 561 

that one cannot move east or west whilst on a pole.  Given that the most visible changes have 562 

little kinematic effect, what is the key asymmetry that causes turns?  For the same reason that 563 

the proximal foot becomes ineffective at retraction, the shank has the strongest effect due to 564 

its horizontal orientation which causes the greatest XY displacement for any given  565 

protraction/retraction.  Furthermore the shank of our model frog, Kassina maculata, is the 566 

longest leg segment (Fig. 1A) and hence exerts greater displacement as it rotates.  In support 567 

of hypothesis H3, the orientation of the shank (in the XY plane) remained nearly stationary 568 

across all jump conditions (Fig. 6A&B; SI Movie 3) except for turns in which left shank 569 

retraction switched to protraction causing differential rotation “pulling” the leg backward on 570 

the left whilst “pushing” forward on the right. For the reasons above, our model predicts that 571 

such a subtle shift (Fig. 7A) is sufficient to steer the frog.  572 

 573 

Our above results, though intuitive to understand, do not reflect the only possible mechanism 574 

for how frogs kinematically modulate jump direction.  Because of the high number of 575 

degrees-of-freedom of frog hindlimb (Kargo & Rome, 2002) there hypothetically exist 576 

multiple possible solutions to how a frog might differentially rotate its segments to increase 577 

jump steepness and turn.  Our current method based on minimal rotation offers a sensible 578 

starting prediction and outperforms Euler angle-based inverse kinematics (IK; e.g. Bus 2004).  579 

When attempting to derive a jump trajectory for the left leg using IK, the simulated 580 

kinematics diverged towards an alternative, but unnatural extension of the limb.  Specifically, 581 



the hip hyperextended while the ankle compensated by migrating medially to arrive on the 582 

opposite (right) side of the frog (Supplementary information, Fig. S1). 583 

 584 

5.3 Theoretical evidence for a "jump kinematics template" 585 

Despite variation in performance, do all frog jumps share similar underlying biomechanical 586 

traits, regardless of the jump direction?  Although the final answer can only be found using 587 

dynamics analysis, the present theoretical kinematics approach gives some insight.  In 588 

particular, if the underlying limb segment dynamics (torques and accelerations) follow a 589 

qualitatively similar pattern across jump performance, we expect kinematics should also be 590 

similar (and vice versa).  We propose that these similarities constitute a theoretical 591 

"kinematics template" which can be morphed to vary jump performance within Kassina (and 592 

potentially other morphologically similar frog species) whilst maintaining the fundamental 593 

characteristics of a jump.   A common pattern can be distilled from all observed jumps both 594 

simulated (present study) and in vivo (Richards et al. 2017) in three main elements: 1) The 595 

thigh and proximal foot segments rotate rearwards (retract) with negligible shank retraction.  596 

This is most clearly seen in top view where the shank orientation appears to remain fixed 597 

whilst the neighbouring segments retract (SI Movie 3).  2) The thigh, shank and proximal 598 

foot segments adduct throughout the jumps.  3)  The joint axes of rotation converge 599 

throughout the jump (SI Movie 1). 600 

5.4 Limitations of the present kinematics approach 601 

The foremost limitation of any kinematics analysis, including the present study, is the neglect 602 

of dynamics.  Simulations do not account for limb masses or moments of inertia nor do they 603 

consider muscle force and power properties which are known to limit frog jumping ability 604 

(Galantis and Woledge, 2003; Lutz and Rome, 1994; Peplowski and Marsh, 1997; Roberts 605 



and Marsh, 2003).  For example, the present analysis cannot address speed effects which 606 

could alter kinematics due to higher joint torques and greater ground reaction forces to drive 607 

farther jumps.  Regardless, as we explain below, our kinematics approach gives important 608 

insights that could be overlooked with more detailed dynamics modelling.  A second 609 

limitation is our lack of mathematical constraints other than the requirement that all limb 610 

segments connect end-to-end and that joints only rotate.  We avoided additional algebraic 611 

approaches to imposing additional motion constraints (e.g. obstacle avoidance; Murray et al., 612 

1994) because they are algebraically messy and, more importantly, to avoid a priori biases 613 

from prior knowledge of frog behaviour.  Due to our lack of constraints, the torso segment 614 

drifted medially to cross the body midline which does not occur naturally (Fig. 5B&F; SI 615 

Movie 3).  In practice, one can easily perform minor post hoc corrections using inverse 616 

kinematics to correct left-right drift of the hip joint.  For the current study, we allowed the left 617 

leg to drift slightly then used inverse kinematics for the right leg to join the right hip with the 618 

left (see Appendix C).  This drift correction caused the small left-right asymmetry during 619 

straight jumps (Fig. 6 A&B).  Despite this small issue, lack of additional constraints 620 

strengthens confidence in our model which approximates natural behaviour without 621 

“knowing” rotational limits of joints or that left segments must remain on the left side.   622 

Finally, the current implementation of quaternion interpolation assumes that frog joints are 623 

“ball joints” (i.e. no translation) which is not representative for all joints (e.g. the knee in 624 

ranid frogs; Kargo et al., 2002).  This oversimplification is possibly the cause for the slight 625 

downward offset of the proximal foot segment compared to experimental results (Fig. 4C).  626 

However, given that the above discrepancy was small and that the remaining leg segment 627 

patterns matched those predicted, limbSLERP is a simple and powerful starting point for 628 

exploring 3D limb kinematics which could be further developed in the future by adding 629 

translations using dual quaternions (Kavan et al., 2008). 630 



 631 

5.5 Summary, interpretation and broader context 632 

The present study had three main findings.  Firstly, frogs straighten their legs by moving their 633 

leg segments along paths of minimal rotation (i.e. paths on the unit quaternion sphere) 634 

between the pre-jump posture and a fully straightened limb.  Moreover, the target orientation 635 

of the fully straightened limb determines final jump direction.  Secondly, limb segment 636 

adduction is the key determinant of jump steepness, particularly the thigh and shank.  In light 637 

of prior work showing the importance of forelimb push-off (Wang et al. 2014) versus 638 

hindlimb adduction (Richards et al., 2017), we sought evidence to determine which 639 

alternative mechanism is the most important.  Although forelimb push-off does indeed 640 

contribute vertical force (Wang et al., 2014), our findings suggest additionally that hindlimb 641 

adduction is necessary and sufficient to produce steeper jumps.  Instead of playing a direct 642 

mechanical role, pre-jump “preparation angle” is perhaps important for control by 643 

influencing whether the body travels in the direction that it is initially oriented. Thirdly, 644 

turning is caused by a subtle switch from shank retraction to protraction on the inside leg of 645 

the turn.  Overall, our theoretical model predicts that jumps of different direction share the 646 

same fundamental kinematic mechanism whereby the thigh and shank adduct to drive limb 647 

elevation whereas the thigh and proximal foot retract to thrust the body forward.  Among all 648 

of the kinematic shifts observed in simulations, the orientation of the shank segment acted as 649 

the principle steering mechanism (due to its length and straight orientation) to modulate jump 650 

height as well as turn angle. 651 

     652 

Beyond qualitative description, we aim that our kinematics theory provides precise 653 

hypotheses for further testing.  Until future dynamics analyses are performed, we cannot fully 654 

claim that our theory has direct bearing on biomechanics beyond those explained by simple 655 



geometry.  However, we argue our approach is a critical first step in understanding the 656 

various limits of the locomotor system.  We propose a multi-step approach focusing first on 657 

kinematics, then rigid body dynamics followed by musculoskeletal dynamics.  Kinematics 658 

analysis explores the outermost limit to behaviour which is bounded by geometry (i.e. 659 

segment lengths and their anatomical relationships).  Within the scope of geometrically 660 

permissible motions, there is a subset which is physically possible, as determined by rigid 661 

body dynamics analysis.  For example, how far could a frog jump given knowledge of its 662 

limb inertial properties, ground contact properties and above kinematic limitations?  663 

Furthermore, within the scope of physically possible, there are the physiological limits of 664 

muscle force, velocity and power (Josephson, 1999) as well as limits to bone stress 665 

(Biewener, 1989) and soft tissue structure of joints to influence passive foreces and range of 666 

motion (Kargo et al., 2002).  Finally, there is the smallest subset encompassing what animals 667 

are willing to do behaviourally (particularly within experimental setups; Astley et al., 2013).  668 

Because researchers cannot dictate behaviour, we reiterate the value of a modelling approach 669 

where key aspects (such as initial posture) can be held constant to better highlight causal 670 

relationships and underlying mechanisms not detected with traditional experimentation.  We 671 

argue that one cannot fully understand experimentally observed behaviour until we are able 672 

to explain the “lower level” limitations of the system components.  Moreover, we propose 673 

that experimental approaches containing individual variation and measurement noise may not 674 

be sufficiently sensitive to discern subtle behavioural shifts such as those presently observed 675 

during turns.  676 

5.6 Applications and future work 677 

In addition to the biomechanical implications of our approach, we hypothesise that our 678 

theoretical kinematics template is a basic coordination strategy for frog jumping.  Despite the 679 

mathematical abstraction of quaternions and 4D hyperspheres, the theory has a physical basis 680 



which we propose can be exploited physiologically.  A nervous system need not perform 681 

calculations on quaternions; perhaps all that is needed is to generate torques which straighten 682 

the limb whilst minimising segment rotation (perhaps by minimising muscle shortening).  683 

Future forward dynamics modelling could be used to test whether limbSLERP could be used 684 

as a high level controller to generate physiologically realistic torques and ground reaction 685 

forces either for robotics approaches or further studies in musculoskeletal dynamics.  686 

Furthermore limbSLERP is a simple analytical approach that can compute entire trajectories 687 

for all limb segments extremely fast, making it potentially useful for control of 3D robotic 688 

limbs.  689 

An additional application is to supplement data collected from X-ray Reconstruction of 690 

Moving Morphology (XROMM) experiments (Brainerd et al., 2010).  In particular, the 691 

rotation of bones about their long axis (long axis rotation; LAR) can be an important feature 692 

of kinematics (Kambic et al., 2014; Rubenson et al., 2007), yet its measurement can be 693 

difficult because it requires at least three non co-linear implanted markers to be visible on a 694 

single structure.  Impressively, LAR measurements have been performed on small animals 695 

such as frogs (Astley &, Roberts, 2014).  However because the markers in frog bones are tiny 696 

and move at high speeds, some trials may be lost due to failure of image processing software 697 

to track certain markers.   In such cases like frog jumping where marker visibility may be  698 

intermittent, limbSLERP could be used to supplement frog XROMM data either to fill in the 699 

gaps or, perhaps even to predict LAR in the absence of a third marker (given that there is 700 

some information about a bone’s initial long axis orientation). 701 

Finally, the most important application to our theoretical approach is to provide a simple tool 702 

for evolutionary morphologists.  Our present study did not apply our theoretical kinematics 703 

template to other species with different limb segment length proportions.  For example, if the 704 

shank were relatively shorter (as in some burrowing frog taxa; Emerson, 1976), would frogs 705 



rely on other segments to be the main drivers for increased jump height and turning?  In 706 

contrast, would longer relative shank lengths (as exhibited by tree frogs and terrestrial 707 

jumping taxa; Emerson, 1982) increase potential range of jumping performance? The current 708 

technique could be used to fully map the space of feasible/optimal initial postures and 709 

segment kinematics given the diversity of limb proportions among frog species. Additionally, 710 

limbSLERP, with its simple coordination rules, provides an objective and replicable way to 711 

simulate locomotion in extinct anuran species without relying on taxon-specific experimental 712 

kinematics data (derived from species specialized in a particular locomotor mode).  More 713 

broadly, our kinematics approach combined with subsequent dynamics analyses can be used 714 

to generate and test precise hypotheses relating evolutionary changes in skeletal structure 715 

(e.g. Emerson 1982; Reilly & Jorgensen 2011) to changes in limb function.   716 
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 836 

FIGURE LEGENDS 837 

FIG1. 838 

Schematic view of a frog jump. (A) Inset showing top view (XY plane) with body segments 839 

and joints in a natural configuration.  Dashed lines extending back from the centre of mass 840 

(red circle) show leg segments in the "zero" position using null quaternions. (B) An exemplar 841 

jump in top view and (C) rear view showing the first (gray) and final (black) frames of the 842 

left leg.  Dashed lines show axes of rotation for the hip (black), knee (red) and ankle (blue) 843 

highlighting how their orientations change in the direction of the arrows to align throughout 844 



the jump (see also SI Movie 1) (D) Initial limb (gray) and end-jump configurations (black) on 845 

a floor (grey square) representing the global XY plane. Local reference frames are shown 846 

with the local X (red) and Z (cyan dashed) in all frames (global frame, snout frame, torso 847 

frame, hip frame) to illustrate reference frame transformation using "quaternionization". 848 

Local Z-axes, by definition, align along each body segment. Y-axes as well as ankle and 849 

TMT reference frames have been omitted for clarity. (E) End-jump, rear view, (F) side view 850 

and (G) top view. 851 

FIG2. 852 

Calculating a smooth path of minimal rotation between two orientations is challenging in 3D, 853 

but trivial in 4D. (A) A Cartesian reference frame (Black) is rotated to a new orientation 854 

(Red) along a path determined by Spherical Linear Interpolation (SLERP) to calculate the 855 

minimum rotation required.  Paths of the X axis (open circles) and the Z axis (closed circles) 856 

illustrate the smooth curved motion between the two orientations. (B) The rotation shown in 857 

(A) is parameterized in 3D space (Euler angles) versus 4D space (quaternions, dashed). Euler 858 

angles about X (Red) followed by Y (Blue) then Z (Green) axes are unpredictable and 859 

nonlinear and thus are difficult to extrapolate meaningfully. However, quaternion 860 

displacement via SLERP is linear (i.e. a great arc on the hypersphere surface), making 861 

extrapolation trivial. 862 

FIG3. 863 

Segment angle definitions. Schematic of left leg in (A) side view showing the target pitch 864 

angle with respect to horizontal (B) top view showing the target yaw angle and the retraction 865 

angle of the thigh with respect to the global y axis and (C) rear view showing the adduction 866 

angle with respect to horizontal. The black circle marks the hip. Note that segment angles 867 

(pitch, yaw, retraction, adduction) are all calculated in the global reference frame (as opposed 868 

to segment quaternions which are in local reference frames; see text). 869 



FIG4. 870 

Experimental versus simulated frog jump kinematics. Scalar angles (in 4D) were calculated 871 

from quaternion unit vectors for body segments of (A) the thigh, (B) shank, (C)  proximal 872 

foot and (D) distal foot compared to the unrotated "ground" reference frame.  Grey dots are 873 

experimentally collected data points from 24 intermediate-height jumps (Richards et al., 874 

2017).  Red lines indicate kinematics simulated using SLERP.  In the present convention, 4D 875 

angles of 0 would indicate that segments are at the "zero" (null) position (i.e. leg segments 876 

straightened caudally from the hip; Fig. 1 inset).  Large angle values indicate a large 877 

deviation from the null configuration of the limb. In a frog jump, the limb joints extend to 878 

straighten the limb.  Thus, the angle values decrease rather than increase through time as the 879 

entire limb extends. 880 

FIG5. 881 

Simulated kinematics animations. Jump animations are shown for (A-D) nominal takeoff 882 

kinematics, (E-H) a steep jump, (I-L) a left turn shown in angled view (row 1), top view (row 883 

2), side view (row 3) and rear view (row 4).  A fixed subset of evenly-spaced animation 884 

frames are shown in each view.  For the non-turning jumps (A-H) only the left leg is shown 885 

(Black), whereas both left and right (Red) legs are shown for the turning simulation (I-L). 886 

Note that initial configurations (Bold lines) are identical for each condition. The x and y axes 887 

of the global coordinate frame are shown in black and the z-axis is red. 888 

FIG6. 889 

Simulated limb segment protraction-retraction and abduction-adduction angles for varying 890 

jump steepness and turning. Traces are for thigh (black), shank (red) and proximal foot (blue) 891 

for (A,B) retraction in the cranio-caudal direction and (C,D) adduction in the dorso-ventral 892 

direction shown for both left and right legs during a nominal jump (solid), a steep jump 893 



(dashed) and a turn (dotted-dashed) as in Fig. 5.  The dashed line (A,B) represents a line 894 

drawn posterior from the hip joint from which protraction-retraction angles were referenced.  895 

Trending towards the line denotes segment caudal rotation (retraction) to push the body 896 

forward.  The x-axis (C,D) represents the horizontal axis.  Downward slopes indicate 897 

downward rotation (adduction) to push the body upwards. Kinematics of the distal foot are 898 

similar to the pattern for the proximal foot and therefore have been omitted for clarity. 899 

FIG7. 900 

Left versus right limb kinematics for a left turn. Data traces are from Fig. 6, but rearranged to 901 

highlight left-right asymmetries. Traces are for left leg (solid) and right leg (dashed) using the 902 

same colours as in Fig. 6.  (A) Retraction in the cranio-caudal direction and (B) adduction in 903 

the dorso-ventral direction. Note in (A) how the right shank trends downward towards the 904 

dashed line indicating retraction to push the limb forward versus the left shank which trends 905 

upwards (protracts) to push the limb backwards on the inside of the turn. Kinematics of the 906 

distal foot are similar to the pattern for the proximal foot and therefore have been omitted for 907 

clarity. 908 

FIG8. 909 

Left leg angular excursion for varying jump steepness and turning.  (A) Varying pitch angle 910 

relative to horizontal (yaw = 0).  Total retraction excursion (max retraction angle - min 911 

retraction angle [closed circles]) and adduction excursion (max adduction angle - min 912 

adduction angle [open circles]) of the thigh (black), shank (red) and proximal foot (blue). 913 

Each data point represents a single simulation beginning from the nominal initial limb 914 

configuration and ending at the specified target angle.  Note that increasing jump steepness 915 

requires increased thigh and shank adduction while retraction decreases. (B) Varying turn 916 

angle (constant takeoff pitch = ~8 deg). Turns range from left (negative values) to right 917 



(positive). Negative excursion values indicate protraction. Note that unlike varying pitch, 918 

changes in the magnitude of retraction modulate turn angle. 919 

FIG9. 920 

The effect of initial angle on jump trajectory and centre of mass (COM) takeoff velocity. 921 

Each point represents a single simulation whose entire kinematic path is influenced by initial 922 

angle.  The initial pitch angle of the torso segment was varied from 0 (horizontal) to nearly 923 

vertical, leaving the leg segments unchanged.  The final pitch of the body axis was held at 60 924 

degrees for all simulations.  The dashed black lines represent the optimal initial pitch angle 925 

which allows the COM takeoff velocity to align with the takeoff body orientation (i.e. the 926 

frog COM will travel in the appropriate direction).  Stick figure animations for minimum, 927 

maximum and optimum initial angles show the initial posture (bold) and subsequent 928 

animation frames (gray).  Red arrows indicate the direction of the takeoff velocity vector.  929 

Note that as the initial pitch angle increases, takeoff velocity direction shifts from >90 930 

(jumping upwards and backwards) to <90 (upwards and forwards). 931 

FIG S1 932 

Euler angle-based inverse kinematics (IK) versus quaternion-based kinematics (limbSLERP). 933 

Kinematics of the left leg and body are shown in grey with the final posture at takeoff in red.  934 

Experimental observations (left) are compared with limbSLERP (middle) versus IK (right). 935 

Global XYZ axes are shown with Z in red. limbSLERP predicts jump behaviour reasonably 936 

well, however IK is unreliable for frog jumps.  Note the unnatural hyperextension of the hip 937 

(black arrow) and, more problematically, the migration of the ankle joint to the opposite side 938 

of the frog (red arrow). We also note that in our implementation using Mathematica on OSX, 939 

IK was ~35x slower to compute. 940 

 941 



SI Movie 1. Animation of experimentally observed kinematics example trial (used as the 942 

basis for the nominal simulation).  The left leg rear view is shown on the left and top view on 943 

the right.  On the rear view, the instantaneous joint axes of rotation (dashed) have been 944 

estimated to be the normal vector to the adjoining segments.  Axes are shown for the hip 945 

(black), knee (red) and ankle (blue).  The centre of mass (hip) is shown in red.  The global 946 

reference frame is shown in black with the Z axis bold and the X axis dashed.  Note that the 947 

distal foot segment has been mathematically fixed to the ground. 948 

SI Movie 2. Screen recording of interactive forward kinematics computations.  The values 949 

making the matrix Q0 are shown with each row a quaternion representing a body segment.  950 

This illustrates how changes in proximal segment orientations cause all distal limbs to follow.  951 

For example, changing the torso pitch angle (while leaving the remaining quaternions as null 952 

values) transforms Q0-torso, moving the torso along with the remaining segments.  The centre 953 

of mass (hip) is the large circle. For this demo, the joint angles are protraction-retraction 954 

only. 955 

SI Movie 3. A demo animation of the three exemplar simulations (nominal followed by a 956 

steep jump then a turn).  Limb kinematics traces are shown for the hip (black), knee (red) and 957 

ankle (blue).  Note how the kinematics traces instantly update for any changes in target 958 

orientation. This is because the trajectories are known for all values of t as long as Q0 and Q1 959 

are known. 960 

  961 



 List of Abbreviations Used (bold values are vectors or matrices) 

 

 

turn Takeoff turn angle: angle of the body midline axis with respect to the y-axis at 

takeoff. 

â 3D axis of rotation (unit vector) 

A Matrix of rotation axes (ns rows x 3 columns) 

COM Centre of mass 

d Gain multiplier for inverse kinematics (value between 0-1) 

dt Time sample interval 

error The 3D vector between the inverse kinematics target and current position 

e The error value: Norm of the error vector (= Euclidean distance between 

inverse kinematics target and the current position). 

emin Minimum error value 

i Loop iterator for body segments 

[i] Index from a vector or matrix. E.g. P[2] would be the 2nd row in the matrix P 

(i.e. XYZ for the 2nd body point). 

[i,j] Row and column indices from a matrix. E.g. P[2,3] would be 3rd column from 

the 2nd row in the matrix P (i.e. the Z coordinate for the 2nd body point). 

J The Jacobian matrix (6 rows x ns columns) 

JT The translational component of the Jacobian (3 rows x ns columns) 

JR The rotational component of the Jacobian (3 rows x ns columns) 

nt Number of time samples for simulated kinematics 

𝐧̂ Normal unit vector 

ns Number of body segments 

 Angle of rotation 

p X, Y, Z coordinates of a digitized point 

p’ X, Y, Z coordinates of an interpolated point 

P Matrix of XYZ coordinates for segment endpoints along the body. Its 

dimensions are ns X 3 

P0 Initial configuration: matrix of XYZ coordinates at the beginning of jump. 

P1 Final  configuration: matrix of XYZ coordinates at takeoff.  

q A unit quaternion 

q* The conjugate of a quaternion 

q0 The null rotation [1, 0, 0, 0] resulting in no rotation 

qi The quaternion for the ith segment (= Q[i]) 

qI(q1,q2, ) A unit quaternion interpolated between q1 and q2 at time . 

Q Quaternionized limb: vector of body segments expressed as quaternions 

Q0 Quaternionized limb at the initial configuration (pre-jump) 

Q1 Quaternionized limb at the final configuration (takeoff), initial guess 

Q1R Mirror image of Q1 representing the final configuration of the opposite (right) 

leg 

Q1’ Quaternionized limb at the final configuration (takeoff) used for simulation 

 ns x 1 vector of rotation angles (i.e.  = [1,  2, …,   ns]
T) 

 ns x 1 vector of small changes in rotation angles for inverse kinematics 

 Relative time (from 0 to 1) 



 962 

APPENDIX A: Miscellaneous calculations 963 

Calculating angles between vectors  964 

Any two 3D vectors can form a plane. The angle between the vectors in this invisible plane is 965 

calculated by the following:  966 

𝑎𝑛𝑔𝑙𝑒 =  𝑐𝑜𝑠−1
𝐯𝟏 ∙ 𝐯𝟐

‖𝐯𝟏‖‖𝐯𝟐‖
 

(A1) 

 967 

Where • is the dot product and v1 and v2 are vectors of any dimension.  For example, v1 and 968 

v2 can be 3D vectors for a 3D angle or the can be quaternions to compute the 4D angle 969 

between them.  970 

Mirroring the leg kinematics between left and right sides  971 

To mirror the left leg we defined a plane of symmetry by calculating a normal vector to the 972 

plane: 973 

𝐧̂ =
𝐚 × 𝐯𝐫𝐞𝐟

‖𝐚 × 𝐯𝐫𝐞𝐟‖
 

(A2) 

 974 

’ Adjusted relative time (0 ≤ ’ < 1) to prevent overshoot of COM position at 

takeoff 

 A non-linear time function used to simulate acceleratory motion 

v A 3D vector 

vq A 3D vector expressed as a (non-unit) quaternion 

vref An arbitrary reference vector to represent the “zero” orientation, usually chosen 

to be the z-axis, [0, 0, 1] 

 The takeoff pitch angle: angle of the body midline axis with respect to 

horizontal at takeoff  



where a is an axis within the plane (the body midline axis was used in the current study) and 975 

vref is a reference vector in the plane (vref = [0, 0, 1] for the present study).   A reflection 976 

matrix to reflect an XYZ point about an arbitrary plane is given by (Kovács, 2012): 977 

𝑅𝑟𝑒𝑓𝑙𝑒𝑐𝑡 4𝑥4

=

[
 
 
 
1 − 2𝑛1

2 −2𝑛1𝑛2 −2𝑛1𝑛3 𝑜1 − (1 − 2𝑛1
2)𝑜1 + 2𝑛1𝑛2𝑜2 + 2𝑛1𝑛3𝑜3

−2𝑛1𝑛2 1 − 2𝑛2
2 −2𝑛2𝑛3 2𝑛1𝑛2𝑜1 + 𝑜2 − (1 − 2𝑛2

2)𝑜2 + 2𝑛2𝑛3𝑜3

−2𝑛1𝑛3 −2𝑛2𝑛3 1 − 2𝑛3
2 2𝑛1𝑛3𝑜1 + 2𝑛2𝑛3𝑜2 + 𝑜3 − (1 − 2𝑛3

2)𝑜3

0 0 0 1 ]
 
 
 

 

(A3) 

 978 

where n1, n2 and n3 are the x, y and z components of 𝐧̂ and o1, o2 and o3 are the x, y and z 979 

components of the local origin (the proximal end of the thigh was used for the present study). 980 

 981 

Quaternion arithmetic 982 

Quaternion arithmetic is required for performing rotations.  A 3D vector can be expressed as 983 

a quaternion: 984 

𝐯q = [𝟎, 𝐯[𝟏], 𝐯[𝟐], 𝐯[𝟐]] (A4) 

 985 

Where vq is used to denote a vector expressed as a quaternion (it is not necessarily a unit 986 

quaternion, thus we avoid calling it “q”) and v[1], v[2], v[3] are the XYZ components of the 987 

3D vector v. 988 

The conjugate of a quaternion, q*: 989 

𝐪∗ = [𝐪[𝟏],−𝐪[𝟐], −𝐪[𝟑],−𝐪[𝟒]] (A5) 

 990 

Where q[1], q[2], q[3], q[4] are the 4 scalar values of the quaternion.  A rotation operation is 991 

as follows: 992 

𝐯′ = 𝐪⨂(𝐯𝐪⨂𝐪∗) (A6) 

 993 



Where ⨂ denotes quaternion multiplication. The first element of the rotated vector v’ should 994 

be discarded to yield a 3D vector.  In practice, Eq. A4-A6 can be combined to a single 995 

function, 𝐯
𝐪
→ 𝐯′. 996 

 997 

APPENDIX B: Converting between quaternion rotations and XYZ coordinates  998 

 999 

Quaternionization (PQ) 1000 

The process of “quaternionization” converts a list of segment vectors (XYZ coordinates) to 1001 

quaternions.  It is computed in the following steps in a loop from i=1 to i=ns (number of body 1002 

segments): 1003 

Step 1. Establish a reference vector, vref (= [0, 0, 1] for the present study to represent the 1004 

global reference segment). 1005 

Step 2. Establish an empty matrix of limb segment coordinates, Q which has dimensions (ns 1006 

X 3  (= 5 x 3 for the present study). 1007 

Step 3. Begin the loop: For segment i … 1008 

Step 4. Calculate the quaternion between adjacent segment vectors vref and V[i] (i.e. the ith 1009 

row of V).  This is done by first calculating the axis: 1010 

𝐀𝒊 =
𝐯𝒓𝒆𝒇 × 𝐕[𝑖]

‖𝐯𝒓𝒆𝒇 × 𝐕[𝑖]‖
 

(A7) 

 1011 

then calculating the angle between vref and V[i] using Eq. A1.  Finally, qi is obtained by 1012 

substitution into Eq. 1. 1013 

Step 5. Overwrite vref:  vref = V[i] . 1014 

Step 6. Insert qi into matrix Q at the ith row: Q[i]  = qi . 1015 

Step 7. Increment i: i=i+1; then return to step 4 until i=ns. 1016 



 1017 

Forward kinematics computation (QP) 1018 

 1019 

Forward kinematics are performed in the following steps in a loop from i=1 to i=ns (number 1020 

of body segments):  1021 

Step 1. Establish a reference vector, vprox (= [0, 0, 1] for the present study to represent the 1022 

proximal segment) and a proximal joint to anchor each segment, vjoint = [0, 0, 0]. 1023 

Step 2. Establish an empty matrix of limb segment coordinates, P which has dimensions (ns 1024 

+1) X 3  (= 6 x 3 for the present study).  Set the first row of P to be the limb anchor (P[1] = 1025 

[0, 0, 0]).  Each row of P will become a point on the body (i.e. P = [P[1], P[2], P[3], P[4], 1026 

P[5], P[6])T = [snout, hip, knee, ankle, TMT, foot]T ). 1027 

Step 3. Begin the loop: For segment i … 1028 

Step 4. Calculate the distal vector, vdist, using quaternion rotation via the ith  quaternion (i.e. 1029 

the ith row of Q):  𝐯𝐩𝐫𝐨𝐱

𝐪𝒊
→ 𝐯𝐝𝐢𝐬𝐭 ; then normalize the new vector: 𝐯𝐝𝐢𝐬𝐭 =

𝐯𝐝𝐢𝐬𝐭

‖𝐯𝐝𝐢𝐬𝐭‖
 1030 

Step 5. Overwrite vprox:  vprox = vdist . 1031 

Step 6. Update the joint anchor position: vjoint = vjoint + li(vprox) where li is the length of the ith 1032 

segment. 1033 

Step 7. Insert vjoint into matrix P at position i + 1: P[i+1] = vjoint . 1034 

Step 8. Increment i: i=i+1; then return to step 4 until i=ns. 1035 

Step 9. Anchor the frog at XYZ = [0, 0, 0] so that the frog leg extends upward. This is done 1036 

by subtracting the final point from each ith  XYZ point (P[i] = P[ns+1] – P[i]). 1037 

Finally, if needed, P can be converted to local vectors, V, using Eq. 3. 1038 

 1039 

APPENDIX C 1040 



Inverse kinematics: deriving the Jacobian matrix 1041 

For each simulated time value (), the left leg was mirrored to create the right leg (Appendix 1042 

A) which does not guarantee that the left and right hips join. Inverse kinematics (IK) was 1043 

used on the right leg to apply slight a correction to allow the hips to meet.  This process was 1044 

repeated for each value of .  1045 

IK was briefly described previously (Richards et al., 2017), although a more complete 1046 

treatment will be necessary here.  A common problem for models with multiple linked 1047 

segments (e.g. animal limbs or robotic manipulators) is that joint angles must be controlled to 1048 

guide the “end effector” of the limb (e.g. hand) to a specific target in 3D space.  In the 1049 

present study, the limb is the right leg, the end effector is the right hip and the target is the 1050 

left hip. Problematically, there are often multiple solutions; i.e. there can be multiple different 1051 

limb configurations that allow the end effector to reach the target.  A standard approach is to 1052 

1) calculate the error (Euclidean distance) from the target 2) move incrementally in the 1053 

direction of the target 3) return to step 1 and repeat until the error, e, falls below a given 1054 

tolerance, emin.  The error is simply pcurrent – ptarget which itself is a velocity correction vector, 1055 

vcorr; i.e. moving in the direction of the vector will bring the end effector closer to the target. 1056 

This is achieved using a Jacobian matrix, J, which converts small changes in joint angles into 1057 

end effector velocity.  Specifically,  1058 

𝐉𝐓 ∙ ∆𝚯 = 𝐯𝐜𝐨𝐫𝐫 (C1) 

Where JT is the 3 X ns translational portion of the Jacobian matrix (see below),  is the ns 1059 

X 1 vector of joint angle changes for ns number of segments (ns = 5 in the present study 1060 

representing torso, thigh, shank, proximal foot, distal foot).  In other words,  is a list of 1061 

unknown small changes (corrections) in each joint angle to produce incremental motion 1062 



towards the target. Importantly, joint angles here are not Euler angles.  Rather, they are 1063 

angles about instantaneous rotation axes embedded in the quaternions (see below).  The 1064 

pseudoinverse of JT, JT
’, allows us to solve for the unknown . 1065 

𝐉𝐓′ ∙ 𝐯𝐜𝐨𝐫𝐫 = ∆𝚯 (C2) 

We took an unconventional approach of defining J using axis-angle coordinates to avoid 1066 

pitfalls of Euler angles and to allow direct conversion to/from quaternions, (i.e. mapping 1067 

QJ via axis angle parameters).  Recalling that a unit quaternion can be composed of a 3D 1068 

rotation axis and an angle about that axis (Eq. 1), quaternions can likewise be decomposed to 1069 

axis-angle parameters.  For each segment, an ns X 1 vector of angles, , were calculated: 1070 

𝚯[𝑖] = 2 𝑐𝑜𝑠−1𝐐[i, 1] (C3) 

Where Q[i,1] (a scalar value) is the first quaternion element taken from ith quaternion of Q 1071 

(specifically, QIR[i,1).  Given the angles, the axes can then be computed.  Each row of A is 1072 

computed in a loop iteration in proximal to distal order: 1073 

𝐀[𝑖] =
𝐪𝒊𝐯

sin 𝚯[𝑖]
/ ‖

𝐪𝒊𝐯

sin 𝚯[𝑖]
‖ 

(C4) 

Where qiv is the vector component of the ith quaternion (i.e. the 2nd, 3rd and 4th elements of 1074 

qi).  1075 

Finally, we can assemble J, a matrix with 6 rows and ns columns.  Each column is computed 1076 

in single a loop iteration from i = 1 to i = ns in proximal to distal order from snout to toe 1077 

(snout, hip, knee, ankle, TMT). 1078 

𝐉𝐓[𝑖] = 𝐀[𝑖] × (𝐩[𝑛𝑠 + 1] − 𝐩[𝑖]) (C5) 



𝐉𝐑[𝑖] = 𝐀[𝑖] 

𝐉[𝑖] = [
𝐉𝐓[𝑖]
𝐉𝐑[𝑖]

] 

Where JT[i] is the ith column of JT (similarly for JR[i]), p[i] is the XYZ point of the proximal 1079 

end point of the ith segment and p[ns+1] is the most distal endpoint of the most distal 1080 

segment (i.e. the foot point of ground contact).  A[i] is the ith row of the rotation axes matrix 1081 

(see below) which is the instantaneous axis of planar rotation between segments i and i+1.  1082 

To assemble the full Jacobian, JT[i]and JR[i] are stacked to make Ji, a column of 6 rows.  JR 1083 

is provided here for completeness, however it was not used in the present analysis. 1084 

In practice, IK is done over several iterations moving a small fraction (d) of the calculated 1085 

∆𝚯. 1086 

∆𝚯 = 𝑑(𝐉𝐓
′ ∙ 𝐯𝐜𝐨𝐫𝐫) (C6) 

Where d is a small value (0<d ≤we used d=0.1).  Larger values move the limb faster 1087 

towards the target, but excessively large values risk overshooting the target. 1088 

∆𝚯𝒄𝒐𝒓𝒓 = ∆𝚯 + 𝚯 (C7) 

Then the corrected Q is then computed by substituting into Eq. 1:  1089 

𝐪𝒊 = [cos (
∆𝚯𝒄𝒐𝒓𝒓[𝑖]

2
) , 𝐀[𝑖, 1] sin (

∆𝚯𝒄𝒐𝒓𝒓[𝑖]

2
), 

𝐀[𝑖, 2]sin (
∆𝚯𝒄𝒐𝒓𝒓[𝑖]

2
) , 𝐀[𝑖, 3]sin (

∆𝚯𝒄𝒐𝒓𝒓[𝑖]

2
) ] 

(C8) 

Where qi is the quaternion for the ith segment within QIR and corr[i] is a scalar angle 1090 

correction value for the ith segment 1091 



Inverse kinematics: numerical algorithm 1092 

Numerical integration was used to implement the IK correction using the following algorithm 1093 

for each time sample (i.e. each division of 0< ≤’ up until nt samples). 1094 

At time  = t … 1095 

Step 1. Mirror the left leg segments (Eq. 11) and quaternionize (Eq. 6), giving QIRat time t. 1096 

Step 2. Calculate the error vector: error = phip,left – phip,right and its magnitude (e = 1097 

Norm[error]). 1098 

Step 3. Loop the following steps while e > emin (the present study used emin = 0.001).  If e ≤ 1099 

emin then skip to step 9. 1100 

Step 4. Calculate the Jacobian (Eq. B3-B5) for QIRat time t and its pseudoinverse. 1101 

Step 5. Calculate the correction angles then update QIR using Eq. B6-B8. 1102 

Step 6. Perform forward kinematics to convert the quaternions QIR to limb XYZ coordinates 1103 

(QP; Appendix B steps 1-9). 1104 

Step 7. Re-calculate the error: error = phip,left – phip,right and its magnitude (e = Norm[error]). 1105 

Step 8. Return to step 3. 1106 

Step 9. Advance to the next time step, t = t + dt, then return to step 1 until t = ’. (i.e. for all  1107 

allotted timesteps. 1108 

 1109 


