
A (co)algebraic theory of succinct automata?

Gerco van Heerdta, Joshua Moermana,b, Matteo Sammartinoa, Alexandra Silvaa

aUniversity College London
bRadboud University

Abstract

The classical subset construction for non-deterministic automata can be gener-
alized to other side-effects captured by a monad. The key insight is that both
the state space of the determinized automaton and its semantics—languages
over an alphabet—have a common algebraic structure: they are Eilenberg-Moore
algebras for the powersetgen monad. In this paper we study the reverse question
to determinization. We will present a construction to associate succinct automata
to languages based on different algebraic structures. For instance, for classical
regular languages the construction will transform a deterministic automaton
into a non-deterministic one, where the states represent the join-irreducibles
of the language accepted by a (potentially) larger deterministic automaton.
Other examples will yield alternating automata, automata with symmetries,
CABA-structured automata, and weighted automata.

1. Introduction

Non-deterministic automata are often used to provide compact representations
of regular languages. Take, for instance, the language

L = {w ∈ {a, b}∗ | |w| > 2 and the 3rd symbol from the right is an a}.

There is a simple non-deterministic automaton accepting it (below, top automa-
ton) and it is not very difficult to see that the smallest deterministic automaton
(below, bottom automaton) will have 8 states.

s1 s2 s3 s4
a

a, b

a, b a, b

1 12 123 1234

14 13 124 134

a

b

a a

a

a

a

b

b
b

ba
b

ab

b

?This work was partially supported by ERC starting grant ProFoundNet (679127) and a
Leverhulme Prize (PLP-2016-129).

Preprint submitted to Elsevier March 19, 2019

The labels we chose for the states of the deterministic automaton are not
coincidental—they represent the subsets of states of the non-deterministic au-
tomaton that would be obtained when constructing a deterministic one using
the classical subset construction.

The question we want to study in this paper has as starting point precisely the
observation that non-deterministic automata provide compact representations of
languages and hence are more amenable to be used in algorithms and promote
scalability. In fact, the origin of our study goes back to our own work on automata
learning [15], where we encountered large nominal automata that, in order for
the algorithm to work for more realistic examples, had to be represented non-
deterministically. In other recent work [7, 3], different forms of non-determinism
are used to learn compact representations of regular languages. This left us
wondering whether other side-effects could be used to overcome scalability issues.

Moggi [16] introduced the idea that monads could be used a general abstrac-
tion for side-effects. A monad is a triple (T, η, µ) in which T is an endofunctor
over a category whose objects can be thought of as capturing pure computations.
The monad is equipped with a unit η : X → TX, a natural transformation that
enables embedding any pure computation into an effectful one, and a multi-
plication µ : TTX → TX that allows flattening nested effectful computations.
Examples of monads capturing side-effects include powerset (non-determinism)
and distributions (randomness).

Monads have been used extensively in programming language semantics (see
e.g. [22] and references therein). More recently, they were used in categorical
studies of automata theory [6]. One example of a construction in which they
play a key role is a generalization of the classical subset construction to a class
of automata [21, 20], which we will describe next.

The classical subset construction, connecting non-deterministic and deter-
ministic automata, can be described concisely by the following diagram.

X P(X) 2A
∗

2× P(X)A 2× (2A
∗
)A

δ

{−}

δ]

l

<ε?,∂>

id×lA

We omit initial states and represent a non-deterministic automaton as a pair
(X, δ) where X is the state space and δ : X → 2 × P(X) is the transition
function which has in the first component the (non-)final state classifier. The
language semantics of a non-deterministic automaton (X, δ) is obtained by first
constructing a deterministic automaton (P(X), δ]) which has a larger state space
consisting of subsets of the original state space and then computing the accepted
language of the determinized automaton. The language map l associating the
accepted language to a state is a universal map: for every deterministic automaton
(Q,Q→ 2×QA) the map l is the unique map into the automaton of languages

(2A
∗
, 2A

∗ <ε?,∂>−−−−−→ 2× (2A
∗
)A).

The universal property of the automaton of languages inspired the devel-
opment of a categorical generalization of automata theory, including of the
subset construction which we detail below. In particular, we can consider general

automata as pairs (X,X
t−→ FX) where the transition dynamics t is parametric

on a functor F . Such pairs are usually called coalgebras for the functor F [18].

2

For a wide class of functors F , the category of coalgebras has a final object
(Ω, ω), the so-called final coalgebra, which plays the analogue role to languages.

The classical subset construction was generalized in previous work [21] by
replacing deterministic automata with coalgebras for a functor F and the powerset
monad with a suitable monad T . As above, it can be summarized in a diagram:

X TX Ω

FTX FΩ

δ

η

δ]

l

ω

F l

The monad T will be the structure we will explore to enable succinct represen-
tations. The crucial ingredient in generalizing the subset construction was the
observation that the target of the transition dynamics—2 × P(−)A—and the
set of languages—2A

∗
—both have a complete join-semilattice structure. This

enables one to define the determinized automaton as a unique lattice extension
of the non-deterministic one, and, moreover, the language map l preserves the
semantics: l({s1, s2}) = l({s1}) ∪ l({s2}).

This latter somewhat trivial observation was also exploited in the work of
Bonchi and Pous [8] in defining an efficient algorithm for language equivalence of
NFAs by using coinduction-up-to. Join-semilattices are precisely the Eilenberg-
Moore algebras of the powerset monad, and one can show that if a functor has
a final coalgebra in Set, this can be lifted to the category of Eilenberg-Moore
algebras of a monad T (T -algebras). This makes it possible to construct the
more general diagram above, where the coalgebra structure is generalized using
a functor F and a monad T . The only assumptions for the existence of T -algebra
maps δ] and l are the existence of a final coalgebra for F in Set and that FTX
can be given a T -algebra structure.

In this paper we ask the reverse question—given a deterministic automaton,
if we assume the state space has a join-semilattice structure, can we build
a corresponding succinct non-deterministic one? More generally, given an F -
coalgebra in the category of T -algebras, can we build a succinct FT -coalgebra
in the base category that represents the same behavior?

We will provide an abstract framework to understand this construction, based
on previous work by Arbib and Manes [4]. Our abstract framework relies on
alternative, more modern, presentation of some of their results. Due to our focus
on set-based structures, we will conduct our investigation within the category
Set, which enables us to provide effective procedures. This does mean that not
all of the results due to Arbib and Manes will be given in their original generality.
We present a comprehensive set of examples that will illustrate the versatility of
the framework. We also discuss more algorithmic aspects that are essential if
the present framework is to be used as an optimization, for instance as part of a
learning algorithm.

After recalling basic facts about monads and structured automata in Section 2,
the rest of this paper is organized as follows:

• In Section 3 we introduce a general notion of generators for a T -algebra,
and we show that automata whose state space form a T -algebra—which we
call T -automata—admit an equivalent T -succinct automaton, defined over
generators. We also characterize minimal generators and give a condition
under which they are globally minimal in size.

3

• In Section 4 we give an effective procedure to find a minimal set of genera-
tors for a T -algebra, and we present an algorithm that uses that procedure
to compute the T -succinct version of a given T -automaton. The algorithm
works by first minimising the T -automaton: the explicit algebraic structure
allows states that correspond to algebraic combinations of other states to
be detected, and then discarded when generators are computed.

• In Section 5 we show how the algorithm of Section 4 can be applied to
“plain” finite automata—without any algebraic structure—in order to derive
an equivalent T -succinct automaton. We conclude with a result about the
compression power of our construction: it produces an automaton that is
at least as small as the minimal version of the original automaton.

• Finally, in Section 6 we give several examples, and in Section 7 we discuss
related and future work.

2. Preliminaries

Side-effects and different notions of non-determinism can be conveniently
captured as a monad T on a category C. A monad T = (T, µ, η) is a triple
consisting of an endofunctor T on C and two natural transformations: a unit
η : Id⇒ T and a multiplication µ : T 2 ⇒ T . They satisfy the following laws:

µ ◦ ηT = id = µ ◦ Tη µ ◦ µT = µ ◦ Tµ.

An example is the triple (P, {−},
⋃

) where P denotes the powerset functor in
Set that assigns to each set the set of all its subsets, {−} is the function that
returns a singleton set, and

⋃
is just union of sets.

Given a monad T , the category of CT of Eilenberg-Moore algebras over T , or
simply T -algebras, has as objects pairs (X,h) consisting of an object X, called
carrier, and a morphism h : TX → X such that h◦µX = h◦Th and h◦ηX = idX .
A T -homomorphism between two T -algebras (X,h) and (Y, k) is a morphism
f : X → Y such that f ◦ h = k ◦ Tf .

We will often refer to a T -algebra (X,h) as X if h is understood or if its
specific definition is irrelevant. Given an object X, (TX, µX) is a T -algebra
called the free T -algebra on X. Given an object U and a T -algebra (V, v), there
is a bijective correspondence between T -algebra homomorphisms TU → V
and morphisms U → V : for a T -algebra homomorphism f : TU → V , define
f† = f ◦ η : U → V ; for a morphism g : U → V , define g] = v ◦ Tg : TU → V .
Then g] is a T -algebra homomorphism called the free T -extension of g, and we
have

f†] = f g]† = g. (1)

Furthermore, for all objects S and morphisms h : S → U ,

g] ◦ Th = (g ◦ h)]. (2)

Example 2.1. For the monad P the associated Eilenberg-Moore category is the
category of (complete) join-semilattices. Given a set X, the free P-algebra on X
is the join-semilattice (PX,

⋃
) of subsets of X with the union operation as join.

4

Although some results are completely abstract, the central definition of
minimal generators in Section 3 is specific to monads T on the category Set.
Therefore we restrict ourselves to this setting. More precisely, we consider
automata over a finite alphabet A with outputs in a set O. In order to define
automata in SetT as (pointed) coalgebras for the functor O × (−)A, we need to
lift this functor from Set to SetT . Such a lifting corresponds to a distributive
law of T over O × (−)A [see e.g., 13]. A distributive law of the monad T over
a functor F : Set → Set is a natural transformation ρ : TF ⇒ FT satisfying
ρ ◦ ηF = Fη and Fµ ◦ ρT ◦ Tρ = ρ ◦ µF . In most examples we will define a T -
algebra structure β : TO → O on O, which is well known to induce a distributive
law ρ : T (O × (−)A)⇒ O × T (−)A given by

ρX = T (O ×XA)
〈Tπ1,Tπ2〉−−−−−−−→ TO × T (XA)

β×ρ′X−−−−→ O × T (X)A (3)

for any set X, where ρ′(U)(a) = T (λf : A→ X.f(a)). In general, we assume an
arbitrary distributive law ρ : T (O × (−)A) ⇒ O × T (−)A, which gives us the
following notion of automaton.

Definition 2.2 (T -automaton). A T -automaton is a triple (X, i : 1→ X, δ : X →
O×XA), where X is an object of SetT denoting the state space of the automaton,
i is a function designating the initial state, and δ is a T -algebra map assigning
an output and transitions to each state.

Notice that the initial state map i : 1 → X in the above definition is not
required to be a T -algebra map. However, it corresponds to the T -algebra map
i] : T1→ X. Thus, a T -automaton is an automaton in SetT .

The functor F (X) = O ×XA has a final coalgebra in SetT [12] that can be
used to define the language accepted by a T -automaton.

Definition 2.3 (Language accepted). Given a T -automaton (X, i : 1→ X, δ : X →
O × XA), the language accepted by X is l ◦ i : 1 → OA

∗
, where l is the final

coalgebra map. In the diagram below, ω is the final coalgebra.

1

X OA
∗

ω(ϕ) = (ϕ(ε), λa w.ϕ(aw))

l(x)(ε) = π1(δ(x))

O ×XA O × (OA
∗
)A l(x)(aw) = l(π2(δ(x))(a))(w)

i

δ

l

ω

id×lA

We use ε to denote the empty word.

If the monad T is finitary, then the category SetT is locally finitely presentable,
and hence it admits (strong epi, mono)-factorizations [2]. As in [4], we use these
factorizations to quotient the state-space of an automaton under language
equivalence. The transition structure, γ, is obtained by diagonalization via the
factorization system. Diagramatically:

1

X M OA
∗

O ×XA O ×MA O × (OA
∗
)A

i
j

δ

e

γ

m

ω

id×eA id×mA

(4)

5

Here the epi e and mono m are obtained by factorizing the final coalgebra map
l : X → OA

∗
. We call the quotient automaton (M, j, γ) the observable quotient

of (X, i, δ).

3. T -succinct automata

Given a T -automaton X = (X, i, δ), our aim is to obtain an equivalent
automaton in Set with transition function Y → O × T (Y)A, where Y is smaller
than X.1 The key idea is to find generators for X. Our definition of generators
is equivalent to the definition of a scoop due to Arbib and Manes [4, Section 7,
Definition 8].

Definition 3.1 (Generators for an algebra). We say that a set G is a set of
generators for a T -algebra X whenever there exists a function g : G→ X such
that g] : TG→ X is a split epi in Set.

The intuition of requiring a split epi is that every element of X can now be
decomposed into a “combination” (defined by T) of elements of G. We show two
simple results on generators, which will allow us to find initial sets of generators
for a given T -algebra.

Lemma 3.2. The carrier of any T -algebra X is a set of generators for it.

Proof. Let TX
χ−→ X be the T -algebra structure on X. Then idX satisfies

id]X = χ, and χ is a split epi because it is required to satisfy χ ◦ ηX = idX .

Lemma 3.3. Any set X is a set of generators for the free T -algebra TX.

Proof. Follows directly from the fact that ηX : X → TX satisfies η]X = idTX .

Once we have a set of generators G for X, we can define an equivalent free
representation of X , that is, an automaton whose state space is freely generated
from G.

Proposition 3.4 (Free representation of an automaton [4, Section 7, Proposi-
tion 9]). The free algebra TG forms the state space of an automaton equivalent
to X .

Proof. Let g : G→ X witness G being a set of generators for X and let s : X →
TG be a right inverse of g]. Recall that X = (X, i, δ) and define

j = 1
i−→ X

s−→ TG

γ = G
g−→ X

δ−→ O ×XA id×sA−−−−→ O × (TG)A

Then (TG, j, γ]) is an automaton. We will show that g] : TG→ X is an automa-
ton homomorphism. We have g] ◦ j = g] ◦ s◦ i = i, and, writing F for the functor

1Here, we are abusing notation and using O and A for both the objects in SetT and in the
base category Set. In particular, we use TC to also denote the free T -algebra over C.

6

O × (−)A and χ for the T -algebra structure on X,

TG TX TFX TFTG FT 2G FTG

FTX FTX

X FX

Tg

g]

Tδ

χ
1

TFs

ρ

ρ

2

Fµ

FTg]

3
Fg]

id

FTs

Fχ

δ

commutes. Here 1 commutes because δ is a T -algebra homomorphism, 2

commutes by naturality of the distributive law ρ, and 3 commutes because g]

is a T -algebra homomorphism. The triangle on the left unfolds the definition of
g], and the remaining triangle commutes by s being right inverse to g]. Note
that the composition in the top row of the diagram is γ]. We conclude that g] is
an automaton homomorphism, which using the finality in Definition 2.3 implies
that (TG, j, γ]) accepts the same language as X .

The state space TG of this free representation can be extremely large. Fortu-
nately, the fact that TG is a free algebra allows for a much more succinct version
of this automaton.

Definition 3.5 (T -succinct automaton). Given an automaton of the form
(TX, i, δ), where TX is the free T -algebra on X, the corresponding T -succinct
automaton is the triple (X, i, δ ◦ η). The language accepted by the T -succinct
automaton is the language l ◦ i accepted by (TX, i, δ):

1

X TX OA
∗

O × (TX)A O × (OA
∗
)A

i

η

δ◦η
δ

l

ω

id×lA

The goal of our construction is to build a T -succinct automaton from a set
of generators that is minimal in a way that we will define now. In what follows
below we use the following piece of notation: if U and V are sets such that
U ⊆ V , then we write ιUV for the inclusion map U → V .

Definition 3.6 (Minimal generators). Given a T -algebra X and a set of gener-
ators G for X witnessed by g : G→ X, we say that r ∈ G is redundant if there

exists a U ∈ T (G \ {r}) satisfying (g ◦ ιG\{r}G)](U) = g(r); all other elements
are said to be isolated [4]2. We call G a minimal set of generators for X if G
contains no redundant elements.

2Arbib and Manes [4] define isolated elements only for the full set X rather than relative
to a set of generators for X. Our refinement plays an important role in finding a minimal set
of generators.

7

A minimal set of generators is not necessarily minimal in size. However, under
certain conditions this is the case. The following result was mentioned but not
proved by Arbib and Manes [4], who showed that its conditions are satisfied for
any finitely generated P-algebra. We note that these conditions do not apply (in
general) to any of the further examples in Section 6.

Proposition 3.7. If a T -algebra X is generated by the isolated elements I of
the set of generators X (Lemma 3.2) with their inclusion map ιIX and I is finite,
then there is no set of generators for X smaller than I, and every minimal set
of generators for X has the same size as I.

Proof. Let G
g−→ X be a set of generators for X, and assume towards a contradic-

tion that G is smaller than I. Then there must be an i ∈ I such that there is no
v ∈ G satisfying g(v) = i. Let g′ : G→ X \ {i} be pointwise equal to g. Because
g] is a split epi and thus surjective, there is a U ∈ TG such that g](U) = i. Note
that by (2),

g] = (ι
X\{i}
X ◦ g′)] = TG

T (g′)−−−→ T (X \ {i})
(ι

X\{i}
X)]

−−−−−−→ X.

Then (id ◦ ιX\{i}X)](T (g′)(U)) = i, contradicting the fact that i is isolated in
the full set of generators X. Thus, G cannot be smaller than I. In fact, we see
that for every i ∈ I there is a v ∈ G satisfying g(v) = i. This yields a function
h : I → G such that g ◦ h = ιIX .

Suppose G is a minimal set of generators, and take any v ∈ G not in the
image of h. We will show that v is redundant in G. Since I constitutes a set of
generators for X, there exists a U ∈ TI such that (ιIX)](U) = g(v). Then

g](T (h)(U)) = (g ◦ h)](U) = (ιIX)](U) = g(v).

It follows that v is redundant in G, which contradicts G being minimal. Therefore,
h is surjective and G has the same size as I.

4. T -minimization

In this section we describe a construction to compute a “minimal” succinct T -
automaton equivalent to a given T -automaton. This crucially relies on a procedure
that finds a minimal set of generators by removing redundant elements one by
one. All that needs to be done for specific monads is determining whether an
element is redundant.

Proposition 4.1 (Generator reduction). Given a T -algebra X and a set of
generators G for X, if r ∈ G is redundant, then G \ {r} is a set of generators
for X.

Proof. Let G′ = G \ {r} and let g′ : G′ → X be the restriction of g : G→ X to
G′. Since r is redundant, there is a U ∈ T (G′) such that g′](U) = g(r). Define
e : G→ T (G′) by

e(x) =

{
U if x = r

η(x) if x 6= r.

8

We will show that g′] ◦ e = g. Consider any x ∈ G. If x = r, then

g′](e(x)) = g′](e(r)) = g′](U) = g(r) = g(x).

If x 6= r, then, using (1),

g′](e(x)) = g′](η(x)) = g′]† = g′(x) = g(x).

Let χ : TX → X be the algebra structure on X and take any right inverse
s : X → TG of g]. Then

g′] ◦ e] ◦ s = g′] ◦ µ ◦ Te ◦ s (definition of e])

= χ ◦ T (g′]) ◦ Te ◦ s (g′] is a T -algebra homomorphism)

= χ ◦ T (g′] ◦ e) ◦ s (functoriality of T)

= χ ◦ Tg ◦ s (g′] ◦ e = g as shown above)

= g] ◦ s (definition of g])

= idX (s is right inverse to g]).

We thus see that e] ◦ s is right inverse to g′], which means that G′ is a set of
generators for X.

If we determine that an element is isolated, there is no need to check this
again later when the set of generators has been reduced. This is thanks to the
following result.

Proposition 4.2. If G
g−→ X and G′

g′−→ X are sets of generators for a T -
algebra X such that G′ ⊆ G and g′ is the restriction of g to the domain G′, then
whenever an element r ∈ G′ is isolated in G, it is also isolated in G′.

Proof. We will show that redundant elements in G′ are also redundant in G.
If r ∈ G′ is isolated in G′, then there exists U ∈ T (G′ \ {r}) such that (g′ ◦
ι
G′\{r}
G′)](U) = g′(r). Note that g′ = g ◦ ιG′G . We have

(g ◦ ιG\{r}G)](T (ι
G′\{r}
G\{r})(U)) = (g ◦ ιG\{r}G ◦ ιG

′\{r}
G\{r})](U) (2)

= (g ◦ ιG
′

G ◦ ι
G′\{r}
G\{r})](U)

= (g′ ◦ ιG
′\{r}

G\{r})](U)

= g′(r)

= g(r),

so r is redundant in G.

Finally, taking the observable quotient M of a T -automaton Q preserves
generators, considering that the T -automaton homomorphism m : Q→M is a
split epi in Set under the axiom of choice.

Proposition 4.3. If Q and M are T -algebras, m : Q → M is a T -algebra

homomorphism that is a split epi in Set, and G
g−→ Q is a set of generators for

Q, then G
g−→ Q

m−→M is a set of generators for M .

9

Proof. Let a : TQ→ Q be the T -algebra structure on Q and b : TM →M the
one on M . We have

(m ◦ g)] = b ◦ T (m ◦ g) = b ◦ T (m) ◦ T (g) = m ◦ a ◦ Tg = m ◦ g]

using that m is a T -algebra homomorphism. It is well known that compositions
of split epis are split epis themselves, so G is a set of generators for M .

Now we are ready to define the construction that builds a T -succinct automa-
ton accepting the same language as a T -automaton.

Construction 4.4 (T -minimization). Starting from a T -automaton (X, i, δ),
where X has a finite set of generators, we execute the following steps.

1. Take the observable quotient (M, i0, δ0) of (X, i, δ).

2. Compute a minimal set of generators G of M by starting from the full set
M and applying Proposition 4.1.

3. Compute and return the corresponding T -succinct automaton as defined
in Definition 3.5 via Proposition 3.4.

Generic minimization algorithms have been proposed in the literature. For
example, Adámek et al. give a general procedure to compute the observable
quotient [1], and König and Küpper provide a generic partition refinement
algorithm for coalgebras, with a focus on instantiations to weighted automata [14].
None of these works provide any complexity analysis. Recently, Dorsch et al. [11]
have presented a coalgebraic Paige–Tarjan algorithm and provided a complexity
analysis for a class of functors in categories with image-factorization. These
restrictions match well the ones we make, and therefore their algorithm could be
applied in our first step. Given a finite set of generators G, the loop in the second
step involves considering each element of G and checking whether it is redundant.
If so, we will remove the element from G and continue the loop. The redundancy
check is the only part for which computability needs to be determined in each
specific setting.

Example 4.5 (Join-semilattices). We give an example of the construction in
the category JSL of complete join-semilattices. We start from a minimal P-
automaton (in JSL) that has 4 states and is depicted below on the left. The
dashed blue lines indicate the JSL structure.

x y

z

⊥

b b

a, b

a

a

a, b

x y

a, b

a, b
b b

Since the automaton is minimal, it is isomorphic to its observable quotient.
We start from the full set of generators {⊥, x, y, z}. Note that z is the union
of x and y, so we can eliminate it. Additionally, ⊥ is the empty union and can
be removed as well. Both x and y are isolated elements and form the unique
minimal set of generators G = {x, y} (see the remark above Proposition 3.7).

10

These are exactly the join-irreducibles of M . They induce by Proposition 3.4
an automaton (TG, j, γ), where γ is the same transition structure as the above
automaton, but with {x, y} substituted for z; the initial state is the singleton set
{x}. The P-succinct automaton corresponding to this minimal set of generators
(Definition 3.5) is the non-deterministic automaton shown on the right.

Note that the definition of the automaton defined in Proposition 3.4 depends
on the right inverse chosen for the extension of the generator map. When the
original JSL automaton is reachable (every state is reached by some set of words,
where a set of words reaches the join of the states reached by the words it
contains), this right inverse may be chosen in such a way to recover the canonical
residual finite state automaton (RFSA), as well as the simplified canonical RFSA,
both due to Denis et al. [10]. Details are given in [23]. See [17] for conditions
under which the canonical RFSA, referred to as the jiromaton, is a state-minimal
NFA.

5. Main construction

In this section we present the main construction of the paper. Given a finite
automaton (X, i, δ) in Set, i.e., an automaton where X is finite, this construction
builds an equivalent T -succinct automaton.

The first step is taking the reachable part R of X and converting this
automaton into a T -automaton recognising the same language.

Proposition 5.1. Let (TR, î, δ̂) be the T -automaton defined as follows:

1

R TR

O ×RA O × T (R)A

i
î=ηR◦i

ηR

δ δ̂=((id×ηAR)◦δ)]

id×ηAR

Then (R, i, δ) and (TR, î, δ̂) accept the same language.

Proof. The diagram above means that ηR is a coalgebra homomorphism, and
as such it preserves language. Explicitly: x ∈ R accepts the same language as
ηR(x), which in particular holds for i(?) and î(?).

Now we can T -minimize (TR, î, δ̂) (Construction 4.4), which yields an equiv-
alent T -automaton. Notice that, R being finite, any quotient of TR has a finite
set of generators. This is a consequence of R being a set of generators for TR
(Lemma 3.3) and of generators being preserved by quotients (Proposition 4.3).
It follows that every step of the T -minimization construction terminates.

Proposition 5.2. The T -succinct automaton defined above is at least as small
as the minimal deterministic automaton equivalent to X.

Proof. The situation is summed up in the following commutative diagram:

G

R TR M OA
∗

g

η e m

11

Here G is the final minimal set of generators for M resulting from the construction.
Commutativity follows from G being a subset of the set of generators R.

The minimal deterministic automaton equivalent to X is obtained from R by
merging language-equivalent states. Recalling (4) and the proof of Proposition 5.1,
we see that e ◦ ηR is a coalgebra homomorphism. Together with commutativity
of the above diagram, this means that the language accepted by r ∈ G (seen as a
state of R) is given by (m ◦ g)(r). Since G is a subset of R, to show that G is at
least as small as the minimal deterministic automaton, we only have to show that
different states in G accept different languages. That is, we will show that m ◦ g
is injective. We know that m is injective by definition; to see that g is injective,
consider r1, r2 ∈ G such that g(r1) = g(r2). Then g(r1) = g(r2) = g](η(r2)).
Assuming r1 6= r2 leads to the contradiction that G is not a minimal set of
generators because in this case η(r2) ∈ T (G \ {r1}).

Computing the determinization TR is an expensive operation that only
terminates if T preserves finite sets. One could devise an optimized version of
Construction 4.4 in which the determinization is not computed completely in
order to minimize it. Instead, we could choose to work with data structures as
Böllig et al. [7] did for non-deterministic automata, and which we generalized
in recent work [23]. In these papers, partial representations of the determinized
automaton are used in an iterative process to compute the generators of the
state space of the minimal one.

6. Examples

6.1. Monads preserving finite sets

If T preserves finite sets, then there is a naive method to find a redundant
element: assuming a finite set of generators G for a T -algebra X, the set T (G\{r})
is also finite for any r ∈ G. Thus, we can loop over all U ∈ T (G \ {r}) and check
if the generator map g : G→ X satisfies g](U) = g(r).

6.1.1. Alternating automata.

We now use our construction to get small alternating finite automata (AFAs)
over a finite alphabet A. AFAs generalize both non-deterministic and universal
automata, where the latter are the dual of non-deterministic automata: a word
is accepted when all paths reading it are accepting. In an AFA, reading a symbol
leads to a DNF formula (without negation) of next states.

We use the characterization of alternating automata due to Bertrand [5].
Given a partially ordered set (P,≤), an upset is a subset U of P such that
whenever x ∈ U and x ≤ y, then y ∈ U . Given Q ⊆ P , we write ↑Q for the
upward closure of Q, that is the smallest upset of P containing Q. We consider
the monad TAlt that maps a set X to the set of all upsets of P(X). Its unit is
given by ηX(x) =↑{{x}} and its multiplication by

µX(U) = {V ⊆ X | ∃W∈U ∀Y ∈W ∃Z∈Y Z ⊆ V }.

The sets of sets in TAlt(X) can be seen as DNF formulae over elements of X:
the outer powerset is interpreted disjunctively and the inner one conjunctively.
Accordingly, we define an algebra structure β : TAlt(2) → 2 on the output set

12

q0

q1

q2

q3

q4
a

b

a

b

a, b

a
b

a, b

(a) Deterministic automaton

q0 q2

q1

a

b

a

a, b

(b) Small corresponding AFA

Figure 1: Automata for the language {a, ba, bb, baa}

2 by letting β(U) = 1 if {1} ∈ U and β(U) = 0 otherwise. Recall from (3) in
Section 2 that such an algebra structure induces a distributive law.

We now explicitly spell out the T -minization algorithm that turns a DFA
(X, i, δ) into a TAlt-succinct AFA.

1. Compute the reachable states R of (X, i, δ) via a standard visit of its graph.

2. Compute the corresponding freely-generated TAlt-automaton (TAltR, î, δ̂),
by generating all DNF formulae TAltR on R.

3. Compute the observable quotient (M, i0, δ0) of (TAltR, î, δ̂) via a stan-
dard minimization algorithm, such as the coalgebraic Paige–Tarjan algo-
rithm [11].

4. Compute a minimal set of generators for M as follows. Consider the
generator map idM : M → M , for which we have that id] is the algebra
map of M . Pick r ∈M , and iterate over all DNF formulae ϕ over M \ {r};
if there is ϕ which is mapped to r by the algebra map of M (i.e., id]), r is
redundant and can be removed from M . Repeat until no more elements
are removed from M , which yields a minimal set of generators G.

5. Return the TAlt-succinct automaton (G, i0, i0 ◦ η).

Note that every step of this algorithm terminates, as X is finite and the size of

TAltR is 22
|R|

.

Example 6.1. Consider the regular language over A = {a, b} given by the
finite set {a, ba, bb, baa}. The minimal DFA accepting this language is given in
Figure 1a.

According to our construction, we first construct a TAlt-automaton with
state space freely generated from this automaton (which is already reachable).
Then we TAlt-minimize it in order to obtain a small AFA. In this case, there is a
unique minimal subset of 3 generators: G = {q0, q1, q2}. To see this, consider the
languages JqK accepted by states q of the deterministic automaton:

Jq0K = {a, ba, bb, baa} Jq2K = {ε} Jq4K = ∅
Jq1K = {a, b, aa} Jq3K = {ε, a}.

These languages generate the states of the minimal TAlt-automaton by interpret-
ing joins as unions and meets as intersections. We note that Jq4K is just an empty

13

q0

q1 q2

a

a

a

(a) Deterministic automaton

q0

q1

aa

a

(b) C-succinct automaton

Figure 2: Automata for the language of non-zero even words over {a}

join and Jq3K = (Jq0K ∩ Jq1K) ∪ Jq2K.3 These are the only redundant generators.
Removing them leads to the AFA in Figure 1b. Here the black square represents
a conjunction of next states.

6.1.2. Complete Atomic Boolean Algebras

We now consider the monad C given by the double contravariant powerset

functor, namely CX = 22
X

. Here the outer powerset is treated disjunctively as
in the case of TAlt, and the sets provided by the inner powerset are interpreted
as valuations. Thus, elements of C(X) can be seen as full DNF formulae over
X: every conjunctive clause contains for each x ∈ X either x or the negation x
of x. The unit assigns to an element x the disjunction of all full conjunctions
containing x, and the multiplication turns formulae of formulae into full DNF
formulae in the usual way. Algebras for this monad are known as complete atomic
boolean algebras (CABAs).

Using the fact that 2 is a free CABA (2 ∼= C(∅)), we obtain the following
semantics for C-succinct automata: a set of sets of states is accepting if and
only if it contains the exact set F of accepting states. This is different from
alternating automata, where a subset of F is sufficient. Reading a symbol in a
C-succinct automaton works as follows. Suppose we are in a set of sets of states
S ∈ C(Q), where we read a symbol a. The resulting set of sets contains U ⊆ Q
if and only if there is a set V ∈ S such that every state in V transitions into a
set of sets containing U , and every state not in V does not transition into any
set of sets containing U .

Note that every DNF formula can be converted to a full DNF formula. This
implies that C-succinct automata can always be as small as the smallest AFAs
for a given language. With the following example we show that they can actually
be strictly smaller. The T -minimization algorithm for AFA we have given in
the previous section applies to this setting as well (including negation in DNF
formulae).

Example 6.2. Consider the regular language of words over the singleton alpha-
bet A = {a} whose length is non-zero and even. The minimal DFA accepting this
language is shown in Figure 2a. We start the algorithm with the C-automaton

3Strictly speaking, we should take the upwards-closure of this disjunction (adding any
possible set of elements to each conjunction as an additional clause). We choose to use the
equivalent succinct formula both here and in the subsequent AFA construction to aid readability.

14

with state space freely generated from this this DFA and merge the language-
equivalent states. Initially, the set of generators is the set of states of the original
DFA. By noting that the language accepted by q2 is the negation of the one
accepted by q1, in full DNF form Jq2K = (Jq0K ∩ Jq1K) ∪ (Jq0K ∩ Jq1K) (where
for any language U its complement is defined as U = A∗ \ U), we see that
q2 is redundant. The set of generators {q0, q1} is minimal and corresponds to
the C-succinct automaton in Figure 2b. We depict C-succinct automata in the
same manner as AFAs, but note that their interpretation is different. Here the
transition into the black square represents the transition into the conjunction of
the negations of q0 and q1.

We now show that there is no AFA with two states accepting the same
language. Suppose such an AFA exists, and let the state space be X = {x0, x1}.
Since a and aaa are not in the language but aa is, one of these states must be
accepting and the other must be rejecting.4 Without loss of generality we assume
that x0 is rejecting and x1 is accepting. The empty word is not in the language,
so our initial configuration has to be ↑{{x0}}. Since a is also not in the language,
x0 will have to transition to ↑{{x0}} as well. However, this implies that aa is
not accepted by the AFA, which contradicts the assumption that it accepts the
right language.

Unfortunately, the fact that the transition behavior of a set of states depends
on states not in that set generally makes it difficult to work with C-succinct
automata by hand.

6.1.3. Symmetry

We now consider succinct automata that exploit symmetry present in their
accepted language. Given a finite group G, consider the monad G× (−), where
the unit pairs any element with the unit of G and the multiplication applies the
multiplication of G. The algebras for G× (−) are precisely left group actions.
We assume an action on the alphabet A; if no such action is relevant, one
may consider the trivial action G×A π2−→ A. We also assume an action on the
output set O. Group actions will be denoted by a centered dot. We consider the
distributive law ρ : G× (O × (−)A)⇒ O × (G× (−))A given by

ρX(g, o, f) = (g · o, λa.(g, f(g−1 · a))).

We explain the resulting semantics of (G×(−))-succinct automata in an example.

Example 6.3. Consider the group Perm({a, b}) = {e, (ab)} of permutations
over elements a and b. Here e is the identity and (ab) swaps a and b. We consider
the alphabet A = {a, b} with an action Perm(A) × A → A given by applying
the permutation to the element of A, and the output set O = A ∪ {⊥} with an
action given by

(ab) · a = b (ab) · b = a (ab) · ⊥ = ⊥.

4If there were no rejecting states, the only way to reject a word is by ending up in the
empty set of sets of states. However, this means that extensions of that word are rejected as
well. Similarly, if there are no accepting states one can only accept by ending up in ↑{∅}, which
accepts everything.

15

q0,⊥

q1,⊥

q2,⊥

q3, a

q4, b

a

b

a

b

b

a

a, b

a, b

(a) Deterministic automaton

q0,⊥ q1,⊥ q3, a

a/e

b/(ab)

a/e

b/(ab) a/e, b/e

(b) Corresponding (G× (−))-succinct automaton

Figure 3: Automata outputting the first symbol to appear twice in a row

Figure 3a shows a deterministic automaton over the alphabet A with outputs
in O. States are labeled by pairs (q, o), where q is a state label and o the output
of the state. The recognized language is the one assigning to a word over A the
first input symbol appearing twice in a row, or ⊥ if no such symbol exists. This
deterministic automaton is in fact the minimal (Perm(A)× (−))-automaton. The
action on its state space is defined by

(ab) · q0 = q0 (ab) · q1 = q2 (ab) · q2 = q1 (ab) · q3 = q4 (ab) · q4 = q3.

We note that in the set of generators given by the full state space, q1, q2, q3, and
q4 are redundant. After removing q2, only q3 and q4 are redundant. Subsequently
removing q4 leaves no redundant elements.

The final (G × (−))-succinct automaton is shown in Figure 3b. Its actual
configurations are pairs of a group element and a state. Transition labels are of
the form x/g, where x ∈ A and g ∈ Perm(A). If we are in a configuration (g, q)
and state q has an associated output o ∈ O, the actual output is g ·o. On reading
a symbol x ∈ A, we find the outgoing transition of which the label starts with
the symbol g−1 ·x. Supposing this label contains a group element g′ and leads to
a state q′, the resulting configuration is (gg′, q′). For example, consider reading
the word bb. We start in the configuration (e, q0). Reading b here simply takes
the transition corresponding to b, which brings us to ((ab), q1). Now reading the
second b, we actually read (ab)−1 · b = (ab) · b = a. This brings us to ((ab), q3).
The output is then given by (ab) · a = b.

In general, sets of generators in this setting correspond to subsets in which
all orbits are represented. The orbits of a set X with a left group action are the
equivalence classes of the relation that identifies elements x, y ∈ X whenever
there exists g ∈ G such that g ·x = y. Minimal sets of generators contain a single
representative for each orbit. The algorithm given for AFAs in section 6.1.1 can
be applied to this setting as well: step 4 will remove elements until only orbit
representatives are left.

6.2. Vector Spaces

We now exploit vector space structures. Given a field F, consider the free
vector space monad V . It maps each set X to the set of functions X → F with

16

finite support (finitely many elements of X are mapped to a non-zero value). A
function f : X → Y is mapped to the function V (f) : V (X)→ V (Y) given by

V (f)(g)(y) =
∑

x∈X,f(x)=y

g(x).

The unit η : X → V (X) and multiplication µ : V V (X) → V (X) of the monad
are given by

η(x)(x′) =

{
1 if x = x′

0 if x 6= x′
µ(f)(x) =

∑
g∈V (X)

f(g) · g(x) ∈ F.

Here 0 and 1, as well as addition and multiplication, are those of the field F.
Elements of V (X) can alternatively be written as formal sums v1x1 + · · ·+ vnxn
with vi ∈ F and xi ∈ X for all i. We will use this notation in the example below.

Algebras for the free vector space monad are precisely vector spaces. We use
the output set O = F, and the alphabet can be any finite set A. Instantiating
(3), this leads to a pointwise distributive law ρ : V (O × (−)A) ⇒ O × V (−)A

given at a set X by

ρ(f) =

 ∑
(o,g)∈O×XA

f(o, g) · o, λa.λx.
∑

(o,g)∈O×XA,g(a)=x

f(o, g)

 .

With these definitions, the V -succinct automata are weighted automata. We note
that if F is infinite, any non-trivial V -automaton will also be infinite. However, we
can still start from a given weighted automaton and apply a slight modification
of Construction 4.4: minimize from the succinct representation, use the states
of the succinct representation as initial set of generators, and finally find a
minimal set of generators. Moreover, we may add a reachability analysis, which
in this case cannot lead to a larger automaton. Thus, the resulting algorithm
essentially comes down to the standard minimization algorithm for weighted
automata [19], where the process of removing redundant generators is integrated
into the minimization. If F is finite and we do want to start from a deterministic
automaton, we can consider this automaton as a weighted one by assigning each
transition a weight of 1.

Example 6.4. Consider for F = R the deterministic automaton in Figure 4a.
This is a minimal automaton in Set; the freely generated V -automaton is
infinite, and so is its minimization. However, that minimization has the states
of the automaton in Figure 4a as a set of generators. To gain insight into this
minimization, we compute the languages accepted by those generators (apart
from q0):

q1 : ε 7→ 1 a 7→ 1 b 7→ 1 c 7→ 1

q2 : ε 7→ 1 a 7→ 0 b 7→ 0 c 7→ 0

q3 : ε 7→ 3 a 7→ 1 b 7→ 1 c 7→ 1

q4 : ε 7→ 0 a 7→ 0 b 7→ 0 c 7→ 0

Words not displayed are mapped to 0 by any state. The language of q0 is the
only one assigning non-zero values to certain words of length two, such as aa,

17

q0, 0

q1, 1

q2, 1

q3, 3

q4, 0

a

b

c

a, b, c

a, b, c

a, b, c

a, b, c

(a) Deterministic automaton

q0, 0

q1, 1

q2, 1

a, c

b, c/2

a, b, c

(b) Succinct weighted automaton

Figure 4: Succinctness via a weighted automaton

and therefore q0 cannot be a redundant generator. The other generators are
redundant: writing JqK for the language of a state q, Jq4K is just a zero-ary sum,
and we have

Jq1K = Jq3K− 2Jq2K Jq2K =
1

2
Jq3K−

1

2
Jq1K Jq3K = Jq1K + 2Jq2K.

Once q4 is removed, all other generators are still redundant. Further removing
q3 makes q1 and q2 isolated. Therefore, V -minimization yields the weighted
automaton shown in Figure 4b. Here a transition on an input x ∈ A with weight
w ∈ F receives the label x/w, or just x if w = 1. Weights multiply along a path,
and different possible paths add up to assign a value to a word. Reading c from
q0, for example, we move to q1 + 2q2, which has an output of 1 + 2 ∗ 1 = 3.

In general, the (sub)sets of generators of a vector space are its subsets that
span the whole space, and such a set of generators is minimal precisely when
it forms a basis. The weighted automaton resulting from our algorithm is the
usual minimal weighted automaton for the language. Redundant elements can
be found using standard techniques such as Gaussian elimination.

7. Conclusions

We have presented a construction to obtain succinct representations of
deterministic finite automata as automata with side-effects. This construction is
very general in that it is based on the abstract characterisation of side-effects
as monads. Nonetheless, it can be easily implemented. An essential part of our
construction is the computation of a minimal set of generators for an algebra.
We have provided an algorithm for this that works for any suitable Set monad.
We have applied the construction to several non trivial examples: alternating
automata, automata with symmetries, CABA-structured automata, and weighted
automata.

Related work. This work revamps and extends results of Arbib and Manes [4], as
discussed throughout the paper. We note that most of their results are formulated
in a more general category, whereas here we work specifically in Set. The reason
for this is that we focus on the procedure for finding minimal sets of generators

18

by removing redundant elements, which are defined using set subtraction (Defi-
nition 3.6). This limitation is already present in the work of Arbib and Manes,
who spend little time on the subject and only study the non-deterministic case in
detail. Our main contribution, the general procedure for finding a minimal set of
generators, is not present in their work. It generalizes several techniques to obtain
compact automaton representations of languages, some of them presented in
the context of learning algorithms [10, 7, 3]. Preliminary results on generalizing
succinct automaton constructions within a learning algorithm can be found
in [23].

In [17], Myers et al. present a coalgebraic construction of canonical non-
deterministic automata. Their specific examples are the átomaton [9], obtained
from the atoms of the boolean algebra generated by the residual languages (the
languages accepted by the states of the minimal DFA); the canonical RFSA; the
minimal xor automaton [24], actually a weighted automaton over field with two
elements rather than a non-deterministic one; and what they call the distromaton,
obtained from the atoms of the distributive lattice generated by the residual
languages. They further provide specific algorithms for obtaining some of their
example succinct automata.

The underlying idea in the work of Myers et al. for finding succinct represen-
tations of algebras is similar to ours, and the deterministic structured automata
they start from are equivalent: in their paper the deterministic automata live
in a locally finite variety, which translates to the category of algebras for a
monad that preserves finite sets (such as those in Section 6.1). They also define
the succinct automaton using a minimal set of generators for the algebra, but
instead of our algorithmic approach of getting to this set by removing redundant
generators, they use a dual equivalence between finite algebras and a suitable
modification of the category of sets and relations between them. This seems to
restrict their work to non-deterministic automata, although there may be an easy
generalization: the equivalence would be with a modification of a Kleisli category.
A major difference with our work is that they have no general algorithm to
construct the succinct automata; as mentioned, specific ones are provided for
their examples. In fact, they provide no guidelines on how to find a suitable
equivalence for a given variety. On the other hand, their equivalences guarantee
uniqueness up to isomorphism of the succinct automata, which is a desirable
property for many applications.

The restriction in the work of Myers et al. to locally finite varieties means that
our example of weighted automata over an infinite field (Section 6.2) cannot be
captured in their work. Conversely, since both the átomaton and the distromaton
are non-deterministic NFAs obtained from categories of algebras with more
structure than JSLs, these examples are not covered by our work. Their other
examples, however, the canonical RFSA and the minimal xor automaton, are
obtained using instances of our method as well. The fact that the problem
of finding in general a suitable equivalence is open means it is not trivial to
determine whether our approach can be seen as a special case of a generalized
version of theirs when we restrict to monads that preserve finite sets.

Future work. The main question that remains is under which conditions the
notion of a minimal set of generators actually describes a size-minimal set of
generators. Proposition 3.7 provides a partial answer to this question, but its
conditions fail to apply the majority of our examples, even though in some of

19

these cases minimal does mean size-minimal. A related question is whether we
can find heuristics to increase the state space of a T -automaton in such a way
that the number of generators decreases. The reason the canonical RFSAs of
Denis et al. [10] are not always state-minimal NFAs is because the states of
these NFAs, seen as singletons in the determinized automaton, in general are
not reachable. Hence, removing unreachable states from a T -automaton may
increase the size of minimal sets of generators, which is why Construction 4.4
does not include a reachability analysis. Although finding state-minimal NFAs is
PSPACE-complete, a moderate gain might still be possible.

References

[1] Jǐŕı Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan
Milius, and Alexandra Silva. A coalgebraic perspective on minimization
and determinization. In FoSSaCS, pages 58–73. Springer, 2012.

[2] Jǐŕı Adámek and Jǐŕı Rosicky. Locally presentable and accessible categories,
volume 189. Cambridge University Press, 1994.

[3] Dana Angluin, Sarah Eisenstat, and Dana Fisman. Learning regular lan-
guages via alternating automata. In IJCAI, pages 3308–3314, 2015.

[4] Michael A. Arbib and Ernest G. Manes. Fuzzy machines in a category.
Bulletin of the AMS, 13:169–210, 1975.

[5] Meven Bertrand and Jurriaan Rot. Coalgebraic determinization of alternat-
ing automata. CoRR, abs/1804.02546, 2018.

[6] Miko laj Bojańczyk. Recognisable languages over monads. In Igor Potapov,
editor, Developments in Language Theory - 19th International Conference,
DLT 2015, Liverpool, UK, July 27-30, 2015, Proceedings., volume 9168 of
Lecture Notes in Computer Science, pages 1–13. Springer, 2015.

[7] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
Angluin-style learning of NFA. In IJCAI, volume 9, pages 1004–1009, 2009.

[8] Filippo Bonchi and Damien Pous. Hacking nondeterminism with induction
and coinduction. Commun. ACM, 58(2):87–95, 2015.

[9] Janusz Brzozowski and Hellis Tamm. Theory of átomata. In DLT, pages
105–116. Springer, 2011.

[10] François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state
automata. Fundamenta Informaticae, 51:339–368, 2002.

[11] Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. A
coalgebraic paige-tarjan algorithm. CoRR, abs/1705.08362, 2017.

[12] Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via
determinization. In CMCS, pages 109–129. Springer, 2012.

[13] Peter T. Johnstone. Adjoint lifting theorems for categories of algebras. Bull.
London Math. Society, 7:294–297, 1975.

20

[14] Barbara König and Sebastian Küpper. Generic partition refinement algo-
rithms for coalgebras and an instantiation to weighted automata. In Josep
Dı́az, Ivan Lanese, and Davide Sangiorgi, editors, Theoretical Computer
Science - 8th IFIP TC 1/WG 2.2 International Conference, TCS 2014,
Rome, Italy, September 1-3, 2014. Proceedings, volume 8705 of Lecture Notes
in Computer Science, pages 311–325. Springer, 2014.

[15] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and
Micha l Szynwelski. Learning nominal automata. In POPL, pages 613–625,
2017.

[16] Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–
92, 1991.

[17] Robert S. R. Myers, Jiŕı Adámek, Stefan Milius, and Henning Urbat. Coalge-
braic constructions of canonical nondeterministic automata. Theor. Comput.
Sci., 604:81–101, 2015.

[18] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor.
Comput. Sci., 249(1):3–80, 2000.

[19] Marcel P. Schützenberger. On the definition of a family of automata.
Information and control, 4(2-3):245–270, 1961.

[20] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M.
Rutten. Generalizing the powerset construction, coalgebraically. In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS
2010, December 15-18, 2010, Chennai, India, volume 8 of LIPIcs, pages
272–283. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[21] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M.
Rutten. Generalizing determinization from automata to coalgebras. Logical
Methods in Computer Science, 9(1), 2013.

[22] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks. Lightweight
monadic programming in ml. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’11, pages
15–27, New York, NY, USA, 2011. ACM.

[23] Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. Optimizing
automata learning via monads. arXiv:1704.08055, 2018.

[24] Jean Vuillemin and Nicolas Gama. Efficient equivalence and minimization
for non deterministic xor automata. 2010.

21

	Introduction
	Preliminaries
	T-succinct automata
	T-minimization
	Main construction
	Examples
	Monads preserving finite sets
	Alternating automata.
	Complete Atomic Boolean Algebras
	Symmetry

	Vector Spaces

	Conclusions

