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Abstract 
The relationship between DNA sequence, biochemical function and molecular evolution is 
relatively well-described for protein-coding regions of genomes, but far less clear in non-
coding regions, particularly in eukaryote genomes. In part, this is because we lack a complete 
description of the essential non-coding elements in a eukaryote genome. To contribute to this 
challenge, we used saturating transposon mutagenesis to interrogate the 
Schizosaccharomyces pombe genome. We generated 31 million transposon insertions, a 
theoretical coverage of 2.4 insertions per genomic site. We applied a five-state hidden 
Markov model (HMM) to distinguish insertion-depleted regions from insertion biases. Both 
raw insertion-density and HMM-defined fitness estimates showed significant quantitative 
relationships to gene knockout fitness, genetic diversity, divergence and expected functional 
regions based on transcription and gene annotations. Through several analyses, we conclude 
that transposon insertions produced fitness effects in 66-90% of the genome, including 
substantial portions of the non-coding regions. Based on the HMM, we estimate that 10% of 
the insertion depleted sites in the genome showed no signal of conservation between species 
and were weakly transcribed, demonstrating limitations of comparative genomics and 
transcriptomics to detect functional units. In this species, 3’ and 5’ untranslated regions were 
the most prominent insertion-depleted regions that were not represented in measures of 
constraint from comparative genomics. We conclude that the combination of transposon 
mutagenesis, evolutionary and biochemical data can provide new insights into the 
relationship between genome function and molecular evolution. 
  
 
Keywords: Schizosaccharomyces pombe, transposon mutagenesis, gene function, cellular 
fitness, non-coding genome, Tn-Seq  
 
Background 
A goal of genetics is to understand what sequence elements within genomes specify cellular 
and organismal function. The highly-transcribed protein-coding regions of eukaryote 
genomes are routinely detected within genomes and are well studied. The numerous non-
coding elements, on the other hand, are more challenging to detect, profile and functionally 
describe. While biochemical assays of genome activity can indicate functional units, inferring 
function based solely on biochemical activity, e.g. the ENCODE project’s definition of 
functional DNA (ENCODE Project Consortium et al. 2012), is inconsistent with evolutionary 
analysis that show no signal of conservation for substantial proportions of larger eukaryotic 
genomes (Doolittle 2013; Graur et al. 2013). 
 In theory, functionally important elements could be detected by their conservation 
between lineages relative to neutral elements. However, such analyses suffer from the 
paradox that more divergent species allow more sensitive detection of small functional 
elements, but there will be fewer shared functional regions (Stone et al. 2005). Similarly, 
patterns of diversity detect evolutionarily constrained regions within a species (Fawcett et al. 
2014; Jeffares et al. 2015; Yu et al. 2015). However, these analyses are limited to summaries 
of annotation types, rather than defining particular conserved elements, because segregating 
genetic variants are generally too sparse within specific genes to estimate the fitness effects 
of mutations accurately. Additionally, various factors can affect segregating variants and/or 
allele frequencies at any particular genomic locus, including recombination rate (Campos et 
al. 2014) and recent events of selection which purge diversity in surrounding areas (Smith 
and Haigh 1974; Cheeseman et al. 2012). For these reasons, neither diversity nor divergence 
analyses have sufficient power to describe functional constraint at gene or sub-genic 
resolution. In contrast, high-density transposon-insertion libraries generated from 
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independent repeats can precisely define functional elements and have provided estimators of 
gene-knockout fitness in bacterial genomes (van Opijnen et al. 2009; Zhang et al. 2012; 
DeJesus and Ioerger 2013; Chao et al. 2016; Price et al. 2018). A limitation of transposon 
mutagenesis screens is that some regions will have functional roles that are specific to 
particular environments, developmental stages, or genetic backgrounds (Price et al. 2018). 
 To define functional elements in a eukaryote genome, we generated multiple dense 
insertion libraries in fission yeast (Schizosaccharomyces pombe), using the Hermes cut and 
paste transposon system (Park et al. 2009). We analysed this data with respect to genome 
annotation, genetic diversity, divergence and transcriptional output. We then developed a 
HMM in an effort to account for biases in insertion frequency and smooth the stochastic 
insertion profiles into meaningful measures of insertion-fitness profiles that span multiple 
continuous genome positions.  Both the raw insertion density metric and the HMM states 
showed significant relationships to independent predictors of functional elements, including 
evolutionary constraint, genetic diversity, annotation boundaries and transcript levels. 
Therefore, this data provides a rich resource for further study of genic and non-genic 
functional elements. 
 
Results 
Generation of Dense Hermes Insertion Libraries in Fission Yeast 
We generated nine Hermes insertion libraries using modifications of previously published 
methods (Evertts et al. 2007; Park et al. 2009; Guo et al. 2013). Insertions were generated in 
cultures undergoing rapid mitotic proliferation, serially diluted for approximately 25 cell 
divisions (supplementary fig. 1).  Insertion sites were identified using a custom Hermes-end 
primed sequencing strategy to produce paired-end reads (supplementary fig. 2). This 
approach included the attachment of a 10-nucleotide (nt) unique molecular identifier (UMI) 
to each sequenced DNA molecule, which enabled us to remove PCR-generated duplicates of 
Hermes-containing DNA molecules and thus count the number of insertions per position. 
These counts represent either multiple independent insertions at a genomic location (in 
different cells within a library), or the result of a single insertion event that has been 
propagated by cell division.  

The libraries contained an average of 1.6 million genomic insertions (supplementary 
table 1). Collectively, our libraries contained 31 million insertions at 930,000 unique sites, an 
average insertion density of 1 insertion site per 13 nt of the genome.  
 
Insertion Density is Consistent with Expectations of Functional Constraint 
Based on previous transposon analyses in bacteria and yeasts, we expected that more 
important regions would tolerate fewer insertions (Guo et al. 2013; Chao et al. 2016; Michel 
et al. 2017). Initial analysis showed that both insertion density (unique insertion 
positions/site) and average insertion count (insertion instances per site) were significantly 
lower in essential genes compared to non-essential genes and higher in non-genic regions 
(supplementary fig. 3). This result suggested that insertions reflect the relative functional 
importance of these annotated elements. 
 Notably, the mitochondrial genome also featured high insertion density, but with little 
difference between coding and non-coding regions (supplementary fig. 4). This result likely 
reflects that any given transposon insertion among multiple mitochondrial genomes will have 
little or no consequence for the cell. Nevertheless, this finding shows that Hermes 
transposition can readily occur in mitochondria.  

To systematically examine the relationship between genomic regions and insertions, 
we compared our Hermes insertion data with genetic diversity (π), within 
Schizosaccharomyces pombe strains and divergence between Schizosaccharomyces species. 
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Based on these evolutionary measures of functional constraint, we divided the genome into 
five annotation classes: coding regions of essential genes, coding regions of non-essential 
genes, 5’/3’-untranslated regions (UTRs) and introns, genomic regions with no annotation 
(generally intergenic regions) and non-coding RNAs. The relative levels of genetic diversity 
and divergence consistently showed that essential coding regions were subject to higher 
constraint than non-essential coding regions, followed by UTRs/introns, with unannotated 
regions being the least constrained. Hermes insertion density (unique insertions/nt) and mean 
insertion count were consistent with this ranking (fig. 1). These findings suggest that Hermes 
insertion density has a meaningful quantitative relationship to evolutionary constraint, even 
though insertions were generated in only one culture condition. 
 

 
 
 
Fig. 1. Hermes insertion data recapitulate signals of evolutionary constraint. For protein-
coding regions of essential genes (eCDS), protein-coding regions of non-essential genes 
(nCDS), 5’/3’ UTRs and introns (UTR+int), regions of the genome without any annotation 
(NOA) and non-coding RNAs ncRNAs) we show: (A) the genetic diversity from 57 strains of 
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S. pombe (Jeffares et al. 2015), measured in 100 nt windows, and (B) the phyloP measure of 
constraint (Gagliano et al. 2014) between four Schizosaccharomyces species (mean phyloP 
score, over 100 nt windows). Similarly, for pooled proliferation Hermes data, we show: (C) 
the number of unique insertions/nt, and (D) the mean insertion counts (calculated including 
sites without insertions as zero counts). All these plots exclude outliers. 
 
Application of a Hidden Markov Model to Account for Insertion Biases 
Previous analyses have shown that the Hermes transposon insertions are biased towards 
nucleosome-free DNA and that they preferentially occur in DNA with a degenerate sequence 
motif (TNNNNA) (Gangadharan et al. 2010; Guo et al. 2013). We sought to develop a 
prediction of the fitness consequences of transposon insertions at a fine-scale resolution 
correcting for such bias. This prediction should also reflect that neighbouring nucleotides in a 
genome do not function independently but as ‘functional’ units (e.g. exons, introns, UTRs). 
We developed a HMM to correct for these insertion biases and smooth the signal from 
stochastic insertions into contiguous functional units. In this model, the observed data are the 
insertion counts and the ‘hidden’ state is the degree of biological importance. Regions with 
greater importance are expected to have fewer insertions. 

Our model utilised measurements of nucleosome density and sequence composition. 
Genome-wide profiles of nucleosome density were obtained from proliferating cells 
(Atkinson et al. 2018). Next, the sequence composition of previously recorded in vitro 
insertion sites (Guo et al. 2013) were evaluated to find a degenerate insertion motif. We then 
constructed a sequence composition measure, termed insertion motif similarity score (IMSS), 
which describes the similarity of each position in the genome to this motif. Data from these 
two measurements was used to construct generalised linear models describing the 
relationship between insertion density, nucleosome density and IMSS (supplementary fig. 
5). 

Our HMM divided the genome into five states, from state 1 (S1), indicating the sites 
at which transposon insertion had the greatest negative functional consequences, to state 5 
(S5), indicating sites at which insertion had the least negative (or potentially positive) 
functional consequences. This number of states was obtained from initial trials with the 
model, detailed below. Annotated regions of the genome were used to train the model. The 
first state, S1, was trained on coding regions of essential genes (whose knockouts are 
inviable), S2 was trained on coding regions of non-essential genes, S3 on regions that may 
have some importance but weaker signals (introns and UTRs), S4 on unannotated intergenic 
regions that show high genetic diversity (Jeffares et al. 2015), where mutations or insertions 
may be neutral, and S5 on the top-10% insertion-dense sites to allow for the possibility that 
insertions in some positions enhance cell survival. 

The model was fitted to the data by maximum likelihood, using the EM algorithm.  
The Viterbi algorithm was then used to determine the most likely state (S1-S5) for each 
genomic position given the nucleosome density, IMSS, and insertion counts. Model fitting 
did not explicitly include annotations (see Methods for details on HMM). HMM states were 
highly consistent between independent HMM model fitting runs (see Methods). Insertion 
data, HMM states, nucleosome density and conservation measures are available in a 
dedicated genome browser http://bahlerweb.cs.ucl.ac.uk/bioda (Firefox browser compatible) 
and in the fission yeast model organism database PomBase (www.pombase.org). These tools 
allow users to check functional information for regions of interest, including fine-scale 
structure-function relationships within specific genes and putative regulatory regions. 
 
Validity and Limitations of the Model 
To evaluate the validity of the HMM, we first examined the relationship between HMM 
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states, rates of divergence in Schizosaccharomyces species, and diversity within S. pombe. If 
lower HMM states (fewer insertions) were indicative of more functionally important regions, 
we would expect them to show lower divergence and less genetic diversity due to increased 
constraint. To examine this expectation, we divided the genome into 126,311 windows of 100 
nt, and calculated insertion density (unique insertion sites/100nt), mean HMM state, mean 
constraint (using the phyloP algorithm), and average pairwise diversity (π) within S. pombe 
strains. We found that lower HMM states were subject to significantly higher constraint (fig. 
2A). Similarly, lower HMM states showed significantly lower genetic diversity, consistent 
with greater purifying selection within S. pombe (fig. 2B). This result is consistent with the 
notion that HMM states S1-S3 have biological relevance, and that S1 and S2 represent 
functionally important regions. 
 This finding was  not surprising, given that HMM states are strongly correlated with 
insertion density (Pearson r = 0.78), and we had already established that coding regions 
contained lower insertion densities (fig. 1). It is possible that this genome-wide pattern could 
reflect merely differences between coding and non-coding regions, which have different 
constraints but also differ in GC content, nucleosome densities and other features which 
might influence transposon insertions and the usefulness of the HMM. 
 To examine whether the HMM could differentiate sites that were more/less important 
within one annotation-class, we examined HMM states within the protein-coding regions of 
non-essential genes. We found a statistically significant relationship between HMM states 
and constraint during evolution (fig. 2C). The relationship was present, but weaker, within 
coding regions of essential genes (fig. 2D). Hence, HMM-states are indicative of conserved, 
functionally-relevant regions genome-wide, but only weakly effective at predicting functional 
elements within protein-coding genes.  
 

 
Fig. 2. HMM states are indicative of conserved, functionally significant regions. 
A) For all 100 nt windows in the genome, we show constraint distributions for mean HMM 
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states S1-S5. Comparisons of S1 vs S2, S2 vs S3, and S3 vs S4 were significantly different 
(Wilcoxon rank sum tests, all P <10-16), indicated by asterisks. B) Similarly, we show 
diversity for windows with mean HMM states S1-S5. Bar widths are proportional to the 
number of windows, with outliers being excluded. Comparisons of S1 vs S2 and S2 vs S3 
were significantly different (Wilcoxon rank sum tests, P <10-16 and P = 4 x 10-13). C) For 
windows within non-essential protein-coding regions, constraint distributions S1 vs S2, S2 vs 
S3 and S3 vs S4 were significantly different (Wilcoxon rank sum tests, P <10-16, P = 1 x 10-8, 
P = 8 x 10-3). D) For 100nt windows within essential protein-coding regions, only constraint 
distributions S1 vs S2 were significantly different (Wilcoxon rank sum tests, P <10-16), but 
less than 1% of windows were in categories with mean HMM states >2. In all plots, 
horizontal red lines show median values for HMM state 2 category windows, and black 
horizontal bars indicate categories that were significantly different by Wilcoxon rank sum 
tests. All plots show differences in metrics over 100 nt windows. Constraint was calculated as 
the mean phyloP measure (see Methods) of conservation for sites within the window, and 
genetic diversity is average pairwise difference (π) from 57 non-clonal S. pombe strains 
(Jeffares et al. 2015). Mean HMM states utilised only windows where 95% of the positions 
were read-mappable, to preclude low-mapping windows masquerading as insertion-depleted 
windows. HMM state categories 1 and 2 were defined as windows where the mean HMM 
states were exactly 1 or 2 (which was frequent). HMM state categories 3-5 were defined as 
windows with mean HMMs with 0.5 of this range (e.g. state 3 category >2.5 and <3.5). 
 
HMM has the potential advantage that it could enable discreet segmentation of genome 
windows to define boundaries of functional elements, unlike raw insertion density. To 
examine whether this model-based segmentation was biologically meaningful, we measured 
the relationship of the model to previously annotated elements, such as exons, introns, 5’ and 
3’ untranslated regions, and non-coding RNAs. We defined 256,815 genomic regions that 
feature a continuous run of one HMM state (‘HMM-defined elements’, HDEs). All S4 or S5 
HDEs were less than 100 nt and mostly intergenic, indicating that only short regions in this 
genome can tolerate insertions without affecting fitness.  
 We excluded these S4/S5 HDEs from further analysis, leaving 10,015 HDEs with a 
median length of 618 nt, which accounted for 90% of the mappable genome. HDE edges 
were closer to edges of existing annotations than expected by chance (Wilcoxon Rank Sum 
test, P <10-16, fig. 3A, B). This result is consistent with these HMM-defined regions 
representing boundaries of various biologically-relevant elements (including transcriptional 
units, spliced exons, or protein-coding regions).  
 Collectively, these findings are consistent with the HMM-states S1 to S3 showing a 
meaningful relationship to evolutionary constraint and boundaries of HMM-elements being 
aligned to exiting annotations. This analysis is consistent with states S1 and S2 being 
enriched for conserved, functionally important regions. A limitation of the HMM is that 
states S4 and S5 were not significantly different in any biological measure, so their meaning, 
if any, thus remains unclear. 
 
Genome-wide Fitness Consequences of Insertions 
Our analysis showed that 100 nt windows with HMM states S1/S2 are significantly more 
constrained within Schizosaccharomyces species, and feature less genetic diversity within S. 
pombe than regions with HMM states S3-S5 (fig. 2). As 91% of the genome was assigned to 
states S1/S2, a simplistic conclusion would be that transposon insertions have negative fitness 
consequences over 91% of the genome. Broadly, model states are consistent with known 
molecular biology. For example, 87% of the coding regions of essential genes were assigned 
to S1, compared to 32% of non-essential protein-coding regions, and smaller proportions of 
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5’ and 3’ untranslated regions (UTRs), which account for a large proportion of the non-
coding genome of S. pombe (fig. 3). 
 This modelling of insertions would suggest that most of the non-coding genome in 
this species contains functional elements. For example, the HMM assigned 82% non-protein-
coding regions to S1 or S2, indicating that they were strongly insertion-depleted relative to 
genome-wide expectations. UTRs, ncRNAs and unannotated regions were each insertion-
depleted to some extent. (fig. 3E). This measure far exceeds the proportion that would be 
defined as important with the limited comparative genomics data available. For example, 
24% of regions with no functional annotation are strongly insertion-depleted (S1), yet these 
regions show little conservation between Schizosaccharomyces species (fig. 1).  

If we use insertions/site as an alternative model-free metric, non-coding regions also 
appear to contain functional units, though details differ. For example, if we assume that 95% 
of the coding regions of essential genes will be insertion-depleted due to the fitness 
consequences of insertions, we can establish a threshold for the insertion density of 
functional sites, as the 95th percentile of insertion density in essential coding regions (9 
insertions/100 nt). We find that 66% of the genome has fewer insertions than this threshold, 
including 41% of the non-coding genome. This 41% of the non-coding genome is 
significantly more conserved than the remainder of the non-coding genome, consistent with 
this simple method being sufficient to detect functionally important regions (mean phyloP 
low-insertion noncoding regions 0.059, high-insertion noncoding regions 0.037, Wilcoxon 
rank sum test P <10-16). Similarly, 50% of UTRs and 48% of regions with no annotations are 
below this threshold; in both cases, low-insertion regions are significantly more conserved 
than high-insertion regions with the same annotation (both Wilcoxon tests P <10-15). These 
results indicate that insertion densities can predict sites that are likely functional, 
independently of, and consistently with, the HMM. 
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Fig. 3. Functional Landscape by Annotation Type. Parts A-C show that the boundaries of 
HMM-Defined Elements (HDEs) are aligned to, or close to, the boundaries of existing 
annotations, as defined in legend at top right. The random expectation is derived from the 
same number of elements of the same lengths, placed at random on the genome. (A) HDEs 
have a smaller distance to the nearest annotation than random expectation. (B) For all HDE 
edges we show a cumulative density plot of nearest annotation type, including 5/3’ UTRs, 
transcripts (transcription start/stop positions), coding sequences (amino-acid encoding 
regions, CDS), non-coding RNAs (ncRNAs), with lines coloured according to the legend at 
right. (C) HDEs fell closest to a variety of annotations. The pie chart shows the proportions 
of nearest annotations, indicating a bias towards defining 5’UTR edges. There were subtle 
differences between states S1, S2 and S3 in this respect (not shown). The HMM defined five 
states based on Hermes transposon insertions. State 1 (S1) refers to the most important 
regions, with the least insertions, and state 5 (S5) with the highest density of insertions. (D) 
Percentage of S. pombe genome covered by various annotation types: entire genome (100%), 
essential protein-coding regions (eCDS), protein-coding non-essential regions 
(nCDS),canonical non-coding RNAs (snRNAs, snpRNAs, tRNAs, rRNAs, canonRNAs), 
5’/3’-UTRs (UTRs), non-coding RNAs (ncRNAs), and unannotated regions (no-anno). (E) 
Proportions of each annotation type in the five states: S1 (red), S2 (black), S3 (dark grey), S4 
(light grey) and S5 (white). (F) Mean HMM states for essential (eCDS) and non-essential 
(nCDS) coding regions. Representative 50 points are shown for each type to indicate that 
most essential coding regions have mean state ~1 (85% mean state <1.2). 
 
Transposon Insertion Metrics Correlate with Gene Knockout Fitness 
To examine whether raw insertion densities and/or the HMM contained information about the 
relative fitness cost of gene disruption, we calculated the mean HMM state and unique 
insertion sites/nt for each protein-coding gene (supplementary table 2). As expected, 
essential coding genes had much lower metrics (fig. 1). To examine further whether these 
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insertion metrics contained quantitative information about gene disruption fitness, we 
compared these measures to the colony sizes of viable knockout mutants on solid media 
(Malecki and Bähler 2016; Malecki et al. 2016). This orthogonal measure of gene disruption 
fitness alteration uses solid media (insertion metrics use liquid media), a more direct fitness 
measure, and different methods to interfere with gene function (disruption vs deletion). We 
found that both metrics were positively correlated with the colony size of knockout mutants 
(inserts/nt, Pearson r = 0.28, Spearman r = 0.30, mean HMM state Pearson r = 0.34, 
Spearman 0.25, all P <10-16). Similarly, insertion metrics were correlated with constraint 
(mean phyloP vs both inserts/nt and vs mean HMM state, Pearson r = 0.30, P <10-16). Other 
measures of knockout fitness collected from Bar-seq experiments of pooled mutants in liquid 
media (Kim et al. 2010; Sideri et al. 2014) were less correlated with both constraint and 
Hermes transposon insertion metrics (all correlations <0.1), suggesting that these laboratory 
fitness measures are limited in their power to predict long-term evolutionary constraints. In 
summary, although correlations are modest, these analyses indicate that the insertion metrics 
recover biologically meaningful fitness measures that add value beyond the binary 
classification of essential vs non-essential genes obtained from whole-gene disruptions. 
 
Characterising HMM-Defined Functional Elements 
The HMM treatment of insertion data produced a data-driven partitioning of genomic 
elements based on the insertion model alone. To characterise the HMM-defined elements 
(HDEs) further, we compared their conservation during evolution and their RNA expression 
levels. The HDEs which were most insertion-depleted, and therefore most critical for cell 
function (S1 elements), covered 35% of the mappable genome. These HDEs showed distinct 
features: they were most conserved between species, the longest (mean length 1.9 kb), most 
highly expressed, and enriched for essential protein-coding regions (fig. 4). Another 52% of 
the genome was composed of S2 elements (mean length 1.0 kb), including mainly coding 
regions and UTRs, which also showed relatively high expression levels and conservation. 
The inclusion of many 5’- and 3’-UTRs in S1 and S2 elements indicates that these non-
coding regions often contain regulatory sites whose disruption impairs cellular function. 
Finally, the S3 elements occupied only 3% of the genome, were seldom conserved, generally 
short (mean length 0.18 kb), were enriched for UTRs, ncRNAs and un-annotated regions. 
The UTRs likely contain regulatory sites, because insertion density is a predictor of 
constraint (see above). It would have been difficult to identify these regions without the 
insertion data because they are neither highly conserved nor highly transcribed. As the 
Schizosaccharomyces clade contains only four species, subtle constraint will likely remain 
undetected. In summary, HMM-defined regions were aligned to known annotation 
boundaries (fig. 3A, B), were consistent with evolutionary conservation and showed 
differences in transcription (fig. 4). 
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Fig 4. HMM-defined elements describe functional genomic outputs. Density plots 
describe various characteristics of HDEs, from left showing S1, S2 and S3 HDEs. 
Conservation (y axis, top row) levels are mean phyloP measures from four 
Schizosaccharomyces species. HDE lengths (y axis, middle row) are shown on a log10 scale. 
Expression levels (x axes) are RNA-Seq RPKMs from proliferating cells. Dashed horizontal 
and vertical lines show the 5th and 95th percentiles of conservation, expression levels or 
lengths. The positions of symbols (circle, triangle etc.) indicate the median positions within 
each state for essential transcripts (ESS/T), coding regions (CDS), and 5’/3’ UTRs. For 
example, the few conserved S3 sites are coding regions. The bottom row shows the 
proportions of bases in S1, S2 and S3 HDEs that are annotated as introns, 3’UTRs, ncRNAs, 
5’UTRs, non-essential coding regions (nCDS), essential coding regions (eCDS) or have no 
annotation (NOA). For example, state 1 HDE’s often overlap essential coding regions, but S3 
HDE’s seldom do. 
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Dense transposon-insertion libraries can identify genes whose disruption affects fitness (in 
particular conditions) within bacterial genomes with high resolution (van Opijnen et al. 2009; 
Zhang et al. 2012; DeJesus and Ioerger 2013; Chao et al. 2016; Price et al. 2018). However, 
similarly high-resolution descriptions of eukaryotic genomes are more limited, and have not 
yet achieved nucleotide-level definitions of fitness landscapes (Guo et al. 2013; Michel et al. 
2017). Studies with eukaryotic genomes are more challenging, because they are larger and 
contain nucleosomes, which bias integration rates. With the high density of insertions that we 
achieved (31 million insertions, 1 unique insertion site/13 nt), this data has potential to 
describe the functional significance of genomic segments at a very fine resolution. 
 As insertion positions are stochastic, we developed an HMM to define the discrete 
boundaries between insertion-depleted and insertion-rich regions. This approach 
demonstrated both strengths and weaknesses. Changes in HMM states were closely aligned to 
existing annotations (fig. 3A-C), and regions with continuous runs of one HMM state, 
identified elements with different properties (fig. 4), suggesting that the model partitioned 
genomic elements with different functions. The model was able to account for the known 
insertion biases: HMM states strongly depended on insertion density but only weakly 
correlated with nucleosome density and the insertion nucleotide motif (supplementary fig. 
6). Both raw insertion density and HMM model states could identify regions with enhanced 
evolutionary constraint, both genome-wide and within specific annotation categories, 
showing that the transposon data is broadly consistent with other fitness measures. 

Other aspects of the HMM were less conclusive. While model fitting tests indicated 
that a five-state HMM was the best-supported, HMM states S4 and S5 were always present in 
short segments in the genome, and were not significantly different from each other in terms 
of evolutionary constraint. Moreover, mean HMM states for genes were only weakly 
correlated with gene knockout fitness (correlation coefficients ~0.3). Either of these 
limitations may be due to the initial insertion data and/or the model. There could well be 
other insertion biases that are not accounted for, such as the position of a genomic segment in 
the three-dimensional space of the nucleus (Michel et al. 2017). Such biases would limit our 
ability to predict the degree of genomic importance for regions that are refractive to 
transposon insertion. It is also possible that transposon insertions can disrupt the function of 
larger neighbouring regions, although the sites of insertions themselves are not functional, 
which would inflate the HMM-based estimate of the functional genome. Finally, a limitation 
of any transposon insertion study is that the transposon method does not reveal how non-
coding genomic elements function. 

A simple model-free estimate, based on the assumption that 95% of essential coding 
regions are insertion-depleted, indicates that 66% of the genome contains functional 
elements. This is similar to the conclusion from comparative genomics that 68% from 
Saccharomyces is subject to evolutionary constraint (Siepel et al. 2005). Alternatively, based 
on the HMM, we would conclude that 91% of the fission yeast genome contains functional 
elements. In both cases, substantial proportions of the non-coding genomes appear to be 
insertion depleted (model-free 41%, HMM 80%). And in both cases, the insertion-depleted 
non-coding regions we define show statistically significant signals of enhanced constraint. 

Comparative genomics is likely to produce conservative estimates of the functional 
proportions of genomes, because it is more likely to detect regions that have been 
continuously subject to purifying selection throughout the phylogeny of the species aligned 
(Stone et al. 2005). This will reduce our ability to detect regions that are subject to purifying 
selection in one species, but not another. As there are only four Schizosaccharomyces yeast 
genomes to align, we would expect a relatively ineffective detection of functional elements 
from comparative genomics in fission yeasts. Consistent with these caveats of functional 
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genomics, we find that that 31% of the 100 nt windows of the genome are insertion depleted 
(mean HMM state ≤ 2), but have no signal of conservation between Schizosaccharomyces 
yeast genomes. The model-free estimate suggested that 20% of the genome is functional but 
has no signal of conservation. Both these analyses indicate that transposon mutagenesis can 
identify regions that are likely functional, but undetectable with the comparative genomics 
data available for this species. 
 Alternative analyses with different transposons, different species, or models will 
certainly be valuable. We expect that future work will reveal whether these elements function 
as the widespread non-coding transcripts (Atkinson et al. 2018) and/or as regulatory elements 
controlling the expression of coding genes. 
 
Conclusion 
Our analysis indicates that the fission yeast genome is densely packed with functional 
elements, including many uncharacterised non-protein-coding elements. Based on the HMM, 
we estimate that as much as 90% of the genome may contain functional elements that are 
impaired by transposon insertions, including between 40-80% of the non-protein-coding 
regions. We conclude that saturating transposon mutagenesis data has potential to define 
functional non-protein-coding elements within eukaryote genomes that would be difficult to 
detect with any other contemporary method.  
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Methods 
Creating Hermes Insertion Libraries. Hermes insertion libraries were constructed as 
described (Park et al. 2009) using the pHL2577 and pHL2578 plasmids, except that the 
transposition frequency was calculated by dividing the number of colonies on YES 5-
FOA+G418 plates by the number of colonies on YES plates. All experiments were performed 
in an S. pombe strain with the genotype ura4–D18 leu1–32 h–. Typically, <0.2% of cells in 
libraries contained genomic Hermes insertions, so we expect that most insertion mutants 
contain a single insertion. 
 
Generating DNA Libraries for Sequencing. Genomic DNA was extracted from insertion 
libraries using phenol/chloroform extraction. All DNA extracted from a library was 
processed. DNA was sheared to an average size of 200 bp using a Covaris S2 ultrasonicator 
(Covaris, Woburn, Massachusetts). Sheared DNA was end repaired using the NEBNext® 
End Repair Module (NEB, Hitchin, UK). Linker1-Random10mer and Linker2 
(supplementary table 4) were ligated using the NEBNext® Quick Ligation Module (NEB, 
Hitchin, UK). In Linker1-Random10mer, the random 10 nt sequence acted as a UMI to 
distinguish unique chromosomal insertions from PCR amplifications. DNA was then digested 
with KpnI-HF (NEB, Hitchin, UK) to exclude residual Hermes pHL2577 donor plasmid from 
PCR amplification (as the plasmid contains a unique KpnI site). NEBNext® modules were 
used according to manufacturer’s instructions. To enrich for fragments containing the 
Hermes transposon, DNA was amplified with BIOTAQ™ DNA polymerase (Bioline, Essex, 
UK) using a primer that complimentary to the Hermes transposon (1-Transposon-4NNNN), 
and to the linker (Linker1-Amp, supplementary table 4). Ultimately, a second PCR attached 
the multiplex oligonucleotides for Illumina MiSeq sequencing; the MS-102-2022 MiSeq 
reagent kit v2 (300 cycles) (Illumina, Cambridge, UK) was used to sequence the libraries. To 
increase the complexity of the libraries, for each library, ligation and PCR reactions were 
performed in multiple reactions (in 96-well plates), using a maximum of 1 µg of DNA per 
well and then re-pooled before sequencing. Detailed protocols are available in the Figshare 
project Hermes Transposon Mutagenesis of the Fission Yeast Genome (will be made publicly 
available upon manuscript acceptance). Sequence data are available at European Nucleotide 
Archive in study accession number PRJEB27324. Sample accessions are listed in 
supplementary table 5. 
 
Computational Processing of Sequencing Data.  
Bioinformatic processing filtered the sequence data to retain only reads derived from Hermes 
insertions, removed reads with duplicate UMIs, and filtered for correctly-paired high-
confidence read-mapping, and ultimately located the positions and orientation (strand) of 
genomic insertions. Details are as follows. Read 1 architecture was 
[random4mer][Hermes][Genome] (with random 4mer added to increase 5’ Read 1 end 
complexity to allow Illumina cluster calling). The 4mer was trimmed with fastx_trimmer 
(http://hannonlab.cshl.edu/fastx_toolkit/). The Reaper tool (Davis et al. 2013) was used to 
detect reads with 5’ ends matching the expected Hermes sequence, and excluding those 
within the pHL2577 donor plasmid. Read 2 architecture was [10mer][Linker][Genome]. We 
used a custom Perl script to exclude duplicate reads with exactly matching 10mers. Processed 
Reads 1 and 2 were re-paired using Tally (Davis et al. 2013), and the 10mer and Linker were 
trimmed with fastx_trimmer. Paired-end reads were aligned to the reference genome (Wood 
et al. 2002) and the donor plasmid using BWA-MEM (Li and Durbin 2009). SAMtools (Li et 
al. 2009) was used to select correctly paired reads with a mapping score ≥30 (flags 83 and 
99). Finally, we applied custom scripts to identify the location and strand of insertions from 
the filtered BAM outputs with SAMtools. Insertions found on the same chromosome but on 
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different strands were considered as unique events. Command lines for this procedure and 
scripts are available in the Figshare project Hermes Transposon Mutagenesis of the Fission 
Yeast Genome, as well as all insertion data, and HMM model fitting results. 
 
Nucleosome Density Data. The generation of the nucleosome density data has been 
described in Atkinson et al. (Atkinson et al. 2018) and are available at the European 
Nucleotide Archive under accession number PRJEB21376.  The median nucleosome density 
from two repeats was transformed to a normal distribution. This normalised nucleosome 
density showed a stronger correlation with insertion density than the raw nucleosome density 
and was used as a predictor in the HMM. 
 
Insertion Motif Similarity Score. In vitro Hermes insertion data (Guo et al. 2013) was used 
to identify a sequence motif corresponding to insertion events in non-nucleosome bound 
DNA. Strings of 41 nt, centred upon each in vitro insertion event were taken from the S. 
pombe reference sequence. The percentage of each nucleotide present at each of the 41 
positions was measured and compared to percentage nucleotide compositions calculated 
across the entire genome. A window of 20 positions was identified for which the composition 
differed from the genome-wide composition by at least 1% for at least one of the four 
nucleotides. For each position i, we denote the probability of observing the nucleotide a as 

p"(a):	1 ≤ i ≤ 20, 𝑎 ∈ {A, G, C, T} 
and denote the genome-wide probability of observing the nucleotide a as pgw(a). 
A genome-wide scan was then conducted of strings of 20 consecutive nt in the genome 
sequence, calculating a likelihood measure of the extent to which each string matched the 
insertion motif, as compared to the genome-wide base composition. Where a string is given 
by the nucleotides {a1, a2, …, a20} we calculate the insertion motif similarity score as follows: 

𝐼𝑀𝑆𝑆 = 	 log 𝑝" 𝑎" − log 𝑝?@ 𝑎"

AB

"CD

	 

Here a positive score indicates a greater similarity to the insertion motif than to the genome-
wide sequence propensity. This likelihood measure was used as a predictor in the HMM. 
 
Hidden Markov Model. We developed a hidden Markov model using the R package 
depmixS4 (Visser and Speekenbrink 2010b). These models assume that sequences of 
observed response variables are dependent on underlying sequences of discrete hidden states. 
The sequence of hidden states is assumed to follow a first-order Markov process, such that 
the probability of a state at position t depends only on the hidden state at the immediately 
preceding position t-1. The observed responses are assumed conditionally independent given 
the sequence of hidden states (i.e., correlations between nearby positions are completely 
accounted for by the hidden states. This model used log2-transformed insertion numbers as 
the observed state. Sites with zero insertions were set to observed state = 0. Each hidden state 
defined a (zero-inflated) Poisson regression model, with log2 insertion count as dependent 
variable, and the normalised nucleosome density (median of two replicates) and nucleotide 
preference score as predictors. Missing data for nucleosome density was set to the median.  
The models parameters (initial state probabilities, state-transition probabilities, and the 
parameters of the state-dependent zero-inflated Poisson regressions, were estimated by 
maximum likelihood using the Expectation-Maximisation (EM) algorithm. Initial state 
distributions were all 1/n, where n is the number of states. Initial transition matrix was 0.95 
for positions remaining in the same state, and 0.05/(n-1) for all other transitions. Initial 
parameter values of the Poisson regressions were obtained by pretraining each state-
dependent model on a subset of the data (see below). These initial parameters were used to 
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start the EM algorithm, the final resulting parameter estimates were determined by maximum 
likelihood. Neither annotations nor transcriptome data were supplied as predictors to the 
HMM. Models were fit to the insertion data by the EM algorithm, until convergence of the 
likelihood (with a tolerance 1x10-8) or with a maximum of 150 iterations (since log likelihood 
fit of models improved little after 150 iterations (supplementary fig. 7). 
 
Choice of Optimal Model. To select an appropriate number of states and state training data 
for our HMM, we used ten ‘test data’ subsets of the genome, each a 100 kb fraction as 
follows: Chromosome I, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-
3200001, Chromosome II, 100001-200001, 1100001-1200001, 2100001-2200001, 3100001-
3200001 and Chromosome III, 100001-200001, 1100001-1200001 (test data sets A to J). 
These regions avoid the chromosome ends, which have unusual properties, such as a high 
frequency of pseudogenes and native Tf1 transposon insertions (Jeffares et al. 2015). 

We ran each of the following models on all insertion data from proliferating cells 
(split into the ten subsets). These models defined the training data in two ways. Firstly, 
‘insertion-quantile’ models, where training data was defined solely by the density of unique 
insertions, calculated over 100 nt windows. For example, a 3-state model split the data into 
the lower, mid and upper third insertion density for states 1-3. We trialled quantile models 
from 2 to 10 states. Secondly, annotation-based models. We trialled 2-, 3-, 4-, and 5-state 
models where the training data was derived from current genome annotations. The 2-state 
model included coding sequences (S1) and other regions (S2). The 3-state model, coding 
sequences of essential genes (S1), coding sequences of non-essential genes (S2), introns, 
unannotated regions, and UTRs (S3). The 4-state model, coding sequences of essential genes 
(S1), coding sequences of non-essential genes (S2), introns and untranslated regions (S3), and 
unannotated regions (S4). It differs from the 3-state model in that it differentiates UTRs and 
introns from unannotated regions. The 5-state model is as the 4-state model, except that it 
includes a 5th state that contains sites with the highest 10% of unique insertions/100 nt. The 
response for this state was a Poisson distribution rather than zero-inflated Poisson. 

Each of these 13 models was fit (with tolerance 1x10-8) to the ten fractions of the 
genome. Fitting involved optimising the parameter of states at each position, the transition 
state matrix, and the slope, intercept and zero-fraction of the state model. A 5-state annotation 
model was chosen as a pragmatic the best fit for running large (million position) data sets. 
Comparison of the Bayesian information criterion scores (BIC) for 2-5 states indicated that 
increasing states improved the fit (supplementary fig. 8), but higher state models suffered 
from increased run times and frequent run failure, and/or highly inconsistent fractions of the 
subset data assigned to various states (with some states being absent).  

Due to the rounding of log2 insertion counts, sites with 1 or 0 insertions were set to 
the same observed state. Rounded log2 of insertions+1 (where sites with 0 insertions have 
different value from those with 1) resulted in a worse fit to the model (supplementary fig. 
9). 
 
Fitting of Chromosome-Wide Data. Once the 5-state annotation model (model 5A) was 
chosen as a pragmatic best model, it was run on all proliferation libraries, fitting data from 
five relatively equal portions of the genome separately, to allow runs in a practical time frame 
and memory. These fractions were: chromosome I left half (positions 1-2789566), 
chromosome I right half (positions 2789567-5579133), chromosome II left half (positions 1-
2269902), chromosome II right half (positions 2269903-4539804), and the entirety of 
chromosome III (fractions are between 2.26 Mb and 2.79 Mb). The model produced a state 
prediction for each position in the genome, and the posterior probability of each state at each 
position.  
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These separate fits to the model resulted in similar distributions of states between 
chromosome arms for both the coding regions and introns of essential genes, supporting 
consistent convergence of the models between these genome subsets (supplementary fig. 
10). To examine whether positions were assigned a consistent state using different subsets of 
data, and independent fits of the HMM, we made subsets of proliferation (dense data) for the 
central half of chromosome I (positions 1394783-4184350), which overlaps both the left and 
right halves used previously. These data were fit to model 5A as before. With dense 
proliferation data, sites that overlapped the 96.7% of positions were assigned the same state 
with either left vs middle, or right vs middle comparisons. States 1-5 were all consistently 
assigned (e.g. > 99% of state 5 positions were the same within proliferation data, and similar 
proportions for all other states). This analysis indicates that these fractions were sufficiently 
large to preclude fitting to very different local optima. HMM code is available in the Figshare 
project Hermes Transposon Mutagenesis of the Fission Yeast Genome. 
  
Filtering Badly Mapped Sites. To ensure accurate placement of reads, our pipeline filtered 
reads mapped with mapping quality ≥30. To avoid the tendency to misinterpret regions that 
have few insertions due to the loss of low mapping quality, we analysed only sites that had 
retained ≥90% of the reads (lost <10%) over 500 nt windows after mapping quality filtering. 
This retained 94.6% of the genome for analysis. After filtering, there was only a weak 
negative correlation between the HMM state and the proportion of reads filtered (Pearson r = 
-0.049). All data presented included only the sites that had retained ≥90% of the reads after 
filtering for Q30 mapping (the ‘mappable genome’). 
 
Annotation Data. Annotations were from PomBase (ASM294v2, 11/02/2016), including 
1538 annotated ncRNAs. 
 
Transcriptome Analysis. Replicated RNA-Seq data from vegetatively growing, early 
stationary and deep stationary cultures were retrieved from the European Nucleotide Archive 
(ENA; http://www.ebi.ac.uk/ena) using the following accession numbers (dataset: 
PRJEB7403; samples: ERS555567, ERS555607, ERS555570, ERS555612, ERS555571, 
ERS555613) (Atkinson et al. 2018). Reads were aligned to the S. pombe genome as described 
(Bitton et al. 2014). The resultant aligned reads were used to compute normalised coverage at 
the nucleotide level using the genomecov function in the BEDtools suite (Quinlan and Hall 
2010). Customised R scripts were used to define whether a given region is transcribed. 
 
Comparative Genomics. We used updated genome assemblies of fission yeasts S. 
octosporus, S. japonicus, and S. cryophilus (Tong et al. 2018). To improve previous full 
genome alignments of fission yeast species (Rhind et al. 2011), we incorporated these newly 
assembled genomes into an alignment with the S. pombe genome using progressive-cactus 
(Paten et al. 2011) (github version May 2016), using a guide tree based on Rhind et. al. 
(Rhind et al. 2011). We then applied the phyloP algorithm (Siepel et al. 2006) as 
implemented in the HAL toolkit (Hickey et al. 2013) to detect constraints. We trained a 
neutral model using the four-fold degenerate sites from coding regions from the high-quality 
S. pombe annotation. 
 
100 nucleotide window analysis 
Analysis of 100 nt windows used custom scripts to calculate mean HMM state, unique 
insertions/nt, mean phyloP signal, etc. Annotation analysis for 100 nt windows used windows 
where 100% of the window was covered by the annotation in question. 
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