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Abstract

Arrays of non-interacting nanomagnets are widespread in data storage and processing. As current technolo-

gies approach fundamental limits on size and thermal stability, enhancing functionality through embracing the

strong interactions present at high array densities becomes attractive. In this respect, artificial spin ices are

geometrically-frustrated magnetic metamaterials offering vast untapped potential from their unique microstate

landscapes, with intriguing opportunities from reconfigurable logic to magnonic devices or hardware neural net-

works. However, progress in such systems is impeded by the inability to access more than a fraction of the

total microstate space. Here, we demonstrate that topological defect-driven magnetic writing - a scanning probe

technique - provides access to all possible microstates in artificial spin ices and related arrays of nanomagnets. In

particular, we create previously elusive configurations such as the spin-crystal ground state of artificial kagome

dipolar spin ice and high-energy, low-entropy ‘monopole-chain’ states exhibiting negative effective temperatures.

Artificial spin ices (ASI) are magnetic metamaterials comprised of strongly-interacting nanomagnets, each acting

as a single ‘macrospin’, in geometrically frustrated arrays. The macrospins obey magnetic equivalents of Pauling’s

ice-rules1, arranging themselves to minimise net magnetic charge qm at each vertex. ASI2 has provided vital

physical insight on diverse topics from magnetic monopole-like excitations3,4 to fundamental thermodynamics5–10.

Key to its promise is the enormous number of unique magnetic charge configurations (or microstates) and the

possibility to directly image the magnetic structure. A kagome (honeycomb) ASI array containing N vertices

possesses ∼ 3√
2

N
microstates satisfying the ice-rules, yielding vast microstate landscapes. The ice-rule obeying

states all possess near-equivalent energies leading to massive degeneracy, inviting deep thermodynamic studies10
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as well as device-focused applications exploiting the microstate landscape to store information11,12 or function

as a hardware neural-network5,9,13 or reconfigurable magnonic crystal14,15. However, the full potential of ASI is

unrealised as conventional state-preparation techniques access only a tiny fraction of the total microstate space.

Consider a six-macrospin hexagon of kagome ASI, possessing 26 = 64 metastable magnetic configurations (local

minima in the potential energy surface). Typically a globally uniform external magnetic field initialises state A and

then drives magnetic reversal to state B. As each bar switches only once, six additional states are sampled and so 57

states are never accessed. Energy barriers between states vary largely so few low-energy pathways from A to B exist.

Most states do not lie on any of these pathways, rendering them inaccessible via global magnetic field protocols. In

a typical 103 macrospin array just 10−296% of possible states are sampled in a global-field driven magnetic reversal.

Thermal activation and subsequent annealing of ASI can randomly sample low-energy microstates inaccessible using

external global fields10,16–19. However, the exact final state cannot be specified and to-date it has not been possible

to explore the network of microstates sufficiently to prepare a system in the dipolar kagome ASI ground state18.

The limited state-writing functionality has impeded progress in ASI, therefore developing a protocol for the precise

control of individual macrospins is crucial to revealing the entire ASI manifold and the rich physics within.

Scanning-probe techniques offer an ever-broadening suite of tools for exquisite nanoscale patterning20, including

topographical modification21,22, molecular synthesis23 and recently nanomagnetic writing. Localised modifica-

tion of magnetic anisotropy in thin-films via a heated tip and global H field24, scanning tunneling microscope

switching of superparamagnetic islands in cryogenic conditions25, magnetic-force microscope (MFM) tip-mediated

domain wall (DW) injection26 and a combined MFM-tip and global-field protocol for selective remagnetisation of

weakly-interacting nanowires27 represent key advances in the field, forging paths for new work in fundamental and

device physics. Here, we present ‘topological defect-driven magnetic writing’ (TMW) - a novel, powerful magnetic

patterning technique for directly injecting topological defects28 in magnetic nanowires. These defects propagate

through structures as DWs, achieving controlled and reversible writing of magnetisation states in the process with

no external global fields required. Working in ambient conditions, TMW reveals the entire microstate landscape of

ASI and related nanopatterned magnetic systems. We demonstrate several previously unobserved states including

‘monopole chains’, high-energy low-entropy ASI configurations inaccessible by conventional means and exhibiting

negative effective temperatures29, and the spin-crystal ground state of kagome ASI16,18,30.

Working principle of topological defect-driven magnetic writing

TMW is depicted schematically in fig. 1 a) with a corresponding micromagnetic time evolution series shown in fig.

1 b). We first demonstrate TMW experimentally in a simple system of parallel 1-4.8 µm NiFe nanowires. Figure

1 c) shows an MFM image of nanowires after initialisation in a global field Hsat. Figure 1 d) shows the same

nanowires after selective magnetic reversal, with blue arrows denoting switched wires.

TMW consists of passing a commercially available high-moment MFM tip over a nanostructure at a tip-sample

separation of r ≈ 5 − 10 nm, with the tip moving perpendicular to the long-axis of the structure. At these

small tip-sample separations, the tip field Htip may be treated using a point-probe approximation31,32 as having a

monopole-like form Htip = µ0

4πr2 qtip where qtip is the magnetic charge of the tip. The nanowire begins the process
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Figure 1: The topological defect-driven magnetic writing process. a) Schematic of TMW operation. An MFM-tip

induced vortex is moved through a nanostructure spin texture by the motion of the tip. Colour wheel represents magnetisation

direction in panels a) and b), orange arrow denotes vtip.

b) Micromagnetic simulation of the time-evolution of the TMW write-function used to reverse the magnetisation of a

500 × 75 × 10 nm nanowire. The MFM tip and its direction of motion are represented by the white circle and dashed

arrow respectively. Topological defects are labelled with their winding numbers. A video of this process is available in the

supplementary materials.

c, d) MFM images of 10 × 100 nm2 cross-section NiFe nanowires of 1, 2 and 4.8 µm length, (c) after initialisation with

global field and (d) after TMW-switching of selected wires. Light and dark contrast indicate positive and negative magnetic

charge respectively. Overlaid arrows show magnetisation direction as a guide to the eye, red arrows indicate unwritten wires,

blue arrows show TMW-written wires.
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in a single-domain ferromagnetic state (t = 0 in fig. 1 b). The tip then approaches the structure and at sufficient

values of Htip the spins in the wire rearrange themselves to lie along the radial tip field, lowering their Zeeman

energy. Around the apex of the tip (t = 3.5 ns, represented by the white circle) these realigned spins form a vortex

configuration due to the locally divergent shape of Htip
33,34. The vortex remains directly under the tip as the

tip crosses the wire, forming a pair of 180 ◦ DWs in its wake in the process. An in-depth discussion of how the

direct manipulation of topological defects drives DW formation is provided in the supplementary information, and

is similar to the 360◦ DW injection process previously described26.

The DW formation process is asymmetric between the left and right-hand DWs: On one side (right of tip in fig.

1 b) the component of Htip along the wire-length is parallel to the wire magnetisation, so any disturbance to the

micromagnetic structure is minimal. On the other side Htip is anti-parallel to the magnetisation and drives local

magnetic reversal. This forces the left-hand DW into a curved, elongated shape around the nascent left-magnetised

domain created between the DWs, shown by the grey dotted line fig. 1 b), t = 3.5 ns.

The distorted shape of the left-hand DW has an associated micromagnetic energy penalty relative to the straight,

shorter right-hand DW. Once the tip crosses the wire the left-hand DW straightens out, assuming a lower energy

conformation and gaining momentum in the process. The DW accelerates left towards the end of the wire, aided by

a magnetostatic attraction between the DW magnetic charge and the magnetic charge of the wire-end. On reaching

the left-end of the structure, the DW is free to unwind into a collinear spin state (t = 8 ns), lowering the system

energy. The remaining right-hand DW also experiences a magnetostatic attraction to the structure ends. Providing

the tip crosses the structure slightly to the right of centre, the net force on the remaining DW is directed to the

right. This pulls the DW into the right-hand end of the structure where it also unwinds on contact, leaving the

wire DW-free with a magnetisation anti-parallel to its initial state. The TMW writing process is now complete.

Whether the right or left-hand DW forms in a high-energy state is decided by a combination of the nanostruc-

ture’s initial magnetisation and the magnetisation of the MFM tip, allowing the user to tailor the writing dynamics

simply by remagnetising the tip. The combination depicted in fig. 1 b) arises from a right-magnetised nanostructure

and MFM tip magnetised into the page. Reversing either magnetisation will result instead in the right-hand DW

forming in a high-energy state and accelerating once the tip passes. Reversing both has no effect. Simulated videos

of the writing process for various magnetisation combinations are provided in the supplementary materials. It is

worth noting that Htip is insufficient to switch wires by proximity alone; if the tip is held static above the wire

no reversal will occur. The reversal mechanism hinges upon the lateral motion of the tip traversing both opposite

edges of the nanowire. This eliminates potential stray field writing of neighbouring wires as wires are not reversed

unless they are explicitly crossed.

Crucially, the TMW process relies on the dynamic trajectory of the local tip field with no additional global

external field required. This simple experimental setup has wide applicability. In strongly-interacting systems

comprising dense arrays of magnetic elements (ASI for instance), the switching field of an element is significantly

modified by the states of its neighbouring elements. This can lead to an increase in switching field for some elements

such that writing them with a locally enhanced global field-based method will inadvertently switch other elements

in the system, causing selectivity to fail. As TMW does not require globally applied fields it retains full writing

functionality in strongly-interacting systems such as ASI, as shown below. This enhanced flexibility is discussed
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Figure 2: Realisation of topological defect-driven magnetic writing read/write functionality in artificial spin

ice. SEM (a,d) and MFM (b,c,e,f) images demonstrating TMW written states in various ASI arrays. NiFe nanowires are

1 µm long, 10 nm thick. a,b,c) wires are 75 nm wide, disconnected at vertices with 30 nm gaps. d,e,f) are 100 nm wide,

connected at vertices. MFM images are overlaid with arrows indicating magnetisation direction of each macrospin. Prior

to imaging and writing, structures were saturated by an external field HSat. Red arrows denote unwritten nanowires still

magnetised along Hsat, blue arrows show TMW-switched wires.

b) MFM image showing a single tip-reversed nanowire, creating a pair of ±3 qm monopole-defects. c) MFM image of TMW

written ‘ladder’ and zigzag ‘monopole-chain’ states. System was re-magnetised along HSat between images (b) and (c).

e) MFM ‘before’ image showing all wires aligned to Hsat. f) MFM ‘after’ image of (e) showing a column of TMW-switched

nanowires.

further in the supplementary information.

State writing in artificial spin ice

To examine how the TMW state-writing functionality performs in an ASI system, 1 µm × 75 × 10 nm2 nanowires

were arranged into kagome ASI arrays with wires disconnected at vertices. Vertex separations of 30 nm were used,

defined from the wire end to the vertex centre. Arrays were confirmed to be in a strongly-interacting ASI regime

via MFM imaging of their as-grown states, with only ice-rule obeying vertices observed. Structures were initially

saturated along a globally-applied field Hsat. TMW was then performed in zero-field to selectively reverse the

magnetisation of specific macrospins until the desired microstate was reached. Figure 2 shows scanning-electron

microscope (SEM) images of the ASI arrays (left-hand column) along with MFM images of initialised and TMW-

written states. Figure 2 b) shows a single TMW-switched macrospin against a uniform Hsat aligned background,

creating a pair of oppositely charged ±3 qm monopole-defect vertices without disturbing surrounding macrospins.
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Figure 3: Realisation of the kagome artificial spin ice ground state via topological defect-driven magnetic

writing. a) MFM image of 1 µm × 75 nm × 10 nm NiFe nanowires in an ASI ’rosette’ with 30 nm vertex gaps. All wires

are aligned to HSat.

b) MFM image of the chiral spin-crystal ground state of kagome ASI, accessed via TMW writing. Reversed wires are high-

lighted by blue arrows. Circular arrows inside hexagons highlight the alternating-chirality magnetisation loops characterising

the ground state.

This demonstrates both the spatial accuracy of TMW, allowing control of each individual macrospin, and its ability

to overcome the significant energy-barriers required to create ice-rule breaking states in strongly-interacting systems,

thus granting access to the full ASI manifold. Figure 2 c) shows a more complex TMW-written state containing

long strings of adjacent ice-rule violating vertices, previously unobserved ‘monopole-chains’. Demonstrated here

are both ‘ladder’ (left) and zigzag (right) monopole-chains, high-energy states (due to the large number of excited

±3 qm vertices) with low entropy (due to the relatively few ways to arrange such configurations on an ASI array).

This combination of high energy with low entropy results in a state exceedingly difficult to realise via conventional

means and also fulfills the criteria for exhibiting ‘negative temperature’ - predicted to exist in ASI29 and discussed

further below. Such states highlight the novel and unexplored regions of the ASI manifold now accessible using

TMW. Even in these high-energy states the system retains its written configuration with high stability, undisturbed

by the MFM imaging process and maintaining microstate fidelity over several months.

So far, only disconnected nanowires have been considered. To test the flexibility of TMW in varied architec-

tures, ASI arrays were fabricated with nanowires connected at vertices. Figure 2 d) is an SEM image of 1 µm

× 150 × 10 nm2 nanowires in a connected kagome ASI array. Figure 2 e) shows MFM imaging of the same array

with macrospins saturated along Hsat. TMW was then used to reverse a central column of macrospins, with fig. 2

f) showing the successfully-written resultant state. The TMW writing process is seen to retain its functionality in

systems comprising connected nanowires, opening up microstate writing in a huge range of potential systems.
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Realisation of the kagome artificial spin ice ground state

One ASI microstate which has received significant attention while eluding observation is the spin-crystal ground

state of dipolar kagome ASI. The ground state of the frustrated kagome lattice has been of interest in both natural

and artificial systems, with the ground state of natural systems consisting of point-spins only recently reported

after years of investigation35. Point-spin systems interact via nearest-neighbour exchange interactions, hence the

difficulty in identifying a long-range ordered ground state. However, when considering dipoles of finite length (i.e.

artificial macrospins), further neighbour interactions (multipolar terms) break the degeneracy of ice-rule states

as long-range magnetic charge and spin order are imposed36–38. This leads to a well-defined ground state in

ASI, existing when both charge and spin order are present throughout the entire system. A quasi-ground state

in a partial ‘building block’ kagome ASI system comprising just 1-3 hexagons has been demonstrated39, but the

smallest system supporting a true ground state unit-cell which can tile infinitely over the kagome lattice is the 30

macrospin ‘rosette’ shown in figure 3. Attempts have been made to thermally activate then anneal into the ground

state on a rosette-sized system18, but the near-degenerate energies of all ice-rule obeying microstates and the low

entropy of the ground state (2 configurations in 230) have rendered efforts ineffectual. A simple and convenient

means to reliably access the spin-crystal ground state will allow closer examination of the divergence between true

and artificial ice-like systems, a major point of interest in the field. As such, demonstrating the first experimental

realisation of the spin-crystal kagome ground state is a perfect opportunity for testing the capabilities of TMW.

Figure 3 a) shows an MFM image of a kagome ASI rosette comprising 1 µm × 75 × 10 nm2 nanowires with

all macrospins aligned along Hsat. TMW was then performed in zero-field to selectively remagnetise 14 of the 30

macrospins, with the resultant state shown in fig. 3 b). The macrospins in each of the outer hexagons now lie in

closed continous spin-loops, with chirality alternating between adjacent hexagons (highlighted by circular arrows

within hexagons). This configuration not only satisfies the ice-rules but also exhibits magnetic charge and spin

order, with the observed charge and spin configurations exactly matching those previously reported in theoretical

schematics of the spin-crystal ground state18,30,36,37,40. As such, we conclude that the TMW-written state presented

here represents an experimentally-realised kagome ground state. That states eluding observation up to this point,

despite direct efforts to prepare them, may now be written to order using readily-available equipment is an important

threshold development for the fields of ASI and scanning probe patterning. A TMW-realised alternate-chirality

ground state is presented in figure S3 of the supplementary information.

Negative effective temperature states in artificial spin ice

As well as providing reliable access to low-energy states, TMW also significantly expands the accessible ASI mi-

crostate space by allowing preparation of high-energy, low-entropy microstates such as the monopole-chains discussed

above. In general, the thermal anneals used to prepare ASI states work by keeping ASI systems in thermodynamic

equilibrium with an (effective, in the case of field protocols) heat bath. As the temperature of the heat bath is

reduced, the ASI settles into a low-energy state with relatively few ice-rule defects. Rotating-field protocols may

be thought of in a similar way by assigning them an effective temperature based on the field step-size and treating
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Figure 4: Negative effective temperature in artificial spin ice.

Entropy vs. excitation energy histograms for a) a four-vertex and b) a twelve-vertex kagome ASI system. Excitation energy

normalised by EM − E0 corresponds to number of monopole vertices present. Red bars denote positive temperature states,

shaded blue bars indicate negative effective temperatures.

c) Effective temperature phase diagram for one-to-eighteen vertex kagome ASI systems. Negative effective temperatures

arise when more than one-quarter of total vertices are in monopole-defect configuration.

d) MFM image of a twelve-vertex (counting three-macrospin vertices only) kagome ASI rosette. Five monopole-defect vertices

are observed, indicating a negative effective temperature state. Scale bar indicates 1 µm.

8



them as a heat bath29. In contrast to these methods, TMW can reliably prepare ASI in states that are inherently

out-of-equilibrium. For example, it is vanishingly improbable that a microstate with 19 monopoles on a system of

40 honeycomb vertices as shown in figure 2 c) would occur through any sort of equilibration process with a heat

bath of finite temperature. To formalise this idea, it is useful to invoke the concept of an effective spin temperature

for ASI as introduced by Nisoli et al 29. In statistical mechanics, the temperature of a system is formally defined

as a measure of how the energy of that system varies with disorder T = ∂U
∂S . Taking into account only nearest-

neighbour interactions (which dominate ASI energetics), the energy of an ASI system is determined by the number

of monopoles (ice-rule violations) in the system, with each monopole raising the total energy by the difference in

energy between a monopole and ice-rule vertex, ∆E = EM − E0. The total energy of the system is thus given by

E = Eice+n∆E, where Eice is the system energy when all vertices obey ice-rules and n is the number of monopoles.

Since the fully ice-rule compliant state is highly degenerate but the fully excited state (where every vertex hosts

a monopole) has just two possible configurations (spin-degeneracy), there must exist a range of microstates with

negative effective temperatures41,42. Such states are precisely those difficult to access via thermal and rotating field

protocols, but trivial to realise via TMW. It is worth briefly stating that assigning a state an effective temperature

does not necessarily imply that state is thermally active, the activation energy of the systems considered here is

∼ 105 K. Effective temperatures instead describe the local shape of the energy and entropy landscape43–45.

By directly enumerating the number of monopoles (and therefore system energy) for all microstates in small

kagome ASI systems and plotting monopole number versus entropy (figure 4 a-c), the sign of the effective temper-

ature may be clearly visualised from the gradient ∂U
∂S . Figures 4 a) and b) show this relation between entropy and

energy/monopole-number in four and twelve-vertex systems respectively, with a clear change in gradient and asso-

ciated transition to negative temperature occurring in both when over a quarter of vertices host monopole defects.

The effective temperatures of all microstates in 1-18 vertex systems were calculated, with results shown as a phase

diagram in fig. 4 c). For all system-sizes negative temperatures were seen to correspond to microstates in which

over a quarter of total vertices were monopole-defects. The five-monopole microstate on a 12-vertex honeycomb

rosette shown in figure 4 d) thus corresponds to a negative temperature state directly written by TMW, as does the

monopole-chain state shown in fig. 2 c). By comparison, the rosette system in fig. 4 d) would have to be heated

to almost 105 K and cooled near-instantaneously to have a 0.1% chance of leaving the system in a five-monopole

state. ASI enables direct room-temperature access to the complex and exotic physics of frustrated magnetism, with

system energetics and time-scales easily tunable via fabrication. Adding to prior observations of otherwise-elusive

ice-rule behaviour6 and monopole-defects3, TMW now introduces ASI as a model-system in which to study the

dynamics and evolution of negative temperature states.

Conclusions

In this article we have presented an outline and demonstration of topological defect-driven magnetic writing, a

powerful and simple-to-use writing technique broadening the field of magnetic scanning probe patterning and al-

lowing unprecedented access to novel and exotic states in artificial spin ice and related nanomagnetic systems.

Reconfigurable magnetic metamaterials and the associated technological benefits are now a realistic and practical
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prospect, setting the scene for a period of rapid development as long-proposed designs including hardware neural-

networks and reconfigurable magnonic crystals may now be experimentally realised. The spin-crystal ground state

and negative-temperature monopole-chain states written in this work are evidence that all possible magnetic config-

urations are now accessible, both previously studied yet hard-to-access states through to states exhibiting exciting

new physics, considered unattainable until now.

While the ultimate throughput of any scanning probe technique is limited by the mechanical nature of a moving

tip, the magnetic charge supplied here by an magnetic force microscope tip may come from a number of sources.

A domain wall in a nanowire of the dimensions discussed here has qm ≈ 10−9 Am, within the limits for achieving

topological defect-driven magnetic writing. One can envisage a system comprising a three-dimensional network of

nanowires whereby current-controlled domain walls replace the magnetic force microscope tip, greatly enhancing

flexibility, throughput and integration with existing technologies.

Methods

Structures and fabrication

Nanostructures were fabricated using an electron beam lithography lift-off process with PMMA resist. Permalloy

(nominally Ni81Fe19) of 10 nm thickness was deposited by thermal evaporation onto Si/SiO2 substrates.

Magnetic force microscopy

The magnetic charge states of nanostructures were written and measured using MFM with HM and LM tips

respectively. MFM is directly sensitive to magnetic charge46, providing an ideal tool to read and write magnetic

charge landscapes. Two MFM systems were used, a Dimension 3100 and an Asylum MFP-3D. An interface was

developed to define the path of the tip relative to the nanopatterned structures (and therefore the magnetic state to

be written) graphically, by drawing over an existing AFM/MFM image or CAD schematic, or by defining an (x, y)

position list. Writing does not occur when the tip-sample separation is over 5-10 nm, allowing for free movement of

the tip around samples between writing events by raising the tip. Writing operations were performed with the tip

moving perpendicular to the wire length. MFM imaging was performed in a tapping mode at lift-heights of 35-45

nm. The HM and LM tips have moments and stray fields of ∼5 × 10−13 emu, 690 Oe and ∼3 × 10−14 emu, 320

Oe respectively47, with stray fields measured at a typical AFM tip-sample separation (∼2-5 nm) from the tip apex.

Experimental determination of the monopole-like magnetic charge associated with MFM tips is challenging, but

prior work using Lorentz electron tomography have arrived at values of ∼10−8 Am48, similar to those simulated

here. Writing has been successfully performed on wire-like structures of widths and lengths up to 150 nm and 4

µm with tip speeds of up to 400 µm/s. Significantly faster tip speeds of up to 200 m/s show successful writing in

micromagnetic simulations but cannot yet be experimentally tested using our current equipment.
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Micromagnetic simulation

Additional insight into the reversal dynamics of the nanowires was provided by performing a series of micromagnetic

simulations using the object-oriented micromagnetic framework (OOMMF)49. Typical micromagnetic parameters

for permalloy were used, i.e. saturation magnetisation, MS = 860×103 A/m, exchange stiffness, A = 13×10−12 J/m,

zero magnetocrystalline anisotropy and a Gilbert damping parameter, α = 0.01. The point probe approximation

(that at small tip-sample separations an MFM tip may be described by a point monopole moment31,32) was

used. This approximation is widely used in MFM simulations and previous work analysing systems with similar

dynamics has shown that both dipolar and monopolar-modelled tip fields induce tip-localised magnetisation vortices

in ferromagnetic thin films33,34.

The simulated nanowires were 10 nm thick with widths of 75 nm and were divided into 2.5 × 2.5 × 10 nm

cells. Finite-length wires of 0.5-3 µm length were studied along with a semi-infinite wire of 10 µm length where the

demagnetisation effects from the wire ends were corrected for by the inclusion of plates of fixed magnetic charge at

the nanowire ends50.

The field from the MFM tip was modelled as a single magnetic charge, qtip, producing a radial field H =

µ0

4π
qtip
r2 at a distance r from the charge. During the simulation this magnetic charge moved perpendicular to the

nanowire axis in 1 nm steps every 10 ps representing a velocity of 100 m/s. This is faster than the velocities of

∼ 10−4 m/s investigated experimentally. However, the simulated speed is well below those associated with exciting

any precessional spin modes and is believed to be reasonable in this case. To avoid a discrete jump in applied field

on the nanowire when starting the simulation, the magnetic charge was initialised 300 nm away from the nanowire

in the plane of the wire. Following the magnetic charge interaction with the wire, the wire was allowed to relax to

an energetically stable state in zero field to obtain its final configuration.
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