
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Effective and Efficient API Misuse Detection via Exception
Propagation and Search-based Testing

Maria Kechagia∗
m.kechagia@tudelft.nl,m.kechagia@ucl.ac.uk

Delft University of Technology, UCL

Xavier Devroey, Annibale Panichella, Georgios
Gousios, Arie van Deursen

{x.d.m.devroey,a.panichella,g.gousios,arie.vandeursen}@tudelft.nl
Delft University of Technology

ABSTRACT

Application Programming Interfaces (APIs) typically come with
(implicit) usage constraints. The violations of these constraints (API
misuses) can lead to software crashes. Even though there are sev-
eral tools that can detect API misuses, most of them suffer from a
very high rate of false positives. We introduce Catcher, a novel API
misuse detection approach that combines static exception propa-
gation analysis with automatic search-based test case generation
to effectively and efficiently pinpoint crash-prone API misuses in
client applications. We validate Catcher against 21 Java applications,
targeting misuses of the Java platform’s API. Our results indicate
that Catcher is able to generate test cases that uncover 243 (unique)
API misuses that result in crashes. Our empirical evaluation shows
that Catcher can detect a large number of misuses (77 cases) that
would remain undetected by the traditional coverage-based test
case generator EvoSuite. Additionally, Catcher is on average eight
times faster than EvoSuite in generating test cases for the identi-
fied misuses. Finally, we find that the majority of the exceptions
triggered by Catcher are unexpected to developers i.e., not only un-
handled in the source code but also not listed in the documentation
of the client applications.

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; Error handling and recovery; Software testing and

debugging; Search-based software engineering.

KEYWORDS

API misuse, software crash, static exception propagation, search-
based software testing

ACM Reference Format:

Maria Kechagia and Xavier Devroey, Annibale Panichella, Georgios Gousios,
Arie van Deursen. 2019. Effective and Efficient API Misuse Detection via
Exception Propagation and Search-based Testing. In Proceedings of ACM

SIGSOFT International Symposium on Software Testing and Analysis (ISSTA

∗Present address at CREST, UCL, London, UK.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA 2019, 15–19 July, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2019). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION

Developers use external libraries to increase the velocity and reduce
the production cost of software projects [36]. While increasing pro-
ductivity, this form of software reuse comes with several challenges:
dependencies need to be kept up to date [15], developers must learn
the intricacies of each imported Application Programming Interface
(api), and resulting client programs should be robust, efficient, and
responsive. Correctly using third-party apis is not an easy task;
many apis are millions of lines of code large, interact with various
external systems and, importantly, they use stacks of software that
offer increasing levels of abstraction at the expense of observability
of the workings of the underlying layers.

The fact that apis are opaque to developers is known to lead to
incorrect uses (or api misuses [3, 4]) since client applications can
violate the (implicit) usage constraints (often referred to as contract)
of those apis. For example, a violation occurs when a client ap-
plication calls a method that expects a non-null formal parameter
without validating (i.e., via null checks or error handling) the ref-
erences used as arguments. A classification of these violations has
been made by Amann et al. [3, 4]. api misuses can cause software
reliability problems, originating from issues such as poor handling
of user input and resource misuse [3], or even increasing the at-
tack surface of client applications [17, 38]. Documentation is not
adequate, as it is usually either outdated [10], defective [62] or just
ignored by the developers of client applications [48].

While static api misuse detectors can successfully identify spe-
cific types of apis misuses, they suffer from various limitations [4].
In particular, these approaches have a high rate of false positives,
requiring developers to manually inspect (via cross-checking [4]
or writing test cases [55]) and review large lists of candidate api
misuses produced by static analysis. In fact, according to a recent
empirical study of Johnson et al. [27], who interviewed develop-
ers, false positives and developer overload are the main sources of
dissatisfaction with static analysis tools.

Dynamic analysis tools [20, 33, 34] can pinpoint crash-related
bugs in the source code without false positives. However, these
approaches have to compromise between the exploration of the
vast space of possible execution paths (referred to as search space)
of the application under test and the time budget allowed for the
discovery of the bugs. If an api misuse requires an additional effort
to get exposed (i.e., if only a few execution paths contain it), the
analysis may fail to detect it. To overcome this, we can either set
a larger search-time budget or reduce the search space to include
only potentially interesting parts of the application under test.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ISSTA 2019, 15–19 July, 2019, Beijing, China Kechagia, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

The main idea of this paper is to restrict the search space of
automatic test case generators to crash-prone api-call locations
(candidate misuses). I.e., method calls that might throw exceptions
at runtime. To this end, we define a novel approach, Catcher,
that combines static exception propagation analysis and test case
generation to effectively and efficiently discover candidate misuses
in software under test. Catcher can be used by developers of Java
projects to automate both (i) the detection of misuses of the Java
platform’s api that can cause client application crashes and (ii) the
generation of test cases triggering such crashes.

Catcherworks as follows. First, static exception propagation [24,
49] (based on Soot [57]) identifies call paths that propagate runtime
exceptions raised by api methods but remained unhandled in the ap-
plication call sites, potentially causing application crashes [18, 30].
The call sites to each one of those api methods represent candi-
date misuses, defining the search space for the test-case generation.
Then, traditional code coverage heuristics and the previously iden-
tified candidate misuses are used for focusing the automatic test
suite generator EvoSuite [19, 20] towards the generation of test
cases that trigger the candidates’ (propagated) exceptions.

To evaluate our approach, we initially examine whether existing
state-of-the-art test coverage-based approaches (here we consider
EvoSuite) are effective and efficient in discovering api misuses
(RQ1). Then, we assess whether the performance of automatic test
suite generators, such as EvoSuite, on detecting crash-prone api
misuses can be improved by Catcher (RQ2). Finally, we cross-
check whether the exceptions that Catcher triggers are listed in
the documentation of the Java platform’s api and the client projects
(i.e., the exceptions are expected) or not (RQ3).

We evaluate Catcher using 21 Java client applications and tar-
get api misuses of the Java’s jdk v. 1.8.0_181. We find that Catcher
can automatically uncover 243 (unique) misuses of the Java plat-
form’s api in 21 client applications. The collected results show that
Catcher can reveal more api misuses (77 cases) that would remain
undetected by plain EvoSuite, while it requires less than 20% of
the time spent by plain EvoSuite.

In summary, we make the following contributions:
• An investigation of state-of-the-art search-based test case
generators (such as EvoSuite) for evaluating their efficiency
and effectiveness in identifying api misuses in client projects.

• A novel technique (Catcher) that combines static exception
propagation analysis and search-based software testing to
maximize the number of found crash-prone api misuses
in software under test and minimize the time needed for
discovering those misuses.

• An empirical evaluation involving 21 Java projects that shows
the effectiveness and efficiency of the proposed solution.

Finally, we provide the data of our study as well as the source
code of Catcher and the scripts for the preprocessing of our re-
sults.1

2 BACKGROUND

api misuses occur when a developer of a client application vio-
lates an implicit (or explicit) usage constraint of an api [4]. Figure 1

1https://github.com/mkechagia/Catcher

class StringTokenizer implements Enumeration<Object> {
...

/**
* Returns the next token from this string tokenizer.
* @return ...
* @exception NoSuchElementException if there are no
* more tokens in this tokenizer's string.
*/

334 public String nextToken() {
...

348 if (currentPosition >= maxPosition)
349 throw new NoSuchElementException();

}
}

(a) StringTokenizer class from the Java jdk (api)

public class ZoneInfoCompiler {
...

687 private static class Rule {
...

696 Rule(StringTokenizer st) {
697 iName = st.nextToken().intern();
698 iFromYear = parseYear(st.nextToken(), 0);
699 iToYear = parseYear(st.nextToken(), iFromYear);

...
}

}
}

(b) ZoneInfoCompiler class from joda-time (client)

Figure 1: Jdk api misuse in joda-time, issue #319

presents a misuse of the Java StringTokenizer api in joda-time:2
the nextToken method might throw a NoSuchElementException,
if the condition on the current position in the input string, is not sat-
isfied (line 348). This post-condition is present in the documentation
of the nextToken method but it is not handled by the constructor
of the Rule class in joda-time. The client (Figure 1(b)) neither
performs a validation check for the input (input sanitization) be-
fore calling the api nor does it use exception handling for that api
call. As a result, this api misuse propagates an exception from the
Java platform’s api to the caller, the Rule constructor, if the st
parameter contains less than three tokens (line 696).

In their recent work, Amann et al. [4] proposed a classification of
api misuses by identifying fourmissing and redundant api-usage el-
ements: (i) missing (resp. redundant) method calls that should (resp.
should not) be called before (resp. after) calling an api method;
(ii) missing (resp. redundant) conditions that should (resp. should
not) be checked before (resp. after) calling an api method; (iii) miss-
ing iterations for methods that should be called in a loop, checking
a particular condition after each call, and redundant iterations for
methods that should never be called in a loop; and (iv) missing
(resp. redundant) exception handling that should (resp. should not)
catch exceptions after calling an api method. According to this
classification, the misuse in Figure 1(a) is both a missing condi-
tion misuse and a missing exception handling misuse: while the
documentation specifies that an exception might be thrown if the
method is called when the input string to tokenize is exhausted,
the client neither respects this implicit contract nor does it handle
the thrown exception.

In this work, we look at such crash related misuses that can lead
to exceptions propagated to the client, as they represent the vast

2Also reported as a GitHub issue: https://github.com/JodaOrg/joda-time/pull/319

2

https://github.com/mkechagia/Catcher
https://github.com/JodaOrg/joda-time/pull/319

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

API Misuse Detection via Exception Propagation and Search-based Testing ISSTA 2019, 15–19 July, 2019, Beijing, China

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Exception-flow
analysis

Call-graph
construction

Exception
propagation Filtering

Candidate
misuses

Initialization

Selection

CrossoverMutation

Search-based
test generation

CATCHER

client.jar

api.jar

Candidate
misuses

Figure 2: Catcher approach overview

majority of misuses [4]. Various static analysis methods are able to
detect such kind of misuses, but they suffer from multiple limita-
tions, including a high number of false positives, preventing their
adoption in practice [4]. Moreover, even though some misuses can
be effectively prevented through static analysis (e.g., by checking
the presence of try–catch blocks to properly handle declared ex-
ceptions), other misuses, such as input sanitization, require dynamic
analysis (e.g. using search-based testing) to cover the input and
output domains of a method.

Various search-based test generation approaches and tools have
been proposed [19, 20, 34, 35] and shown effective in discovering
real faults [2, 45, 52]. Those approaches rely on various kinds of cri-
teria (like line and branch coverage [51], or input and output value
domains coverage [50]) and algorithms (like genetic algorithms [21]
or multi-objective algorithms [42, 43]) to explore a (large) search-
space, i.e., all the possible test cases that one could write for a given
system under test. To the best of our knowledge, this work is the
first attempt that studies the relationship between search-based
test case generation and crash-related api misuses.

3 THE CATCHER APPROACH

Catcher combines static exception propagation analysis [24, 49]
with search-based test case generation [19, 20] to provide evidence
of api misuses as a set of test cases. To achieve this, we use the
approach described in Figure 2: (i) the static exception propagation
analysis builds a call graph of the api under test with information
about exceptions that might be thrown at runtime; (ii) using this
graph, candidate misuses are identified by applying exception-flow
analysis to api calls in the client, where such exceptions may be
propagated; (iii) a rule set is then used to filter out propagated excep-
tions that are directly handled by the client (i.e., using try–catch
constructs or throws clauses in method signatures); (iv) the remain-
ing candidate misuses become coverage targets for the search-based
test case generation. The test suite generated, in the latest step, will
contain test cases that cover the target api calls in the client appli-
cation and trigger the propagated exceptions.

3.1 Static Exception Propagation

3.1.1 Call Graph Construction. The first step of our approach
consists in analyzing the api source code to spot runtime (i.e.,
unchecked) exceptions that may be propagated to the callers of the
api. This is done by building an annotated call graph, whose nodes
are the methods in the api and the edges denote the call dependency
between the caller (outgoing edge) and the callee (ingoing edge). The

nodes are annotated with the list of runtime exceptions that might
be thrown by the corresponding methods. Then, we build the an-
notated call graph for the client application under analysis and we
connect it to the call graph of the api based on the method calls
between the client and the api. On the resulting global call graph,
we identify the first set of candidate misuses, which are the client
nodes that have outgoing edges to the api nodes with annotated
exceptions. Additional misuses are detected through the exception
propagation analysis (see the next subsection 3.1.2).

For instance, the global call graph for the example in Figure 1
would contain two nodes: one is the method nextToken() from
the api and the other one is the constructor Rule from the client.
The two nodes are connected by an edge outgoing for the latter
and ingoing for the former. Based on our analysis, the constructor
Rule is a candidate misuse because it directly calls an api method
that can throw an exception at runtime.

3.1.2 Exception-flow Analysis. To enlarge the set of candidate mis-
uses, we use reachability analysis to propagate the exceptions from
the api to the client. Specifically, for every node Napi of the api, its
annotated exceptions are backward propagated to all its adjacent
nodes Nj (depth 1). Then the propagation is done for the node
Nj recursively. The propagation path ends when the first client
node in the global graph is encountered (depth k). All client nodes
with exceptions propagated from api nodes are candidate misuses
because they may expose exceptions thrown by the api.

The number of candidate misuses grows exponentially with the
depth k that we consider. Buse andWeimer, showed that exceptions
with propagation depths larger than 3 are rarely listed in the docu-
mentation [12]. This possibly happens because it is not efficient for
developers to consider these exceptions for debugging. For the sake
of our study focusing on the Java platform’s api, we consider calls
with depth k ≤ 4 to balance scalability and usability of Catcher.

3.2 Filtering

The previous step identifies all api calls annotated with propagated
exceptions. However, not all the identified calls are necessarily api
misuses. In fact, api usage constraints can be satisfied at the client
side through a combination of program elements [3]. A try–catch
block can be used to handle an exception propagated from the api to
recover the client from the corresponding error state. Furthermore,
the client application may include the propagated exception in the
throws clause in the method signature of the caller. This postpones
the exception handling to other methods and classes of the client.
These two types of program elements (i.e., try–catch blocks and
throws clause in method signatures) can be easily identified via
static analysis rules. To this aim, Catcher uses a rule set to filter
out api calls with propagated exceptions that are correct api usages:
(i) calls made by the client to the api within a try–catch block
catching the propagated exception. And, (ii) calls made by the client
to the api within a method itself declaring a propagation of the
exception using a throws clause. Besides, the rule set takes the
Java Exception hierarchy into account. For instance, if an api
method throws an IOException and the client has a catch clause
for Exception, our rule set filters out the related candidate misuse.
The list of the remaining candidate misuses is the input of the
Catcher’s search-based test case generation.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ISSTA 2019, 15–19 July, 2019, Beijing, China Kechagia, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3.3 Focused Search-based Test Generation

Given the list of candidate misuses identified in the previous steps,
the generation of a test suite can be formulated as a search problem:

Problem 1. LetM = {m1, . . . ,mn } be a set of candidate misuses

(test targets) for a client class C . Our problem is to find a test suite

T = {t1, . . . , tn } for C that indentifies as many api misuses inM as

possible by triggering the corresponding propagated exceptions.

A candidate misusemi ∈ M is successfully identified by a test case
tj ∈ T if the following conditions hold: (1) tj covers the candidate
api call in the client class C (the call site), (2) tj triggers the propa-
gated exception, and (3) the last stack trace element in the crash
stack trace is the (misused) api method. To solve the aforemen-
tioned problem, we need an adequate heuristic to guide a search
algorithm toward covering the candidate misuses inM .

3.3.1 Heuristic. We consider three state-of-the-art search heuris-
tics. First, we use the line coverage heuristic, which is defined as the
sum of the approach level (al) and the normalized branch distance

(bd) [35]: bcmi = al(tj ,bk) + norm
(
bd(tj ,bk)

)
for test case tj and

branch bk . Such a heuristic is widely applied in white-box testing
and, in our case, it measures how far a test case tj is to cover the
api call site.

Additionally, we also consider input coverage icmi (tj ,bk) and
output coverage ocmi (tj ,bk) for the client method (caller) containing
the potential api misuse. These two heuristics are black-box and
aim to increase the input and the output data diversity during the
test generation process. More diverse input/output can increase
the likelihood of triggering unexpected behaviors [50], such as
triggering the propagated exceptions.

ForM , we have the following set of objectives to optimize:
f (m1) =min(bcm1),max(icm1),max(ocm1)

. . .

f (mn) =min(bcmn),max(icmn),max(ocmn)

3.3.2 Search Algorithm. As other search-based test generation
problems, covering as many candidate misuses as possible with
Catcher is a multi-target problem since a client class can contain
multiple candidate misuses (targets) to cover. Therefore, as a search
algorithm, we choose the Dynamic Many-Objective Sorting Algo-

rithm (DynaMOSA) [42] , which is a state-of-the-art many-objective
algorithm that optimizes multiple coverage targets simultaneously.
We opted for DynaMOSA since recent studies [13, 45] showed its
better effectiveness and efficiency compared to other multi-target
approaches, such as the whole-suite approach, random search, evolu-
tion strategies, and other many-objective algorithms.

In DynaMOSA, coverage targets (e.g., branches) correspond to
search objectives, which are prioritized based on their structural
dependencies in the control dependency graph of the class under
test. The search starts by optimizing coverage targets positioned
higher in the hierarchy; the other targets are incrementally rein-
serted in the search when their parent targets are satisfied (for
instance, reach branch n before trying to reach branch n + 1). Using
our heuristic, the algorithm executes as follows:

Initialization. Catcher starts by identifying fromM a pool of
client call sites (containing the candidatemisuses). Next, it generates
a set of random test cases to produce an initial population.

Selection. To form the next generation, Catcher applies elitism
by using a preference sorting function [42]. For each candidate mis-
usemi , the preference sorting function takes the test cases with
the best individual objective scores and insert them into the next
population. The remaining test cases are then sorted and selected
by the non-dominated sorting algorithm proposed in NSGA-II [16].

Reproduction. In each generation, parents are selected using
the tournament selection and new test cases (offspring) are created
by applying crossover and mutation operators [19].

Objective update. Once a test case reaches the api call site, the
exception inmi has to be thrown and propagated through the same
methods. Thus, we ensure that the test tj is archived to be part of
the final test suite only if tj triggers and propagates the exception
through the same methods asmi . Whenmi is successfully detected,
the list of objectives is (dynamically) updated by removing the
corresponding objectives bcmi , icmi , and ocmi .

Termination. The iteration process continues untilM is covered
or the search time is over.

3.4 Implementation

The implementation of Catcher relies on Soot [57] for the call
graph construction and the exception-flow analysis, and on Evo-
Suite [19] for the search-based test case generation.

We choose Soot for the following reasons: first, Soot is a well-
known static analysis tool used in studies [8, 12, 24]; second, Soot’s
soundness and precision has been evaluated by researchers [47];
third, Soot can be easily used to analyze a Java program, by receiv-
ing only the application’s .jar file as input; finally, the produced
output can be easily used in exception flow analysis [12, 24, 40]. In
Catcher, we use Soot to produce an annotated global call graph
where we track the propagated exceptions from the api to the client.

After filtering the candidate misuses, based on the rule set de-
scribed in Section 3.2, Catcher relies on EvoSuite to focus the
search-based test case generation process. We modify the standard
EvoSuite implementation of the DynaMOSA algorithm following
the description of Section 3.3.2, and we use the heuristics described
in Section 3.3.1. We execute this modified implementation only on
classes and methods included in the list of the candidate misuses.

4 EVALUATION PROTOCOL

This section details the empirical study we conducted to assess the
performance of Catcher.

4.1 Study Context

The context of our study consists of Java client applications and the
third-party apis they use. We selected the latest version of 21 open-
source Java projects, whose names and characteristics are reported
in Table 1. We chose these projects because they are well-known,
regularly maintained, and have been already used in the related
literature to assess the performance of testing tools (e.g., [42, 43]) or
to build datasets of known bugs (e.g., [28]). Also, they have different
sizes, development teams, and application domains (e.g., byte code
manipulation, math library, command line parser), forming a well-
diversified benchmark. Their source code and documentation are
publicly available for the reproducibility of our results.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

API Misuse Detection via Exception Propagation and Search-based Testing ISSTA 2019, 15–19 July, 2019, Beijing, China

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: Java projects in our Benchmark

ID Name Version Files LOC # Candid. Misuses
BCEL bcel 6.2 489 39K 223
CLI commons-cli 1.4 50 7K 114
CODEC commons-codec 1.12 124 20K 580
COLL commons-collections 4.2 535 63K 213
COMP commons-compress 1.17 352 43K 587
LANG commons-lang 3.7 323 76K 1024
MATH commons-math 3.6.1 1617 209K 411
EASY easymock 3.6 204 14K 217
GSON gson 2.8.5 206 25K 157
HAMC hamcrest-core 1.3 152 7K 34
JACK jackson-databind 2.9.6 919 114K 251
JAVS javassist 3.23.1 527 82K 313
JCOM jcommander 1.71 139 6K 68
JFCH jfreechart 1.5.0 990 134K 681
JODA joda-time 2.10 330 86K 1053
JOPT jopt-simple 5.0.4 192 9K 107
NATT natty 0.13 27 3K 33
NEO4 neo4j-java-driver 1.6.2 510 52K 784
SHIRO shiro-core 1.3.2 653 31K 223
XJOB xwiki-commons-job 10.6 67 3K 616
XTEX xwiki-commons-text 10.6 3 101 11

The projects in our benchmark use various third-party apis. How-
ever, we consider only the apis of the Java jdk (version 1.8.0_181)
rather than all possible third-party apis used by these projects. We
do this guided by the fact that the Java platform’s api is extensively
documented, more than other third-party apis [29] (e.g., Android,
Apache commons). Having well-documented apis is critical for
us to classify and understand the detected misuses (see Section
5). Furthermore, the Java platform is well-known and millions of
developers use it to build their programs. While in our study we
focus on the Java platform’s api, our approach can be applied to
verify the usages of other third-party apis, including those that are
not as extensively documented as the Java api.

4.2 Research Questions

We investigate the following research questions:
RQ1: How do existing unit level coverage-based test generation tools

perform in discovering api misuses?

With this first research question, we aim to examine the effective-
ness and efficiency of existing state-of-the-art automatic test suite
generators regarding their capability to generate test cases able
to expose api misuses. We are interested in investigating this re-
search question because api calls are statements in the source code
of the client applications and they can be covered by traditional
unit-test generation tools (such as EvoSuite) tailored to maximize
coverage-based criteria (e.g., branch coverage). However, covering
api call sites does not necessarily imply that the corresponding tests
can trigger the exceptions propagated from the apis, exposing the
misuses. To the best of our knowledge, we are the first to apply and
evaluate such tools to study how they help to expose api misuses.
RQ2: DoesCatcher improve the performance of existing test coverage-

based approaches on detecting api misuses?

With this second research question, we investigate the impact of
reducing the search space in test case generation by using informa-
tion from the static exception propagation. Namely, we examine
whether we can get test cases that expose more api misuses and
in less time, by considering only particular paths with candidate

misuses identified by Catcher during the search. To this extent, we
compare the effectiveness and efficiency of Catcher and EvoSuite
for api misuses detection.

RQ3: What types of api misuses does Catcher expose?

Using Catcher, we can argue about particular api misuses (related
to constraints misuses and exception handling misuses) at code
level. apis come also with their reference documentation, which can
significantly affect the robustness of client applications [12, 14, 30].
If an exception that might throw at runtime is not listed in the
documentation (i.e., it is unexpected), developers stay unaware
of the possible manifestation of that exception at runtime. Then,
developers usually leave these exceptions unhandled decreasing the
robustness of their programs. Based on that, we want to examine
whether the exceptions triggered by Catcher are documented (and
therefore expected/known by developers using the api) or not.

4.3 Baseline Selection and Parameter Setting

To answer RQ1, we select EvoSuite [19, 20] as our baseline. Evo-
Suite is a state-of-the-art testing framework for generating unit
test suites for Java classes. It won the latest two editions of the sbst
tool context [37, 46], which showed its ability to produce tests with
higher code coverage and better fault detection capability compared
to alternative tools (e.g., Randoop [41]). EvoSuite implements var-
ious search algorithms for test case generation. In our study, we use
the Dynamic Many-objective Sorting Algorithm (DynaMOSA) pro-
posed by Panichella at al. [42], which is the same many-objective
genetic algorithm used in Catcher. We select DynaMOSA because
it outperforms other multi-target and single-target approaches as
demonstrated by recent studies [13, 42, 43, 45] that compare differ-
ent algorithms in test case generation.

EvoSuite optimizes eight test criteria simultaneously as they
are described by Rojas et al. [50]: branch, line, weak mutation, input,
output, method and exception coverage. In this study, we consider
all these criteria as recent studies showed that their combination
increases the fault detection capability of the generated test suites
[26, 44]. Suites with higher fault detection capability are likely able
to detect more api misuses leading to crashes. When enabled with
exception coverage, EvoSuite archives all test cases that triggered
an exception and that are created when trying to maximize the
other aforementioned coverage criteria. The archived test cases are
included in the final test suite, which contains test cases that allow
reaching high code coverage plus all test cases generated during
the search that triggers an exception. Some of these crashes might
be related to propagated exceptions due to api misuses.

To answer RQ2, we compare EvoSuite and Catcher. Both
EvoSuite and Catcher share the same search algorithm (i.e., Dy-
naMOSA) and the same test case generation engine (e.g., genetic
operators, chromosome representation). The differences between
the DynaMOSA algorithm in EvoSuite and Catcher regard the
objectives they optimize. The former targets all source code ele-
ments (e.g., branches, lines) for code coverage optimization. Instead,
as explained in Section 3.3, the latter targets only candidate apis
misuses (that are specific lines in the source code) as well as input
and output coverage for the client methods (callers) containing
candidate misuses.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ISSTA 2019, 15–19 July, 2019, Beijing, China Kechagia, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Parameter Setting. Search algorithms have various parame-
ters to set, which may potentially impact the results of our study.
However, Arcuri and Fraser [7] showed that parameter tuning
in search-based software engineering is extremely expensive and
does not provide substantial improvements compared to default
parameter values. We use the default parameter values suggested
in the literature [7, 20, 43]: EvoSuite and Catcher were config-
ured with a population size of 50 test cases; test cases are selected
using the tournament selection, with tournament size s=10. Each
newly generated test t is mutated through a uniform mutation with
the probability pm=1/n, where n is the number of statements in t .
EvoSuite and Catcher were configured with a search budget of
three minutes per each class under test. We use this setting because
it represents a reasonable compromise between running time and
coverage are reported in the related literature [21, 45].

4.4 Experimental Protocol

Catcher generates the list of candidate api misuses by applying
the exception propagation algorithm and the rule set as described
in Section 3.2. The number of candidate misuses for each project in
our benchmark is reported in the rightmost column of Table 1. Then,
test cases are generated only for classes that, according to the first
two steps in Catcher, contain candidate api misuses. Therefore,
classes with no candidate misuses are not targeted by Catcher for
the test case generation phase. Instead, EvoSuite does not iden-
tify candidate api misuses before starting the test case generation
process. Hence, we ran EvoSuite on all classes of projects in our
benchmark and analyzed the synthesized test suites.

To address the random nature of EvoSuite and Catcher, we
ran each tool 25 times on each class under test. For EvoSuite,
the classes under test are all classes in the benchmark projects.
For Catcher, the classes under test are those classes identified as
having candidate api misuses. In total, for Catcher, we performed
905 (classes) × 25 (repetitions) ≈ 22,625 search executions, with
three minutes of search budget per each execution. For EvoSuite,
the number of classes increases to 8,409 corresponding to ≈ 210,225
search executions, with thee minutes of search budget each. All
executions were performed on a two node cluster. Each cluster
node ran a gnu/Linux system (Ubuntu 16.04 lts) with Linux kernel
4.4.0, on a dual 8-core 2.4ghz Intel E5-2630v3 cpus with 64gb of
ram. We used Oracle’s Java vm (jvm) version 1.8.0_181, allocating
up to 12gb for the jvm.

In each run, we collected the generated test suite and as well
as the total running time needed for completing the search. We
use the collected data to answers RQ1 and RQ2. In particular,
we re-executed the generated test suite (either by Catcher and
EvoSuite) at the end of each search, to identify test cases that
triggered an exception. Then, we compared the corresponding crash
stack traces with the list of candidate api misuses identified with
the exception propagation analysis. Catcher and EvoSuite expose
a target misusemi if they generate a test case tj that triggers an
exception propagating from the api to the client in the same way
asmi . In other words, the detection requires that the following two
conditions hold: (i) the name of the exception triggered by tj and
the name of the propagated exceptionmi coincide; (ii) the chain of

call sites ofmi appears in the stack trace of the exception triggered
by tj .

To evaluate the effectiveness in RQ1 and RQ2, we compute the
number of misuses exposed by Catcher and EvoSuite in each in-
dependent run. To measure the efficiency, we compute the total
execution time taken by Catcher and EvoSuite for each project in
each independent run. The running time for Catcher is measured
by taking into account (1) the time required by the static exception
propagation analysis (for all steps in Section 3.1) to identify poten-
tial api misuses, (2) the test case generation time (i.e., up to three
minutes) and (3) the post-processing. For EvoSuite, the running
time includes (1) the search budget (up to three minutes) and (2)
the post-processing. More specifically, we post-processed the test
suites generated by the two tools to remove statements in the test
cases that do not contribute to coverage or trigger the exceptions
(test suite minimization); furthermore, assertions are automatically
generated using mutation analysis [23]. Notice that Catcher uses
the post-processing engine of EvoSuite.

We compare both approaches (Catcher and EvoSuite) by con-
sidering the median and the interquartile range (IQR) of the number
of exposed api misuses and the running time over 25 independent
repetitions. Due to space limitation, the results are reported at
project level. We use the non-parametric Wilcoxon Rank Sum test
with a confidence level α = 0.05 to assess the statistical significance
of the differences (if any). Besides, we use the Vargha-Delaney Â12
statistic [58] to measure the effect size of such differences.

To addressRQ3, we inspect the apimisuses detected by Catcher
by analyzing and re-executing the generated tests, and inspecting
the source code and the documentation (Javadoc) of both the api
callers in the client applications and the misused apis themselves.
To reduce biases, we partially automated the analysis using a script
which checks whether the propagated exceptions were adequately
documented (e.g., reported in the Javadoc with the @throws or
@exception tags) (i) in the apis of the Java jdk and (ii) in the
documentation or the source code comments of the callers (call
sites) in client applications. The output of this analysis resulted in
a classification of three types of api misuses that are discussed at
the end of Section 5.

5 RESULTS

Results of RQ1. Table 2 reports, for each project, the median,
the interquartile range (IQR), and the total number of unique api
misuses detected by EvoSuite across 25 runs. As we can notice,
EvoSuite can detect on average 123 crash-related api misuses in
the 21 benchmark projects. If we consider all api misuses that are
detected at least once across 25 runs, the total number of detected
misuses is 166. While EvoSuite can detect some misuses by maxi-
mizing code coverage, the variability of the results is very high for
some projects. For example, if we consider the project Gson, we can
notice that EvoSuite detects on average two misuses. However,
if we run EvoSuite multiple times, the total number of unique
misuses being detected is eight. Therefore, the set of discovered
misuses differs substantially between two independent runs. To
have more reliable results, we would need to run EvoSuite multi-
ple times, with a corresponding increment of the overall running
time. A similar observation can be done for other projects, such as

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

API Misuse Detection via Exception Propagation and Search-based Testing ISSTA 2019, 15–19 July, 2019, Beijing, China

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Statistics on the comparison between the number of

crash-related apimisuses exposed by Catcher and EvoSuite.

Catcher EvoSuite Significance

Project Median IQR Total Median IQR Total p-value Â12
BCEL 8 1.5 9 7 1 7 <0.0001 0.87 (L)

CLI 0 - 0 0 - 0 1.0000 –
CODEC 9 - 9 9 1 9 <0.0004 0.72 (M)

COLL 10 - 10 6 2 9 <0.0001 1.00 (L)

COMP 28 7 34 10 3 18 <0.0001 0.99 (L)

LANG 30 1 32 20 3.75 23 0.0052 0.83 (L)

MATH 10 2 12 9 - 9 <0.0001 0.88 (L)

EASY 11 1.25 16 9 1.75 11 <0.0001 0.96 (L)

GSOM 12 4 16 2 6 8 <0.0001 1.00 (L)

HAMC 0 - 0 0 - 0 1.0000 -
JACK 5 1 6 2 - 5 <0.0001 0.95 (L)

JAVS 4 - 4 2 - 2 <0.0001 1.00 (L)

JCOM 1 - 2 1 - 1 0.0810 0.56
JFCH 21 5 27 14 3 23 <0.0001 0.99 (L)

JODA 20 1 25 5 1 11 <0.0001 1.00 (L)

JOPT 3 - 3 3 - 3 1.0000 0.50
NATT 4 - 4 3 - 4 <0.0001 0.96 (L)

NEO4 14 1 17 8 - 8 0.0219 0.91 (L)

SHIRO 7 - 7 6 - 6 <0.0001 1.00 (L)

XJOB 10 0.75 10 7 3 9 <0.0001 0.96 (L)

XTEX 0 - 0 0 - 0 1.0000 0.50
Total 207 243 123 166

Table 3: Execution time (in s) for Catcher and EvoSuite.

Catcher EvoSuite Catcher

is %

faster

Exc.

Prop.

Search

Total

Search

Project Median IQR Median IQR
BCEL 621 5,430 2 6,051 93,879 783 94%
CLI 318 2,353 5 2,671 5,475 21 52%
CODEC 327 6,878 3 1,014 17,418 41 95%
COLL 348 6,154 2 6,502 117,995 508 95%
COMP 339 13,780 17 14,119 87,029 400 86%
LANG 343 12,552 72 12,895 30,634 196 58%
MATH 593 12,252 162 12,845 91,825 456 87%
EASY 642 8,879 6 9,521 152,679 533 94%
GSON 333 3,105 181 3,438 17,775 52 81%
HAMC 306 1,086 - 1,392 8,598 7 84%
JACK 371 8,636 1,203 9,007 123,999 698 93%
JAVS 587 9,786 222 10,373 58,331 234 83%
JCOM 317 2,353 - 2,670 14,228 51 82%
JFCH 633 26,488 113 27,121 72,139 319 63%
JODA 540 5,977 175 6,517 46,007 220 86%
JOPT 314 3,085 2 3,399 12,294 9 73%
NATT 759 1,267 - 2,026 45,314 6 96%
NEO4 542 13,972 1,739 13,983 157,081 803 88%
SHIRO 582 5,979 1 6,561 71,270 129 91%
XJOB 591 5,558 158 6,149 100,829 222 94%
XTEXT 299 362 - 661 862 0.33 24%
Total 9,716 149,741 159,457 1,327,080 81%

(∼ 2 days) (∼ 15 days) (mean)

apache-commons-compress (COMP), jackson-databind (JACK),
JFreeChart (JFCH), and joda-time (JODA).

This variability is due to the fact that, in each generation, Evo-
Suite focuses the search on the uncovered targets only (e.g., branches
and mutants). Indeed, as soon as a new coverage target b is covered,
the corresponding test case is stored in the final test suite, and b
is removed from the set of objectives to optimize [42, 51]. While
this heuristic has been proven to lead to a higher overall coverage
[42, 51], it is not suitable for detecting api misuses. Indeed, covering
the api call site is a necessity but not sufficient condition to expose
the api misuses and trigger the propagated exception.

Concerning running time, EvoSuite requires on average 17
hours to complete the test generation for one benchmark project.
The overall running time is proportional to the number and the
complexity of classes in the project under test. Indeed, it varies
from 14 minutes (xwiki-text has three classes) to 1 day, 19 hours
and 38 minutes (for EasyMock) on average. This highlights the need
for test case generation approaches that focus on api misuses.

Results of RQ2. From Table 2, we observe that Catcher detects
on average 84 (+68%) api misuses compared to EvoSuite across
the 25 runs. In total, the number of unique api misuses detected
by Catcher in all the runs is 243, i.e., +77 unique misuses over
EvoSuite. These differences are also confirmed by the statistical
analysis reported on the right side of Table 2: for 16 projects out of
21 (76%), Catcher identifies significantly more api misuses than
EvoSuite. The effect size is always large (in 15 projects out of 16)
and medium (in one project).

Let us consider the example in Figure 3 of an api misuse detected
by Catcher but not by EvoSuite for the class KthSelector from
the project apache-commons-math. The ArrayIndexOutOfBounds-
Exception is thrown at line 120 of the api Arrays.rangeCheck
and propagated back to the client application in the method select.
An excerpt of the code of this method is reported in Figure 3-
(a) while Figure 3-(c) reports the test case generated by Catcher.
When executing the test case, the client method select invokes
the method Arrays.sort using as parameters an array of size 17
and the variables begin=12 end=19. The value of the variable end is
larger than the size of the array and, thus, the exception is thrown
in Arrays.rangeCheck which is indirectly invoked. Notice that
the value of these two variables is computed within the while loop
in lines 84–113. This example is an api misuse because the client
method select should validate the input data (e.g., the length of
the array) before invoking the api.

Table 4 reports the number of api misuses detected by both
approaches, Catcher and EvoSuite, as well as the number of mis-
uses detected by one approach (e.g., Catcher) but not by the other
one (e.g., EvoSuite). We observe that 163 unique api misuses are
detected by both approaches; 80 unique api misuses are detected
only by Catcher; only two unique misuses are detected only by
EvoSuite. Through manual investigation, we discovered that these
two misuses are detected by EvoSuite thanks to the weak mutation

coverage, which leads to generating input data able to weakly kill
mutants (infection state). This input data might increase the likeli-
hood of exposing misuses, although it happens for only two cases in
our benchmark. Future work will be devoted to investigating other
coverage criteria in Catcher, including weak mutation coverage.

Finally, Table 3 reports the running time of Catcher and Evo-
Suite. Catcher requires less than 20% of the time spent by Evo-
Suite in total. On a per project basis, Catcher is on average 80%
faster, with a maximum speedup of 96% for project natty. The
smallest difference is observed in the case of xtext: as xtext is
a very small library comprising only 100 loc, the setup cost for
the static analysis phase in Catcher dominates the total execution
time. For all projects, the differences are statistically significant
according to the Wilcoxon test (p-values<0.0001) with a large effect
size (Â12 > 0.90).

Results of RQ3. Based on the results of our qualitative anal-
ysis (whose procedure is discussed in Section 4.4), we identified

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ISSTA 2019, 15–19 July, 2019, Beijing, China Kechagia, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: Overlap between Catcher and EvoSuite regarding

the unique crash-related apimisuses detected across 25 rep-

etitions.

Project Catcher

⋂
EvoSuite Catcher \ EvoSuite EvoSuite \ Catcher

BCEL 7 2 -
CODEC 9 - -
COLL 9 1 -
COMP 16 18 1
LANG 23 9 -
MATH 8 4 1
EASY 11 5 -
GSON 8 8 -
JACK 5 1 -
JAVS 2 2 -
JCOM 1 1 -
JFCH 23 4 -
JODA 11 14 -
JOPT 3 - -
NATT 4 - -
NEO4 8 9 -
SHIRO 6 1 -
XJOB 9 1 -
Total 163 80 2

public double select(final double[] work, final int[] pivotsHeap, final int k) {
80 int begin = 0;
81 int end = work.length;

...
84 while (end - begin > MIN_SELECT_SIZE) {

...
}

113 Arrays.sort(work, begin, end);
114 return work[k];
}

(a) Class KthSelector from apache-commons-math

java.lang.ArrayIndexOutOfBoundsException:
at java.util.Arrays.rangeCheck(Arrays.java:120)
at java.util.Arrays.sort(Arrays.java:440)
at org.apache.commons.math3.util.KthSelector.select(KthSelector.java:113)

(b) ArrayIndexOutOfBoundsException occurs in the method select

@Test
public void test12() throws Throwable {

double[] doubleArray0 = new double[17];
KthSelector kthSelector0 = new KthSelector();
int[] intArray0 = new int[3];
intArray0[0] = 19; intArray0[1] = 11; intArray0[2] = 15;
kthSelector0.select(doubleArray0, intArray0, 15);

}

(c) The test that is generated by Catcher

Figure 3: Example of apimisuse detected by Catcher but not
by EvoSuite.

three types of misalignment between the api reference documenta-
tion and the api usages in the client applications. The numbers of
misuses for each type are reported in Table 5.

Type#1. The first type of misuses is Complete api documentation—

Inconsistent client. This category includes propagated exceptions
that are listed in the documentation of an api method. However,
these exceptions are neither handled in the caller methods e.g., via
check conditions or code constructs such as try-catch blocks to
handle the raised (yet documented) exceptions, nor documented in

Table 5: Categories of triggered crashes per project.

Project Type#1 Type#2 Type#3
BCEL 9 0 0
CODEC 4 2 3
COLL 8 2 0
COMP 23 5 6
LANG 25 4 3
MATH 9 1 2
EASY 16 0 0
GSON 10 0 6
JACK 4 2 0
JAVS 4 0 0
JCOM 1 1 0
JFCH 26 1 3
JODA 21 4 0
JOPT 3 0 0
NATT 4 0 0
NEO4 17 0 0
SHIRO 6 1 0
XJOB 9 1 0
Total 199 24 20

the Javadoc of the client application. We found out that the large
majority (82%) of misuses exposed (triggered) by Catcher falls
in this category. This result highlights the practical usefulness of
automated tools, such as Catcher, to notify developers of client
applications about possible misuses of an api method.

Type#2. The second type ofmisuses is Incomplete api documentation—

Unaware client. This category includes propagated exceptions that
are not listed in the api reference documentation of the apis and
possibly this leads developers of client applications to api misuses.
From our analysis, we discovered that around 10% of the detected
misuses falls in this category. This is in line with empirical stud-
ies that argue about the impact of undocumented on application
robustness [14, 30].

Type#3. The third type of misuses is Complete api documentation—

Consistent client. This category includes propagated exceptions that
are listed in the documentation of an api method, but the client
chooses explicitly not to handle them in the source code. However,
the developers of the client applications are aware of the propagated
exception and list that exception in its documentation. In this case,
the generated test exercises an expected behavior of the client
method. Nevertheless, the api misuse remains in the source code
and can lead to crashes. Then, the generated test case can still be
added to the existing test suite of the client application and can be
used in later regression testing activities. From our investigation we
found that around 8% of the detected misuses falls in this category.

6 DISCUSSION

In the following paragraphs we report the main research and prac-
tical implications of our work.

Research implications. Our results show that Catcher is an ef-
fective and efficient approach to detect and expose crash-related
api misuses. In particular, the findings of RQ2 indicate that focused
testing of api uses is not equivalent to merely maximizing tradi-
tional coverage criteria, although candidate misuses are statements
in the source code of the client applications. The better detection
capability and performance of Catcher compared to plain Evo-
Suite is due to the heuristics (focusing the search-based test case

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

API Misuse Detection via Exception Propagation and Search-based Testing ISSTA 2019, 15–19 July, 2019, Beijing, China

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

generation) of Catcher. We hope that our study draws new re-
search directions towards the evaluation of the benefits of focused
search-based test case generation. New studies could possibly con-
sider the detection of different types of api misuses e.g., ones that
are related to security and energy efficiency issues.

It is worth noting that EvoSuite combined with the static ex-
ception propagation analysis as implemented in Catcher is more
effective and efficient than using only its default criteria. In partic-
ular, in Catcher, we run EvoSuite by targeting only the classes
for which static analysis provided a list of (filtered) candidate mis-
uses and considering only a subset of the coverage targets, i.e.,
API call sites, input and output coverage for the caller methods.
Furthermore, the exception propagation chains generated by the
static analysis help us to automate the test oracle, i.e., to discover
which generated tests can detect the misuses. In the traditional set-
ting, plain EvoSuite should target all the classes of the examined
projects, resulting in thousands of test suites (with multiple test
cases each) that should be manually evaluated by developers [20]
to identify those cases able to trigger the misuses. Therefore, we
opt for more studies that combine the strengths of static analysis
and automated search-based test case generation.

Practical implications.Catcher can identify apimisuses in client
programs. Both developers of client programs and developers of
apis can use this information to make their programs more robust.

Developers of client programs can use Catcher to correctly
identify, handle and recover runtime errors caused by combinations
of wrong inputs. The test cases that Catcher generates can be used
as a safety net against regressions in both the client and the api
code. The runtime cost of Catcher makes it suitable for use in
release pipelines: Catcher could in less than 4 hours examine a
250k LOC program (for commons-math). As part of an automated
release process, Catcher could prove useful to identify last minute
issues. Finally, Catcher could be further improved to examine
changes on a per commit basis: this would allow it to run as part
of continuous integration pipelines, in order to support interactive
quality assurance processes, such as code review.

Moreover, the information that Catcher produces can be used
upstream by developers of apis, to help them improve the robust-
ness of error-prone methods against wrong or adversary inputs.
api developers can make their code less susceptible to runtime
exceptions by guarding against inputs that Catcher identifies as
erroneous. Catcher tests encode an implicit invocation protocol.
api developers can inspect such tests to identify and fix initialisation
or ordering issues that may lead their apis to crash. If corrective ac-
tion is not possible, documentation can be used to make invocation
protocols explicit to clients.

7 THREATS TO VALIDITY

Here, we present possible confounds in our study that may lead to
invalid research conclusions and affect the generalization of our
results. Also, we refer to the reproducability of our research.

Internal validity. State-of-the-art mining and static analysis de-
tectors for api misuses suffer from low precision [4]. Instead, our
results show that Catcher can precisely detect actual misuses and
provide empirical evidence of such misuses through generated test
cases. However, we acknowledge that we cannot make any claim

about the completeness of Catcher because there is no ground
truth for the projects in our benchmark. Further investigation in
that regards is part of our future agenda. Furthermore, the auto-
mated analysis we performed to evaluate whether the exceptions
triggered by Catcher are listed in the documentation of the Java
platform’s api and the projects can also suffer from imprecision.
Even though we have also manually inspected and confirmed the
results, maybe a few exceptions found to be as undocumented could
finally be listed in the documentation. Another potential threat to
internal validity is the randomized nature of the genetic algorithms
and the seeding-based random search. To address this threat, we
followed the guidelines from the related literature[6]: we launched
each algorithm 30 times, and we used sound statistical tests, namely
the Vargha-Delaney Â12 statistic and the Wilcoxon Rank Sum test,
to drew any conclusion. Another threat is related to the parameter
setting of the search algorithms. We used the parameter values
suggested by the related literature [7, 43, 53].

External validity. We acknowledge that our results regard one
particular api, i.e., the Java 8 platform’s api. Future work includes
the analysis of other Java api versions, as well as additional third-
party Java libraries used by client applications. Additionally, even
though, our results are related to specific client applications, we
used a large benchmark of well-diversified and well-known soft-
ware projects. Thus, we expect that our main conclusions can also
apply to other benchmarks.

Reliability validity. For the reproducibility of our study, we have
made the source code (Catcher), the processing scripts, and our
data publicly available. Specifically, in the data, we include the
examined projects and apis (input), as well as the found test cases
and the types of the triggered exceptions (output).

8 RELATEDWORK

Here, we present related work to the topics of our study listing
api-misuse detection tools, as well as static exception propagation,
search-based testing, and hybrid approaches.

Static api misuse detection. To assist developers to detect apis
misuses, researchers have proposed tools that leverage techniques
including mining of software repositories and static analysis [1,
32, 39, 55, 56, 59]. In general, these tools work as follows. Start
by mining correct api usage patterns, from existing code bases,
and continue by classifying infrequent patterns observed in target
projects as candidate misuses. The produced candidates should be
then manually reviewed by developers. The available techniques
mainly differ on: 1) the representation (e.g., via graphs [39, 59],
formal concepts [32]) of the method call usages and 2) the mining
algorithms (e.g., frequent-itemset mining [56], model checking [1],
frequent-subgraph mining [39]) used to detect infrequent patterns
(outliers)—based on thresholds defined a priori.

Recently, Amann et al. [4] compared 12 state-of-the-art misuse
detectors on a set of known apis misuses collected from existing
bug datasets. They found that all detectors suffer from a number of
limitations. Initially, all detectors have low precision (below 12%)
as they produce a large number of false positives. This means that,
on average, the tools report less than 1.5 api misuses in the top-
20 of their results. Yet these tools typically produce an extensive

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ISSTA 2019, 15–19 July, 2019, Beijing, China Kechagia, et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

list of candidate apis misuses, which developers have to manually
check and approve. Also, most tools require large code bases to
distinguish uncommon—but correct usages—from actual misuses.

Contrary to previous approaches, Catcher 1) effectively and
efficiently identifies crash-prone api misuses eliminating the need
for the manual assessment of the candidate api misuses produced
by the static analysis;—it applies filtering and search-based test
case generation to automatically validate these candidates; 2) it
does not need a code base for learning to distinguish good from
bad api usage patterns—it uses exception propagation analysis to
automatically pinpoint candidate api misuses. In essence, Catcher
sacrifies recall (it does not report all possible misuses) for achieving
high precision (all reported misuses are indeed misuses).

Static exception propagation. Several tools exist for statically
identifying possible exceptions that a method can throw at run-
time [54]. Robillard andMurphy implemented Jex, a tool that applies
inter-procedural analysis and finds all the exception types that a
specific method of a Java program can generate at runtime [49].
Vallée-Rai et al. developed the Soot Java byte code optimization
framework that can identify might-thrown exceptions for api meth-
ods, using (in the first instance) intra-procedural static analysis [57].
Fu and Ryder presented an inter-procedural exception-flow anal-
ysis technique, based on Soot, for the examination of the excep-
tion handling architecture of software systems [24]. Bravenboer
and Smaragdakis combined inter-procedural exception flow anal-
ysis and points-to analysis for better precision in call-graph con-
struction [11]. Garcia and Cacho introduced an inter-procedural
exception-flow analysis tool for .net, called eFlowMining, which vi-
sualizes error handling constructions for the evaluation of systems’
error handling [25].

The exception propagation of Catcher is inter-procedural and
mainly differs from peer approaches in the filtering (Section 3.2) of
the found api-misuse candidates coming from the initial stage of
the static exception propagation analysis (Section 3.1). Our filtering
approach helps us to keep in the candidate misuses’ list only the real
api misuses that refer to: (i) uncaught exceptions and (ii) undeclared
exceptions, in throws clause of the method signature of a caller.

Search-based software testing. Most of the research effort in
search-based software testing (sbst) has been devoted to three main
aspects: (1) evaluating fault detection capability of generated tests
(e.g., [22, 26]), (2) defining heuristics to guide the search process (e.g.
[31, 60]), (3) designing and evaluating different search algorithms
(e.g. [5, 42, 43]). The goal of sbst tools consists in generating test
cases/suites maximizing some coverage criteria (e.g., branch, line
and statement coverage) [20]. Recent studies [26, 50] empirically
investigated the effect of combining multiple coverage criteria on
the quality of the generated test suites and showed a positive impact
on the fault detection capability.

sbst techniques use heuristics that are specific to each coverage
criterion and measure how far a candidate test case/suite is from
covering each coverage target (e.g., branches). For example, com-
mon heuristics for branch coverage include the branch distance [31]
and the approach level [60].

These heuristics are then used to guide search algorithms to-
wards generating tests with higher coverage. The earliest search
strategy is the single-target approach, which attempts to satisfy

one coverage target (e.g., one branch) at a time through multiple
re-executing of the search (e.g., genetic algorithms). More recent
approaches [19, 20, 42, 43] handle all coverage targets (e.g., all
branches) at once with one single execution of the search. Rojas
at al. [51] showed that multi-target approaches are superior to the
single-target ones, while Panichella at al. [42, 43] demonstrated the
higher capability of many-objective search compared to alternative
multi-target approaches in reaching higher code coverage.

Compared to the advances in sbstmentioned above, in this paper
we use exception propagation techniques to identify the candidate
api misuses within the source code of the client applications. Then,
we use both coverage-based heuristics to guide many-objective
search toward covering the api call sites and expose the propagated
exceptions. Therefore, compared to existing techniques, our ap-
proach focuses the search on the candidate api misuses rather than
targeting all code elements (e.g., branches) of the client applications.

Hybrid approaches. Several hybrid (static and dynamic) analysis
approaches have been developed in the past for software verifica-
tion. For instance, Babić et al. used static analysis to guide their
symbolic-execution based automated test generation tool and they
examined C client programs to identify vulnerabilities [9]. Addi-
tionally, Zhang et al. combined static and dynamic automated test
generation approach to identify bugs related to the sequence of
method calls among the classes of a Java project [61]. Finally, Ma et
al. developed a hybrid technique that uses static analysis to extract
knowledge from a project under test to guide the run-time test
generation [33].

Additionally to previous techniques, to the best of our knowledge,
Catcher is the first that combines static exception propagation and
search-based testing focusing on the identification of dependency-
related bugs, in client programs, caused by misuses of the Java
platform’s api.

9 CONCLUSIONS

We introduce a verification technique, Catcher, that combines
static exception propagation analysis and search-based testing to
effectively and efficiently identify and expose api misuses in client
programs. We validate Catcher against 21 Java applications, tar-
geting misuses of the Java platform’s api. Our results show that
Catcher is able to efficiently generate test cases that uncover 243
api misuses leading to crashes. The collected results indicate that
Catcher can reveal more api misuses (77 cases) that would remain
undetected by plain EvoSuite, while also requiring less than 20%
of the time spent by EvoSuite. Overall, static exception propaga-
tion analysis and search-based testing combined can significantly
improve the detection capability of api misuses, thereby improving
the robustness of applications.

In the future, we aim to extend Catcher along the following
dimensions: (i) introduce support for longer exception propagation
chains to cover deeply nested api calls, (ii) consider third-party
libraries in the analysis to cover the runtime exceptions they intro-
duce, and (iii) extend Catcher to cover other types of api misuses
(e.g., api initialization violations).

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

API Misuse Detection via Exception Propagation and Search-based Testing ISSTA 2019, 15–19 July, 2019, Beijing, China

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

ACKNOWLEDGMENTS

This research was partially funded by the EU Horizon 2020 ICT-10-
2016-RIA “STAMP” project (No.731529), the Dutch 4TU project “Big
Software on the Run”, and the ERC Advanced Grant 2016 “EPIC”.

REFERENCES

[1] Mithun Acharya and Tao Xie. 2009. Mining API Error-Handling Specifications
from Source Code. In Fundamental Approaches to Software Engineering, Marsha
Chechik and Martin Wirsing (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 370–384.

[2] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying Search Based Software Engineering
with Sapienz at Facebook. In Search-Based Software Engineering. SSBSE 2018.

(LNCS), Vol. 11036. Springer, 3–45. https://doi.org/10.1007/978-3-319-99241-9_1
[3] Sven Amann, Sarah Nadi, Hoan A Nguyen, Tien N Nguyen, and Mira Mezini.

2016. MUBench: a benchmark for API-misuse detectors. In Proceedings of the

13th International Conference on Mining Software Repositories. ACM, 464–467.
[4] Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini.

2018. A Systematic Evaluation of Static API-Misuse Detectors. IEEE Transactions

on Software Engineering (2018). https://doi.org/10.1109/TSE.2018.2827384
[5] Andrea Arcuri. 2018. EvoMaster: Evolutionary Multi-context Automated System

Test Generation. In Software Testing, Verification and Validation (ICST), 2018 IEEE

11th International Conference on. IEEE, 394–397.
[6] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s guide to statistical tests

for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[7] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An
empirical investigation in search-based software engineering. Empirical Software

Engineering 18, 3 (2013), 594–623.
[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,

Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI ’14). ACM, 259–269.
https://doi.org/10.1145/2594291.2594299

[9] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn Song. 2011.
Statically-directed Dynamic Automated Test Generation. In Proceedings of the

2011 International Symposium on Software Testing and Analysis (ISSTA ’11). ACM,
12–22. https://doi.org/10.1145/2001420.2001423

[10] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In ISSTA 2018, Proceedings of the 2018

International Symposium on Software Testing and Analysis. ACM, Amsterdam,
Netherlands. https://doi.org/10.1145/3213846.3213872

[11] Martin Bravenboer and Yannis Smaragdakis. 2009. Exception Analysis and
Points-to Analysis: Better Together. In Proceedings of the Eighteenth International

Symposium on Software Testing and Analysis (ISSTA ’09). ACM, New York, NY,
USA, 1–12. https://doi.org/10.1145/1572272.1572274

[12] Raymond P.L. Buse and Westley R. Weimer. 2008. Automatic Documentation
Inference for Exceptions. In Proceedings of the 2008 International Symposium on

Software Testing and Analysis (ISSTA ’08). ACM, New York, NY, USA, 273–282.
https://doi.org/10.1145/1390630.1390664

[13] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and Andrea
Arcuri. 2018. An empirical evaluation of evolutionary algorithms for unit test
suite generation. Information and Software Technology 104 (2018), 207–235. https:
//doi.org/10.1016/j.infsof.2018.08.010

[14] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie van Deursen, and
Christoph Treude. 2017. Exception handling bug hazards in Android. Em-

pirical Software Engineering 22, 3 (01 June 2017), 1264–1304. https://doi.org/10.
1007/s10664-016-9443-7

[15] Joël Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. 2015. Measuring
dependency freshness in software systems. In Software Engineering (ICSE), 2015

IEEE/ACM 37th IEEE International Conference on, Vol. 2. IEEE, 109–118.
[16] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. 2000.

A fast elitist non-dominated sorting genetic algorithm for multi-objective opti-
mization: NSGA-II. In International Conference on Parallel Problem Solving From

Nature. Springer, 849–858.
[17] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel.

2013. An Empirical Study of Cryptographic Misuse in Android Applications.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Com-

munications Security (CCS ’13). ACM, New York, NY, USA, 73–84. https:
//doi.org/10.1145/2508859.2516693

[18] Lingling Fan, Ting Su, Sen Chen, Guozhu Meng, Yang Liu, Lihua Xu, Geguang Pu,
and Zhendong Su. 2018. Large-Scale Analysis of Framework-Specific Exceptions
in Android Apps. CoRR abs/1801.07009 (2018). arXiv:1801.07009 http://arxiv.

org/abs/1801.07009
[19] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation

for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium

and the 13th European conference on Foundations of software engineering. ACM,
416–419.

[20] Gordon Fraser and Andrea Arcuri. 2013. Whole test suite generation. IEEE

Transactions on Software Engineering 39, 2 (2013), 276–291.
[21] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated

unit test generation using evosuite. ACM Transactions on Software Engineering

and Methodology (TOSEM) 24, 2 (2014), 8.
[22] Gordon Fraser and Andrea Arcuri. 2015. 1600 faults in 100 projects: automatically

finding faults while achieving high coverage with EvoSuite. Empirical Software

Engineering 20, 3 (2015), 611–639.
[23] Gordon Fraser and Andreas Zeller. 2012. Mutation-driven generation of unit tests

and oracles. IEEE Transactions on Software Engineering 38, 2 (2012), 278–292.
[24] C. Fu and B.G. Ryder. 2007. Exception-Chain Analysis: Revealing Exception Han-

dling Architecture in Java Server Applications. In 29th International Conference

on Software Engineering (ICSE ’07). ACM, 230–239. https://doi.org/10.1109/ICSE.
2007.35

[25] I. Garcia and N. Cacho. 2011. eFlowMining: An Exception-Flow Analysis Tool for
.NET Applications. In Fifth Latin-American Symposium on Dependable Computing

Workshops (LADCW ’11). IEEE, 1–8. https://doi.org/10.1109/LADCW.2011.18
[26] Gregory Gay. 2017. Generating effective test suites by combining coverage criteria.

In International Symposium on Search Based Software Engineering. Springer, 65–
82.

[27] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why Don'T Software Developers Use Static Analysis Tools to Find
Bugs?. In Proceedings of the 2013 International Conference on Software Engineering

(ICSE ’13). IEEE Press, Piscataway, NJ, USA, 672–681.
[28] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of

existing faults to enable controlled testing studies for Java programs. In Proceed-

ings of the 2014 International Symposium on Software Testing and Analysis. ACM,
437–440.

[29] Maria Kechagia, Marios Fragkoulis, Panos Louridas, and Diomidis Spinellis. 2018.
The exception handling riddle: An empirical study on the Android API. Journal
of Systems and Software 142 (2018), 248 – 270. https://doi.org/10.1016/j.jss.2018.
04.034

[30] Maria Kechagia, Dimitris Mitropoulos, and Diomidis Spinellis. 2015. Charting
the API minefield using software telemetry data. Empirical Software Engineering

20, 6 (01 Dec 2015), 1785–1830. https://doi.org/10.1007/s10664-014-9343-7
[31] Bogdan Korel. 1990. Automated software test data generation. IEEE Transactions

on software engineering 16, 8 (1990), 870–879.
[32] Christian Lindig. 2016. Mining patterns and violations using concept analysis.

In The Art and Science of Analyzing Software Data. Elsevier, 17–38.
[33] L. Ma, C. Artho, C. Zhang, H. Sato, J. Gmeiner, and R. Ramler. 2015. GRT:

Program-Analysis-Guided Random Testing (T). In 2015 30th IEEE/ACM Inter-

national Conference on Automated Software Engineering (ASE). IEEE, 212–223.
https://doi.org/10.1109/ASE.2015.49

[34] KeMao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated test-
ing for Android applications. In Proceedings of the 25th International Symposium

on Software Testing and Analysis. ACM, 94–105.
[35] Phil McMinn. 2004. Search-based software test data generation: a survey. Software

testing, Verification and Reliability 14, 2 (2004), 105–156.
[36] Parastoo Mohagheghi and Reidar Conradi. 2007. Quality, productivity and

economic benefits of software reuse: a review of industrial studies. Empiri-

cal Software Engineering 12, 5 (01 Oct 2007), 471–516. https://doi.org/10.1007/
s10664-007-9040-x

[37] Urko Rueda Molina, Fitsum Meshesha Kifetew, and Annibale Panichella. 2018.
Java unit testing tool competition: sixth round. In The 11th International Workshop

on Search-Based Software Testing (SBST). 22–29. https://doi.org/10.1145/3194718.
3194728

[38] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through
hoops: why do Java developers struggle with cryptography APIs?. In Proceedings

of the 38th International Conference on Software Engineering. ACM, 935–946.
[39] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar M Al-Kofahi, and

Tien N Nguyen. 2009. Graph-based mining of multiple object usage patterns.
In Proceedings of the the 7th joint meeting of the European software engineering

conference and the ACM SIGSOFT symposium on The foundations of software

engineering. ACM, 383–392.
[40] Juliana Oliveira, Nelio Cacho, Deise Borges, Thaisa Silva, and Fernando Castor.

2016. An Exploratory Study of Exception Handling Behavior in Evolving Android
and Java Applications. In Proceedings of the 30th Brazilian Symposium on Software

Engineering (SBES ’16). ACM, New York, NY, USA, 23–32. https://doi.org/10.
1145/2973839.2973843

[41] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-directed Random
Testing for Java. In Companion to the 22Nd ACM SIGPLAN Conference on Object-

oriented Programming Systems and Applications Companion (OOPSLA ’07). ACM,
New York, NY, USA, 815–816. https://doi.org/10.1145/1297846.1297902

11

https://doi.org/10.1007/978-3-319-99241-9_1
https://doi.org/10.1109/TSE.2018.2827384
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2001420.2001423
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1145/1572272.1572274
https://doi.org/10.1145/1390630.1390664
https://doi.org/10.1016/j.infsof.2018.08.010
https://doi.org/10.1016/j.infsof.2018.08.010
https://doi.org/10.1007/s10664-016-9443-7
https://doi.org/10.1007/s10664-016-9443-7
https://doi.org/10.1145/2508859.2516693
https://doi.org/10.1145/2508859.2516693
http://arxiv.org/abs/1801.07009
http://arxiv.org/abs/1801.07009
http://arxiv.org/abs/1801.07009
https://doi.org/10.1109/ICSE.2007.35
https://doi.org/10.1109/ICSE.2007.35
https://doi.org/10.1109/LADCW.2011.18
https://doi.org/10.1016/j.jss.2018.04.034
https://doi.org/10.1016/j.jss.2018.04.034
https://doi.org/10.1007/s10664-014-9343-7
https://doi.org/10.1109/ASE.2015.49
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1007/s10664-007-9040-x
https://doi.org/10.1145/3194718.3194728
https://doi.org/10.1145/3194718.3194728
https://doi.org/10.1145/2973839.2973843
https://doi.org/10.1145/2973839.2973843
https://doi.org/10.1145/1297846.1297902

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ISSTA 2019, 15–19 July, 2019, Beijing, China Kechagia, et al.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[42] Annibale Panichella, Fitsum Kifetew, and Paolo Tonella. 2017. Automated test
case generation as amany-objective optimisation problemwith dynamic selection
of the targets. IEEE Transactions on Software Engineering 99 (2017), 1–37.

[43] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2015. Refor-
mulating branch coverage as a many-objective optimization problem. In Software

Testing, Verification and Validation (ICST), 2015 IEEE 8th International Conference

on. IEEE, 1–10.
[44] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. Incre-

mental Control Dependency Frontier Exploration for Many-Criteria Test Case
Generation. In Search-Based Software Engineering, Thelma Elita Colanzi and Phil
McMinn (Eds.). Springer International Publishing, Cham, 309–324.

[45] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. 2018. A large
scale empirical comparison of state-of-the-art search-based test case generators.
Information and Software Technology 104 (2018), 236–256. https://doi.org/10.
1016/j.infsof.2018.08.009

[46] Annibale Panichella and Urko Rueda Molina. 2017. Java Unit Testing Tool
Competition - Fifth Round. In 10th IEEE/ACM International Workshop on Search-

Based Software Testing (SBST). 32–38. https://doi.org/10.1109/SBST.2017.7
[47] Michael Reif, Florian Kübler, Michael Eichberg, andMiraMezini. 2018. Systematic

Evaluation of the Unsoundness of Call Graph Construction Algorithms for Java.
In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (ISSTA ’18). ACM,
107–112. https://doi.org/10.1145/3236454.3236503

[48] Martin P. Robillard and Robert Deline. 2011. A Field Study of API Learning
Obstacles. Empirical Softw. Engg. 16, 6 (Dec. 2011), 703–732. https://doi.org/10.
1007/s10664-010-9150-8

[49] Martin P. Robillard and Gail C. Murphy. 2003. Static Analysis to Support the
Evolution of Exception Structure in Object-oriented Systems. ACM Trans. Softw.

Eng. Methodol. 12, 2 (April 2003), 191–221. https://doi.org/10.1145/941566.941569
[50] José Miguel Rojas, José Campos, Mattia Vivanti, Gordon Fraser, and Andrea

Arcuri. 2015. Combining multiple coverage criteria in search-based unit test
generation. In International Symposium on Search Based Software Engineering.
Springer, 93–108.

[51] José Miguel Rojas, Mattia Vivanti, Andrea Arcuri, and Gordon Fraser. 2017. A
detailed investigation of the effectiveness of whole test suite generation. Empirical

Software Engineering 22, 2 (2017), 852–893.
[52] Sina Shamshiri, Rene Just, Jose Miguel Rojas, Gordon Fraser, Phil McMinn, and

Andrea Arcuri. 2015. Do automatically generated unit tests find real faults?

an empirical study of effectiveness and challenges (t). In 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE, 201–211.
[53] Sina Shamshiri, José Miguel Rojas, Luca Gazzola, Gordon Fraser, Phil McMinn,

Leonardo Mariani, and Andrea Arcuri. 2018. Random or evolutionary search for
object-oriented test suite generation? Software Testing, Verification and Reliability
28, 4 (2018), e1660. https://doi.org/10.1002/stvr.1660 e1660 stvr.1660.

[54] S. Sinha and M.J. Harrold. 1998. Analysis of programs with exception-handling
constructs. In Proceedings of the International Conference on Software Maintenance.
IEEE, 348–357. https://doi.org/10.1109/ICSM.1998.738526

[55] Diomidis Spinellis and Panagiotis Louridas. 2007. A Framework for the Static
Verification of api Calls. J. Syst. Softw. 80, 7 (July 2007), 1156–1168. https:
//doi.org/10.1016/j.jss.2006.09.040

[56] Suresh Thummalapenta and TaoXie. 2009. Alattin:Mining alternative patterns for
detecting neglected conditions. In Proceedings of the 2009 IEEE/ACM International

Conference on Automated Software Engineering. IEEE Computer Society, 283–294.
[57] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. 2010. Soot: A Java Bytecode Optimization Framework. In
CASCON First Decade High Impact Papers (CASCON ’10). IBM Corp., Riverton,
NJ, USA, 214–224. https://doi.org/10.1145/1925805.1925818

[58] András Vargha and Harold D Delaney. 2000. A critique and improvement of
the CL common language effect size statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics 25, 2 (2000), 101–132.

[59] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
object usage anomalies. In Proceedings of the the 6th joint meeting of the Euro-

pean software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering. ACM, 35–44.
[60] Joachim Wegener, André Baresel, and Harmen Sthamer. 2001. Evolutionary

test environment for automatic structural testing. Information and Software

Technology 43, 14 (2001), 841–854.
[61] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. 2011. Combined Static

and Dynamic Automated Test Generation. In Proceedings of the 2011 International

Symposium on Software Testing and Analysis (ISSTA ’11). ACM, 353–363. https:
//doi.org/10.1145/2001420.2001463

[62] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall. 2017. Analyzing
APIs Documentation and Code to Detect Directive Defects. In 2017 IEEE/ACM

39th International Conference on Software Engineering (ICSE). ACM, 27–37. https:
//doi.org/10.1109/ICSE.2017.11

12

https://doi.org/10.1016/j.infsof.2018.08.009
https://doi.org/10.1016/j.infsof.2018.08.009
https://doi.org/10.1109/SBST.2017.7
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1145/941566.941569
https://doi.org/10.1002/stvr.1660
https://doi.org/10.1109/ICSM.1998.738526
https://doi.org/10.1016/j.jss.2006.09.040
https://doi.org/10.1016/j.jss.2006.09.040
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/2001420.2001463
https://doi.org/10.1145/2001420.2001463
https://doi.org/10.1109/ICSE.2017.11
https://doi.org/10.1109/ICSE.2017.11

	Abstract
	1 Introduction
	2 Background
	3 The Catcher Approach
	3.1 Static Exception Propagation
	3.2 Filtering
	3.3 Focused Search-based Test Generation
	3.4 Implementation

	4 Evaluation Protocol
	4.1 Study Context
	4.2 Research Questions
	4.3 Baseline Selection and Parameter Setting
	4.4 Experimental Protocol

	5 Results
	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

