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Abstract
Rhinoviruses are the most common cause of upper respiratory tract
infections. However, they can induce exacerbations of chronic obstructive
pulmonary disease and asthma, bronchiolitis in infants, and significant
lower respiratory tract infections in children, the immunosuppressed, and
the elderly. The large number of rhinovirus strains (currently about 160) and
their antigenic diversity are significant obstacles in vaccine development.
The phenotype of immune responses induced during rhinovirus infection
can affect disease severity. Recognition of rhinovirus and a balance of
innate responses are important factors in rhinovirus-induced morbidity.
Immune responses to rhinovirus infections in healthy individuals are
typically of the T helper type 1 (Th1) phenotype. However, rhinovirus-driven
asthma exacerbations are additionally characterised by an amplified Th2
immune response and airway neutrophilia. This commentary focuses on
recent advances in understanding immunity toward rhinovirus infection and
how innate and adaptive immune responses drive rhinovirus-induced
asthma exacerbations.
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Introduction
Rhinoviruses (RVs) are the main cause of common colds and 
are responsible for the majority of acute exacerbations of 
chronic obstructive pulmonary disease (COPD) and asthma1,2. 
Despite being discovered over 50 years ago, RVs have no effec-
tive anti-viral treatment or vaccine. Recently, the number of RV 
strains identified increased to about 160 RV strains/subtypes. 
RVs are divided into three species—RV-A, -B, and -C—on  
the basis of genetic classification. Species A and B are also 
classified on the basis of the cell surface receptor used for  
cellular entry. The “major group” of RVs, which includes about 
90% of the 100 serotyped strains, uses intercellular adhesion  
molecule-1 (ICAM-1), whereas the “minor group” (~10% of the 
100 serotyped strains) gains cell entry via the low-density lipopro-
tein receptor (LDLR)3,4. RV-C (~60 non-serotyped strains) uses  
cadherin-related family 3 (CDHR3) for binding and replication5. 
The high number and variability of RV serotypes make vaccine  
design extremely challenging.

Nasal and bronchial epithelial cells are the first targets of RVs 
and are responsible for initiating anti-viral responses6. Viral rec-
ognition occurs via various pattern recognition receptors (PRRs), 
including RIG-I-like receptors (RLRs) and Toll-like receptors 
(TLRs), which induce the production of inflammatory mediators 
and interferons (IFNs). The role of IFNs is important for the  
control of RV infection, as they induce anti-viral IFN-stimulated 
genes and inflammatory mediators which limit viral replication 
(the role of inflammatory mediators during RV infection and 
asthma has recently been reviewed6,7). This inflammatory “cas-
cade” induces the recruitment and activation of innate cells which 
can affect the phenotype of adaptive responses. RVs enhance 
interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin 
(TSLP) which drive type 2 immune responses8–11. Increasing  
evidence suggests that the recognition of RVs, the type of 
innate cells, and the production of inflammatory mediators 
can drive the phenotype of immune responses. This commen-
tary focuses on very recent advances made in understanding  
how innate/adaptive immune responses drive RV-induced asthma 
exacerbations.

Rhinovirus infection
RVs are positive-sense, single-stranded RNA (ssRNA) viruses 
belonging to the Picornaviridae family and Enterovirus genus. 
RVs are the most common cause of upper respiratory tract infec-
tion and are linked to exacerbations of COPD and asthma.  
Furthermore, they are the cause of bronchiolitis in infants and 
lower respiratory tract infections in children, the immunosup-
pressed, and the elderly4. About 160 serotypes/strains of RV 
have been identified and are classified into three species: RV-A  
(74 serotypes), RV-B (25 serotypes), and RV-C (~60 strains)12–14. 
RV-C species were the last to be identified and are responsible 
for more severe illness, wheezing, and asthma exacerbations3,4. 
The RV viral capsid sequence variation causes the antigenic 
diversity between strains. The viral capsid is composed of VP1, 
VP2, VP3, and VP4 proteins. VP1 and VP3 are important for 
viral attachment to cell surface receptors in ciliated nasal and  
bronchial epithelial cells15,16.

Large-scale birth cohort studies identify a relationship 
between wheezing RV infections in early life and development 

of asthma later in high-risk children17. RV-C infections are  
associated with severe infection in children, and a CDHR3 
gene mutation can mediate enhanced RV-C entry to host cells5. 
Recent clinical evidence, from two birth cohorts, suggests that 
a CDHR3 mutation is an asthma risk allele associated with 
enhanced RV-C illness18. Targeting the interaction between RV  
and respective adhesion receptors can provide a therapeutic 
avenue. The precise mechanisms by which RVs induce asthma 
exacerbation are unclear. Impaired anti-viral immunity can 
influence the onset of infection in bronchial epithelial cells 
(BECs) derived from patients with asthma19–21. Furthermore,  
evidence suggests that multiple immunophenotypes of immune  
responses to RV exist in childhood that enhance asthma  
development22. Improved understanding of how RV infection 
drives the phenotype of infection can help distinguish potential  
therapeutic and vaccine targets against RV-induced asthma  
exacerbations.

Innate recognition of rhinovirus
Following RV infection of airway epithelial cells, a series of 
cellular PRRs can recognise viral antigens. TLR2 on the cell 
surface recognises viral capsid proteins23. Within the endo-
some, TLR3 and TLR7/8 recognise viral double-stranded 
RNA (dsRNA) or ssRNA, respectively24,25. The recogni-
tion of RV by TLR3 in BECs also induces the expression of 
RIG-I and MDA5, which can recognise ssRNA and dsRNA,  
respectively23. Recognition of RV by PRRs causes the secretion 
of inflammatory cytokines, including IL-6, tumour necrosis fac-
tor, IL-12, IL-15, and type I and type III IFNs. This also drives 
the secretion of chemokines such as CXCL10 (IP-10) and CXCL8/
IL-8 which drive the recruitment of T cells—monocytes, natural 
killer cells, and dendritic cells (DCs) are also recruited—and 
neutrophils, respectively26. Further to IFNs and inflammatory 
cytokines, epithelial cells are also a source of IL-33, IL-25, and 
TSLP, all of which can drive T helper type 2 (Th2) cell responses 
during RV infection (RV-induced cytokines have been exten-
sively reviewed6,7,27). Evidence suggests that anti-viral defence  
within bronchial epithelium requires co-ordinated recognition  
of RV28.

The events that occur during innate recognition may help under-
stand how asthma and COPD exacerbations develop after RV 
infection. Primary BECs from patients with asthma have a 
deficiency in TLR3 and MDA5 signalling, which reduces the 
production of inflammatory mediators after RV infection25,26. 
TLR3 expression in asthma is not impaired, and blocking the 
receptor in mice does not have a significant effect in reducing  
viral replication26,29. In contrast, blockade of TLR3, using 
CNT03157, in healthy volunteers reduces the production of 
inflammatory mediators and cellular recruitment after RV16  
infection (thus reducing cold symptoms); however, it had no  
effect in asthma30.

TLR7/8 are expressed in a number of lung cells, including  
epithelial cells, macrophages, and DC subsets. Plasmacytoid  
DCs (pDCs) respond rapidly to TLR7 ligation and induce type I 
IFN production because of a constitutive expression of IFN reg-
ulatory factor-7 (IRF-7)31,32. The mechanisms behind why the  
production of IFNs in asthma is impaired during RV infection 
are poorly understood. RV infection of mice with impaired TLR7 
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signalling showed a reduced production of IFNs, eosinophilia, 
and airway hyper-reactivity24. The effects were reversed by  
adoptive transfer of TLR7-competent pDCs or exogenous 
IFN. Furthermore, Th2 cytokine induction after RV infection 
is a negative regulator of TLR7- or TLR3-induced IFNs24. The 
induction of IL-4 and IL-13 inhibits the expression of TLR3 
and IRF-3 and impairs the immune responses of epithelial 
cells against RVs33. These observations support evidence that  
patients with severe asthma have reduced TLR7 expression 
and IFN production in the bronchoalveolar lavage34,35. Overall,  
complex innate recognition is involved during RV infection with 
a co-ordinated recognition, and an early robust IFN response 
and balance in the inflammatory mediators are essential for  
viral clearing and minimising RV-induced morbidity21,33.

Interplay between innate and adaptive responses 
drives rhinovirus-induced exacerbations
Recognition of RV antigens by T cells initiates cytotoxic  
T-cell responses and activates T helper cells that drive humoral 
responses. Upon infection, epithelial cells, macrophages, and 
recruited neutrophils secrete CXCL10 (IP-10), which increases 
the chemotaxis of T cells4,36. The type of T-cell response toward 
RV is one of the factors driving asthma exacerbations37. In 
healthy individuals, the primary immune responses to RV infec-
tion are T helper type 1 (Th1) and are characterised by a release of  
IFN-γ38. Th2 immune responses are characterised by increased 
production of IL-4, IL-5, and IL-13 and have been associ-
ated with RV infection in asthma6,10,37,38. Cytokines inducing 
Th2 responses provide a potential therapeutic target. For  
example, dupilumab (IL-4 and IL-13 signalling inhibitor) sig-
nificantly reduces the rates of severe asthma exacerbations and 
improves lung function in patients39. Recent studies also indicate 
an increasingly important role for innate lymphoid cells (ILCs) 
in driving RV infections10,40–42. Specifically, ILC2s are elevated 
in patients with asthma and are potent producers of type 2  
cytokines, which can drive adaptive immune responses6,27,42,43.

Immune responses to respiratory infections in healthy indi-
viduals are typically characterised by a Th1 immune response.  
However, RV-driven asthma exacerbations are additionally char-
acterised by an amplified Th2 immune response and airway  
neutrophilia44. Neutrophil degranulation and elastase release in 
the airways are believed to contribute to obstruction in the lower 
airways in RV-induced asthma exacerbations45. The mecha-
nisms behind how RV drives Th2 immune responses during 
asthma exacerbations were recently studied8,10,11,46. RVs can  
induce a number of inflammatory mediators that drive Th2 
responses in asthma exacerbations. IL-25 is an important 
mediator in RV-induced asthma exacerbations47,48. Primary 
BECs from patients with asthma have increased expression of  
IL-25, which correlates with the donor atopic status. In mice, 
blocking the IL-25R following RV infection reduces mucus 
secretion, airway hyper-responsiveness, and secretion of  
Th2 cytokines8. The role for IL-33 in driving RV-induced asthma 
exacerbations was examined in a human experimental model 
of RV10. RV infection correlated with the inductions of Th2 
cytokines and IL-33. Furthermore, infection of primary BECs 
with RV induced IL-33 secretion. Supernatant transfer from the 

infected BECs to human T cells or ILC2s strongly induced Th2 
responses10. The importance of IL-33 in driving Th2 immune 
responses is supported by mouse models with deficiencies in the 
IL-33 pathways9. Human lung epithelial cells infected with RV  
secrete IL-33 and TSLP11. Furthermore, mice that are simul-
taneously exposed to ovalbumin and RV show a reduction in 
regulatory T-cell activation. This reduction is associated with 
increased Th2 responses and a prevention of ovalbumin tolerance 
that are driven by IL-33 and TSLP11,27. In humans with uncon-
trolled asthma, the inhibition of Th2 responses using tezepe-
lumab (monoclonal antibody specific for TSLP) reduces the  
rates of asthma exacerbations in patients with asthma inad-
equately treated with long-acting beta-agonists and medium 
to high doses of inhaled corticosteroids49. Overall, these  
studies show the pivotal role of cytokines secreted by epithelial  
cells in driving the type of innate and adaptive immune responses 
during RV infection.

In the past few decades, neutrophils have been shown to form 
neutrophil extracellular traps (NETs) in order to trap invading 
pathogens such as bacteria through the release of dsDNA, anti-
microbial proteins, and histones. The regulation of these NETs 
is driven by neutrophil elastase and myeloperoxidase50–52. In 
addition to trapping bacterial pathogens, NETs have an increas-
ingly important role during viral infections53. The presence of 
NETs after RV infection and the role they have in driving Th2 
immune responses were studied in mice and humans46. RV  
infection induces NET-associated dsDNA in humans. Patients 
with asthma challenged with RV-16 showed higher levels of lav-
age dsDNA, which correlated with cold symptom severity, pres-
ence of Th2 cytokines, and asthma exacerbation. Using a mouse 
allergen-induced model, the same authors showed that RV-
infected allergic mice have higher levels of lavage dsDNA in 
the airways46,54. When these mice were treated with DNase (to 
remove NETs) or elastase inhibitors (to prevent NET formation), 
the Th2 immune responses, production of cytokines, and cell 
recruitment were diminished. Evidence suggests that NET for-
mation can provide a novel therapeutic target by which DNase,  
elastase inhibitors, and neutrophil trafficking inhibitors can  
be used during RV-induced asthma exacerbations.

Multiple asthma mouse models improved understanding of 
the mechanisms involved in driving Th2 responses during RV 
infection. The role of γδT cells was studied in human and ani-
mal models55. Levels of γδT cells are elevated in asthma and 
asthma mouse models. Blocking γδT cells in mice enhanced 
Th2 immune cell recruitment to the airways. Overall, the data 
suggest that γδT cells are negative regulators of disease dur-
ing RV-induced asthma exacerbations55. To further characterise 
the importance of T-cell responses, mice deficient in T-Box  
expressed in T cells (Tbet), a controller of Th1 cells, were stud-
ied in an RV infection model. Mice that lacked Tbet developed 
a Th2/Th17 phenotype after RV infection56. The lack of Th1 
responses is associated with increased viral load, eosinophilia, 
and mucus production. These findings suggest that weakened 
Th1 responses, with consequent Th2/Th17 responses, may have 
an important role in driving allergic features during RV asthma 
exacerbations56. The phenotype of T helper cell responses is 
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critical for the outcome of RV infection. The recruitment of Th1  
cells and the relevant production of IFN-γ have been linked to 
efficient viral clearance. Studies suggest that viral shedding is 
inversely related to T-cell counts in the airways4. Finally, an 
interesting feature of T-cell immunity against RV infections is 
that they can become activated by shared viral epitopes which  
can allow potent responses across serotypes57.

Vaccine approaches against rhinovirus
For decades, vaccine development against RVs has been consid-
ered almost impossible58. The large breadth of RV serotypes is 
a major obstacle in developing therapy. Neutralising humoral 
responses against RV infection are associated with protection; 
however, the mechanisms of their induction are poorly under-
stood. Upon RV infection, IgG and IgA are observed in the 
serum and the airways, respectively59. High levels of serotype-
specific antibodies are associated with protection. Despite this,  
the main limiting factor with humoral responses against RV is 
that, owing to the high number of serotypes, little cross-reactivity  
is elicited by neutralising antibodies60.

Recent advances in understanding RV serotypes and viral cap-
sid structures provide promising vaccine targets. The amino acid 
identity within RV serotypes is at 70%, and VP1 and VP4/VP2 
(VP0) capsid regions are the most conserved61. A recombinant 

VP0 vaccine in conjunction with an IFA/CpG adjuvant in mice 
elicited strong cross-reactive Th1 responses and, following 
virus challenge, enhanced neutralising antibody responses 
within the serotype62. The usage of immunogens, such as VP0, in  
combination with Th1-promoting adjuvants provides a promising 
avenue for RV vaccine development60,63. The main limitation  
with vaccines against RV is increasing the breadth of the 
immune responses across other serotypes. For example, vaccina-
tion of rabbits with VP1/VP3 increases neutralising antibodies 
only within a specific group of serotypes64. Taken together, these 
results highlight the difficultly for a single antigen providing 
protection across all RV serotypes65. Through the use of an adju-
vanted polyvalent RV vaccine in macaques and mice, the induc-
tion of neutralising antibodies across a diverse range of RV 
serotypes is feasible64. The identification of conserved regions  
within the RV genome and production of an adjuvanted  
polyvalent RV vaccine provide exciting pathways for RV  
vaccine development. Overall, recent advances in understanding  
RV immunity increase hopes that a vaccine may be feasible  
after all.
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