
Optimal Cache Placement and Migration for
Improving the Performance of Virtualized SAND

Reza Shokri Kalan
International Computer Institute

Ege University
Izmir, Turkey

reza.shokri@hotmail.com

Muge Sayit
International Computer Institute

Ege University
Izmir, Turkey

muge.sayit@ege.edu.tr

Stuart Clayman
Dept of Electronic Engineering

University College London
London, UK

s.clayman@ucl.ac.uk

Abstract—Nowadays, video streaming over HTTP is one of
the most dominant Internet applications, using adaptive video
techniques. Network assisted approaches have been proposed and
are being standardized in order to provide high QoE for the end-
users of such applications. SAND is a recent MPEG standard
where DASH Aware Network Elements (DANEs) are introduced
for this purpose. As web-caches are one of the main components
of the SAND architecture, the location and the connectivity of
these web-caches plays an important role in the user’s QoE.
The nature of SAND and DANE provides a good foundation
for software controlled virtualized DASH environments, and in
this paper, we propose a cache location algorithm and a cache
migration algorithm for virtualized SAND deployments. The
optimal locations for the virtualized DANEs is determined by
an SDN controller and migrates it based on gathered statistics.
The performance of the resulting system shows that, when SDN
and NFV technologies are leveraged in such systems, software
controlled virtualized approaches can provide an increase in QoE.

Index Terms—DASH, SAND, SDN, virtualized caches.

I. INTRODUCTION

The use of video streaming applications are dominant in
the Internet, and this tendency continues to grow year-on-year
according to Cisco reports [1]. Along with the popularity of
these video applications, the demand for high quality video
such as UHD or 3D video content causes an increase in
the bitrates of the transferred videos. Recent trends in 5G
have called for Network Slicing, which is a move towards
segmentation of resources and deployment of NFV for the
purpose of enhanced services and applications on a global
shared infrastructure. Such an approach has been taken to
provide assured performance for various kinds of application.

The performance of video streaming applications, such
as DASH (Dynamic Adaptive Streaming over HTTP), can
increase when ISPs provide assistance and better conditions
for viewers, by increasing the network capacity or providing
server availability. By considering this aspect, the MPEG
group has recently created a new framework for DASH –
the SAND (Server and Network Assisted DASH) standard
[2]. The standard defines special types of network elements,
namely DANE (DASH Aware Network Elements), as well as
the types and the format of the messages which are exchanged
between DANEs and other network elements. DANEs have

run-time information about DASH components, such as the
available representations and / or the client’s status. The nature
of SAND and DANE provides a good foundation for software
controlled DASH environments. Our previous work [3] pro-
posed a DANE implementation utilizing the NFV (Network
Function Virtualization) concept, which we called the vDANE
(virtual DANE). vDANEs behave as virtual caches which are
managed by the ISPs, and due to the nature of vDANE, we
will use the terms ‘vDANE’ and ‘cache’ interchangeably.

In this current work, we consider a scenario where a video
streaming company, in co-operation with an ISP, has allocated
a Network Slice to allow the deployment of vDANEs, and
that the ISP is using SDN (Software Defined Networking)
to connect the nodes. We address the location and migration
problem of the vDANEs, and focus on cache placement and
migration problems and propose an approach for selecting
the optimal location of instances of vDANEs. As caches help
reduce latency by putting the video content near by the clients,
the location of the caches (and vDANEs specifically) plays an
important role in the performance of video streaming applica-
tions. The placement of vDANEs and the migration functions
are executed by an SDN controller, whereby the controller
selects an optimal location for installing the initial virtual
cache (vDANE) using NFV. When the network conditions are
changed because of cross traffic or due to newly joined or
recently leaving clients, the SDN controller runs the algorithm
for cache migration. For determining the optimal point for
a vDANE instance, both the resource availability and the
performance requirements in terms of network bandwidth are
considered. When a vDANE instance is migrated from one
location to another, SAND messages are sent to the clients so
that they can connect to the new vDANE in its new location.

The contributions of this work are to address: (i) an ap-
proach for selecting a node among feasible nodes for creating
an instance of vDANE function; (ii) moving the vDANE in-
stance to another node when network conditions are changed;
(iii) an implementation of the SAND architecture which uses
vDANEs and has the advantages of having SDN. The paper
is organized as follows: Background and Related work are
in Section II; the cache selection algorithm is presented in
Section III; performance evaluations are in Section IV, and in
Section V we conclude the paper and provide future work.978-1-5386-9376-6/19/$31.00 ©2019 IEEE

II. BACKGROUND AND RELATED WORK

The performance of video streaming applications can be
measured by QoE (Quality of Experience) parameters, where
Video quality, outage duration, and startup delay can be
given as examples to QoE parameters. QoE should not be
dramatically affected by the changing network conditions
in order to provide seamless service to its users. However,
network conditions can be very dynamic due to the changing
number of clients connected to a specific server and variation
in amount of cross traffic. In order to cope with this dynamism
of network conditions, adaptive HTTP streaming applications
have been developed, whereby the clients can change the
video quality according to the changing throughput or buffer
fullness. The MPEG group standardized such adaptive video
applications with the DASH proposal. In the DASH architec-
ture, the video files are encoded multiple times, with each
encoding at a different bitrate. These encoded video files are
called representations. Each representations are divided into
small sized segments so that clients can request, decode, and
play segments from different representations as needed. This
scheme allows clients to request video at different qualities
during streaming and therefore adapt video quality over time.

In the SAND standard, the video streaming system archi-
tecture consists of DANEs, video servers, web-caches and
clients. The message types defined in the standard are PER
(Parameters for Enhancing Reception), PED (Parameters for
Enhancing Delivery) and SAND status and metric messages.
PER and PED messages are sent by the DANEs to the clients
and other DANEs, respectively, and they are used for providing
information about network to the clients or making content or
infrastructure arrangements in DANEs for enhancing delivery.
Status and metrics messages are sent by the clients to DANEs,
which carries information about current status of clients’
internal parameters [2].

The advantages and flexibility offered by SDN and NFV
technologies have encouraged researchers utilize them in
caching infrastructure for video streaming architectures. In
[4], NFV based multimedia system is proposed, where the
authors proposed an optimization model for finding locations
of virtual datacenters by only considering of cost at datacenter.
The authors introduced a caching platform called OpenCache
for DASH by leveraging SDN in [5]. The communication
between virtual and original CDN servers in a DASH system
was studied in [6]. Cache localization was not considered in
these studies [5], [6].

There are several studies on the localization of the vir-
tualized network functions and caches in the literature. The
approaches proposed for localization of the virtual functions
are developed for conventional Internet applications rather than
focusing on video streaming applications’ requirements [7],
[8]. Optimal cache localization policy which jointly consid-
ers network capacity, the load and migration of the virtual
CDNs is proposed in [9]. Although these approaches provide
remarkable solutions to virtual cache placement problems, they
differ from our study since our implementation is developed

by taking DASH and SAND into account.
In our previous work, we introduced the concept of vDANE

and proposed an algorithm for selecting the placement of
an additional vDANE when a new cache is required [3]. In
this paper, we study the problem of selecting the location
of the initial vDANE and the migration of it considering
SAND characteristics. Moreover, we consider the replacement
of the virtualized cache function and connectivity as well as
bandwidth and hop counts of the links, where only available
bandwidth is considered in [3].

III. A SAND ARCHITECTURE WITH VDANES

DASH clients adapt quality based on throughput and request
video segments from a cache. Requesting segments from a
remote cache can have a negative impact on the video through-
put and buffer fullness, hence the perceived quality, due to
a possible increase in latency and a decrease in bandwidth.
By bringing the cache nearer to clients, it reduces latency
and may improve network conditions in terms of bandwidth.
In order to provide higher QoE, cache placement should be
done by considering link bandwidth and delay. The goal of
our algorithm is to find an optimal node for virtual cache
placement in order to improve the QoE at the clients.

In our scenario, the SDN controller has information about IP
addresses of DASH clients as well as the bitrate of the video
file’s representations, by means of the cooperation between
network operator and video streaming company. The system
architecture and controller modules, illustrated in Figure 1,
provide DANE function modules for: (i) Cache Placement and
(ii) Cache Migration. The controller modules include basic
network service functions which are responsible for collecting
traffic statistics, monitoring hosts and flows, and uploading
flow rules to the switches. The controller also sends and
receives DANE Messages as part of the SAND architecture.

The Cache Placement module is triggered when the first
DASH client comes online and sends a request to start
video streaming, and it selects an optimal point for the
vDANE instance. The Cache Migration module is triggered
when the controller detect the location of vDANE should
be changed. Since network capacity is dynamic due to cross
traffic and a different number of DASH clients being con-
nected / disconnected over time from various points of the
network, this module changes the location of the vDANE
functions to provide seamless service, under this dynamic
environment. The Cache Migration module then sends DANE
Messages to ensure that clients can renew their TCP connec-
tion and informing them about IP address of the new server.

A. Selecting the Initial Cache Location

Our study aims to find the optimal location for the place-
ment of the initial vDANE instance and then to migrate it,
in a such a way that mainly reduces the traffic and still
provides high QoE for DASH clients. In order to minimize
the total network traffic and to efficiently utilize network
bandwidth, the hop count should be minimized. Reducing the
distance between clients and content sources, it can eliminate

Fl
oo

dL
ig

ht
 C

on
tro

lle
r

Basic Network Service Functions

Flow ManagerLink ManagerPath Manager

Host ManagerForwarding Manager

DANE Functions

DASH Client

Network Service Apps

Media Server

DANE Orchestration

REST API

Cache Migration

Cache Placement

DANE Messages

Fig. 1: SAND Architecture with vDANE Orchestration

forwarding flows over inessential links. Taking advantage of
minimum hop count can improve latency and the total amount
of flows that travel across network paths. Minimum hop
count is considered in the HotSpot algorithms [10], but this
approach may result in lower performance if virtual caches are
placed behind bottlenecked links. To overcome this obstacle,
besides using the distance factor, in terms of hop count,
we take the total amount of bandwidth and the number of
connectivity into account as well.

In the proposed cache placement algorithm, vDANEs are in-
stantiated at the network node which minimizes the distance to
the clients and maximizes the bandwidth. To achieve this, we
used a formula which we called PressureInitialCache by
modifying PressureCache proposed in our previous work,
which is based on the Pressure formula discussed in [10]
and enhanced in [11].

The Initial Cache Selection algorithm is presented here.
Assume dij is the distance in terms of hop count between
nodes i and j in the network and P is the set of the paths
between these nodes. Here, node term denotes the switching
elements that can run virtualized network functions, where
there is a vDANE instance running on node j. Let’s assume
that clients connected to the node i request video contents from
the cache. In order to reduce total network traffic and response
time as well, candidate cache node should have minimum
distance with clients (dij) and provide maximum available
bandwidth and connectivity. It is clear that the cache location
which gives the maximum value of bandwidth / distance is
optimal. Suppose L represents number of the links in the
network, B =

∑L
l=1 bl is the total network bandwidth and

B
′
=

∑Lj

l=1 bl is the total bandwidth of the links that directly
connected to node j. Here, bl refers to bandwidth of the link
l and Lj refers to the number of links which j connected to.
While B represent total capacity of the network, B

′
represents

the maximum traffic amount that can be transferred by the
node j. D(j) =

∑H
i=h+1 dij refers to distance between the

node j and clients > 1 hop away, where h represents the
number of clients connected to jth node through one hop
distance, H is the number of all clients and D

′
(j) =

∑h
i=1 dij .

The context of locality has remarkable impact in performance.
On contrary, long distance connection has negative effect due

to RTT delay and consumed links bandwidth while traveling
through more of them. By considering these facts, we evaluate
the candidate locations to run the initial vDANE network func-
tion by using formula (1). This formula sets a pressure value,
which is indicated by P (j), for all possible candidate node
locations denoted by j. Since client with direct connection
to the cache node has only one hop distance, the dij in the
denominator equals to 1, which makes

∑h
i=1 dij = h.

P (j) =
B
B′

D′

D

=

∑L
l=1 bl ∗

∑H
i=h+1 dij∑Lj

l=1 bl ∗
∑h

i=1 dij
=

∑L
l=1 bl ∗

∑H
i=h+1 dij

h ∗
∑Lj

l=1 bl
(1)

Finally, in order to increase reliability, the number of
links connected to a candidate node also has been taken
into account. Note that, more connection links provide more
reliability. Lets Lj indicated the total number of connected
links to the candidate node. Modified formula, which is called
as PressureInitialCache, is given in Formula (2).

PressureInitialCache =

∑L
l=1 bl ∗

∑H
i=h+1 dij∑Lj

l=1 bl ∗ h ∗ Lj

(2)

When a DASH client request to start the video streaming
application, if there is no running vDANE instance on the
network, the controller triggers Cache P lacement module.
A score, called the PressureInitialCache score, is cal-
culated for all potential switches that can be selected as
hosting a vDANE instance. The switch which has minimum
PressureInitialCache value considered as the optimal place
for the initial vDANE instance.

B. Cache Migration
After the initial vDANE instance starts, the controller

continues collecting statistics of the network and monitoring
DASH and cross traffic patterns. When the number of clients in
the system changes or it determines changes in traffic amount,
the controller calculates PressureInitialCache scores for
each node again. Changes in traffic amount are determined
based on a predefined certain quality threshold, which can
be assigned by either video streaming company or network
operator. If the location of vDANE is changed according to
the new values of pressure scores, the controller sends PER
enforcement messages to the clients to change their server.
Further, the shortest paths are selected for each client for
streaming packets. If the average quality in terms of bitrate
or representation received by the clients is under the quality
threshold, the controller then decides to deploy additional
vDANE. An algorithm which decides when a new cache in-
stance should be installed is proposed in our previous work [3].

IV. RESULTS

We have implemented and run simulations using the Mininet
emulator in order to evaluate the performance of the pro-
posed PressureInitialCache algorithm. The agility of the
Mininet [12] provides an easy way to prototype and evaluate
SDN applications. The FloodLight SDN controller [13], with
the assistance of OpenFlow as a southbound interface, was
used during the simulations.

A. Simulation Setup Parameters

Three different network topologies were used to evaluate
the performance of the PressureInitialCache algorithm,
which include a Custom topology and two from the Internet
Topology Zoo [14]: the Compuserve and BellCanada topolo-
gies, as shown in Table I. The number of the DASH clients
are set to 10, 12, and 20, for of the network topologies,
respectively. A Poisson distribution with different mean values:
λ=7, λ=10, λ=15 Mbps, were used for defining the network
link bandwidths.

During simulation, the Big Buck Bunny video [15] with six
different representations is used for streaming. Each repre-
sentation contains 299 video segments with an equal length
of 2 seconds, so the total length of each representation is
598 seconds of video. The first representation (R1) has the
lowest bitrate, and the last representation (R6) provides the
highest bitrate / video quality. To achieve better QoE, clients
should request and receive as many segments as possible
from representations with a higher bitrate. The clients run a
throughput based rate adaptation algorithm, where they decide
the video quality based on the observed throughput values.
Clients are randomly distributed over all of the nodes, and the
DASH clients join and leave the network based on a Poisson
distribution, which has a mean equals to 3 seconds.

B. Performance Evaluations

In order to provide comparable performance results, we also
implemented two other algorithms: one of them is Best effort,
and the other one is the HotSpot approach described in [10].
In the Best effort approach, a cache is placed near to the
center of topology. Therefore, the average distance between
all the clients and the cache is minimum with this approach.
The alternate HotSpot algorithm, benefits from the concept
of locality by introducing F (i) = a3 + b2 + c as a pressure
function. In this function, a, b and c, refer to the number
of clients with one, two, and three hops away from node i,
respectively. Unlike Best effort, HotSpot places caches in a
location which has highest client density. In the simulations,
all the parameter settings were equal for all of the approaches.
Each simulation was repeated 10 times and the average values
are given in the tables.

In tables II, III and IV, the metrics for the average received
video quality, the average startup delay, and the average outage
duration values obtained from the simulations are given for
the Custom, Compuserve, and BellCanada topologies, respec-
tively. In the tables, the Average received video quality values
shows the representation bitrate received on the client’s side;
the Average startup delay is the parameter that represents the
latency of starting a video after user requests to play a video,
and the Average outage duration is the duration of video stalls.

If we examined the received video quality values, we see
that the minimum quality obtained is with Best effort approach.
The main reason of this is that this approach only considers
the locality, but it does not consider the number of clients
connecting to the network or the distribution of the connection
points. Mainly, in the Best effort approach, the location of

the caches may cause some bottleneck points in the network,
hence clients start sending request for segments with lower
quality, which has smaller size, and in turn, outage duration
values may reduce. We see that effect when we examine the
values given in the tables, where the clients experience lower
outage duration than clients in HotSpot approach. For all
approaches, we see that the observed parameters get better
when the network capacity gets higher, in terms of available
bitrates, as expected. We observe that the proposed approach
of PressureInitialCache outperforms other two approaches
in different sizes of network topologies in all simulations.

The percentage of received video segments belonging to
each representation are given in figures 2, 3, and 4. Here,
R1 represents the lowest quality, R2 through to R5 represent
the medium quality representations, and R6 represents the
highest quality. The numbers show that the clients in the
PressureInitialCache approach receive the biggest share
of the highest quality R6 segments in the Custom and Com-
puserve topologies, which is a good result. Since BellCanada
is a relatively bigger topology, the distance between the cache
and the clients affects the quality and the smallest percentage
belonging to highest quality among the results related to all
topologies is observed in BellCanada topology. Nevertheless,
the clients with the proposed PressureInitialCache ap-
proach received the highest number of segments from the top
representation – again a good result.

In order to show that the improvement in the received
quality provided by PressureInitialCache is maintained
throughout the whole run, we averaged the received quality
as a function of time. These values are comparatively given
for all approaches for the Bell Canada topology in Fig. 5.
Average received quality values are obtained by averaging
the bitrate of the representations downloaded by all clients
in all simulations. When we examine the data, the clients
using the PressureInitialCache approach always play the
video with higher quality, and it is consistent for each segment
of the video. This shows that, for dynamic adaptive video
streaming applications, optimizing localization by considering
the density of the clients has a positive impact on the received
quality. However, if the network has limited capacity, where
λ = 7 Mbps, we see a small quality degradation of the
proposed approach. The reason for that is that after a vDANE
is migrated, and during the TCP re-establishment process, the
clients stop receiving traffic and measure throughput as zero
and so request the lowest quality since clients use throughput
based adaptation. A buffer based rate adaptation would per-
form better in that case. This shows that the performance of
the virtualized environment is highly connected with the rate
adaptation algorithm used by DASH applications.

To demonstrate the impact of the proposed approach in
larger networks where more than one cache instance is
required, we also ran additional simulations by using the
Bell Canada topology with 100 clients. In the first set of
simulations, the first cache is placed in random locations,
whereas the proposed algorithm is used in the second set of
simulations. For both sets of simulations, when the number of

TABLE I: Network topologies

Network topologies #Nodes #Links Average avalable bandwidth (Mbps) Average number of Clients

Custom 8 11 λ=7, λ=10, λ=15 10
Compuserve 11 14 λ=7, λ=10, λ=15 12
BellCanada 43 58 λ=7, λ=10, λ=15 20

TABLE II: Performance results: Custom topology

(a) Average received video quality (Kbps)

Algorithm λ=7 λ=10 λ=15
Best effort 2309 2865 3532
HotSpot 2546 3532 3440
PressureInitialCache 3013 3670 3680

(b) Average startup delay (sec)

Algorithm λ=7 λ=10 λ=15
Best effort 13 7.9 5.8
HotSpot 13.4 5 6.1
PressureInitialCache 11.2 4.9 5.1

(c) Average outage duration (sec)

Algorithm λ=7 λ=10 λ=15
Best effort 450 53 5
HotSpot 757 4 17
PressureInitialCache 128 2 2

TABLE III: Performance results: Compuserve topology
(a) Average received video quality (Kbps)

Algorithm λ=7 λ=10 λ=15
Best effort 2799 3050 3442
HotSpot 2587 3050 2945
PressureInitialCache 3146 3066 3517

(b) Average startup delay (sec)

Algorithm λ=7 λ=10 λ=15
Best effort 10.3 7.9 7.6
HotSpot 14.5 7.9 6.2
PressureInitialCache 10.1 7.9 6.1

(c) Average outage duration (sec)

Algorithm λ=7 λ=10 λ=15
Best effort 351 133 34
HotSpot 615 133 42
PressureInitialCache 180 102 26

TABLE IV: Performance results: BellCanada topology
(a) Average received video quality (Kbps)

Algorithm λ=7 λ=10 λ=15
Best effort 2304 2451 2883
HotSpot 2650 2542 2917
PressureInitialCache 2600 2607 3107

(b) Average startup delay (sec)

Algorithm λ=7 λ=10 λ=15
Best effort 26 15 9
HotSpot 19 11 9
PressureInitialCache 13 11 7

(c) Average outage duration (sec)

Algorithm λ=7 λ=10 λ=15
Best effort 386 250 147
HotSpot 662 672 417
PressureInitialCache 340 233 87

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(a) λ=7 Mbps

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(b) λ=10 Mbps

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(c) λ=15 Mbps

Fig. 2: Distribution of the received quality level – R1 to R6: Custom topology

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(a) λ=7 Mbps

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(b) λ=10 Mbps

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(c) λ=15 Mbps

Fig. 3: Distribution of the received quality level – R1 to R6: Compuserve topology

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(a) λ=7 Mbps

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(b) λ=10 Mbps

Pe
rc

en
ta

ge

0%

25%

50%

75%

100%

Best effort HotSpot PressureInitialCache

R6 R5 R4 R3 R2 R1

(c) λ=15 Mbps

Fig. 4: Distribution of the received quality level – R1 to R6: BellCanada topology

Segments

Re
ce

iv
ed

 R
ep

re
se

nt
at

io
n

Bi
tr

at
e

(k
bp

s)

2500

3071

3643

4214

4786

5357

5929

6500

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298

Best Effort HotSpot PressureInitialCache (a)

Segments

Re
ce

iv
ed

 R
ep

re
se

nt
at

io
n

Bi
tr

at
e

(k
bp

s)

2500

3071

3643

4214

4786

5357

5929

6500

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298

Best Effort HotSpot PressureInitialCache (b)

Segments

Re
ce

iv
ed

 R
ep

re
se

nt
at

io
n

Bi
tr

at
e

(k
bp

s)

2500

3071

3643

4214

4786

5357

5929

6500

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298

Best Effort HotSpot PressureInitialCache (c)

Fig. 5: Bitrate of the received video representation per seg-
ment: (a) λ=7 Mbps, (b) λ=10 Mbps, and (c) λ=15 Mbps)

online clients increases, some second caches are installed by
using our algorithm given in [3]. Simulation results indicated
that with the random approach, clients received 14% of the
video segments from the highest quality, on average, while
receiving 17% when PressureInitialCachee was utilized.
The average video bitrate received by clients in the random
approach was equal to 2466 Kbps, and was equal to 2571
Kbps when using PressureInitialCache. This means that
end users experienced better video display with our proposed
algorithm. Significant improvement is observed in the outage
duration values, where the total outage duration is as low as
168 seconds for the proposed algorithm, but with the random
approach results in 637 seconds of outage duration – which is
totally unacceptable. For these tests we configured paths with
lower bandwidth of λ=7 to show the behaviour of the clients.

V. CONCLUSION

In this paper we proposed a SAND architecture which
deploys vDANEs and an approach for initiating and migrating
vDANEs, the virtual DANE cache instances. Such an approach
is made possible by softwarized networks using the deploy-
ment of SDN and NFV technologies in ISPs. One of the
objectives of our work is the cache placement algorithm used
to calculate an optimal point for vDANE placement. This is
done by considering both the number of hops and the available
bandwidth between the potential location and the clients.
The nodes having high connectivity are also considered, as
it is an important criteria when reliability issues are taken
into account. Locations with more connection links and more

available bandwidth and less hops from the clients have more
of a chance to be selected.

In order to show the performance improvement that can
be provided by the proposed software controlled approach,
the comparative performance results, conducted on Mininet,
were obtained and presented by implementing two cache
placement algorithms proposed in the literature. We tested
the performance over different types and sizes of network,
and the results show that the proposed approach outperforms
the other two approaches in all simulations. The observed
throughput improvement provided by the proposed approach,
when compared to Best effort and HotSpot approaches, is up
to 30.5% and 19% respectively. Our algorithm also provided
a decrease in the outage duration of up to 49% and 70%,
and a decrease in startup delay of up to 50% and 32%
when compared to these other approaches. These results show
us that, as well as implementing a video streaming specific
cache localization algorithm, deploying localization by using
software based approaches in virtualized environments, makes
it easier to adapt to dynamic conditions by changing the
location of the virtualized components.

In our future work, we plan to implement a content distribu-
tion scheme and jointly consider vDANE location and content
availability when selecting the location of vDANEs. We will
evaluate against real network slices when they are deployed
by ISPs, as well as utilizing a larger number of clients.

ACKNOWLEDGMENT

This work was supported by Digiturk company, TUBITAK
EEEAG under grant 115E449 and partially supported by the
EU-Brazil project: Novel Enablers for Cloud Slicing (777067).

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Trends, 2017.”
[2] MPEG’s, “DASH-IF Position Paper: Server and Network Assisted

DASH (SAND), ISO/IEC 23009-5, published December 2016.”
[3] S. Clayman, R. S. Kalan, and M. Sayit, “Virtualized Cache Placement

in an SDN/NFV Assisted SAND Architecture,” in BlackSea2018.
[4] R. M. B. N. N. Bouten, J. Famaey, S. L. J. Serrat, and F. Turck, “Towards

NFV-based multimedia delivery,” in IFIP/IEEE 2015.
[5] P. Georgopoulos, M. Broadbent, B. Plattner, and N. Race, “Cache as a

service: Leveraging SDN to efficiently and transparently support video-
on-demand on the last mile,” in ICCCNb2014.

[6] Z. Li, M. K. Sba, Y. Hadjadj-Aoul, A. Gravey, D. Alliez, J. Garnier,
G. Madec, and et al, “Network friendly video distribution,” in NOF2012.

[7] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
Dynamic Placement of Virtual Network Functions,” in IEEE/IFIP 2014.

[8] H. Moens and F. D. Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in CNSM 2014.

[9] H. Ibn-Khedher, E. Abd-Elrahman, A. E. Kamal, and H. Afifi, “Opac:
An optimal placement algorithm for virtual cdn,” Comp. Networks, 2017.

[10] L. Mamatas, S. Clayman, M. Charalambides, A. Galis, and G. Pavlou,
“Towards an information management overlay for emerging networks,”
in NOMS 2010.

[11] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive
resource management and control in software defined networks,” IEEE
TNSM2015.

[12] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in ACM SIGCOMM 2010.

[13] FloodLight, “Project Floodlight, floodlight.” [Online]. Available:
http://www.projectfloodlight.org/floodlight//

[14] Topology-Zoo. [Online]. Available: http://www.topology-zoo.org/
[15] “Big Buck Bunny.” [Online]. Available: http://www-itec.uni-

klu.ac.at/ftp/datasets/DASHDataset2014/BigBuckBunny/2sec/

