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A B S T R A C T

Individuals with intact cognition and neuropathology consistent with Alzheimer’s disease (AD) are referred to as
asymptomatic AD (AsymAD). These individuals are highly likely to develop AD, yet transcriptomic changes in
the brain which might reveal mechanisms for their AD vulnerability are currently unknown. Entorhinal cortex,
frontal cortex, temporal cortex and cerebellum tissue from 27 control, 33 AsymAD and 52 AD human brains were
microarray expression profiled. Differential expression analysis identified a significant increase of transcriptomic
activity in the frontal cortex of AsymAD subjects, suggesting fundamental changes in AD may initially begin
within the frontal cortex region prior to AD diagnosis. Co-expression analysis identified an overactivation of the
brain “glutamate-glutamine cycle”, and disturbances in the brain energy pathways in both AsymAD and AD
subjects, while the connectivity of key hub genes in this network indicates a shift from an already increased cell
proliferation in AsymAD subjects to stress response and removal of amyloidogenic proteins in AD subjects. This
study provides new insight into the earliest biological changes occurring in the brain prior to the manifestation
of clinical AD symptoms and provides new potential therapeutic targets for early disease intervention.

1. Introduction

The increase in life expectancy has profoundly increased the ageing
population, which, unfortunately, is also accompanied by a rise in age-
related disorders including Alzheimer’s disease (AD) (Prince et al.,
2016). Alzheimer’s disease is a neurodegenerative disorder char-
acterised by progressive accumulation of extracellular amyloid-β (Aβ)
protein and intracellular hyperphosphorylated tau filaments in the
brain, which form insoluble plaques and tangles respectively. These
protein aggregates affect neuronal activity which can lead to pro-
gressive loss of neurons associated with deterioration in cognition and
development of neuropsychiatric symptoms.

Through longitudinal studies involving autopsy, it has become
evident that clinical signs of cognitive impairment are apparent after
substantial years of neurodegeneration, which occurs decades after
neuropathological changes (Caselli and Reiman, 2012). As the disease is
progressively slow and as everyone is expected to experience cognitive
change during normal ageing, differentiating AD symptoms from
normal ageing at an early stage of the disease can be difficult. Up to
20–30% of the ageing population with intact cognition have amyloid
deposition, with these individuals at higher risk of progressing to AD
than those without amyloid (Yvette et al., 2010). These individuals are
often referred to as asymptomatic AD (AsymAD) (Driscoll and
Troncoso, 2011) and have been shown to be distinguishable from
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normal ageing based on neuropathology, brain imaging and cere-
brospinal fluid biomarkers (Caselli and Reiman, 2012). While some of
these individuals progress to developing symptoms related to cognition,
which deviate from normal Mild Cognitive Impairment (MCI), and then
to AD, not all do. They are therefore a heterogeneous group, re-
presenting those with prodromal AD and those impervious to AD de-
spite having the pathological hallmarks.

Measuring genome-wide expression of transcripts as markers of
gene activity has revealed that cognitive decline is accompanied by
changes in brain gene expression from normal ageing through to MCI
and AD. Studies have suggested that some changes in the pattern of
gene expression in normal ageing such as synaptic function and energy
metabolism (Saura et al., 2015), are extensively altered in MCI (Nicole
et al., 2015) and AD (Berchtold et al., 2013; Miller et al., 2013; Blalock
et al., 2011; Blalock et al., 2004; Miller et al., 2008). Additional work
has also suggested a number of other biological pathways are more
specifically altered in AD, including inflammation (Blalock et al., 2004;
Colangelo et al., 2002; Miller et al., 2008), protein misfolding (Blalock
et al., 2004; Colangelo et al., 2002), transcription factors (Blalock et al.,
2004; Colangelo et al., 2002), cell proliferation (Blalock et al., 2004;
Colangelo et al., 2002), immune response (Sekar et al., 2015; Li et al.,
2012; Lambert et al., 2010; Chen et al., 2016), protein transcription/
translation regulation (Sekar et al., 2015; Li et al., 2012; Liu et al.,
2013; Li et al., 2015; Puthiyedth et al., 2016; Godoy et al., 2014),
calcium signalling (Sekar et al., 2015; Ramanan et al., 2013; Blalock
et al., 2011), MAPK signalling (Puthiyedth et al., 2016; Miller et al.,
2013), and various metabolism pathways (Puthiyedth et al., 2016; Di
Paolo and Kim, 2012; Liang et al., 2008; Ishii et al., 1997; Godoy et al.,
2014; Li et al., 2012; Oshiro et al., 2011, 2011.) which reflect the extent
and type of pathology and disruption to cell activity as disease pro-
gresses. It is unknown how early the different types of changes occur in
the brain, such as in the pre-symptomatic phase or specifically in
AsymAD subjects who already have the pathological hallmarks of AD
such as amyloid and neurofibrillary tangles (NFTs). Understanding the
fundamental changes in this AsymAD group may shed light on specific
biological mechanisms that may be involved in early pathological
hallmarks of AD, providing new therapeutic targets for early inter-
vention.

In this study, we investigated transcriptomic changes in the human
brain of healthy ageing, AsymAD and AD subjects, which have been
classified based on the clinical assessment before death and AD neu-
ropathology at autopsy. Typical transcriptomic analysis coupled with a
systems-biology approach was used to identify disturbances in the un-
derlying biological mechanisms across the entorhinal cortex, temporal
cortex, frontal cortex and cerebellum brain regions. In addition, we
provide access of gene-level results to the broader research community
through a publicly available R SHINY web-application (https://
phidatalab-shiny.rosalind.kcl.ac.uk/ADbrainDE), allowing researchers
to quickly query the expression of specific genes through the progres-
sion of AD and across multiple brain regions.

2. Materials and methods

2.1. Medical research council london neurodegenerative diseases brain bank

A total of 112 brains were obtained from the Medical Research
Council (MRC) London Neurodegenerative Diseases Brain Bank (from
now on referred to as MRC-LBB) hosted at the Institute of Psychiatry,
Psychology and Neuroscience, KCL. All cases were collected under in-
formed consent, and the bank operates under a licence from the Human
Tissue Authority, and ethical approval as a research tissue bank (08/
MRE09/38+5). Neuropathological evaluation for neurodegenerative
diseases was performed in accordance with standard criteria.

2.2. MRC-LBB sample selection

BRAAK staging is a measure of the spread of hallmark AD pathology
across the brain and is part of the neuropathological assessment. In
general, BRAAK stages I-II, III-IV and V-VI have been suggested to re-
present low, intermediate, and high likelihood dementia is due to AD
respectively (Consensus recommendations for the postmortem diag-
nosis of Alzheimer’s disease, 1997). Twenty-seven control cases were
used - classified as showing no clinical sign of any form of dementia and
no neuropathological evidence of neurodegeneration. Thirty-three
AsymAD cases were also analysed - defined as clinically dementia-free
at the time of death, but neuropathological assessment at autopsy
showed hallmark AD pathology. Finally, fifty-two AD cases, which had
both clinical diagnosis of AD at death and confirmation of this diagnosis
through neuropathological evaluation at autopsy, were selected.

2.3. MRC-LBB brain region selection and RNA extraction

Frozen tissues (0.5–1 cm3) from the following brain regions from
each case were macrodissected into RNAlater RNA Stabilization
Reagent (Qiagen): 1) Frontal Cortex (FC), 2) Temporal Cortex (TC), 3)
Entorhinal Cortex (EC) and 4) Cerebellum (CB). Hallmark AD pathology
was confirmed in the entorhinal cortex, temporal cortex and frontal
cortex but absent from the cerebellum of AsymAD and AD subjects.
RNA extraction was performed within 24 h of dissection. Total RNA was
extracted using RNeasy Lipid Tissue Mini Kit (Qiagen, 74804) following
the manufacturer’s protocol. Genomic DNA was removed using gDNA
Eliminator Spin Columns (Qiagen). The RNA quality was evaluated
with an Agilent 2100 bioanalyzer (Agilent Technologies, Inc., Palo Alto,
CA).

2.4. MRC-LBB Illumina beadArray expression profiling

Total RNA (25 ng) was prepared for array expression profiling using
the Ovation Pico WTA system (NuGEN Technologies, Inc., San Carlos,
CA), as described by the manufacturer’s protocol. The Nugen system is
optimised for the amplification of degraded RNA, where amplification
is initiated at the 3′ end as well as randomly throughout the whole
transcriptome. The samples were processed at the NIHR Biomedical
Research Centre for Mental Health (BRC-MH), Genomics & Biomarker
Core Facility at the Social, Genetic & Developmental Psychiatry Centre,
Institute of Psychiatry, Psychology and Neuroscience, King’s College
London (https://www.kcl.ac.uk/ioppn/depts/sgdp-centre/research/
The-IoPPN-Genomics–Biomarker-Core-Facility.aspx) in accordance
with the manufacturer’s protocol using the Illumina HT-12_V4 bead-
chips (Illumina, USA).

2.5. Microarray expression data processing

Raw gene expression data was exported from Illumina’s
GenomeStudio (version 2011.1) into RStudio (version 0.99.467) for
data processing. Using R (version 3.2.2), raw data was Maximum
Likelihood Estimation (MLE) background corrected using R package
“MBCB” (version 1.18.0) (Allen et al., 2010), log2 transformed, and
underwent Robust Spline Normalisation (RSN) using R package “lumi”
(version 2.16.0) (Du et al., 2008).

A series of quality control steps were carried out before data ana-
lysis. Duplicate samples were removed based on lowest RIN score. Sex
was predicted for each sample using the R package “massiR” (version
1.0.1) (Buckberry et al., 2014), with any discrepancies in predicted and
clinically recorded sex from the same individual across all tissues re-
moved from further analysis. For each sample, probesets “not reliably
detected” or “unexpressed” were removed to eliminate noise (Lazar
et al., 2013) and increase power (Hackstadt and Hess, 2009). If the
expression of a probe was below the 90th percentile of the log2 ex-
pression scale in over 80% of samples across all groups (based on
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disease status, brain region and sex), the probe was deemed “un-
expressed” and was removed from further analysis.

Batch effects were then explored using Principal Component
Analysis (PCA) and Surrogate Variable Analysis (SVA) using the R
package “sva” (version 3.10.0) (Leek et al., 2012). Sex and diagnosis
information was used as covariates in sva when correcting for unknown
batch effects. To ensure homogeneity among the biological groups,
outlying samples per tissue and disease group were iteratively identi-
fied and removed following the fundamental network concepts de-
scribed in (Oldham et al., 2012). Finally, Illumina-specific probe ID’s
were converted to the universal Entrez Gene ID using the R package
“illuminaHumanv4.db” (version 1.22.1).

2.6. Differential expression and gene set enrichment analysis

Differential Expression (DE) analysis was performed using the R
package “limma” (version 3.20.9) (Smyth, 2005). As we had theoreti-
cally corrected for unwanted batch effects in our data using sva, we
only used sex in the DE model as a covariate. A gene was regarded as
significantly differentially expressed if the false discovery rate (FDR)
adjusted p-value≤ 0.05.

Gene set enrichment analysis (GSEA) was performed using an Over-
Representation Analysis (ORA) implemented through the
ConsensusPathDB (http://cpdb.molgen.mpg.de) web-based platform
(version 32) (Kamburov et al., 2009) in October 2017. Con-
sensusPathDB incorporates numerous well-known biological pathway
databases including BioCarta, KEGG, Reactome and Wikipathways. It
performs a hypergeometric test while combining a background gene
list, compiles results from each database and corrects for multiple
testing using FDR (Kamburov et al., 2009). During GSEA analysis, a
minimum overlap of the query signature and database was set as 2.

2.7. Weighted gene co-expression network analysis

Weighted gene co-expression analysis (WGCNA) was performed
using R package “WGCNA” (version 1.51) to identify clusters (modules)
of highly correlated genes, with the underlying hypothesis that such
modules could possess a common function. The WGCNA analysis was
performed as described in (Langfelder and Horvath, 2008). In brief, a
co-expression network based on “signed” adjacency was independently
created for all three phenotypes (control, AsymAD and AD group), to-
pological overlap calculated, and hierarchical clustering used to group
genes into modules. The control group module was assigned default
colours based on module size, and the AsymAD and AD module colours
determined based on the control module gene overlap. Module cross-
tabulations were generated across the three phenotypes and Fisher’s
exact test used to test for enrichment between modules-gene assign-
ments between the control, AsymAD and AD groups. To aid in identi-
fying significant changes in the co-expression network within the same
modules in the three phenotypes, additional statistics known as
“Module preservation Zsummary” and “median rank” were calculated
as described in (Langfelder et al., 2011).

2.8. Protein–Protein interaction network analysis

Protein-protein interaction (PPI) networks were generated by up-
loading gene lists (referred to as seeds in network analysis) to
NetworkAnalyst’s (http://www.networkanalyst.ca/faces/home.xhtml)
web-based platform in December 2017. The “zero-order network” op-
tion was incorporated to allow only seed proteins directly interacting
with each other, preventing the well-known “hairball effect” and al-
lowing for better visualisation and interpretation (Xia et al., 2014). Sub-
modules with a p-value≤ 0.05 based on the “InfoMap” algorithm (Zaki
and Mora, 2015) were deemed significant “hubs” and the gene(s) with
the most connections within this network as the “key hub gene(s)”.

2.9. Study design

Differential and co-expression analysis was performed between the
three disease groups and for each of the four brain regions. First, the
control and AsymAD groups were compared, and from this point on-
wards is referred to as the “Early AD” analysis. Second, the AsymAD
and AD groups were compared, and from this point onwards is referred
to as the “Late AD” analysis. Finally, the control and AD groups were
compared, and from this point onwards is referred to as the “Standard
AD” analysis. An overview of the study design and analyses is shown in
Fig. 1.

2.10. Data availability

The microarray data have been deposited in NCBI’s GEO database
under the accession number GSE118553. Additionally, a shiny appli-
cation was written in R using the “shiny” framework (version 0.14) to
allow quick visualisation of specific gene expression in the control,
AsymAD and AD subjects, and across the EC, TC, FC and CB brain re-
gions. The application also displays DE results of each gene and can be
accessed at https://phidatalab-shiny.rosalind.kcl.ac.uk/ADbrainDE. All
data analysis scripts used in this study are available at https://doi.org/
10.5281/zenodo.1400644

3. Results

3.1. Data processing

Of the 401 tissue samples assessed (extracted from the 112 brains)
48 samples were removed due to duplication, 4 samples due to outlier
detection analysis and 2 samples due to sex discrepancies between re-
corded and actual sex, leaving 347 tissue samples from 111 brains for
DE and co-expression analysis. As a result of samples not being mi-
croarray profiled due to sample quality, and samples being removed
during the Quality Control (QC) process, not all subjects had tissue
samples extracted from all four brain regions. The demographics for
datasets by brain region and sample group is provided in Table 1.

After further QC and annotation to determine Entrez gene identi-
fiers, the final data represented 3518 “reliably detected” genes across
all samples. Chi-squared tests revealed no significant difference in the
proportion of males to females across the three disease groups or brain
regions. Mann-Whitney U test revealed no significant difference be-
tween post-mortem (PM) delay or disease duration across analyses;
however, age was significantly (p≤ 0.01) lower in the control groups

Fig. 1. Overview of study design. Four brain regions; frontal cortex (FC),
temporal cortex (TC), entorhinal cortex (EC) and cerebellum (CB) from the
three subject groups; control (CO), Asymptomatic AD (AsymAD) and
Alzheimer’s disease (AD) were expression profiled. The typical comparison
between the CO and AD group is referred to as the “Standard AD” analysis, the
comparison between the CO and AsymAD group is referred to as the “Early AD”
analysis and the comparison between the AsymAD and AD group is referred to
as the “Late AD” analysis.
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when compared to the AsymAD and AD group in each tissue (see
Supplementary Table 1). It is important to note, although the control
group are collectively younger than both the AsymAD and AD groups,
some controls exist in this study that are older than the average age of
both the AsymAD and AD groups. Phenotype information per sample is
provided in Supplementary Table 2.

The table provides a summary of sample characteristics used in this
study. From the Initial 401 samples expression profiled, 48 samples
were removed due to duplication, 2 samples removed due to sex dis-
crepancies and 4 samples removed due to being identified as outliers.
The total number of samples available after quality control was 347.
BRAAK staging is a measure of the spread of hallmark AD pathology
across the brain and does not reflect pathology within a distinct brain
region. In general, BRAAK stages I-II, III-IV and V-VI have been sug-
gested to represent prodromal, early-moderate AD, and moderate-late
AD respectively. BRAAK scores deviate between brain regions as not all
four brain regions were available from all donors. Hallmark AD pa-
thology was confirmed in the entorhinal cortex, temporal cortex and
frontal cortex but absent from the cerebellum of AsymAD and AD
subjects. The values provided in Age, BRAAK and PM Delay represent
the mean ± standard deviation. Demographics per sample is provided
in Supplementary Table 2. Abbreviation: M/F: the ratio of male and
female samples, PM: Post-Mortem, h: Hours, yrs: Years, SD: Standard
deviation.

3.2. Summary of differentially expressed genes across disease groups and
tissues

A summary of DEG’s identified in each brain tissue and analyses are
illustrated in Fig. 2, and a full list of DEG’s is provided in
Supplementary Table 3. The general trend of DEG’s in subjects with AD
(“Late AD” and “Standard AD” analysis) decreases across brain regions
in the order of EC (n= 1904 and n=1690 respectively) > TC
(n=1546 and n= 1517 respectively) > FC (n=52 and n= 299 re-
spectively) > CB (n=13 and n= 176 respectively). This expression
pattern corresponds to the route AD pathology is seen to spread through
the brain. By contrast, the pattern differs in the AsymAD group (“Early
AD” analysis), where most DEGs are detected in the FC (n= 398) fol-
lowed by the TC (n=253), EC (n= 19) and CB (n= 1), suggesting
initial molecular changes may begin in the FC brain region prior to AD
symptoms.

3.3. AD tau pathology marker suggests AsymAD subjects are an
Intermediate state between normal ageing and AD

A previous study identified eight genes highly correlated with AD
tau pathology (Miyashita et al., 2014), of which two genes (RELN,
TRIL) are present in our data. The RELN gene is not significantly DE in
any of the analysis in this study; however, DE analysis results indicate
the TRIL gene expression gradually increases through the control,

AsymAD and then the AD group. In addition, the expression increase is
only observed in brain regions known to be affected by tau pathology
(EC, TC and FC), and the extent of expression change within these af-
fected brain regions shadows the route of disease manifestation through
the brain (Fig. 3a). The EC exhibits the most significant increase of TRIL
expression (logFC=0.99, FDR adjusted p-value=2.77e−8), followed
by the TC (logFC=0.48, FDR adjusted p-value=1.41e−3) and then
FC brain region (logFC=0.44, FDR adjusted p-value=2.21e−2). This
expression pattern further suggests the TRIL gene is a reliable brain
marker for tau pathology, and our AsymAD samples are a good re-
presentation of early-intermediate state between normal ageing and
AD.

3.4. The most significant differentially expressed genes per analysis

The most DEG’s from each analysis is 1) MOSPD3 (downregulated
in the TC brain region in “Early AD”, FDR adjusted p-
value= 1.18e−10, 2) NPC2 (upregulated in the EC brain region in the
“Late AD” analysis, FDR adjusted p-value= 2.39e−20,) and 3)
NOTCH2NL (upregulated in the EC brain region in the “Standard AD”
analysis, FDR adjusted p-value=1.29e−15. Expression boxplots of
these genes are available to view in the SHINY web-app.

3.5. Common differentially expressed genes across all brain regions

The overlap of DE genes across brain regions is shown in Fig. 4.
MOSPD3 is the only gene significantly differentially expressed across
all four brain regions in the “Early AD” analysis. No gene was sig-
nificantly differentially expressed in the “Late AD” analysis across all
four brain regions; however, six genes (NPC2, DUSP1, GPM6B,
SLC38A2, ANKEF1, MOSPD3) were identified in “Standard AD” ana-
lysis. Three of these genes (DUSP1, SLC38A2 and MOSPD3) are con-
sistently expressed in the same direction across all four brain regions.
DUSP1 and SLC38A2 gene expression are upregulated during disease
progression (Control to AsymAD to AD). MOSPD3, however, is down-
regulated in the disease in both the “Early AD” and “Standard AD”
analyses, with no significant difference between the AsymAD and AD
subjects. The remaining three genes (NPC2, GPM6B, ANKEF1) are DE
in the same direction across all brain regions but reversed in the CB; a
brain region suggested to be spared by hallmark AD pathology.

3.6. Differentially expressed genes in brain regions with hallmark AD
pathology

The EC, TL and FC are all affected by hallmark AD pathology
(amyloid and NFT’s), while the CB is known to be partially spared.
Gene’s DE in the EC, TC and FC brain regions and not the CB, may
identify hallmark AD pathology specific genes. Three (ALDH2, FBLN2
and METTL7A) and nine (FLCN, ASPHD1, ARL5A, GPR162, HBA2,
PCID2, NDRG2, BEND3, RAP1Gap) genes were significantly

Table 1
Summary of MRC-LBB sample characteristics.

Brain Region Phenotype No. Samples Sex (M/F) Age (± SD) BRAAK (± SD) PM Delay (h) Disease duration (yrs)

Entorhinal Cortex Control 16 9/7 71.9 (15.6) 0 33.8 (17.8) 0
AsymAD 28 8/20 85.4 (9.5) 2.2 (± 1.2) 52.5 (15.9) 0
AD 34 13/21 83.9 (9.7) 4.9 (± 1) 39.5 (21.2) 11.8 (5.2)

Temporal Cortex Control 24 14/10 71.5 (16.9) 0 37.2 (19.8) 0
AsymAD 28 9/19 86.3 (8.6) 2.5 (± 1.1) 54.2 (16.6) 0
AD 45 20/25 82.7 (9.8) 4.9 (± 0.9) 40.4 (21.4) 9.7 (5.4)

Frontal Cortex Control 21 12/9 69.8 (15.4) 0 40.4 (24.6) 0
AsymAD 32 10/22 86 (8.9) 2.3 (± 1.2) 54.1 (16.2) 0
AD 38 13/25 82.5 (4.7) 4.9 (± 1) 39.4 (20.5) 10.5 (5.7)

Cerebellum Control 18 10/8 69.4 (16) 0 37.9 (20.7) 0
AsymAD 27 8/19 86.3 (9.2) 2.4 (± 1.2) 56 (16.5) 0
AD 36 17/19 82.6 (10.6) 5.1 (± 0.3) 40.2 (22.3) 9.4 (5.6)
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differentially expressed across the EC, TC and FC brain regions and not
the CB brain region in the “Early AD” and “Late AD” analysis respec-
tively.

3.7. Gene set enrichment analysis of differentially expressed genes

To understand the functional implications of DEG’s, GSEA was
performed using the significant DEG list from all three analyses (“Early
AD”, “Late AD” and “Standard AD”) and across all four brain regions,
resulting in 12 enrichment result tables (provided in Supplementary
Table 4). No biological pathway is significantly enriched across all four
brain regions in the “Early AD”, “Late AD” or “Standard AD” analysis.
However, when excluding the brain region spared by hallmark AD
pathology (CB), the “glutamate glutamine metabolism” and “glu-
coneogenesis and glycolysis” pathways are the only pathways sig-
nificantly enriched in the “Early AD” and “Late AD” analysis respec-
tively. For the “Standard AD” analysis, excluding the CB brain region
additionally identified “mRNA processing”, “synaptic vesicle
pathway” and “TNF-alpha” pathways as significantly enriched in the
remaining three brain regions.

3.8. Summary of weighted co-expression network analysis

Weighted gene co-expression analysis was performed on the FC and
EC brain regions. We focused on these two brain regions as differential
expression analysis identified an increased number of significant DEG’s
in the FC brain region prior to AD symptoms and the EC is widely re-
garded as one of the first areas of the brain to be affected in AD.
Network preservation and cross-tabulation statistics were calculated to
identify co-expression networks that may be preserved or disrupted
between the Control, AsymAD and AD subjects. Fig. 5 illustrates the
WGCNA module assignments and module preservation statistics, and

Fig. 6 shows the cross-tabulation statistics across phenotypes.
Co-expression analysis in the FC brain region identified 13, 7, and

12 modules within the control, AsymAD and AD groups respectively,
while the analysis in the EC identified 8, 8 and 11 modules within the
control, AsymAD and AD groups respectively. GSEA analysis was per-
formed for all fifty-nine modules to identify potential biological path-
ways the co-expressed genes may be involved with. A summary of the
GSEA results on the co-expression module in the FC and EC is provided
in Tables 2 and 3 respectively, with complete GSEA results for the
Control, AsymAD and AD groups in the FC and EC brain regions pro-
vided in Supplementary Tables 5–10 respectively.

3.9. Co-expression modules are weakly preserved in AsymAD and AD
entorhinal cortex

Module preservation statistics were calculated for each brain region
to identify co-expression networks that are weakly preserved through
the course of the disease. Modules below a “preservation Zsummary”
statistic of 10 and “preservation median rank” higher than the gold
module (random 100 genes) are suggested to be weakly preserved.
Module colours for the AsymAD and AD groups were mapped to the
control module colours, allowing for changes and preservation in the
co-expression networks to be observed as the disease progresses. The
module colours assigned in the EC brain region are independently as-
signed to modules colours assigned in the FC brain region and therefore
similar module colours across these two tissues bare no relation.

The FC “preservation Zsummary” statistics (Fig. 5b and c) suggests
all modules from the control group are relatively well-preserved in the
AsymAD and AD groups. In contrast, the EC “preservation median rank”
statistics suggest the green control module is weakly preserved in
AsymAD group (Fig. 5e), and both the green and brown control mod-
ules are weakly preserved in the AD group (Fig. 5f). In addition, the

Fig. 2. Distribution of Significant DEG (FDR adjusted p-value≤ 0.05) across brain regions and analyses. “Control > AsymAD” summarises the number of DEGs
between the control and AsymAD group. “AsymAD > AD” summarises the number of DEGs between the AsymAD and AD group. “Control > AD” summarises the
number of DEGs between the control and AD group. The proportion of up-regulated genes is represented in green while the down-regulated genes are represented in
red. The total number of significantly differentially expressed genes in each brain region and analysis is provided on top of each bar. More genes are observed to be
generally perturbed when comparing the AD group to the AsymAD or healthy ageing group, with the general pattern of more genes perturbed in the entorhinal
cortex, followed by the temporal cortex, frontal cortex and then the cerebellum, a pattern generally representing the spread of hallmark AD pathology. In contrast,
comparing the AsymAD group to the healthy ageing group reveals more genes are perturbed in the frontal cortex, followed by the temporal cortex, entorhinal cortex
and then the cerebellum, suggesting initial molecular changes in AD may begin in the frontal cortex before the manifestation of clinical AD symptoms.
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cross-tabulation statistics are also indicative of disruption to the EC
green control module (Fig. 6d). GSEA reveals the EC brown module in
control, AsymAD and AD group is most significantly enriched for “se-
lenocysteine synthesis” (control q-value=4.71e54, AsymAD q-
value=5.89e−90, AD=1.35E−96), suggesting this process is not
significantly disrupted in AsymAD or AD subjects. In contrast, the EC
control green module is significantly enriched (before multiple cor-
rections) for “neutrophil degranulation” (p-value=0.5e−4),
“TYROBP casual network” (p-value= 2.5e−3) and the “innate im-
mune system” (p-value= 2.7e−3), none of which are present in the
green module of the AsymAD, suggesting these pathways may be dis-
rupted in AsymAD subjects.

Clusters of co-expressed genes in both the FC and EC brain regions
were enriched for specific cell types including neurons, astrocytes,
oligodendrocytes and microglia (results not shown); however, we did
not detect a disturbance in any cell type in AsymAD subjects.

3.10. Frontal cortex co-expression network re-wired in AsymAD

Co-expression analysis identified 13 and 12 co-expressed modules in
the control and AD subjects respectively. However, the AsymAD group
exhibits 7 larger modules of highly co-expressed genes, suggesting the
co-expression network is re-wired in the FC brain region in this inter-
mediate stage of AD. The module preservation analysis suggested all
modules within the control group are relatively preserved through the

course of the disease, however, through cross-tabulation of the modules
we observe subtle changes leading to a much larger magenta module in
the AsymAD group. The biological processes associated with the ma-
genta module changes from being enriched for “glucose metabolism”
(q-value 6.26e−02) in the control group to “oxidative phosphoryla-
tion” (q-value=2.26e−11), Parkinson’s disease (q-
value= 5.12e−9), electron transport chain (q-value=5.83e−9)
and Alzheimer’s disease (q-value=8.21e−9) in the AsymAD group.
Then the large magenta module in the AsymAD group, branches into
four new AD modules (blue, turquoise, midnightblue, and yellow),
which are most enriched for Parkinson’s disease (q-
value= 3.09e−4), neurotransmitter receptors and postsynaptic
signal transmission (q-value=0.01), the citric acid (TCA) cycle and
respiratory electron transport (q-value=0.01), and fas signalling
(q-value= 0.0030) respectively.

3.11. Entorhinal cortex yellow module enriched for all “early AD” analysis
DEG’s

The yellow module contained all genes identified as significantly DE
in the “Early AD” analysis (ALDH2, FBLN1 and METTL7A) and con-
tained a large number of genes disrupted from the green module, which
was the least preserved module through disease progression. Overall,
this made the yellow module a prime candidate for further investiga-
tion. Gene set enrichment analysis of the yellow module in the AsymAD

Fig. 3. Expression boxplots of the TRIL
gene. Previous research identified the TRIL
gene as a marker for Tau pathology. The
TRIL gene is significantly up-regulated (be-
fore multiple correction) from control to
AsymAD (EC: logFC=0.39 & p-
value= 0.01, TC: logFC=0.24 & p-
value= 0.04, FC: logFC=0.24 & p-
value= 0.04) and then further to AD (EC:
logFC=0.6 & p-value= 6.57e-6, TC:
logFC=0.29 & p-value= 4.19e-3, FC:
logFC=0.18 & p-value=0.05), but not in
the cerebellum (control to AsymAD:
logFC=−0.01 & p-value= 1, AsymAD to
AD: logFC=−0.19 & p-value=0.2), a re-
gion spared by hallmark AD pathology. The
expression pattern of the TRIL gene further
supports the assignment of AsymAD sam-
ples, which were based on clinical records
and neuropathological assessment, as an
early intermediate state between healthy
ageing and AD.
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group reveals enrichment in “fatty acid degradation“ (q-
value=0.03), “glycerophospholipid metabolism” (q-
value=0.008), “urea cycle and metabolism of arginine, proline,
glutamate, aspartate and asparagine” (q-value=0.05), “astrocytic
glutamate-glutamine uptake and metabolism” (q-value= 0.05) and
“neurotransmitter uptake and metabolism in glial cells” (q-
value=0.05), all of which were not previously enriched in the mat-
ched yellow module in the control group.

Protein-protein interaction analysis in the yellow control module
generated six networks, with the largest containing 28 nodes and 30
edges, and identified EGFR gene as the only significant key hub gene
(p-value= 0.01). APOE was not a member of this network. Further PPI
analysis in the AsymAD yellow module generated five networks, with
the largest containing 71 nodes and 81 edges, and EGRF was still the
key hub gene (p-value=0.007). In the equivalent AD yellow module,
PPI analysis identified a single network generated with 284 nodes and
420 edges. This network contained far higher numbers of genes and
now integrated the APOE gene as part of the network with UBC as the
key hub (p-value=4.12e63). This suggests protein interactions in this
yellow module increases gradually through the course of the disease,
with up-regulated EGRF interacting with more genes in the AsymAD
group when compared to controls, followed by significant changes oc-
curring in the AD group where up-regulated UBC gene takes more of a
central role.

4. Discussion

4.1. Transcriptomic perturbations suggest AsymAD subjects could be an
intermediate stage between control and MCI/AD

This study hypothesises the samples we have labelled as “AsymAD”
subjects are an intermediate state between healthy ageing and MCI/AD.
The assignment of these samples to the AsymAD group was based on the
fact that these individuals had no reported clinical record of dementia
prior to death as indicated in the MRC-LBB database; however, upon
autopsy, these samples were found to have low levels of hallmark AD
pathology, i.e. BRAAK Staging≥ 2. Furthermore, an independent ex-
pression study identified the TRIL gene as being highly correlated with
AD neuropathology, specifically tau pathology (Miyashita et al., 2014).
Our study shows that the TRIL gene expression gradually increases
from the Control to AsymAD, and then further increases in AD subjects
(Fig. 2a), and this expression pattern is only observed in brain regions
known to be affected by hallmark AD pathology (amyloid and NFT’s),
i.e. the EC, TC and FC, and not in the CB brain region. This observation
suggests the phenotype assignments (controls, AsymAD, AD) are a
suitable representation of three points in AD progression (assuming the
AsymAD subjects are all prodromal AD), and as suggested by the TRIL
gene expression pattern across brain regions and the fact the CB has
been consistently reported to be partially spared from hallmark AD
pathology (amyloid and NFT’s), even those with severe AD pathology

Fig. 4. Overlap of significant DEG across brain regions in A)” Early AD” analysis, B) “Late AD” analysis and C) “Standard AD” analysis. All brain regions in this study
are affected in AD, specifically by atrophy and neuronal loss, while only three brain regions in this study (EC, TC and FC) are affected by the additional accumulation
of hallmark AD pathology (Aβ and NFT). Genes perturbed across all brain regions may be markers of cell dysfunction in AD, while genes consistently perturbed in the
EC, TC and FC but not in the CB may be associated with AD pathology.MOSPD3 gene is the only gene DE in all brain regions of the “Early AD” analysis. No gene is DE
across all brain regions in the “Late AD” analysis. Three (ALDH2, FBLN2, METTL7A) and nine genes (FLCN, ASPHD1, ARL5A, GPR162, HBA2, PCID2, NDRG2,
BEND3, RAP1Gap) are consistently DE across all brain regions affected by hallmark AD pathology in the “Early AD” and “Late AD” analyses respectively.
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(Convit et al., 2000); genes whose expression pattern differs sig-
nificantly in the CB from that consistently seen in the EC, TC and FC
tissues may be associated with hallmark AD pathology.

4.2. MOSPD3 gene is perturbed in the brains of AsymAD and blood of AD
subjects

We identify MOSPD3 as the only significant DE gene which is
consistently down-regulated across all four brain regions in the
AsymAD subjects suggesting this may be an early marker of cell dys-
function in AD. The MOSPD3 gene encodes for a Motile Sperm Domain

Fig. 5. Hierarchical clustering of genes and module preservations statistics for the frontal cortex is illustrated in A–C) and entorhinal cortex in D–F). In brief, a co-
expression network based on “signed” adjacency was independently created for all three phenotypes (control, AsymAD and AD group), topological overlap calcu-
lated, and hierarchical clustering used to group genes into modules. For the Hierarchical clustering plots, the y-axis represents the network distance with values closer
to 0 indicating greater similarity of probe expression across the control group. The x-axis represents the modules in the control, AsymAD and AD group. The AsymAD
and AD module colours are mapped to the control group, with the AsymAD and AD colour panel representing how well the control modules are preserved through the
disease. The red line in the module preservation statistics (B, C, E, F) represents the correlation between module size and preservation statistics. The gold module
represents 100 random genes, and the grey module represents uncharacterised genes. The FC preservation plots (B and C) suggest all modules in the control group are
relatively preserved in the AsymAD and AD group. In contrast, the EC preservation plots (E and F) suggest the green module is not well preserved in the AsymAD and
AD group and requires further investigation.
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Fig. 6. Illustrates the “module correspondence” between A) FC control and AsymAD group, B) FC AsymAD and AD group, C) FC control and AD group, D) EC control
and AsymAD, E) EC AsymAD and AD group, and F) EC control and AD groups. The modules represent clusters of highly correlated genes which were calculated
independently in each brain region and diagnosis group. The module colours in the AsymAD and AD group were assigned based on the gene overlap of the control
module. The total number of genes within each module is indicated next to the module colour. The numbers in each cell represent the overlap of genes between
modules, with increased red intensity cells indicating increased significant overlap based on Fisher's exact test. This “module correspondence” plot provides a visual
overview of how modules of highly correlated genes are preserved or disrupted between, control, AsymAD and AD groups. Module preservation statistics suggested
the green module in the EC control group is not well preserved in the AsymAD and AD groups, indicating possible disruption to the co-expression network in this
module. This “module correspondence” plot identifies the disrupted genes in the control green module synchronises with the genes of the AsymAD yellow module,
identifying the yellow module for further investigation.
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Table 2
Summary of frontal cortex co-expression module GSEA results.

Phenotype Module Module size Most significant GSEA result Pathway source FDR adjusted q-value

CO Black 93 Pentose phosphate pathway HumanCyc 1.90E−02
Blue 149 Parkinson's disease KEGG 8.32E−10
Brown 144 Differentiation Pathway Wikipathways 2.26E−02
Green 107 Oxidative phosphorylation KEGG 1.43E−02
GreenYellow 46 TNFs bind their physiological receptors Reactome 1.60E−02
Grey 2247 Processing of Capped Intron-Containing PrE−mRNA Reactome 1.47E−02
Magenta 57 Glucose metabolism Reactome 6.26E−02
Pink 67 Tight junction interactions Reactome 1.49E−01
Purple 52 Selenocysteine synthesis Reactome 8.66E−53
Red 106 TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway Reactome 3.88E−02
Tan 42 Ovarian steroidogenesis KEGG 4.43E−02
Turquoise 268 Attenuation of gpcr signaling BioCarta 6.13E−02
Yellow 140 FCERI mediated MAPK activation Reactome 5.62E−02

AsymAD Black 269 RNA Polymerase II Transcription Reactome 5.89E−04
Brown 350 Differentiation Pathway Wikipathways 3.17E−01
Grey 752 mRNA Processing Wikipathways 2.03E−02
Magenta 1593 Oxidative phosphorylation - Homo sapiens (human) KEGG 2.26E−11
Purple 165 Peptide chain elongation Reactome 5.03E−58
Red 191 TNFR2 non-canonical NF-kB pathway Reactome 2.71E−02
Salmon 198 Hematopoietic cell lineage - Homo sapiens (human) KEGG 2.82E−01

AD Black 581 RNA Polymerase II Transcription Reactome 6.61E−06
Blue 422 Parkinson's disease KEGG 3.09E−04
Brown 169 Differentiation Pathway Wikipathways 3.23E−02
Cyan 215 Hematopoietic cell lineage - Homo sapiens (human) KEGG 3.54E−01
GreenYellow 61 Steroid hormone biosynthesis - Homo sapiens (human) KEGG 2.82E−02
Grey 1113 Neuronal System Reactome 2.89E−01
MidnightBlue 83 The citric acid (TCA) cycle and respiratory electron transport Reactome 1.31E−02
Purple 250 Eukaryotic Translation Elongation Reactome 9.36E−66
Red 124 TNF receptor superfamily (TNFSF) members mediating non-canonical NF-kB pathway Reactome 9.31E−02
Salmon 281 Histidine metabolism EHMN 4.87E−04
Turquoise 215 Neurotransmitter receptors and postsynaptic signal transmission Reactome 1.15E−02
Yellow 171 Fas INOH 2.94E−03

Co-expression analysis in the frontal cortex brain region identified 13, 7, and 12 modules within the control, AsymAD and AD groups respectively. Gee set enrichment
analysis was performed on each module, and the most significant result from each module is provided above.

Table 3
Summary of entorhinal cortex module co-expression results.

Phenotype Module Module size Most significant GSEA result Pathway source FDR adjusted q-value

CO Black 216 Hedgehog INOH 7.69E−03
Blue 599 Generic Transcription Pathway Reactome 3.32E−05
Brown 396 Ribosome KEGG 4.71E−54
Green 249 Neutrophil degranulation Reactome 1.35E−01
Grey 288 Pink/Parkin Mediated Mitophagy Reactome 2.97E−01
Red 232 Leptin Insulin Overlap Wikipathways 6.01E−02
Turquoise 1259 Neuronal System Reactome 1.68E−08
Yellow 279 Histidine metabolism EHMN 5.24E−03

AsymAD Blue 336 Generic Transcription Pathway Reactome 2.04E−04
Brown 107 Eukaryotic Translation Elongation Reactome 1.13E−93
Green 337 Processing of Capped Intron-Containing PrE−mRNA Reactome 2.08E−06
Grey 1661 Antigen processing and presentation KEGG 2.10E−04
Pink 432 Neural Crest Differentiation Wikipathways 1.44E−01
Red 183 Hematopoietic cell lineage KEGG 2.21E−01
Turquoise 1661 Parkinson's disease KEGG 2.82E−10
Yellow 363 Metallothioneins bind metals Reactome 8.08E−03

AD Blue 342 Generic Transcription Pathway Reactome 6.31E−04
Brown 106 Eukaryotic Translation Elongation Reactome 4.46E−98
Cyan 103 Cardiac conduction Reactome 4.69E−04
GreenYellow 111 Steroid hormone biosynthesis - Homo sapiens (human) KEGG 2.04E−01
Grey 1249 Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat

production by uncoupling proteins.
Reactome 3.55E−06

MidnightBlue 418 Processing of Capped Intron-Containing PrE−mRNA Reactome 7.92E−07
Red 162 Fat digestion and absorption KEGG 2.80E−01
Salmon 109 How progesterone initiates the oocyte maturation BioCarta 2.08E−02
Tan 240 Differentiation Pathway Wikipathways 1.95E−01
Turquoise 265 Neuronal System Reactome 5.10E−11
Yellow 413 Propanoate metabolism EHMN 3.67E−03

Co-expression analysis in the entorhinal cortex brain region identified 8, 8, and 11 modules within the control, AsymAD and AD groups respectively. Gee set
enrichment analysis was performed on each module, and the most significant result from each module is provided above.
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Containing 3 protein [provided by RefSeq, Jul 2008] and has been re-
ported to be significantly down-regulated (p-value= 6.47E-05) in the
blood of AD subjects when compared to MCI subjects (Lunnon et al.,
2012). This suggests MOSPD3 gene expression is significantly decreased
in the brain before clinical signs of AD are apparent; however, blood
gene expression levels are only significantly decreased after clinical
signs of AD are apparent. It is difficult to interpret the biological re-
levance of this gene in AD, and further investigation is required.

4.3. Genes perturbed in brain regions affected explicitly by hallmark AD
pathology may be associated with plaques and tangles, providing new
therapeutic targets

Many molecular and cellular changes occur in AD brains including
nerve cell death, atrophy, loss of neurons and accumulation hallmark
AD pathology, specifically plaques and tangles. However, not all brain
regions are affected to the same degree. The CB, which only accounts
for 10% of the brain but contains over 50% of the brains total neurons,
is often regarded as being partially spared from AD as plaques and
tangles are generally not reported (Convit et al., 2000; Jacobs et al.,
2017), and in this study are free from hallmark AD pathology in both
AsymAD and AD subjects. For subjects with hallmark AD pathology
(BRAAK≥ 2, AsymAD and AD), genes significantly and consistently
perturbed across the EC, TC and FC tissues that are not or are sig-
nificantly reversed in the CB, may be associated with hallmark AD
pathology, although, it remains unclear if these genes are causative or a
response to the pathology itself.

We identified a total of 15 genes (ALDH2, FBLN2, METTL7A,
FLCN, ASPHD1, ARL5A, GPR162, HBA2, PCID2, NDRG2, BEND3,
RAP1Gap, GPM6B, ANKEF1 and NPC2) with expression patterns
suggestive of an association with hallmark AD pathology. Previous
studies have already demonstrated an increased expression of ALDH2
accelerated neurodegeneration and increased the accumulation of hy-
perphosphorylated tau protein (Ohsawa et al., 2008) in mice, while
another demonstrated NDRG2might play a role in generating Aβ (Rong
et al., 2017). Collectively, the 15 genes are not significantly enriched to
be involved with any biological pathway; however, individually, these
genes may play an essential role in the pathological aspect of AD and
may provide new therapeutic targets for disease intervention.

4.4. Individuals with milder disease (early BRAAK pathology) show
increased changes in the frontal cortex compared to the entorhinal cortex

The molecular changes in AD may initially begin in the FC, a region
involved in working memory, as there were relatively more changes in
the FC of mild pathology AD cases (AsymAD) than the EC region. This
mirrors changes described in a longitudinal study involving ageing
controls, where positron emission tomography (PET) scans were used to
detect increased activity in the medial frontal cortex and decrease ac-
tivity in the temporal lobe brain region in subjects who subsequently
acquired cognitive impairment (Beason-Held et al., 2013). In addition,
a higher degree of atrophy has also been detected in the FC than the
temporal lobe brain region in MCI when compared to AD (Tabatabaei-
Jafari et al., 2015). Our observations provide further evidence to sug-
gest that brain perturbations at the molecular/transcriptomic level may
initially occur in the FC before the presentation of more severe clinical
symptoms consistent with a diagnosis of probable AD.

At the later point of the disease when clinical signs of AD are pre-
sent, we find that the most substantial number of transcriptomic
changes occur in the EC, followed by the TC, FC and only minor
changes in the CB. This observation matches the common route AD
neuropathology is seen to spread through the brain. Furthermore, we
detect more DEG in the “Late AD” analysis compared to “Early AD”
analysis, signifying more genes are disrupted in the later stage of the
disease when the clinical symptoms of cognitive impairment are ap-
parent.

4.5. Neutrophil, TYROBP network and the innate immune system disrupted
in asymptomatic AD

Co-expression analysis of the EC brain region identified a green
module of highly co-expressed genes which is disrupted in the AsymAD
and AD subjects according to both module preservation statistics and
cross-tabulation analysis. This green module is significantly enriched
for “neutrophil degranulation”, “TYROBP casual network” and the
“innate immune system” processes in the control subjects, but not in
the AsymAD or AD subjects, suggesting these pathways are most likely
disrupted during the disease. Disturbance in TYROBP and Immune
system pathways have been widely accepted in AD (Ma et al., 2015;
Lambert et al., 2010), and a previous mouse study demonstrated dis-
ruptions in neutrophil levels impact memory loss and neurological
features of AD (Pietronigro et al., 2017). We now suggest these path-
ways are specifically perturbed in the EC brain region early in the
disease when hallmark AD pathology exists but clinical symptoms of AD
are absent.

4.6. Disruption in brain energy pathways is detectable early in the disease

Co-expression analysis of the FC identifies disruptions in the “glu-
cose metabolism”, “glucogenesis” and“oxidative phosphorylation”
processes in the AsymAD group, while DE analysis identified disruption
in the “gluconeogenesis and glycolysis” pathway in the AD subjects.
The brain critically relies on a constant supply of energy which is
known to be generated by glycolysis followed by oxidative phosphor-
ylation. Changes in the brain energy pathways have been widely ac-
cepted in AD (Shoffner, 1997; Cunnane et al., Jan. 2011), with a general
decrease in glycolysis suggested to be a result of decreased brain
functionality. Here we demonstrate disruptions in the energy pathway
are detectable early in the disease, in subjects with low levels of AD
pathology.

4.7. The glutamate-glutamine cycle is disturbed in AsymAD and AD subjects

Gene set enrichment analysis on DEGs identified the “glutamate-
glutamine cycle” as the only biological pathway significantly per-
turbed across all brain regions in the AsymAD subjects. Furthermore,
co-expression analysis of the EC brain regions was indicative of dis-
ruptions to the “urea cycle and metabolism of arginine, proline,
glutamate, aspartate and asparagine” and “astrocytic glutamate-
glutamine uptake and metabolism” in AsymAD and AD subjects,
further confirming a possible disruption in glutamate-related activities
in the brain.

Astrocytes are the most common form of neuroglial cells in the
brain, and its primary function is to protect neurons against ex-
citotoxicity by converting excess ammonia and glutamate to glutamine
through the glutamate-glutamine cycle. Glutamate is the principal ex-
citatory neurotransmitter in the brain and plays a vital role in linking
carbohydrate and amino acid metabolism via the tricarboxylic acid
(TCA) cycle. Glutamate is also a precursor of γ-aminobutyric acid
(GABA) which binds and inhibits neuron activity; hence, an accumu-
lation of glutamate can cause failures in synaptic connectivity, leading
to deficient cognition and memory (Schousboe et al., 2014). A disrup-
tion in the glutamate-glutamine cycle would have a severe knock-on
effect on many other biological pathways, including a disruption in
amino acid metabolism which could explain the enrichment of “urea
cycle and metabolism of arginine, proline, glutamate, aspartate
and asparagine” in our results as well. In addition, glutamate stimu-
lates astrocytes to derive energy from oxidative and glycolytic path-
ways, both of which have been identified as disrupted in AsymAD
subjects.

The genes enriched in this pathway were all significantly up-regu-
lated, indicating an overactive cycle. This could be part of the brain
defence mechanism in preventing the accumulation of brain glutamate
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levels or a broken cycle which is consistently being overactive, leading
to decreased levels of brain glutamate, a phenomenon observed in AD
subjects (Fayed et al., 2011). Targetting this pathway for AD treatment
is extraordinarily complex and challenging as over inhibition or ex-
citation may lead to increased levels of glutamate and glutamine re-
spectively, both of which can be neurotoxic at high levels. Therapeutic
compounds affecting the “glutamate-glutamine cycle” have already
been identified, such as memantine, which is already a clinically es-
tablished therapeutic drug used to for the symptomatic treatment of
AD, which blocks N-methyl-d-aspartate (NMDA) receptors (Johnson
and Kotermanski, 2006), essentially preventing excitotoxicity caused by
neurotransmitters such as glutamate and ultimately increasing cogni-
tion temporarily.

The glutamate-glutamine cycle has been previously suggested to be
disrupted in AD (Walton and Dodd, 2007), along with many other
central nervous system disorders including Huntington’s disease and
Amyotrophic Lateral Sclerosis (ALS) (Matthews et al., 2012). Through
this study, we now demonstrate this is one of the earliest biological
pathways perturbed across all brain regions in AD, before clinical
symptoms of AD are apparent, which can have a knock-on effect on
other biological pathways also observed to be disrupted in the disease.
Clinically established drugs to relieve AD symptoms already interact
with this pathway and could also be effective in the asymptomatic
period to prolong cognitive impairment, although clinical identification
and measuring effectiveness in AsymAD subjects would be a challenge
in itself.

4.8. Co-expression network changes indicate a shift from “cell proliferation”
in AsymAD subjects to “removal of amyloidogenic proteins” in AD subjects

Protein-protein interactions identified EGFR as a key hub gene in
both the control and AsymAD groups; however, it achieves more con-
nections with neighbouring proteins in the AsymAD group, suggesting a
possible increase in the EGFR activity. The EGFR gene is up-regulated
in the AsymAD group and encodes for a transmembrane glycoprotein
that binds to epidermal growth factor, leading to cell proliferation. In
contrast, EGFR is replaced by UBC as the key hub gene in AD subjects,
indicating it may play a more central role in the disease once the ac-
cumulation of hallmark AD pathology is at a level where clinical
symptoms are apparent. The UBC gene is significantly up-regulated in
the EC of AD subjects and is considered a stress gene which encodes for
polyubiquitin precursor protein, a member of the ubiquitin-proteasome
system (UPS) which removes toxic proteins and impacts on the amy-
loidogenic pathway of amyloid precursor protein (APP) processing that
generates Abeta (Hong et al., 2014). A previous AD study had also
observed UBC as a novel key hub gene and demonstrated UBC knockout
models in C. elegans accelerated age-related AB toxicity (Mukherjee
et al., 2017). Effectively, a portion of the co-expression network may
have a central role involved in cell proliferation in control subjects,
with increased activity in AsymAD subjects, followed by a shift towards
the removal of toxic proteins such as amyloid beta in AD subjects.

5. Limitations

We cannot exclude the fact AsymAD group may represent a het-
erogeneous group consisting of cognitively normal, MCI, mixed de-
mentia and AD subjects. It remains unclear these AsymAD subjects
would remain free from clinical symptoms of dementia with longer
survival and can be argued to be a possible extension to general ageing.
However, the extent of BRAAK staging in AsymAD subjects was at a
level consistently found with early cognitive impairment, and therefore,
we make the strong assumption that these subjects are more likely to be
prodromal AD rather than an extension of natural ageing. As AsymAD
subjects are extremely rare, hence the low sample numbers in this
study, larger AsymAD cohorts are required for better discovery and to
validate our findings.

6. Conclusion

We believe this is the first study to explore the emergence of tran-
scriptomic changes in the human brain from normal ageing through to
mild AD pathology and diagnosis of AD. Using DE analysis, coupled
with a “systems-biology” approach, we were able to detect disturbances
in the energy pathways and the “glutamate-glutamine cycle” in the
brains of subjects with mild and severe AD pathology. We found that
changes in the FC brain region dominate in mild pathology, but are
greater in the EC in subjects with more severe pathology, thus mirroring
the changes in an aggregate spread in AD. The work undertaken in this
study is an exploration of microarray-based transcriptomic changes,
with future studies encouraged to explore changes based on RNA-Seq
technologies, which are not limited by pre-defined probes allowing for
unbiased insight into all transcripts.
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