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Epilepsy remains refractory to medical treatment in ~30% of patients despite decades of new drug development.
Neurosurgery to remove or disconnect the seizure focus is often curative but frequently contraindicated by risks
of irreversible impairment to brain function. Novel therapies are therefore required that better balance seizure
suppression against the risks of side effects. Among experimental gene therapies, chemogenetics has the major
advantage that the action on the epileptogenic zone can be modulated on demand. Two broad approaches are
to use a designer G-protein-coupled receptor or amodified ligand gated ion channel, targeted to specific neurons
in the epileptogenic zone using viral vectors and cell-type selective promoters. The receptor can be activated on
demand by either an exogenous compound or by pathological levels of extracellular glutamate that occur in ep-
ileptogenic tissue. We review the principal designer receptor technologies and their modes of action. We com-
pare the drawbacks and benefits of each designer receptor with particular focus on the drug activators and the
potential for clinical translation in epilepsy.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Despite the introduction of over fifteen new antiepileptic drugs in
the last twenty years, the proportion of peoplewith epilepsywhose dis-
ease is refractory to treatment remains largely unchanged: approxi-
mately 30% of patients continue to experience seizures even with
optimal medical treatment [1,2]. These patients suffer from a
).
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devastating impact on their quality of life, and are exposed to a substan-
tial risk of sudden unexpected death (SUDEP), estimated at 0.14% per
year and twenty-three-fold higher in comparison to the unaffected pop-
ulation [3]. Refractory epilepsy is in the majority of cases associated
with focal seizure onset, which may generalize. Surgical resection of
the epileptic zone is currently the only treatment option that offers a
reasonable prospect of seizure freedom but is contraindicated for a sub-
stantial proportion of patients because of unacceptable risk of irrevers-
ible and severe consequences from removal of brain tissue for
memory, language, motor or sensory function. Newer less invasive
strategies such as laser-mediated treatment of the epileptogenic zone
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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are also destructive and irreversible. Alternative treatment strategies
are therefore urgently required.

Gene therapy, achieved via intraparenchymal injection of a viral vec-
tor, is arguably the most promising treatment strategy to address this
unmet need. It relies on the expression of various proteins to prevent
seizure initiation or propagation in the targeted brain region. Because
the rest of the brain is unaffected, the risk of side effects is minimized.
Furthermore, by biasing expression of transgenes to specific subtypes
of neurons (typically excitatory principal cells), it is possible to exploit
knowledge of the normal mechanisms underlying the excitation-
inhibition balance, and how this is altered by pro- or anti-epileptic
drugs, to design rational treatments.

Several gene therapy strategies have been validated in preclinical
models, including the overexpression of endogenous neuropeptides
[4–7] and potassium channels [8]. Some of themare amenable to clinical
translation [9]. Nevertheless, a potential limitation of these approaches
is that gene transfer to neurons is irreversible, and it may be difficult to
identify the optimal dosage to achieve a therapeutic effect without
compromising normal brain function. Indeed, dosage of viral vectors
consists both of viral copy number per infected neuron, and the number
of cells infected, and needs to be tailored precisely to ensure that the ep-
ileptogenic zone is effectively treated with minimal spread to
neighbouring or overlapping regions of eloquent cortex. When the sei-
zure focus is diffuse, or overlaps extensively with regions controlling
language, memory, motor or sensory function, the therapeutic window
for gene therapy may be very narrow. These concerns underpin the
need to identify gene therapy strategies whose effect on neuron or cir-
cuit function can be adjusted or even switched on and off on demand.

The ability to switch an experimental anti-epileptic gene therapy on
and offwasfirst reportedwith optogenetics [8,10,11]. This approach has
high temporal specificity: the anti-seizure effect can be switched on
within less than a second. It can also be used in closed loop, where
light delivery is triggered as soon as a seizure, or an electrographic sig-
nature of an impending seizure, is detected. Several approaches have
been proposed, including optogenetic hyperpolarization of principal
neurons or depolarization of inhibitory interneurons, although the latter
approach can sometimes have paradoxical effects [12]. Optogenetics
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however presents major translational obstacles, because of the need
to express non-mammalian proteins in the brain and to implant devices
for illumination of the opsins. These concerns justify interest in
chemogenetics as an alternative strategy for on-demand anti-epileptic
gene therapy.

Chemogenetics can be broadly defined as the use of engineered re-
ceptors to confer a pharmacological sensitivity to cells that they do
not normally exhibit. The most widely used chemogenetic tools include
Designer Receptors Exclusively activated byDesigner Drugs (DREADDs)
derived from G-protein-coupled receptors (GPCRs) [13], and synthetic
ligand-gated ion channels (LGICs) [14–18]. These receptors are acti-
vated by exogenous compounds, and when expressed in neurons can
either inhibit or excite them (Fig. 1). Themost promising chemogenetic
strategies to treat epilepsy are described in the following sections, to-
gether with their potential for clinical translation, summarized in
Table 1.

2. GPCR-based DREADDs

The fundamental principle underlying DREADDs is that the
engineered receptor has been mutated to render it insensitive to the
normal endogenous ligand (designer receptor), but sensitive to one or
more exogenous compounds that otherwise have no effects on the tis-
sue (designer drugs). GPCRs mutated to alter the selectivity of the
ligand-sensing domain were created almost three decades ago [19,20].
However initial versions, termed Receptors Activated Solely by Syn-
thetic Ligands (RASSLs), were limited by retained affinity for the native
ligand, and/or constitutive activity with high levels of receptor expres-
sion [21]. The Drosophila allastatin GPCRwas an improvement but its li-
gand is unlikely to cross the blood brain barrier (BBB) [22].

A breakthrough came in 2007 when Armbruster et al. used directed
molecular evolution of the human M3 muscarinic receptor (hM3) to
render it insensitive to its endogenous ligand acetylcholine, while
imparting potent sensitivity to the ligand Clozapine-N-Oxide (CNO),
an inert metabolite of the atypical antipsychotic drug clozapine [13].
On exposure to CNO, neurons transduced with this mutated Gq-
coupled-DREADD (hM3Dq) exhibit intracellular calcium release and
+ activatorory DREADD
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Table 1
Overview, advantages and disadvantages of chemogenetic silencing tools for use in epilepsy.

Tool Ligand Pros Cons

DREADDs
hM4D(Gi) • Mutated human receptor: immunogenicity unlikely • Risks of desensitization and basal activity not assessed in humans

CNO • Metabolite of a clinically approved drug • Short half-life
• Not clinically approved
• Proportion metabolised to clozapine in humans, non-human primates and
rodents

Clozapine • Clinically approved • Risk of precipitating seizures
• Unpredictable risk of bone marrow suppression

Perlapine • Previously approved in Japan • Not currently clinically approved
Compound-21 • Potent activator • Not clinically approved

• Affinity to Histamine H1 receptor
Olanzapine • Potent activator

• Clinically approved
• Main side effects: weight gain and drowsiness

KORD Salvinorin B • Activates native opioid receptor at relatively low concentrations
• Not clinically approved
• Side effect profile unknown

RASSL Spiralodine • Ligand activates native receptors
• Not clinically approved

Alstr Allastatin • Not clinically approved
• Ligand does not cross the blood brain barrier

LGIC-DRs
eGluCl Glutamate • Autoregulation

• No need for additional drugs
• Add-on therapy possible, to allow scaling of the therapeutic
effect

• Potential immunogenicity, although not reported in non-human primates
• Therapeutic window depends on pathological extracellular glutamate being
much higher than during normal glutamatergic signalling

eGluCl
GluClv2.0
GlyR-DR

IVM • Clinically approved drug with well-known side effect profile
• Blood-brain barrier breakdown during seizures may increase
local IVM concentration, enabling autoregulation

• Potential immunogenicity, although not reported in non-human primates
• IVM not clinically approved for treatment of epilepsy and sub-optimal
pharmacokinetics

• Risk of heteromerization with native receptors
PSAM/PSEM PSEM89S • Ec50 in micromolar range

• PSEM89S effect on normal brain function not reported
• Short half life
• Requires high doses in vivo
• Risk of heteromerization with native receptors

PSEM308 • Unknown side effect profile
• Risk of heteromerization with native receptors

PSAM4 Varenicline • EMA/FDA licensed drug with known pharmacology • Not clinically approved for treatment of epilepsy
• Risk of nausea, abnormal dreams, insomnia
• Risk of heteromerization with native receptors
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depolarisation, corresponding to an increase in excitability. Only two
amino acids in the ligand-binding domain were altered from the parent
hM3 receptor, and this region is highly conserved across muscarinic re-
ceptors, allowing the same mutations to generate hM4D(Gi), based on
the related human M4 inhibitory Gi-coupled DREADD. Neurons trans-
duced with hM4D(Gi) and exposed to CNO exhibit hyperpolarization
mediated by opening of G-protein sensitive inwardly rectifying potas-
sium channels (GIRKs) [13]. HM4D(Gi) activation also leads to a de-
crease in neurotransmitter release from presynaptic terminals [23,24].

Further work led to other DREADDs: 1) a chimeric M3-derived re-
ceptor with intracellular loops from the turkey β1 adrenergic receptor,
activation of which leads to a Gs-mediated increase in cAMP [25];
2) M3Dq-R165L which initiates β-arrestin signalling [26]; 3) hM4D-
neurexin, a presynaptic inhibitory DREADD targeted to axons [23];
and 4) a κ-opioid derived DREADD (KORD) coupled to the Gi cascade
and activated by the otherwise pharmacologically inert compound
salvinorin B [27].

These tools have had an enormous impact on circuit neuroscience
[21,28]. To date, most studies have used hM3Dq or hM4D(Gi) for on-
demand neuronal excitation or inhibition respectively. KORD can be
multiplexed with hM3Dq/hM4D(Gi) to allow excitation/inhibition in
specified neuronal subtypes of different brain regions, or even within
loci.

For basic neuroscience studies an important determinant of the util-
ity of different DREADDs is how selectively individual compounds are
able to activate them, andwhether the ligands can be delivered system-
ically or instead require local application. For instance, salvinorin B acti-
vates the native κ-opioid receptor at relatively low concentrations
(100 nM) which is only about eight-fold higher than the EC50 of
overexpressed KORD [21,27]. The most extensively used inhibitory
DREADDs and their activators are shown in Fig. 2.

2.1. Inhibitory DREADD treatment of epilepsy

DREADDs offer the potential of clinical translation [21,29], in partic-
ular to treat epilepsy because of decades of work supporting the funda-
mental principle that manipulating the excitation-inhibition balance
either triggers or suppresses seizures. Kätzel et al. first reported that sei-
zures, both in an acute rodent chemoconvulsant model and in a model
of chronic epilepsy, could be suppressed by activating hM4D(Gi)
expressed in excitatory neurons, using intraperitoneal injection of
CNO as the activating ligand [24]. Several subsequent studies have
used hM4D(Gi) as an experimental tool to examine the circuits under-
pinning seizures, both in vitro [30] and using a kindlingmodel of rodent
epilepsy [31,32], helping to identify the critical nodes of epileptogenic
networks. These studies have used viral vectors to drive expression of
hM4D(Gi) in excitatory neurons to suppress seizures, consistent with
the simple assumption that inhibiting excitatory cells should be anti-
epileptic. The prediction that silencing inhibitory hippocampal inter-
neurons with hM4D(Gi) should be pro-epileptic has also been sup-
ported experimentally [33].

Accumulating evidence supports the use of DREADDs as an effective
tool to suppress excitatory hippocampal neurons using hM4D(Gi) in
other rodent models of chronic epilepsy. In both the mouse
intrahippocampal kainic acid model [34] and themouse intraperitoneal
pilocarpine model [35] there was a significant reduction of seizure



Fig. 2. GPCR-based chemogenetic silencing tools. Activation of GPCR-based chemogenetic silencing tools (hM4D(Gi) and KORD) leads to dissociation of Gβγ G-protein subunits, which
then lead to opening of GIRKs. Gαi dissociation also leads to inhibition of adenylyl cyclase and a reduction of neurotransmitter release. HM4D(Gi): Mutations introduced into the
human M4 muscarinic receptor (hM4) are highlighted (magenta) in the crystal structure of hM4 in complex with Tiotropium, an antimuscarinic drug (cyan) (PDB entry 5dsg [75],).
The structures of known potent agonists of hM4D(Gi) are shown below. KORD: Mutations introduced in the κ-opioid receptor crystal structure (PDB entry 4djh [76],) are highlighted
(magenta), together with the structure of the selective agonist salvinorin B.
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frequency with daily administration of CNO. Conversely, the pro-
excitatory DREADD hM3Dq, expressed in inhibitory parvalbumin-
positive interneurons, may also be effective. Activation of interneurons
using this strategy suppressed epileptiform synchronization [36], and
it has recently been shown that this both extends the latency to seizures
in a kindling model and significantly reduces seizures in the mouse
intrahippocampal kainic acid model [37]. Interestingly, the seizure re-
duction was equivalent to that induced by hM4D(Gi)-mediated inhibi-
tion of excitatory cells. Additionally, irrespective of which DREADD
and cell type combinationwas used, epileptic animals performedpoorly
onmemory assays with or without CNO, likely a reflection of the cogni-
tive effects of hippocampal epilepsy and not DREADD efficacy [37].

Thus, in multiple rodent epilepsy models, DREADD technology has
been shown to be effective at reducing seizure frequency and/or propa-
gationwhen the engineered receptors are appropriately targeted to sei-
zure foci or nodes in the network. As the anti-seizure effect requires the
presence of an exogenous activator, it is reversible and consequently
potentially represents a major advantage for clinical translation to
treat focal epilepsy. By allowing the degree of inhibition to be fine-
tuned, the risk of permanent cognitive impairment engendered by
resective surgery is removed. Indeed, even if an effective anti-seizure ef-
fect cannot be dissociated from an effect on normal brain function,
DREADD-based treatment could still, in principle, be useful: some pa-
tients have such severe epilepsy that they experience episodes of status
epilepticus requiring intravenous sedation, endotracheal intubation and
artificial ventilation on the intensive care unit, with appreciable mortal-
ity. If pre-treated to express a DREADD in the appropriate cell type and
brain region (most simply, an inhibitory DREADD in the excitatory
neurons of the epileptogenic zone), the selective agonist could be ad-
ministered in the emergency room to terminate status epilepticus. A
temporary effect on language, memory, motor or sensory functions
could be an acceptable side effect of treatment to give time to optimize
other anti-epileptic medication or consider further interventions.

There are, nevertheless, special considerations to take into account
when considering the use of DREADDs in humans. Many GPCRs desen-
sitize on repeated activation, and relatively little is known about the
ability of DREADDs to suppress seizures in the long term. In principle,
if they lose their effect with chronic ligand delivery, this may limit
their suitability as a maintenance treatment for epilepsy as opposed to
on-demand short-term treatment. There are, however, reasons to be-
lieve that this is unlikely to be a serious limitation. First, another Gi-
coupled GPCR, the GABAB receptor, mediates the action of the anti-
spacticity drug baclofen, which is widely used in neurological practice,
in many cases for years or decades with no evidence of tachyphylaxis.
Indeed, repeated daily dosing of CNO sufficient to substantially reduce
seizures has not demonstrated marked tachyphylaxis in a rodent
model [34], albeit followed only over a few days. Second, GPCRs, unlike
ion-channel based chemogenetic strategies, use a secondarymessenger
cascade to amplify the intracellular signal. Thus if sufficient
chemogenetic receptors and secondary messengers are present, full ac-
tivation of the cascade is still possible, even if a proportion are
desensitized, a phenomenon known as receptor reserve [21].

For clinical translation of muscarinic DREADDs in epilepsy, the
choice of activator is critical. CNO is not a drug that has been approved
for use in humans by the Food and Drug Administration (FDA) or
European Medicines Agency (EMA), even though, as a metabolite of
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clozapine, it is present in patients treated with clozapine for psychosis.
Recent research hasmoreover shown that CNOdoes not pass the rodent
blood brain barrier (BBB), and instead probably acts on DREADDs
expressed in the CNS by being back-converted to clozapine, which en-
ters the brain [38]. This likely also occurs in non-human primates [21].
Could clozapine itself be used as a DREADD activator in humans? Cloza-
pine has a complex pharmacology, acting on a range of dopaminergic,
muscarinic, serotonergic and histaminergic receptors at low concentra-
tions. It would therefore not be a selective DREADD agonist in this set-
ting, but if the off-target effects mediated by other receptors were
tolerable it could in principle lower the barrier to clinical translation.
In reality, the side effect profile of clozapine is highly unfavourable for
use in epilepsy, because it has a substantial risk of bone marrow sup-
pression and can lower seizure threshold in some people [39]. Although
it may be possible to use very low doses of clozapine to minimize these
side effects, identification of alternative agonists would facilitate clinical
translation of muscarinic DREADD technology. Other brain-penetrating
agonists, “compound 21” and perlapine, have been described [40,41].
While both activate hM4D(Gi) at low nanomolar concentrations and
penetrate the BBB, neither is currently approved for use in humans by
the FDAor EMA. Perlapine has actually beenused in the clinic as a sedat-
ing antihistamine in Japan and a fewother countries butwaswithdrawn
from the market without undergoing FDA or EMA scrutiny. In addition,
it has recently been shown on radioligand assays that both CNO and
compound 21 also bind to other receptors at low nanomolar concentra-
tions [42]. Identifying an alternative agonist that is already FDA/EMA-
approved would substantially accelerate the path to clinical trials test-
ing the safety and efficacy of muscarinic DREADD therapy of CNS
disorders.

We recently showed that olanzapine, another FDA/EMA-approved
antipsychotic drugwith a better safety profile than clozapine, is a potent
agonist of hM4D(Gi) [43]. By measuring the ability to open G-protein
coupled potassium channels in vitro, we estimated an EC50 at hM4D
(Gi) around 5 nM, 10-fold lower than for clozapine (EC50 ~50 nM).
When tested in vivo at 0.1 mg/kg it reduced the latency to falling off a
RotaRod in mice with widespread hM4D(Gi) brain transduction, whilst
clozapine at the same dose was ineffective [43]. Themost common side
effects of olanzapine reported in patients treated for psychosis are
weight gain and drowsiness, with substantially reduced risk of precipi-
tating seizures compared to clozapine [39]. A clinical trial of hM4D(Gi)
activated by olanzapine to treat focal epilepsy would therefore seem
the most promising strategy for clinical translation of DREADD
technology.

3. Ligand-gated ion channels

LGICs are drug targets formany CNSdiseases including epilepsy [44].
LGICs can broadly be divided into two major classes depending on
whether they permeate cations or anions. Cation-permeable LGICs pro-
mote depolarization and neuronal excitation. Excitatory LGICs in the
mammalian CNS include: 1) cation-conducting nicotinic acetylcholine
receptors and 5-HT3 serotonin receptors, which are pentameric; 2) the
structurally unrelated tetrameric ionotropic glutamate receptors
(AMPA, kainate and NMDA receptors); and 3) trimeric P2X purinergic
receptors. Anion-permeable LGICs include pentameric GABAA, GABAC

and glycine receptors (GlyRs), which have a similar structure to nico-
tinic receptors [45]. They inhibit neurons both by shunting excitatory
currents and, depending on the trans-membrane chloride gradient,
making the membrane potential more negative (hyperpolarization).

GABAA receptors are established targets for benzodiazepines and
barbiturates, which are widely prescribed antiepileptic drugs. They
also mediate at least part of the anti-seizure effects of vigabatrin and
tiagabine, which elevate ambient GABA levels. Overexpressing GABAA

receptors in excitatory neurons of the epileptogenic zone would there-
fore seem an obvious strategy to increase the potency of these agents.
However, GABAA receptors are heteromultimeric, raising the possibility
that overexpression of individual subunits would interfere with normal
GABAergic transmission, potentially leading tomislocalization of recep-
tors. Indeed, depending onwhich subunits are rate-limiting for synaptic
or extrasynaptic GABAA receptor expression, this strategy could have
unexpected effects on both normal GABAergic signalling and the action
of exogenous drugs.

Two strategies have shown promise in developing chemogenetic
manipulation of circuit excitability using LGIC-based designer receptors
(LGIC-DRs): non-mammalian LGICs that should not co-assemble with
receptor subunits present in the mammalian CNS, and chimeric
channels.

3.1. Glutamate-gated chloride channels for closed loop chemogenetic
seizure supression

Many invertebrate species use glutamate-gated chloride channels as
inhibitory receptors at their neuromuscular junction. GluCl is distantly
related to themammalian nicotinic family of LGICs. In contrast to mam-
malian ionotropic glutamate receptors, and in common with GABAA,
GABAC and glycine receptors, GluCl permeates chloride when activated.
GluCl is the target of the anti-helminthic drug ivermectin (IVM). Recog-
nizing the public health implications of this treatment, the 2015 Nobel
Prize in Physiology orMedicinewas jointly awarded toWilliamCCamp-
bell and Satoshi Omura.

We recently took advantage of the fact that GluCl is normally acti-
vated by glutamate to design an autoregulatory chemogenetic treat-
ment of epilepsy that dispenses with the need for an exogenous
ligand [15]. Glutamate, the endogenous ligand of GluCl at the inverte-
brate neuromuscular junction, is also the main excitatory neurotrans-
mitter in the mammalian brain. Normally it is rapidly quenched
following exocytosis by abundant perisynaptic glutamate transporters,
but during seizures extracellular glutamate concentrations are elevated
[46,47]. Extracellular glutamate may also be elevated inside and sur-
rounding gliomas and other lesions that are frequently associated
with epilepsy. The principle underlying treatment with GluCl is that
an inhibitory chloride conductance opens in the presence of pathologi-
cally elevated glutamate, representing an autoregulatory biochemical
inhibitory closed loop (Fig. 1). The glutamate sensitivity of GluCl is how-
ever in the lowmillimolar range, whilst extracellular glutamate concen-
trations are several orders of magnitude lower even in pathological
situations.We therefore inserted a pointmutation to enhance the gluta-
mate sensitivity (enhanced GluCl or eGluCl) to ~10 μM (Fig. 3). (The
same point mutation has been used to increase the IVM sensitivity of
GluCl [14]; GluClv2.0, discussed below.) Expression of eGluCl in the rat
cortex robustly suppressed seizures in two randomized preclinical ani-
mal models of acute seizures and neocortical epilepsy [15].

In principle, GluCl could also be used as part of a conventional
chemogenetic inhibition strategy for epilepsy, using IVM or a derivative
as the ligand [48,49]. Although IVM opens the native C Elegans GluCl at
~140 nM, at much lower concentrations it acts as a positive allosteric
modulator (~5 nM) [50]. The same single point mutation that renders
eGluCl highly sensitive to glutamate also allows IVM to open it at
~4 nM [14]. A glutamate-insensitive version of GluCl (GluClv2.0) with
further codon optimization [51], has been used together with IVM to
treat a rodent model of neuropathic pain (Fig. 3) [52], but has not, to
our knowledge, been explored as a treatment for epilepsy.

IVM also acts on human GABAA receptors and GlyRs, where it func-
tions as an allosteric modulator at low nM concentrations, and as a full
agonist at high nM concentrations [50,53,54]. IVM could therefore be
used as an add-on antiepileptic therapy, acting both on eGluCl and on
endogenous GABAA receptors and GlyRs [55]. The efficacy and tolerabil-
ity of this approach would however require further investigation, not
least because the pharmacokinetics of IVM are not ideal. It builds up in
the brain relatively slowly and has a long half-life, substantially limiting
its utility as an on-demand treatment for refractory epilepsy. It is also an
mdr-1 substrate, and modulates P2X, G-protein activated inwardly
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the crystal structure of the C. elegans GluCl, in complex with IVM (cyan) and glutamate (magenta spheres) (PDB entry 3rif [77]). Glyrα1/IVM: The F207A mutation (magenta), which
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646 A. Lieb et al. / EBioMedicine 43 (2019) 641–649
rectifying K+ channels, farnesoid X receptors, and α7-nAchR, in addi-
tion to GlyRs and GABAA receptors [50,56]. Nevertheless, there is evi-
dence that the blood-brain barrier breaks down temporarily in regions
invaded by seizures [57], possibly leading to a greater and more rapid
exposure of epileptogenic zones to systemically delivered IVM, and so
the pharmacokinetic profile of IVM could actually be an advantage in
epilepsy treatment.

A potential obstacle to clinical translation of non-mammalian pro-
teins is that they can trigger an immune response, which has recently
been reported for CRISPR-Cas technology [58]. However, GluCl or
eGluCl, expressed in the non-human primate or rodent brain respec-
tively, appears to be well tolerated [15,59].

3.2. Chemogenetic inhibition with DRs derived from glycine receptors

Another approach to develop a chemogenetic inhibitor used the
mammalian glycine receptor as a starting point, mutated tomake it sen-
sitive to IVMwhilst reducing its sensitivity to glycine [16]. The resulting
Gly-DR should represent a lower risk of immunogenicity than GluCl.
This technology remains to be tested in epilepsy. A potential concern
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is that Gly-DR could heteromerize with endogenous glycine receptor
subunits. Although synaptic glycinergic transmission appears to be con-
fined to the brainstem, spinal cord and retina, glycine receptors are also
present in the forebrain, and so interfering with them could have unex-
pected consequences [60,61].

3.3. Chemogenetic inhibition with chimeric receptors: PSAM/PSEM

A chimeric receptor consisting of the extracellular portions of a mu-
tated α7-nicotinic acetylcholine (nAChRα7) together with the trans-
membrane and intracellular parts of the GlyR1 glycine receptor
subunit has been designed for chemogenetic inhibition using a syn-
thetic ligand. This receptor component of a chemogenetic pair, with
amino acid substitutions indicated by superscripts, was denoted the
pharmacologically selective actuator module (PSAML141F,Y115Y-GlyR).
The selective ligand, on the other hand (with the superscript indicating
the order in which molecules were synthesized and tested), was re-
ferred to as the pharmacologically selective effector molecule
(PSEM89S), with a steady-state EC50 of 3·4 μM, as compared to an EC50
for acetylcholine of 570 μM (Fig. 3) [17]. Although this tool has been
exploited in numerous studies of fundamental brain function it has
not, to our knowledge, been applied to epilepsy. PSEM89S is not
completely selective, as it also binds to other human receptors [17]. In-
deed PSEM89S has been shown to exert effects on brain function in the
absence of PSAML141F,Y115Y-GlyR and this was not fully reversible
in vitro [62]. PSEM89S is not approved for use in humans, which limits
its application for imminent clinical translation [63]. Subsequent refine-
ment of the strategy resulted in another compound, PSEM308, which has
a much higher affinity for PSAM, with doses as low as 5 mg/kg effective
in mice [64]. It has not, however, been characterised as extensively
as PSAM89S. Magnus et al. recently further refined this system,
mutating three residues in nAchRα7 and resulting in a novel PSAM
(α7L131G,Q139L,Y217F-GlyR or PSAM4) activated by varenicline or ana-
logues [18]. Varenicline is approved for smoking cessation by the FDA
and EMA, and could beused as a repurposed ligand. It has side effects in-
cluding nausea, abnormal dreams and insomnia [65,66], but it remains
to be determined if it could be used for the treatment of refractory epi-
lepsy. In addition, the reported EC50 of varenicline on PSAM4 (1·6 nM)
is in the range of its reported effects on nAChR (α4β2 nAChR: Ki
0·4 nM; IC50: 2·8 nM; IC50 desensitization: 0·07 nM) [67,68]. The side
effect profile of varenicline therefore would need to be considered be-
fore attempting chemogenetic treatment [65]. Several derivatives of
varenicline have been developed as ultrapotent PSEMs (uPSEM) with
very high affinity to PSAM4, but are not approved for clinical use and
therefore are not suitable for imminent clinical translation.

Studies investigating the antiepileptic ability of the PSAM4/
varenicline have not been reported, but the combination could repre-
sent an important step towards clinical translation, as, in common
with olanzapine, the drug itself does not need to undergo extensive
safety studies before licensing by the FDA/EMA. There are, however,
two potential disadvantages of using a ligand-gated ion channel to
treat epilepsy, in comparison with a GPCR: the principle of receptor re-
serve does not apply, and the chloride gradient that allows the receptor
to hyperpolarize neurons can collapse. Nevertheless, the second con-
cern should also apply to eGluCl, and yet treatment with this gene ther-
apy was highly effective in rodent studies. Other potential obstacles to
the clinical translation of PSAM4 are the need to evaluate the risk of im-
munogenicity to the chimeric protein, and the potential interactions of
multimeric LGIC-DRs with native receptors.

4. Challenges and directions

Chemogenetics shows great promise not only for potential clinical
application but also as a preclinical research tool to map out the central
nodes of the distributed seizure networks that are increasingly being
recognised in so called “focal” epilepsy. Orthogonal chemogenetic
techniques could be combined to perform head-to-head comparisons
of efficacy and establish the minimum brain volume required to be
transduced that significantly reduces or even abolishes seizures with
negligible inhibition of vital brain structures. Moreover, further preclin-
ical studies are needed to investigate the optimumdose of activators re-
quired to sufficiently activate DRs without clinically relevant
desensitization on repeated activation.

Nevertheless, clinical translation will need to overcome several po-
tential obstacles. As well as the risks of modern gene therapy viral
vectors, each specific chemogenetic DR needs to be assessed for long
term efficacy and safety. Apart from the immunogenicity of non-
mammalian proteins, potential heteromerization of DRs and native
channel subunits should be investigated. The safety and side effects of
the activator drug also need to be investigated, especially if it is not cur-
rently approved for use in humans. Finally, it should be established if the
chemogenetic receptor can be activated continuously, ideally perma-
nently, to reduce the risk of seizures irrespective of the size and location
of the targeted epileptogenic zone, or if a small therapeutic window
sometimes dictates that the ligand can only be used intermittently.

5. Outstanding questions

Despite setbacks in early clinical trials there have been several suc-
cesses in recent years, leading to the first approved gene therapies
such as Glybera [69], a one-time treatment for lipoprotein lipase defi-
ciency intended to last at least ten years, and Luxturna [70], a treatment
for biallelic RPE65 gene mutations that restored functional vision in
clinical trials. Both of these are delivered by adeno-associated viral
(AAV) vectors. A further 13 AAV-delivered treatments are currently in
phase 3 clinical trials, including LYS-SAF302, a treatment for
Mucopolysaccharidosis Type IIIA given via intracerebral injections
[71]. As viral vector technology has matured it is increasingly evident
that gene therapy can be safe, but questions remain about the mainte-
nance of efficacy many years after treatment. Limited data in primates
have shown persistent expression fifteen years following intracerebral
AAV injection [72], and a recent phase 1 clinical trial of patients with
Parkinson's disease reported functional improvement lasting at least
twelve months [73]. Now that several candidate chemogenetic treat-
ments have emerged, the prospect of a single-shot cure for resistant ep-
ilepsy is getting ever closer [74]. The time is now ripe for a clinical trial of
gene therapy in epilepsy, and chemogenetics shows considerable prom-
ise because of the ability to tune the therapeutic effect.

6. Search strategy and selection criteria

Data for this Review were identified by searches of MEDLINE, Cur-
rent Contents and PubMed and using relevant keywords, and additional
articles as found in the initial search. Recent abstracts were also in-
cluded due to the highly relevant nature of their claims. Only articles
published in English between 1980 and 2019 were included.
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