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A broad effort is underway to improve the sensitivity of 
nuclear magnetic resonance through the use of dynamic 
nuclear polarization. Nitrogen-vacancy (NV) centers in 
diamond offer an appealing platform because these 
paramagnetic defects can be optically polarized efficiently 
at room temperature. However, work thus far has been 
mainly limited to single crystals because most polarization 
transfer protocols are sensitive to misalignment between 
the NV and magnetic field axes. Here we study the spin 
dynamics of NV-13C pairs in the simultaneous presence of 
optical excitation and microwave frequency sweeps at low 
magnetic fields. We show that a subtle interplay between 
illumination intensity, frequency sweep rate, and hyperfine 
coupling strength leads to efficient, sweep-direction-
dependent 13C spin polarization over a broad range of 
orientations of the magnetic field. In particular, our results 
strongly suggest that finely-tuned, moderately coupled 
nuclear spins are key to the hyperpolarization process, 
which makes this mechanism distinct from other known 
dynamic polarization channels. These findings pave the 
route to applications where powders are intrinsically 
advantageous, including the hyper-polarization of target 
fluids in contact with the diamond surface or the use of 
hyperpolarized particles as contrast agents for in-vivo 
imaging.  

Nitrogen-vacancy center | hyperpolarization | diamond powder | optical 
spin pumping | Landau-Zener crossings 

Nuclear magnetic resonance (NMR) has proven to be a 
powerful tool in areas ranging from molecular analysis to 
biomedical imaging. Unfortunately, the attainable nuclear spin 
polarization is often a small fraction of the possible maximum, 
thus imposing strict constraints on the minimum sample size 
and acquisition time. Dynamic nuclear polarization (DNP), i.e, 
the transfer of magnetization from electron to nuclear spins (1), 
is a route of growing popularity that substantially mitigates this 
problem. Enhanced polarization can be attained, e.g., with the 
aid of dissolved molecular radicals, though the most efficient 
implementations often rely on freeze-thaw protocols and high-
frequency microwave (MW) excitation, which are expensive 
and technically demanding (2).  

Adding to the library of DNP platforms, optically active 
spin-defects in semiconductors are attracting widespread 
attention as alternative hyperpolarization agents. Among them, 
the negatively-charged nitrogen vacancy center (NV) in 

diamond is arguably one of the most promising candidates, 
since it can be spin-polarized optically to a high degree with 
only modest illumination intensities and under ambient 
conditions (3). A variety of protocols have already been 
implemented to transfer NV spin polarization to surrounding 
nuclear spins including level-anti-crossing-mediated transfer 
in the NV- ground (4) and excited states (5), cross-relaxation 
with P1-centers (6-8), spin-swap and population trapping (9), 
amplitude-matched microwave excitation (10,11), and transfer 
via microwave sweeps (12,13). Despite this progress, 
however, efficient hyperpolarization of randomly oriented 
samples at arbitrary magnetic fields has remained elusive, 
hence precluding applications where the use of diamond 
powders is desirable or necessary. Examples worth 
highlighting include the use of particles as contrast agents for 
in-vivo magnetic resonance imaging (of interest given the bio-
compatibility of diamond (14)) or as a source of nuclear spin 
polarization in fluids (attractive given the enhanced surface-to-
volume ratio inherent to powders).  

Recent work demonstrated efficient 13C DNP in diamond 
powders simultaneously exposed to optical illumination and 
microwave (MW) frequency sweeps (15), but gaining a 
detailed understanding of the microscopic mechanisms at play 
has proven subtle due to a complex interplay between the 
multiple degrees of freedom. Here we examine the dynamics 
of an NV-13C spin pair undergoing simultaneous optical 
illumination and MW excitation. We focus on the limit of low 
magnetic fields (~10-30 mT) and consider the system 
evolution in the presence of MW sweeps of variable sweep 
rate. Through a transformation to the rotating frame, we show 
that the dynamics can be described in terms of a series of multi-
branched Landau-Zener crossings; the branch-dependent 
degree of adiabaticity during these crossings combined with 
mild optical pumping of the NV spin leads to a net buildup of 
13C polarization, which is robust against NV misalignment and 
efficient for hyperfine couplings as low as 0.2-0.3 MHz. In 
particular, we show that moderately-coupled carbons are 
dominant in driving the polarization dynamics of the bulk, a 
feature very much in contrast with prior spin transfer studies 
in diamond (mediated by first or second shell carbons). For the 
present experimental conditions, the observed level of 13C 
polarization is in the range 0.1-0.3%, corresponding to a one- 
to three-hundred-fold enhancement over the thermal 
polarization at 7 T. These results can be immediately extended 
to paramagnetic defects other than the NV (such as the 
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neutrally charged silicon-vacancy (SiV) center (16,17)) or to 
other wide-bandgap semiconductors (such as silicon-carbide) 
hosting point defects that can be optically spin polarized (18).    

 

Results and discussion 
Let us first consider an NV center spin interacting with a 

single 13C nucleus in the presence of an external magnetic 
field, 

𝐻 = ∆ S% & − S S + 1 3 − γ,𝐁 ⋅ 𝐒																																				 

−γ1𝐁 ⋅ 𝐈 + 𝐒 ⋅ 𝐀 ⋅ 𝐈.          (1) 

Here, γ, and γ1 stand for the electron and 13C gyromagnetic 
ratios, 𝐁 is the external magnetic field, and 𝐀 is the hyperfine 
coupling tensor between the NV electronic spin 𝐒 and the 13C 
spin 𝐈. Unless explicitly stated, we consider 𝐁 = 10	mT and 
100	kHz ≲ 𝐀 ≲ 10	MHz, meaning that the characteristic 
energy scales can be ordered as  

∆∼ 3×10>	MHz > γ,𝐵 ∼ 3×10&	MHz > 
    > 𝐀 > γ1𝐵 ∼ 1×10AB	MHz.    (2) 

In this regime, the crystal field ∆ is dominant and defines the 
main quantization direction, here chosen to coincide with the 
crystal frame z-axis; accordingly, we write the magnetic field 

as 𝐁 = 𝐵 sin 𝜃 	cos 𝜙 , sin 𝜃 	sin 𝜙 , cos 𝜃  where 𝜃 and 𝜙 
respectively denote the polar and azimuthal angles, changing 
randomly from one particle to another in the diamond powder. 
Further, the magnitude of the hyperfine coupling is greater 
than the nuclear Zeeman interaction, which makes the present 
regime different from that governing the integrated solid effect 
(ISE) at high fields (19). 

Extending the analysis above to identify the terms 
governing the nuclear spin dynamics is considerably more 
involved because, at the low magnetic fields considered herein, 
the hyperfine interaction can be dominant. An effective secular 
approximation valid for any choice of angles 𝜃, 𝜙  can be 
derived using Average Hamiltonian Theory (AHT) (20,21). 
Without loss of generality, we assume the carbon atom lies 
within the zx-plane, and obtain (see SI, Section I), 

𝐻K,L = ∆ S% & − S S + 1 3 − γ,𝐵 cos 𝜃 S%																								 

−γ1𝐁 ⋅ 𝐈	 + 𝐴%%S%I% + 𝐴%OS%IO	 

			− PQR KSTU
∆

𝕄⊗ cos𝜙 𝐴OOIO + 𝐴%OI% + sin 𝜙 𝐴XXIX       (3) 

where 𝕄 is a constant matrix defined in the Hilbert space 
𝑚Z = +1 , 𝑚Z = 0 , 𝑚Z = −1  of the NV,  

 

Fig. 1. Dynamic polarization of a 13C nuclear spin coupled to an NV center. (A) Schematics of the ground state energy diagram of an NV–
13C pair. In each ket, the first (second) index refers to the electron (nuclear) spin quantum number, and we assume 𝐴[[  is positive; all energy 
separations are approximate. (B) Four lowest eigen-energies of 𝐻\]]	as a function of the MW frequency 𝜈_` in the region near the 𝑚a =
0 ↔ 𝑚a = −1 transition. The labels denote the corresponding crystal-frame eigenstates. (C) Population of the instantaneous eigenstates for 
the eigenenergies shown in (B) as the system undergoes a MW sweep at a velocity 𝜈̇=40 MHz/ms. (D) Calculated 13C polarization during 
the sweep for low-to-high and high-to-low sweeps (top and bottom plots, respectively). (E) 13C NMR spectrum at 7 T from single crystal 
diamond upon 10 s of 532 nm, 1 W laser illumination and MW excitation at 38 mT followed by sample shuttling. The red (blue) trace 
corresponds to a low-to-high (high-to-low) MW frequency sweep after 20 repetitions of the polarization protocol; in both cases the sweep 
rate is 𝜈̇ = 60 MHz/ms and the frequency range is ~0.37 GHz, from 3.507 GHz to 3.878 GHz (corresponding to a repetition rate of 164 
Hz). The black trace is a reference spectrum from thermal polarization at 7 T for a total of 120 repeats separated by a 600 s wait interval; 
the attained enhancement relative to the 7 T signal is ~300, corresponding to a bulk 13C polarization of ~0.3%. In these NMR spectra, 
∆𝜈ef ≡ 𝜈1

(i) − 𝜈ef is the radio-frequency (RF) shift relative to the high-field 13C resonant frequency 𝜈1
(i) = 70 MHz. The upper insert 

shows the NMR peak amplitude as a function of the illumination time; the lower insert is a blowout of the thermal 13C NMR spectrum. In 
(B-D) we consider 𝐴%% = 𝐴OO = 𝐴XX = 500	kHz, 𝐴%O = 0.3𝐴%%, Ω = 250	kHz, 𝐵 = 10 mT, and 𝜃 = 65°, 𝜙 = 0°; in (C, D) we assume that 
the electron spin has been fully initialized into 𝑚Z = 0.  
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𝕄 =
1 0 0
0 −2 0
0 0 1

. 

Fig. 1A shows a schematic representation of the NV–13C 
energy diagram: For the nuclear spin states, we use the notation 
|𝛼↑,↓  and |𝛽↑,↓  to underscore the difference with the Zeeman 
basis states | ↑, ↓  (even if they retain part of their character, 
see SI, Section II). While the impact of the hyperfine field on 
the nuclear spin states in the 𝑚Z = ±1 subspaces is well 
documented (22), misalignment between the NV axis and the 
external magnetic field — unavoidable in a powdered sample 
—  makes it necessary to take into account an additional 
contribution — last term in Eq. (3) — active even when 𝑚Z =
0 (23,24). To illustrate its importance we consider, for 
example, a hyperfine interaction 𝐀 ∼ 1MHz, leading to 
matrix elements of order 𝛿 ∼ γ,B 𝐀 /∆∼ 1×10ABMHz. In 
the 𝑚Z = 0 subspace, this contribution — which does not 
commute with −𝛾1𝐵 — is comparable to the Zeeman splitting 
of the 13C states (Eq. (2)) and hence cannot be disregarded. 
Note that this same term is less important in the 𝑚Z = ±1 
subspaces (where the fourth and fifth terms in Eq. (3) become 
non-zero), since the factor scaling down the hyperfine 
coupling, γ,𝐵/∆ amounts to only ~0.1 for a 10 mT magnetic 
field.  

Building on Eq. (3), we can now extend our description to 
include the effect of MW driving: The MW field is modeled 
by a term ∝ SO	cos(ωt), and, upon a unitary transformation 
into the frame rotating at the MW angular frequency ω (see SI, 
Section I), we write the final effective Hamiltonian as 

𝐻,~~ = ∆ S% & − S S + 1 3 − γ,𝐵 cos 𝜃	S% + ΩSO															 

																−ω S% & − γ1𝐁 ⋅ 𝐈	 + 𝐴%%S%I% + 𝐴%OS%IO 

					− PQR KSTU
∆

𝕄⊗ cos𝜙 𝐴OOIO + 𝐴%OI% + sin 𝜙 𝐴XXIX ,	 (4) 

where we have introduced the Rabi frequency Ω. To illustrate 
the mechanism of spin polarization in the presence of a MW 
sweep, we first determine the eigenenergies of 𝐻,~~ as a 
function of the MW frequency 𝜈_` = ω 2π  (Fig. 1B), and 
subsequently calculate the system evolution assuming 
initialization into 𝑚Z = 0 (Fig. 1C) for the case of a positive 
hyperfine coupling (see below). As we tune the MW frequency 
in and out of resonance — in the present example, from lower 
to higher frequencies across the 𝑚Z = 0 ↔ 𝑚Z = −1 subset of 
transitions — the dynamics that follows can be interpreted in 
terms of a Landau-Zener (LZ) population exchange near the 
avoided crossings. The corresponding energy gaps can be 
derived via second order perturbation theory for the inter-level 
transitions in Eq. (4); using numeric labels 1 through 4 to 
identify branches in order of increasing energy (see insert to 
Fig. 1B), we find (see SI, Section II) 

𝛿𝐸B>~Ω,                                       (5)  
and 

								𝛿𝐸&> ≈
���
&
+ ���� A&��

� �������
+

																																									−	B
&

𝜔i� −
����

� �������

&
+ Ω& .     (6)  

Net nuclear spin polarization emerges from the nuclear-
spin-selective adiabaticity of the MW sweep. Assuming for 
concreteness a low-to-high-frequency sweep, the gap 𝛿𝐸B> 
yields an LZ jump probability between branches 1 and 3  

 𝑝 1|3 ~exp	(−2𝜋Ω2/ν),                         (7)  

where ν is the frequency sweep rate. Therefore, assuming 
Ω& > ν, the spin population initially in branch 1 remains 
unchanged throughout the LZ crossing. The situation is 
different, however, for the spin population in branch 2, whose 
jump probability to branch 3 is approximately given by 

𝑝 2|3 ~ exp −2𝜋 � �����
� ���������

&
𝜈 ,          (8)                                        

where 𝐹 and 𝐺 are functions of the relative orientation of the 
magnetic field 𝜃, 𝜙 , and we are assuming  Ω& > ν, see SI, 
Section II. The LZ dynamics in this case is partially non-
adiabatic meaning that the spin population initially in branch 2 
bifurcates to create a net nuclear spin population difference 
(Fig. 1C). More generally, the condition for the generation of 
nuclear spin polarization during a sweep can be formally stated 
as 𝑝 2|3 > 𝑝 1|3 . We later show the carbon polarization in 
our simplified NV–13C model system (~35% in the calculation 
of Fig. 1D) is consistent with the observed levels of bulk 13C 
polarization in our samples (typically in the 0.1-0.3% range). 
Interestingly, we note that for a frequency sweep starting 
above, not below, the set of avoided crossings, it is the 
population in branch 3, not in branch 2, the one that bifurcates. 
Therefore, an adapted analysis shows that the sign of the end 
13C polarization — calculated as a fractional population 
difference, see SI, Section II — depends on the direction of the 
frequency sweep, i.e., a low-to-high sweep yields positive 
nuclear magnetization whereas the opposite is true for a high-
to-low sweep (Fig. 1D).  

A comparison with experiment is presented in Fig. 1E, 
where we probe the bulk 13C polarization induced at 38 mT 
under 532 nm illumination; inductive 13C detection upon MW 
and optical excitation is carried out at high field with the help 
of a 7 T NMR system adapted with a sample shuttling device 
(25). In this particular case, we use a single diamond crystal 
oriented so that all four NV orientations form the same angle 
with the applied magnetic field, and limit the MW sweep to a 
range around the 𝑚Z = 0 ↔ 𝑚Z = −1 subset of transitions. 
Consistent with theory (Fig. 1D), we find that reversing the 
sign of the frequency sweep yields a 13C NMR signal of 
opposite phase, indicative of polarization inversion. Note that 
the phase in the 13C NMR spectrum attained upon a low-to-
high MW sweep coincides with that observed in the thermal 
signal at 7 T (acquired without optical excitation and/or sample 
shuttling), hence lifting the ambiguity in the absolute sign of 
the measured nuclear spin polarization.  

The structure of the LZ crossings is, in fact, more complex 
than the one presented in Fig. 1B (corresponding to a 
comparatively weak hyperfine coupling). Fig. 2 shows the 
typical energy diagrams for 𝐴 ~500 kHz and 4 MHz (left 
and right plot sets, respectively), both near the 𝑚Z = 0 ↔
𝑚Z = −1 and 𝑚Z = 0 ↔ 𝑚Z = +1 set of transitions (upper 
and lower rows, respectively). Comparing Figs. 2A and 2B 
(𝑚Z = −1 manifold), we find that despite the growing 
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frequency separation between the LZ crossings, the asymmetry 
in the gap size (and thus in the population transfer between 
branches) is not lifted, i.e., net nuclear spin polarization of the 
same (sweep-direction-dependent) sign is generated in all 
cases (even if the efficiency changes with hyperfine coupling 
strength and relative magnetic field alignment, see below).  

By contrast, a quick inspection of Figs. 2C and 2D shows 
that the energy level structure near the crossings — and 
corresponding polarization yield — is markedly different in 
the 𝑚Z = +1 manifold. Here, reversal in the order of the 
‘allowed’ and ‘forbidden’ transitions traversed during a sweep 
(respectively connecting branches with the same ‘up’ or 
‘down’ nuclear spin character) makes the generation of 13C 
polarization inefficient. The impact of the order reversal can 
be better visualized in Fig. 2D, where the greater hyperfine 
coupling leads to four resolved LZ crossings. Assuming 
initialization into 𝑚Z = 0 and a low-to-high frequency sweep, 
the large gap in the first avoided crossing — proportional to Ω 
— makes this passage predominantly adiabatic. 
Correspondingly, the subsequent population exchange during 
the second (narrower) crossing becomes ineffective in creating 
net nuclear polarization, as the probability of finding the NV–
13C system in either branch still amounts to approximately 50% 
(see right plot in Fig. 2D); a similar reasoning applied to the 
ensuing pair of crossings in the present example confirms that 
no net polarization can emerge from a sweep of the 𝑚Z = 0 ↔
𝑚Z = +1 subset. Note, however, that because in the present 
low-field regime 𝐀 > γ1𝐵, the order in the transitions 
during a sweep depends on the sign of 𝐴%% , which can be 
positive or negative with nearly equal probability. Therefore, 
there is no intrinsic difference in the polarization efficiency 

associated to the 𝑚Z = −1 or +1 manifolds, as the dynamics 
reverses upon an overall sign change of the hyperfine coupling 
constants. In other words, low-to-high (high-to-low) MW 
sweeps across either subset in a bulk crystal should yield net 
positive (negative) 13C spin polarization. We return to this 
point later.  

To gain a fuller understanding of the dynamics underlying 
the generation of bulk 13C magnetization we investigate the 
polarization efficiency as a function of the hyperfine coupling. 
In Fig. 3A we spin initialize the NV electronic spin to about 
5% and determine the steady-state polarization 𝑃1 of the 
coupled 13C spin as we repeat the MW frequency sweep 
multiple times; this strategy more closely reproduces our 
experimental conditions (see Methods and SI). We attain 
comparable nuclear spin polarization for hyperfine couplings 
A ≳ 500 kHz and up to 10 MHz. As expected, the 

efficiency of the polarization transfer process decays for 
weaker couplings although care must be exercised when 
correlating the end polarization of a particular 13C nucleus and 
its impact on the observed bulk NMR signal. Specifically, as 
the hyperfine interaction weakens, the number 𝑁 of carbon 
spins featuring a lower level of coupling increases (nearly 
quadratically). Further, weaker couplings considerably 
facilitate nuclear spin flip-flops between neighbors and hence 
are instrumental in enabling the generation of bulk nuclear 
polarization. This is shown in Fig. 3B where we plot the 13C 
spin energy splitting 𝛿 within the 𝑚Z = 0 manifold assuming 
a 10 mT field: Except for NVs perfectly aligned with 𝐵, 
hyperfine contributions (stemming from the last term in Eq. 
(3)) can quickly dominate over the Zeeman term, thus leading 
to a hyperfine-dependent frequency mismatch between 

 
Fig. 2. Manifold-dependent nuclear spin polarization dynamics. (A) Eigenenergies of 𝐻\]]	as a function of the MW frequency 𝜈�  near 
the 𝑚¡ = 0 ↔ 𝑚¡ = −1 subset of transitions and evolution of populations upon a single low-to-high frequency sweep in the presence of 
a weak hyperfine coupling (right and left, respectively). (B) Same as in (A) but for a stronger hyperfine coupling where all transitions can 
be individually resolved. (C, D) Same as in (A, B) for the 𝑚¡ = 0 ↔ 𝑚¡ = +1 subset of transitions. In (A) through (D), the color code 
for the right plot follows the notation introduced in the left plot. In (A) and (C), 𝐴[[ = 𝐴¢¢ = 𝐴££ = 500 kHz, in (B) and (D), 𝐴[[ =
𝐴¢¢ = 𝐴££ = 4 MHz. In all cases, 𝐴[¢ = 0.3𝐴[[, 𝛺 = 250 kHz, and 𝜃 = 30°, 𝜙 = 60°.  
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carbons. This effect is only moderate when A ≲ 1 MHz, 
suggesting that carbons featuring weak to moderate couplings 
have a comparatively larger influence on the observed 13C 
NMR signal.  

We can qualitatively gauge the influence of a given NV–
13C pair with hyperfine coupling strength 𝐴  in generating 
the observed NMR signal through the ‘impact factor’ 
𝜂 𝐴 ∝ 𝑑𝜃 sin& 𝜃§

i 𝑑𝜙&§
i 𝑁𝑃1𝑔 𝛿  where 𝑁 ∝ 1 𝐴 &, 

and 𝑔 𝛿 𝜃, 𝜙, 𝐴  is a function that quantifies the ability of 
a 13C spin to spin diffuse with its neighbors. Though the latter 
is presently unknown, we get a crude estimate by assuming 
𝑔 𝛿 ∝ exp − 𝛿 − 𝛾1𝐵 2𝜋 & 2 𝐴 ©ª¢

&  where 𝐴 ©ª¢ 
represents a critical hyperfine coupling, of order ~1 MHz (see 
below). The result — shown as a dashed line in Fig. 3A — 
suggests that a very selective set of moderately coupled 
carbons — featuring 𝐴  between 0.5 and 0.8 MHz — is 
effective in producing the observed bulk NMR signal, very 
much in contrast with prior studies (6, 11) where strongly 
coupled carbons (~10 MHz and up) were seen to be dominant.  

We confirm the ideas above through the observations in 
Figs. 3C and 3D: Here, we consider NV–13C pairs extracted 
from a statistical distribution of hyperfine couplings, and 
calculate for each pair the 13C spin polarization after a 100 
MHz local sweep of variable central frequency 𝜈_`

L ; 
throughout these calculations we assume the relative 

orientations of the magnetic field and NV axis are random (see 
SI, Section III). Fig. 3C shows the results for distributions of 
hyperfine couplings with a variable upper threshold 𝐴 ©ª¢, 
ranging from 4 MHz down to 0.5 MHz (respectively ordered 
from top to bottom in the figure). Notably, the calculated 
responses display a marked asymmetry between the sides of 
the spectrum associated to transitions involving the 𝑚Z = −1 
or 𝑚Z = +1 NV spin states (lower and higher frequency 
regions, respectively). Further, the overall spectral shape is 
sensitive to the range of hyperfine couplings taken into 
account, progressively evolving from a structured shape 
peaked at the edges of the spectrum, towards a flatter, more 
uniform distribution for weaker 𝐴 ©ª¢.  

Fig. 3D displays two sets of spectra, both experimental 
and calculated (top and bottom sets, respectively), which we 
now can use for direct comparison: In the upper set, each circle 
represents the amplitude of the measured 7 T 13C NMR signal 
upon multiple low-to-high-frequency sweeps over a MW band 
of pre-defined, variable width centered at a variable frequency 
𝜈_`
L . From an inspection of Fig. 3C, we find best agreement 

with experiment for carbon distributions where 𝐴 ©ª¢ ≈
750 kHz, hence indicating that strongly-coupled carbons do 
not significantly contribute to the observed bulk NMR signal. 
Note that, despite the lineshape changes, the calculated spectra 
remain consistent with our observations even as we reduce the 
sweep bandwidth from 100 MHz, to 50 MHz, to 25 MHz 

 
 
Fig. 3. ‘Strong’ vs. ‘moderate’ hyperfine couplings. (A) Calculated steady-state 13C spin polarization after repeated low-to-high frequency 
sweeps across the 𝑚Z = 0 ↔ 𝑚Z = +1 subset for a variable hyperfine coupling 𝐴[[ ; the initial NV spin polarization is 5%, the sweep rate is 
40 MHz/ms, the Rabi field is 250 kHz, and we assume 𝐴[[ = 𝐴¢¢ = 𝐴££  and 𝐴[¢ = 0.3𝐴[[; the dots indicate a representative polarization for 
a given relative orientation of the magnetic field 𝐵 and the solid line is a guide to the eye. The dashed line indicates the estimated relative 
contribution 𝜂 to the observed 13C NMR signal amplitude (right vertical axis). (B) Calculated energy splitting 𝛿 between the NV–13C 
eigenenergies within the subspace 𝑚Z = 0 as a function of 𝜃 for 𝜙 = 0. (C) Modeled 13C spin NMR signal for a powdered diamond sample 
and a 100-MHz-wide MW frequency sweep centered at a variable frequency ν_`

(«) . In all calculations, we assume the external magnetic field 
is 𝐵 = 13.2 mT and consider hyperfine interactions over the range 0 − ‖𝐴­®O‖. (D) Same as in (C) but for a variable sweep range, as 
calculated numerically or observed experimentally (lower and upper trace sets, respectively). For the calculated plots, we use ‖𝐴­®O‖ = 750 
kHz and all averages emerge over 1.5×10� configurations; throughout the experiments, the number of MW sweeps per data point is 103, and 
the number of repeats is 30, with all other conditions remaining as in Fig. 1. In (C-D) we displace all traces horizontally for clarity.  
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(purple, light blue, and green traces, respectively). Further, 
because contributions to the calculated spectra stemming from 
carbons with hyperfine coupling lower than ~200 KHz are 
negligible (see SI, Section III), the observed bulk nuclear spin 
polarization must be interpreted as mediated by a select shell 
of moderately coupled nuclei around the NV (i.e., 200 kHz <
𝐴 < 750 kHz), consistent with the calculated ‘impact factor’ 
𝜂 in Fig. 3A. 

Although the broad spectra in Fig. 3 suggest nearly 
uniform contributions from NVs in all orientations, the process 
leading to bulk nuclear spin polarization is considerably more 
complex. The green circles in Fig. 4A show the result from an 
experiment where each data point reflects the 13C NMR signal 
amplitude upon multiple low-to-high MW frequency sweeps 
of increasing bandwidth, i.e., the start frequency 𝜈_`

S = 2.4 
GHz remains unchanged while the end frequency 𝜈_`

~  
gradually increases. We find that the NMR signal first grows 
almost linearly, to subsequently plateau at a maximum once 
𝜈_`
~ ≳ 2.95 GHz, i.e., once 𝜈_`

~  reaches the set of transitions 
involving the 𝑚¡ = +1 NV state; when compared to the 
thermal signal amplitude, this maximum signal corresponds to 
a 13C spin polarization of order 0.2%. We find a similar 
(though complementary) result if we set the final MW 
frequency to 𝜈_`

~ = 3.3 GHz and gradually change the start 
point in the sweep 𝜈_`

S  towards lower frequencies (orange 
circles). These observations — qualitatively reproduced by our 
model, see solid traces in Fig. 4A — can be interpreted in terms 
of a partial polarization cancellation during the sweep. Fig. 4B 

illustrates this process through a representative example in 
which we study the effect of a low-to-high frequency sweep on 
two individual NV–13C pairs featuring hyperfine interactions 
of the same strength ( 𝐴 = 500 kHz) but of opposite signs. 
In agreement with the results in Fig. 2, the carbon with a 
positive (negative) coupling polarizes positively upon crossing 
the set of transitions involving the 𝑚Z = −1 (𝑚Z = +1) NV 
spin state. Interestingly, however, the positively coupled 
carbon loses its polarization when the MW reaches the subset 
of crossings involving 𝑚Z = +1, with the result that the net 
nuclear spin magnetization remains roughly unchanged during 
the second half of the sweep. In other words, no net increase 
in the 13C NMR signal is to be expected when extending the 
sweep range to include the full set of transitions, as observed 
experimentally.  

 We gain additional insight on the NMR signal formation 
by calculating the steady-state nuclear spin polarization in an 
individual NV–13C pair ( 𝐴 = 500 kHz) for different relative 
orientations of the magnetic field and NV axes. Despite the 
broad spectral response observed in Figs. 3C and 3D — 
naively indicative of angle-insensitive nuclear spin 
polarization — we find a complex dependence, both in terms 
of the polar and azimuthal angles (Fig. 4C). Remarkably, our 
calculations indicate nuclear spin polarization is more 
efficiently produced in the case of misaligned NVs (i.e., 𝜃 ≠
0), which sheds light on why this approach works so 
effectively in a powdered sample. On the other hand, the 
polarization transfer process does not show cylindrical 
symmetry, a reflection of the azimuthal angle dependence in 

 
Fig. 4. Optimal spin polarization transfer: Frequency and angular dependence. (A) (Top) Measured (full circles) and calculated (solid line) 
13C NMR signal upon multiple frequency sweeps; each sweep goes from a fixed MW start frequency 𝜈_`

(S) = 2.4 GHz, to a variable end 
frequency 𝜈_`

(~) . (Bottom) Same as above but for a variable start frequency 𝜈_`
(S)  to a fixed final frequency 𝜈_`

(~) = 3.3 GHz. In both cases the 
sweep is from low to high frequencies and thus yields a positive 13C polarization. All other experimental and modeling conditions as in Fig. 
3D. (B) Calculated 13C spin polarization for two example NV–13C pairs featuring similar hyperfine couplings (‖𝐴‖ = 500 kHz) upon a low-
to-high-frequency sweep; the NV–13C coupling is assumed positive (negative) for Pair 1 (Pair (2)). Vertical dashed lines indicate the location 
of the crossings within the 𝑚Z = ±1 manifolds (we are assuming 𝜃 = 30 deg). For simplicity, we assume the NV is optically pumped into 
𝑚Z = 0 both at the beginning and midpoint of the sweep (dotted vertical line). (C) Calculated 13C spin polarization as a function of the 
orientation of the magnetic field relative to the NV axis, aligned parallel to the z-axis. For these calculations, we use a hyperfine coupling 
tensor of the form 𝐴%% = 𝐴OO = 𝐴XX = 0.5 MHz and 𝐴%O = 0.3𝐴%%.  
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the last term of Eq. (3). Note that although the calculated 
nuclear polarization is sizable only in the upper hemisphere of 
the plot, an equivalent response — this time with optimum in 
the lower hemisphere — can be attained by changing the sign 
of the hyperfine coupling, from positive (used in the present 
example) to negative. A crude estimate that takes into account 
the concentration of NVs and the 13C spin-lattice relaxation 
time, shows that the calculated average carbon polarization per 
sweep in our two-spin model (of order 5%, see Fig. 4C) is 
consistent with the observed bulk 13C polarization (of order 
0.1%, see SI, Section IV). 

Finally, we investigate the impact of the MW frequency 
sweep rate, set to 𝜈_` = 40 MHz/ms in all the results 
presented thus far. We start by calculating the 13C spin 
response in a moderately coupled NV–13C pair ( 𝐴 = 500 
kHz) for different orientations of the magnetic field. From a 
quick inspection of Fig. 5A, we conclude that the polarization 
transfer is most efficient at intermediate sweep rates — of 

order 40-50 MHz/ms — where non-adiabaticity at the LZ 
crossings is optimal. Consistent with the observations in Fig. 
4C, the absolute 13C polarization attained at 𝜈_` = 40 
MHz/ms diminishes for NVs aligned with 𝐁. On the other 
hand, the optimal sweep velocity can vary substantially 
depending on the exact field direction (Fig. 5B), although the 
absolute change is rather moderate within the set of angles 
(𝜃, 𝜙) where the polarization transfer is most efficient. In 
particular, we find that the angular region where the 13C 
polarization is maximum remains similar to that in Fig. 4C, 
even if we choose for each 𝐵 field direction the optimal sweep 
rate (Fig. 5C).  

Since the time required to complete multiple sweeps 
inherently depends on the chosen sweep rate, a comparison 
with experimental observations as a function of 𝜈_` must 
necessarily take into account nuclear spin diffusion from the 
target carbon into the bath (Fig. 5D). While a full quantum 
mechanical description is difficult, we resort to a 

 

Fig. 5. Impact of frequency sweep rate and illumination intensity on the 13C spin polarization. (A) Calculated 13C spin polarization upon a 
single sweep as a function of the MW frequency sweep rate for the case of a moderately-coupled NV–13C pair (‖𝐴‖ = 500 kHz) and 
different relative orientations of the external magnetic field. For simplicity, we assume the NV has been fully polarized into 𝑚Z = 0 prior 
to the sweep and ignore the effect of illumination thereafter; all other conditions as in Fig. 1. (B) Optimal frequency sweep velocity as a 
function of the magnetic field direction for the 13C spin considered in (A). (C) Spin polarization for the same 13C spin as a function of the 
magnetic field direction assuming in each case the sweep rate is the optimum possible. (D) Nanoscale spin geometry. The polarization 
from a carbon coupled to an NV spin (yellow and red solid circles, respectively) diffuses via homo-spin couplings with its neighbors (semi-
transparent solid circles). (E) The upper plot is the measured 13C NMR signal amplitude (dark circles) as a function of the sweep rate; the 
total spin pumping time for each measurement is set to 10 s (see text). The lower traces are the calculated 13C signals assuming variable 
spin diffusion time 𝜏³. (F) Calculated 13C magnetization for different Rabi field amplitudes as a function of the MW frequency sweep rate. 
(G) Measured and calculated 13C NMR signals (upper and lower sets, respectively) at different illumination intensities as a function of the 
MW sweep rate. In the experimental traces, the maximum laser intensity is 𝐼­®O = 1 W. For the calculated traces, we use a fixed Rabi 
field amplitude Ω = 250 kHz and variable NV spin initialization into 𝑚Z = 0 quantified via the parameter 𝜀 ∈ [0,2], see SI, Section IV. 
All calculations in (E) through (G) assume continuous laser excitation, a magnetic field 𝐵 = 13.2 mT, and a 100 ms spin diffusion time 
(unless explicitly noted otherwise). Each point emerges from average over all field orientations and hyperfine couplings assuming ‖𝐴‖ <
1 MHz; solid traces are guides to the eye.  
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phenomenological approach where spin diffusion takes the 
form of a pseudo ‘spin-lattice relaxation’ process affecting the 
polarization of the carbon directly coupled to the NV (26); our 
code, however, keeps track of the total magnetization injected 
into the nuclear spin system so as to make the end result 
proportional to the observed 13C NMR signal (see SI, Section 
IV).  

Experimental plots of the dynamically pumped 13C NMR 
signal amplitude as a function of the MW sweep rate are 
presented in the upper trace of Fig. 5E; to maximize the 
polarization buildup, the total pumping time at each point is 
kept constant at 𝑇B1 =10 s (coincident with the 13C spin-lattice 
relaxation time at 𝐵~13.2 mT), meaning that 𝑛, the number of 
sweeps, gradually changes depending on the specific value of 
𝜈_` according to the relation 𝑛 = 𝑇B1𝜈_` Δ𝜈, where Δ𝜈 =
370 MHz is the frequency bandwidth. The lower traces in Fig. 
5E show the results of numerical simulations where we 
incorporate the above conditions; throughout these 
calculations, each data point emerges from a complex average, 
namely, we sample the hyperfine coupling from a statistical 
distribution (similar to that used in Fig. 3D, i.e., 0 ≤ 𝐴 ≤
750 kHz), and vary the magnetic field direction over all 
possible orientations relative to the NV axis. To save time 
(these calculations are demanding and thus require 
considerable computing power, see Section IV of the SI) we 
limit the total illumination time to 1s.   

In qualitative agreement with our experiments, we find a 
sharp initial growth followed by a slower decay at faster sweep 
rates, with an optimum around 40-50 MHz/ms. Taking spin 
diffusion into account (lower traces in Fig. 5E) shifts the 
optimum sweep rate to greater values because the larger 
number of sweeps per unit time effectively enhances the total 
nuclear magnetization produced. It would be premature, 
however, to elaborate on the spin diffusion dynamics at play, 
as the overall shape of the response is sensitive to the Rabi field 
amplitude (Fig. 5F). Indeed, this latter dependence may be 
responsible for the main differences between theory and 
experiment, as the fixed direction of the MW field in the lab 
frame amounts to a random orientation relative to the NV axis, 
hence leading to a variable effective MW amplitude.  

 Interestingly, greater laser powers lead to greater 13C 
NMR signals without distorting the overall shape of the 
response (upper data set in Fig. 5G). This observation — 
correctly reproduced by our model, see lower data set in Fig. 
5G — is a consequence of the relatively mild illumination we 
employ herein (1 W laser focused over an 4-mm-diameter 
spot). Under these conditions, the probability of optically 
exciting an NV precisely during a subset of LZ crossings is 
relatively low — particularly if, as shown above, 𝐴 ≲ 750 
kHz, see Fig. 2 — meaning that the polarization transfer takes 
place coherently and NV repolarization preferentially occurs 
between successive crossings. More intense laser powers, 
therefore, lead to better NV spin initialization and, 
consequently, to enhanced 13C polarization, as observed 
experimentally. We caution, however, this picture breaks 
down for strongly-coupled carbons — where LZ crossings 
split into a resolved series, see Figs. 2B and 2D — because 
optical re-initialization of the NV between crossings within the 
same 𝑚Z = −1 or 𝑚Z = +1 manifold typically causes 

depolarization (see SI, Section V).  
 
Conclusions 

Continuous optical illumination accompanied by repeated 
MW frequency sweeps leads to efficient spin polarization 
transfer from NVs to neighboring carbons in powdered 
diamond at 10-30 mT. Our observations can be reproduced via 
an average Hamiltonian describing the effective rotating-frame 
interaction between the NV and a neighboring 13C spin. In this 
picture, spin transfer takes place via a Landau-Zener-like 
process where nuclear polarization emerges as a consequence 
of the asymmetry in the adiabaticity parameter characterizing 
avoided crossings between branches with the same or opposite 
nuclear spin character; the polarization sign depends on the 
direction of the sweep, whereas its level relates to the hyperfine 
coupling, the misalignment, and the particular set of crossings 
involved. From comparison with 13C-NMR-detected NV spin 
spectra, we conclude that the polarization transfer to bulk 
nuclei is mediated by carbons with hyperfine couplings within 
a narrow range, 200	kHz ≲ 𝐴 ≲ 750 kHz. Although 
comparable levels of nuclear polarization can be attained 
virtually at all NV spin frequencies, the polarization transfer is 
sensitive to the relative direction of the magnetic field, with the 
optimum occurring for carbons associated to misaligned NVs. 
Further, competing nuclear spin polarization and de-
polarization processes limit the range of the frequency sweep 
necessary to attain maximum 13C NMR signals to 
approximately half the NV spin resonance spectrum. The 
NMR signal response as a function of the frequency sweep rate 
shows an optimum around 40-50 MHz/ms, consistent with the 
(calculated) values required to optimize the spin transfer 
during the LZ crossings.  

Our findings open interesting opportunities for further 
optimization as well as for fundamental and applied work. For 
example, the angular dependence of the transfer on the 𝐵 field 
axis — particularly the azimuthal dependence, see Fig. 4C — 
suggests that additional NMR signal gain could be attained by 
making the field direction undergo a suitable time evolution. 
Also to consider is the sweep rate, which, rather than constant, 
could be gradually incremented with growing frequencies so 
as to match the optimum observed at different orientations 
(Fig. 5B). Along the same lines, another possibility is to use 
several MW sources to generate multiple sweeps running 
simultaneously but shifted in frequency; NMR signal 
amplification is expected when the time separation between 
successive sweeps — all sharing the same frequency sweep 
rate — are brought to a minimum defined by the NV 
repolarization time (27).  

Additional work will be needed to investigate the impact 
of other experimental parameters such as the illumination 
conditions, and the influence of paramagnetic defects other 
than the NV. For example, at the relatively mild laser 
intensities used herein — of order 100 mW/mm2 — the NV 
polarization rate amounts to ~100 Hz implying that the steady-
state NV spin polarization, reaching at best 10%, is far below 
the optimum. On the other hand, light-induced decoherence 
during the LZ crossings must ultimately hinder the spin 
transfer process, which suggests there must be an optimum 
illumination intensity. Whether or not this regime can be 
reached without complications from NV photo-ionization (or 



	 9	

the ionization of other impurities) is a question that can only 
be addressed through subsequent studies over a larger range of 
laser powers and using illumination wavelengths other than 
532 nm.  

Another pending question is the response as a function of 
the magnetic field amplitude, here constrained to less than 20 
mT. Extending the present studies to greater fields — 
particularly those above 100 mT — is an attractive route to 
prolong the 13C spin-lattice relaxation time — here limited by 
cross-relaxation with paramagnetic nitrogen impurities (25) — 
and hence potentially augment the end polarization. Initial 
observations at ~100 mT showed no enhancement, though a 
more systematic study — ideally encompassing greater fields 
— is in order. Several complications, both experimental and 
theoretical, must be overcome to accomplish this task. Among 
them is the limited frequency bandwidth typical in most MW 
sources and amplification systems, normally circumvented at 
high fields (e.g., 𝐵~300 mT) through the use of tuned, narrow-
band MW cavities and variable magnetic fields; it is not clear, 
however, this strategy shares the same flexibility as the 
approach pursued herein. On the theoretical side, additional 
work will be necessary to extend the present formalism — 
valid in the limit where the impact of the magnetic field can be 
treated perturbatively — to the regime where the Zeeman 
interaction becomes dominant over the NV crystal field. 
Though some key ingredients remain unchanged (12), this 
regime is expected to differ from the present one in important 
ways, including the type of carbons mediating the polarization 
transfer to the bulk and, most notably, the impact of 
misalignment on the NV spin initialization. These studies must 
also encompass the case where the NV spin simultaneously 
interacts with more than one carbon nucleus, inherent to 13C-
enriched samples and thus important in applications where 
diamond particles serve as an imaging contrast agent or as the 
source of hyperpolarization for target fluids.  
 
Materials and Methods 

Most experiments presented in this paper are carried out using 
E6 diamond particles with average size of ~200 µm and NV 
concentration of 1 ppm; more recent work, however, has attained 
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I. The effective secular approximation 

Here we show how to derive Eq. (4) of the main text from the application of average 
Hamiltonian theory (AHT) to Eq. (1), using the energy constrains in Eq. (2). We start by writing the 
Hamiltonian in Eq. (1) as 

𝐻 = ∆ Sz 2 − S S + 1 3 − γ, 𝐵.S. + 𝐵/S/ + 𝐵0S0 − γ1𝐁 ⋅ 𝐈 + 𝐴..S.I.																						  

																																																																																					+𝐴//S/I/ + 𝐴00S0I0 + 𝐴0. S.I0 + S0I.  .         (A.1) 

Following the standard AHT recipe (1,2), we split (A.1) into two parts, 𝐻 = 𝐻∆ + 𝐻8, where 𝐻∆ =
∆ Sz 2 − S S + 1 3  encloses the highest energy scale (or, equivalently, provides for the fastest 
dynamics), and 𝐻8 is automatically defined as 𝐻 − 𝐻∆. The zeroth order in AHT is given by  

𝐻(:) = 8
<∆

𝑈∆
> 𝑡@ H8𝑈∆ 𝑡@ 𝑑𝑡′<∆

: 	,                                                (A.2) 

where 𝑇∆ = 2𝜋/∆ and 𝑈∆ 𝑡 = 𝑒𝑥𝑝 − K
ℏ
𝐻∆𝑡 . It is useful to define ℋ8(t) = 𝑈∆

> 𝑡 H8𝑈∆ 𝑡 , which 
we rewrite as, 

ℋ8 t = −γ, 𝐵.SO. + 𝐵/SO
/ t + 𝐵0S0 − γ1𝐁 ⋅ 𝐈 + 𝐴..SO.I. + 𝐴//SO

/I/ + 𝐴00S0I0 + 

+𝐴PQ SO.I0 + S0I. 	,                                                               (A.3) 

where 

SO. = 𝑈∆
> 𝑡 S.𝑈∆ 𝑡 = R

R

0 𝑒𝑥𝑝 K
ℏ
∆𝑡 0

𝑒𝑥𝑝 − K
ℏ
∆𝑡 0 𝑒𝑥𝑝 − K

ℏ
∆𝑡

0 𝑒𝑥𝑝 K
ℏ
∆𝑡 0

	,                  (A.4) 

SO
/ = 𝑈∆

> 𝑡 ST𝑈∆ 𝑡 = RK
R

0 −𝑒𝑥𝑝 K
ℏ
∆𝑡 0

𝑒𝑥𝑝 − K
ℏ
∆𝑡 0 −𝑒𝑥𝑝 − K

ℏ
∆𝑡

0 𝑒𝑥𝑝 K
ℏ
∆𝑡 0

	.              (A.5) 
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Upon integrating, it is straightforward to show that 

𝐻(:) = −γ,𝐵0S0 − γ1𝐁 ⋅ 𝐈 + 𝐴00S0I0 + 𝐴0.S0I.,                                  (A.6) 

which is, in fact, a valid secular approximation in the aligned case (𝜃 = 0). 
 The following order in AHT is given by 

𝐻(8) = WK
R<∆

𝑑𝑡8 𝑑𝑡R ℋ8 𝑡8 ,ℋ8 𝑡R
XY
:

<∆
: 	.                                  (A.7) 

In what follows, we disregard any term in the previous commutator involving −γ1𝐁 ⋅ 𝐈 since it 
produces negligible contributions. Any term in the commutator ℋ8 𝑡8 ,ℋ8 𝑡R  would then be of 
the form S0, SOZ  or SOZ, SO[

Z[ , where 𝛼, 𝛼@ ∈ 𝑥, 𝑦  and 𝑡, 𝑡@ ∈ 𝑡8, 𝑡R . Let us start by considering the 

terms of the form S0, SOZ : 

S0, SO. = 𝑖SO
/	,	                                                              (A.8) 

S0, SO
/ = −𝑖SO.	.                                                            (A.9) 

Then, 

WK
R<∆

𝑑𝑡8 𝑑𝑡RSXa
.XY

:
<∆
: = R

b∆

0 1 0
−1 0 −1
0 1 0

	,                                    (A.10) 

WK
R<∆

𝑑𝑡8 𝑑𝑡RSXa
/XY

:
<∆
: = RK

b∆

0 −1 0
−1 0 1
0 1 0

	,	                                    (A.11) 

WK
R<∆

𝑑𝑡8 𝑑𝑡RSXY
.XY

:
<∆
: = R

b∆

0 −1 0
1 0 1
0 −1 0

	,                                        (A.12) 

WK
R<∆

𝑑𝑡8 𝑑𝑡RSXY
/XY

:
<∆
: = RK

b∆

0 1 0
1 0 −1
0 −1 0

	.                                    (A.13) 

These terms induce transitions between the subspace 𝑚d = 0 and the subspaces 𝑚d = ±1. The matrix 
element for these transitions scale as γ,𝐵 R/∆	~	30MHz ≪ ∆ so, they are suppressed by the zero-
field splitting induced by the crystalline field and we can safely neglect them. 

Let us consider the terms	 SOZ, SO[
Z[  with α ≠ α@. After some algebra, 

WK
R<∆

𝑑𝑡8 𝑑𝑡R SXY
. , SXa

/ 	XY
:

<Δ
: = K

R∆

0 0 −1
0 0 0
1 0 0

	,                                       (A.14) 

WK
R<l

𝑑𝑡8 𝑑𝑡R SXY
/ , SXa

Q 	XY
:

<l
: = K

R∆

0 0 −1
0 0 0
1 0 0

	.                                       (A.15) 

These contributions induce transitions between the subspaces 𝑚d = +1 and 𝑚d = −1, with a matrix 
element scaling, at best, as  γ,B R/∆	~	30MHz < γ,B. Thus, even if not as strong as before, there 
is a truncation of at least one order of magnitude due to the electron Zeeman splitting. We therefore 
disregard these terms. 
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Finally, we consider the terms SOZ, SO[
Z : 

WK
R<∆

𝑑𝑡8 𝑑𝑡R SXY
. , SXa

. 	XY
:

<∆
: = 8

R∆

1 0 1
0 −2 0
1 0 1

	,                                      (A.16) 

WK
R<∆

𝑑𝑡8 𝑑𝑡R SXY
/ , SXa

/ 	XY
:

<∆
: = 8

R∆

1 0 −1
0 −2 0
−1 0 1

	.                               (A.17) 

By the same criteria, the off-diagonal elements have to be disregarded as they represent transitions 
between the subspaces 𝑚d = +1 and 𝑚d = −1, which are truncated by the Zeeman splitting. 
However, the diagonal matrix elements are in fact relevant, since they can induce transitions between 
different 13C spin states. 

Now we insert Eq. (A.3) into Eq. (A.7) and trace the origin of the commutators SOZ, SO[
Z . 

These can arise either from terms like − γ,𝐵Z R SXY
Z , SXa

Z  or terms like −γ,𝐵Z𝐴ZZIZ SXY
Z , SXa

Z . In the 
first case, the diagonal matrix elements in Eqs. (A.16) and (A.17) produce energy shifts two orders 
of magnitude smaller than the actual gap ~∆ and can be ignored. The second case stands for actual 
coupling terms between the 13C spin states. These terms have matrix elements as large as 
𝛿~γp𝐵Z𝐴ZZ/∆~1×10W8MHz for 𝐴rr~1MHz, and up to 𝛿~1MHz for 𝐴ZZ~10MHz. Thus, these 
transitions are critical for the 𝑚d = 0 subspace, where the Zeeman splitting −γ1𝐵 is no longer the 
dominant energy scale. 

We are left with the following second-order AHT correction according:  

𝐻(8) = Wst
∆

𝐵. 𝐴..I. + 𝐴0.I0 + 𝐵/𝐴//I/
1 0 0
0 −2 0
0 0 1

.                          (A.18) 

This Hamiltonian represents a secularization of terms not included in 𝐻(:), and ultimately leads to 
the desired secular Hamiltonian, i.e. Eq. (3) in main text, 𝐻sec = 𝐻∆ + 𝐻(:) + 𝐻(8). The effective 
Hamiltonian introduced in Eq. (4) of the main text follows from a rotating frame transformation, 

𝐻,xx = 𝐻sec − 𝜔 S0 R + ΩS.,                                                 (A.19) 

where Ω is the Rabi frequency. Note that the term proportional to S0 R — valid only in the limit 
𝛾,𝐵 < Δ considered herein — simultaneously takes into account contributions from the rotating and 
counter-rotating terms stemming from the linearly polarized MW field; depending on the value of 𝜔, 
one or the other becomes resonant across the set of transitions (𝑚d = 0 ↔ 𝑚d = −1) and 
(𝑚d = 0 ↔ 𝑚d = +1). To simplify the notation, we set ℏ = 1 throughout our calculations. 

 

II. Eigenstates and observables 

In Fig. S1 we compare the first four eigenstates 0, 𝛼↑ , 0, 𝛼↓ , −1, 𝛽↑ , and −1, 𝛽↓  obtained 
from the exact Hamiltonian (A.1) and the secular approximation 𝐻sec (we omit an equivalent analysis 
for the subspace 𝑚� = +1). The comparison is based on the decomposition of each eigenstate in 
terms of the computational basis  𝑚d,𝑚�  as a function of the angle 𝜃 (fixed 𝜙 = 0). It is worth 
noting that the states 0, 𝛼↑  and 	 0, 𝛼↓  remain predominantly given by 	 0, ↑  and 	 0, ↓  respectively 
in the range 0° ≤ 𝜃 ≤ 90°. This is also true (and even more accurately so) for −1, 𝛽↑ , and −1, 𝛽↓ , 
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which are essentially given by 	 −1, ↑  and 	 −1, ↓  respectively. The inversion observed at 90° simply 
corresponds to the change in the preferred direction of quantization 𝑧 → −𝑧. 

As discussed in the main text, the LZ crossings create population imbalances between these 
states, leading to the observed 13C polarization. However, even though the whole process takes place 
at low magnetic field and in presence of light, the actual signal acquisition throughout our experiments 
is performed by shuttling the sample into a high-field NMR system. Since such a transfer is 
intrinsically adiabatic, the population imbalance created at low-field remains unchanged in the high-
field condition. This suggests a way to define the 13C polarization in our simulations by algebraically 
adding the populations in the instantaneous eigen-basis with the sign given by the character of the 
state (up or down). Alternatively, one can compute the expectation value of the 𝐼0 operator rotated in 
the direction of the magnetic field. In this case, however, the time-dependence of the 13C polarization 
exhibits fast coherent oscillations which unnecessarily complicate the numerics. Nevertheless, it is 
important to stress that both ways of computing the 13C polarization give essentially the same results, 
and that both are in agreement with our experimental observations. 

We now turn our attention to estimating the energy gaps 𝛿𝐸8� and 𝛿𝐸R� presented in Fig. 1B 
and the LZ probabilities 𝑝 1|3  and 𝑝 2|3 . We start by assuming the effective Hamiltonian in the 
aligned case 𝜃 = 0, 𝜙 = 0, 

𝐻p��
��:,��: = ∆ S0 R − γ,𝐵0S0 − γ1𝐵0I0 + 𝐴00S0I0 + 𝐴0.S0I. − 𝜔 S0 R + ΩS..          (A.20) 

In what follows, we consider the Hilbert subspace spanned by the basis states 
0, ↑ , 0, ↓ , −1, ↑ , −1, ↓ . By introducing the notation 𝜔:� = ∆ − γ, 𝐵0 and 𝜔:� = γ1𝐵0, the 

matrix representation of 𝐻p��
��:,��:  in this subspace is: 

𝐻p��
��:,��: =

0, ↑ 0, ↓ −1, ↑ −1, ↓
0, ↑ W���

R
0 �

R
0

0, ↓ 0 ���
R

0 �
R

−1, ↑ �
R

0 𝜔:� −
���
R
− 𝜔 − ���

R
− ���

R

−1, ↓ 0 �
R

− ���
R

𝜔:� +
���
R
− 𝜔 + ���

R

	.									(A.21) 

If the MW irradiation is close to the 0, ↓ ↔ −1, ↑  resonance then the two states are degenerate, 
which means that 

𝜔:� −
���
R
− 𝜔 − ���

R
≈ ���

R
,                                               (A.22) 

or, equivalently, 

𝜔:� − 𝜔:� −
���
R
≈ 𝜔.                                                    (A.23) 

We therefore rewrite the Hamiltonian as 
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𝐻p��
��:,��: =

0, ↑ 0, ↓ −1, ↑ −1, ↓
0, ↑ W���

R
0 �

R
0

0, ↓ 0 ���
R

0 �
R

−1, ↑ �
R

0 ���
R

− ���
R

−1, ↓ 0 �
R

− ���
R

�
R
𝜔:� + 𝐴00

.                     (A.24) 

The interaction matrix element  0, ↑ 𝐻p��
��:,��: −1, ↑ = Ω/2 corresponds to the NV spin 

flip produced by the Rabi oscillation. As expected, this corresponds to having 𝛿𝐸8�~ Ω, and 
accordingly 𝑝 1|3 ~𝑒𝑥𝑝 −2𝜋Ω2 𝜈𝑀𝑊 . The origin of the gap 𝛿𝐸R� is subtler, and in order to provide 
for an estimate, we first assume 𝜔:� ≪ 𝐴00 and focus on the subspace spanned by the states 
0, ↑ , 0, ↓ , −1, ↑ . We incorporate then energy shifts based on second order perturbation theory,  

𝐻p��,�p�� p�
��:,��: =

0, ↑ 0, ↓ −1, ↑
0, ↑ W���

R
0 �

R

0, ↓ 0 ���
R
− �a

b ���¡���
0

−1, ↑ �
R

0 ���
R
− ���a

b ���¡���

.            (A.25) 

A fairly good approximation for the gap 𝛿𝐸R� (see below for a comparison with the fully numerical 
solution) can be obtained by diagonalization, 

𝛿𝐸R� ≈
���
R
+ ���a WR�a

¢ ���¡���
− 8

R
𝜔0𝐼 −

���a

b ���¡���

R
+ ΩR                            (A.26) 

Notice, however, that this estimate is nonzero even if 𝐴0. = 0. This happens because the 
degeneracy of the states 0, ↓  and −1, ↑  (the condition stated in Eq. (A.22)) is broken by the 
presence of interaction terms with the states 0, ↑  and −1, ↓ . These interaction terms do contribute 
to 𝛿𝐸R�, but since they are not genuine interaction matrix elements between the states 0, ↓  and 
−1, ↑ , they cannot be used to compute the LZ transition probabilities. In other words, the gap 𝛿𝐸R� 

is not the actual magnitude ruling the LZ process. 
The only way to produce a transition between the states 0, ↓  and −1, ↑  would be a second 

order interaction term between them mediated by the intermediate state −1, ↓ . The corresponding 
matrix element for such a virtual interaction (not present in Eq. (A.25)) is given by 

𝐽¤K�X�¥¦ =
0, ↓ 𝐻p��

��:,��: −1, ↓ −1, ↓ 𝐻p��
��:,��: −1, ↑

𝜔:�
2 − −1, ↓ 𝐻p��

��:,��: −1, ↓
 

𝐽¤K�X�¥¦ =
W����

b Y
a���W

§
a���W���

= ����
b ���¡���

.                                    (A.27) 

This provides for a fair estimate of the LZ transition probability at the energy crossing between the 
branches of states 0, ↓  and −1, ↑ ,  

𝑝 2|3 ~ exp −2𝜋 Ω𝐴zx
4 𝜔0𝐼+𝐴zz

2
𝜈𝑀𝑊 	.                                          (A.28) 
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Similar arguments can be used for the resonance 0, ↑ ↔ −1, ↓ , obtaining the same estimates.  
 The general case, i.e. arbitrary (𝜃, 𝜙), is more involved. Considering the same 4-state 
subspace as above, we have  

𝐻p�� =

0, ↑ 0, ↓ −1, ↑ −1, ↓
0, ↑ W���

R
+ 𝐹 𝐺 �

R
0

0, ↓ 𝐺> ���
R
− 𝐹 0 �

R

−1, ↑ �
R

0 𝜔:� −
���
R
− 𝜔 − ���

R
− ­

R
− ®¡���

R

−1, ↓ 0 �
R

®¯¡���
R

𝜔:� +
���
R
− 𝜔 + ���

R
+ ­

R

, (A.29) 

where 𝐹 = (γ,/∆)𝐵.𝐴0., 𝐺 = (γ,/∆)	×	 𝐵.𝐴.. − 𝑖𝐵/𝐴// , and we are neglecting the mixing 
created by the terms −γ1𝐵.I.−γ1𝐵/I/. As before, we first assume the MW frequency is in near 
resonance with the 0, ↓ ↔ −1, ↑  transition, meaning that 

𝜔:� −
���
R
− 𝜔 − ���

R
− ­

R
≈ ���

R
− 𝐹 ,                                        (A.30) 

or, equivalently, 

𝜔:� − 𝜔:� −
���
R
+ ­

R
≈ 𝜔.	                                            (A.31) 

Then, 

𝐻p�� =

0, ↑ 0, ↓ −1, ↑ −1, ↓
0, ↑ W���

R
+ 𝐹 𝐺 �

R
0

0, ↓ 𝐺> ���
R
− 𝐹 0 �

R

−1, ↑ �
R

0 ���
R
− 𝐹 − ®¡���

R

−1, ↓ 0 �
R

− ®¯¡���
R

����
R
+ 𝐴00

.                (A.32) 

Note that while the direct matrix element 0, ↑ 𝐻p�� −1, ↑ = Ω/2 still provides for the estimate 
𝛿𝐸8�~ Ω and 𝑝 1|3 ~ exp −2𝜋Ω2 𝜈𝑀𝑊  remains valid, it is not straightforward to calculate or 
estimate 𝛿𝐸R�. Regardless, we show in Fig. S2 that the estimate for the aligned case (Eq. (A.26)) is 
still a fair estimate of 𝛿𝐸R� for a large range of values of 𝜃.  
 As before, we are interested in an interaction matrix element between the states 0, ↓  and 
−1, ↑ . Again, this is given by a second order interaction term mediated by the intermediate state 
−1, ↓ . Thus, the estimate for the LZ transition probability is in this case 

𝑝 2|3 ~ exp −2𝜋 Ω 𝐺+𝐴zx
4 𝜔0𝐼+𝐴zz+𝐹

2
𝜈MW .                                       (A.33) 

Notice that this estimate reduces to Eq. (A.28) in the limit (γ,𝐵/∆) → 0.  
 The results above provide a simple framework to describe the generation of 13C polarization 
as a function of the sweep velocity. Indeed, a crude approximation for the nuclear spin polarization 
can be written as the product 𝑔(𝜈²³)×𝑞(𝜈²³)×(1 − 𝑄(𝜈²³)), where we introduced the notation 
𝑄 𝜈²³ = 𝑝 1|3 . The last factor (1 − 𝑄(𝜈²³)) measures the adiabaticity during the sweep for 
branch 1. At low-intermediate velocities (where 𝑄 𝜈¶· ~0), the factor 𝑞 𝜈²³  equals the 
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bifurcation probability 𝑝 2|3 . In the limit of fast sweeps, however, one has to correct 𝑝 2|3  with an 
extra factor (1 − 𝑄(𝜈²³) that accounts for the transition from branch 2 to branch 4, so, in general, 
𝑞 𝜈²³ ~𝑝 2|3 (1 − 𝑄(𝜈²³). Note that a transition between branches 2 and 4 does not generate net 
polarization and must satisfy the condition 𝑝 2|4 ≡ 𝑝 1|3 . In addition, the correction ensures that 
the sum of all populations before and after the crossing remains unchanged. Finally, the factor 
𝑔 𝜈²³ ~1 − exp 𝜈²³ 𝑘  accounts for the cumulative effect of a varying number of sweeps within 
a fixed measurement time at a given sweep rate, and 𝑘 is a parameter gauging the impact of spin 
diffusion.  A more detailed discussion on this last point is addressed in Section IV. 
 

III. Statistical sampling 

In the cases where averaging over configurations is required (e.g., Figs. 3, 4A, 5), we perform 
a simultaneous sampling over angular coordinates (𝜃, 𝜙) and the hyperfine interaction. In particular, 
we recall that the variables 𝜃, 𝜙  correspond to the direction of the external magnetic field in the 
crystal-frame where the z-direction is given by the NV crystalline field. Thus, we use the standard 
homogeneous spherical distribution, 

𝜃 = cosW8 2𝑟8 − 1  

𝜙 = 2𝜋𝑟R 

where 𝑟8, 𝑟R are uniform pseudorandom numbers in the interval (0,1).  
The hyperfine tensor is assumed to have the following structure: 

𝐀 =
𝐴.. 0 𝐴0.
0 𝐴// 0
𝐴.0 0 𝐴00

 ,                                                  (A.34) 

with 𝐴.. = 𝐴// = 𝑠8𝑎, 𝐴00 = 𝑠R𝑎, and 𝐴.0 = 𝐴0. = 0.3𝑎. Here 𝑠8, 𝑠R are pseudorandom binary 
variables that account for sign randomization (they can be either +1 or -1). For each realization, the 
value of 𝑎 is taken from a uniform distribution in the interval (0, 𝐴 ¿¥Q). As an example, we show 
in Fig. S3 the simulated 13C NMR signal obtained for different values of 𝐴 ¿¥Q.  

Since the best agreement with the experimental results is achieved when 𝐴 ¿¥Q < 1 MHz, 
it is natural to ask if the interaction can be strictly dipolar. In fact, we have verified that nearly identical 
results can be obtained by using in our simulations the standard dipole-dipole interaction instead of 
the generic tensor in Eq. (A.34). 

IV. Numerical simulation 

In order to reconstruct the 13C NMR signal as in Figs. 3, 4A, and 5, we compute the explicit 
time dependence of each MW sweep. More specifically, the time of each sweep is 𝜏Á = ∆𝜈/𝜈²³, 
where ∆𝜈 is the frequency window of the sweep and 𝜈²³ the sweep velocity. We divide the frequency 
window in steps of 𝛿𝜈 = 100 Hz and evaluate stepwise the time evolution at each of these frequencies 
by exact diagonalization of the effective Hamiltonian 𝐻eff (Eq. (4) in the main text). The time 𝑡ÃÄÅ 
spent at each frequency bin is given by the ratio between the time of the sweep and the number of 
bins, i.e.  𝑡ÃÄÅ = 𝜏�/(∆𝜈/𝛿𝜈). The final state of each bin is used as the initial state for the following 
bin.  

At the beginning of any sweep, we assume that the initial state of the NV is given by  

𝜌KÇÈ =
(8¡É)
�

|0 0| + (8WÉ/R)
�

| − 1 −1| + | + 1 +1| 	,                                 (A.35) 
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where the parameter 𝜀 controls the NV polarization generated by light-induced spin initialization. In 
practice, this means that we deterministically project the NV state into 𝜌KÇÈ. This projection accounts 
for the repolarization of the NV while keeping the 13C spin state unchanged. We emphasize that when 
the sweep is broad enough to encompass both the 𝑚d = 0 ↔ 𝑚d = −1 and 𝑚d = 0 ↔ 𝑚d = +1 sets 
of transitions, we assume the light intensity is sufficient to repolarize the NV in the time spent 
sweeping the MW frequency from one set to the next. The same repolarization is assumed to happen 
in the case of consecutive sweeps of the same subset. Moreover, in all simulations we assume that the 
NV repolarizes to the same level (defined by the parameter 𝜀) irrespective of the sweep velocity. This 
is in fact a crude approximation, since for very high velocities there is only a very short time between 
successive sweeps (or between the two manifolds) and therefore the NV repolarization is less 
efficient. As we stated in the main text, the NMR signal enhancement is expected to be optimal when 
the time separation between successive sweeps is brought to a minimum defined by the NV 
repolarization time. We discuss the case of an unpolarized NV in Section V.  

For given angular coordinates (𝜃, 𝜙), it is crucial to know the exact location of each resonance 
(i.e. LZ crossings) in the frequency space. This is particularly important in reproducing the actual 
shape (MW frequency dependence) of the experimental NMR signal. So, even though the dynamics 
of polarization is evaluated in the rotating frame by means of  𝐻eff, the actual location of each signal 
contribution in the frequency axis is determined by diagonalizing the exact Hamiltonian without MW 
irradiation (i.e. Eq. A.1). This reshuffling procedure allows for the correct distribution of the LZ 
processes along the frequency domain.  

The appropriate quantification of spin diffusion is relevant when reconstructing the NMR 
signal after multiple sweeps with a fixed total time 𝑇. In such case, it is relevant to compare the time 
𝜏Á between two successive sweeps with the time 𝜏Ë at which the polarization diffuses away from the 
13C directly coupled to the NV. On the one hand, in the limit of low velocities 𝜈²³ → 0, we have 
𝜏Á ≫ 𝜏Ë, so the generated nuclear spin polarization scales linearly with the number of sweeps 𝑛 =
𝑇/𝜏Á. In the opposite limit of high velocities 𝜈²³ → ∞, many sweeps take place until the polarization 
diffuses away from the directly coupled 13C. In this latter case, the total polarization is dominated by 
the efficiency of the transfer between the NV and the 13C. For any intermediate case, a given number 
of sweeps is performed until the polarization can actually diffuse away and build up the ‘bulk’ 
polarization. We show in Fig. S4 a flow chart that explains the algorithm used in our simulation.  

Given the complexity of the many-body problem and the energy mismatch between the 13C 
coupled and the rest of the ‘bulk’ carbons, it is hard to have a fair estimate for 𝜏Ë. A lower bound is 
given by the spin-spin interaction time 𝑇R, which for 13C in naturally enriched samples is ~10 ms. 
However, the actual diffusion process can be much slower than that, with estimated scale as long as 
~50×𝑇R (3).  
 Due to the uncertainty in some of the parameters (effective laser power, NV spin-lattice 
relaxation time and level of spin polarization, effective nuclear spin diffusion time, etc.), a comparison 
between the calculated 13C spin polarization in our NV–13C model upon a single sweep (~5%, see 
Figs. 4C, 5A, 5C) and the measured bulk carbon polarization (of order 0.1%) is difficult. We can, 
nonetheless, attain a crude estimate when we note that for a sample with natural 13C content (~1%) 
and 1 ppm NV concentration, there are approximately 104 carbons per NV. For the optimal conditions 
of sweep velocity, it takes ~10 ms to complete one full sweep; therefore, assuming a spin diffusion 
time of 100 ms, a total of 10 sweeps can bring the polarization of a single carbon on par with that of 
the NV (~10% for our present experimental conditions). During a 10 s illumination, that corresponds 
to polarizing 100 carbons to about 10 percent, or 10 fully polarized carbons per NV. Out of the 104 
carbons, that corresponds to a bulk 13C spin polarization of 0.1%, comparable to the measured values. 
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V. Light-induced stochastic jumps and the ratchet effect 

Other than the deterministic projection into state (A.35), an alternative, more realistic way to 
introduce light-induced NV repolarization makes use of stochastic quantum jumps (4). Here, one can 
assume that an initially unpolarized NV undergoes an instantaneous repolarization event with some 
unit time probability 𝑝Ð, in turn, dependent on the light intensity. In such an event or ‘jump’, the state 
of the NV collapses into |0 0|. The actual 13C spin polarization emerges as the result of an average 
over a sufficiently large number of stories or trajectories.  

In order to illustrate the usefulness of the ‘jump’ approach, we show in Fig. S5 a sequence of 
three consecutive sweeps. During sweep one, the NV state is polarized by a first jump at a time when 
the MW frequency is approximately 2.750 GHz, and nuclear spin polarization emerges upon 
traversing the LZ crossings (see Figs. S5A through S5C). During sweep two (Figs. S5D through S5F), 
no early NV spin repolarization occurs and traversing the LZ avoided crossings leads to nuclear 
depolarization. A subsequent jump event repolarizes the NV and the third sweep is able to create net 
polarization again (Figs. S5G through S5I). This example clearly shows that even when rare events 
of no-repolarization before sweeping happen (and degrade the signal), the system recovers 
immediately after the next NV spin repolarization. In this sense, the MW sweep in the presence of 
light acts as a nuclear spin polarization ratchet.  

The jump picture is also useful to show the relative fragility of nuclear spin polarization 
induced via strong hyperfine interactions. Assuming near optimal sweep rate, no polarization can be 
created if the jump event occurs in between two consecutive LZ crossings within the same 𝑚� = +1 
or 𝑚� = −1 manifold as shown in Fig. S6 for the LZ subset 𝑚� = 0 ↔ 𝑚� = −1 and 𝐴 = 10 
MHz. Since this ‘fragile’ region where the mechanism is sensitive to light is as large as A00, strongly 
coupled carbons are comparatively more sensitive to depolarization than those more moderately 
coupled (i.e. 𝐴 ⋦ 1 MHz). Note that this observation adds to the trend already highlighted in Fig. 
3A of the main text, already favoring moderately coupled carbons in their ability to transfer 
polarization to the bulk.  

The averaging procedure implicit in the use of the quantum jump picture is independent from 
(and complementary to) the configurational average described in Section III (where the sampling is 
carried out over all hyperfine couplings and relative magnetic field orientations). So, even though this 
approach is physically more accurate, its use is computationally more demanding and thus must be 
restricted to select cases. Whenever possible, nonetheless, we have verified the equivalence between 
results obtained using the quantum jump picture and the deterministic initialization of the NV spin.  
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Figure S1. Comparison between the exact Hamiltonian 𝐻 in (A.1) and the secular approximation 
𝐻sec = 𝐻∆ + 𝐻(:) + 𝐻(8). In (A), (C), (E) and (G) we plot the decomposition of the exact eigenstates  
0, 𝛼↑ , 0, 𝛼↓ , −1, 𝛽↑  and −1, 𝛽↓  respectively in terms of the computational basis states. We do 

the same in (B), (D), (F) and (G), but using the eigenstates of 𝐻sec. In all cases, 𝜙 = 0, 𝐴.. = 𝐴// =
𝐴00 = 1 MHz,  𝐴.0 = 0.3𝐴PP and 𝐵 = 10 mT.   
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Figure S2. Calculated energy gaps 𝛿𝐸8� and 𝛿𝐸R� as a function of 𝜃, for 𝜙 = 0 (solid red and blue 
traces, respectively). The resonance condition corresponds to the transition	 0, ↓ ↔ −1, ↑ . The 
choice of parameters is: 𝐴00 = 𝐴.. = 𝐴// = 750 kHz, 𝐴0. = 0.3𝐴00, 𝑩 = 10 mT, Ω = 250 kHz. 
The dashed, blue trace corresponds to the “virtual” gap 2𝐽¤K�X�¥¦ = Ω𝐴0./2 𝜔:� + 𝐴00  and the 
dotted, blue trace corresponds to Eq. (A.26). The dotted, red trace corresponds to the estimate 𝛿𝐸8�~ 
Ω. 
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Figure S3. Simulated 13C NMR signal for a 50-MHz-wide MW frequency sweep centered at a 
variable central frequency. Here, we assume the external magnetic field is 𝐵 = 13.2 mT and consider 
1.5×10b configurations for (𝜃, 𝜙) and the hyperfine interaction, whose magnitude is taken from the 
uniform distribution 0, 𝐴 ¿¥Q . 
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Figure S4. Flow chart for simulating the effect of diffusion in a multiple-sweep, fixed-time protocol. 
The input variables are the total time 𝑇 (typically 1 sec), the time per sweep 𝜏� = ∆𝜈/𝜈¶· and the 
diffusion time 𝜏�. The index 𝑛8 controls the number of sweeps until a ‘diffusion event’ takes place. 
In such a case, the nuclear magnetization is accumulated and the state of the system (NV-13C pair) is 
reset. The algorithm stops after a total time 𝑇 has elapsed, which means that the index 𝑛R equals 𝑛 =
𝑇/𝜏�. 
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Figure S5. Multiple sweeps in the presence of light-induced stochastic jumps. For the present 
example, 𝜃 = 65°, 𝜙 = 0°, and 𝐴.. = 𝐴// = 𝐴00 = 500 kHz, and  𝐴.0 = 0.3𝐴00. In (A), (D), and 
(G) the labels for states at each energy curve are the same as in Fig. 2A in the main text. Blue circles 
indicate initial state ①, green circles indicate the intermediate state ②, and red circles denote the 
final state ③. A wiggly green arrow indicates a light-induced repolarization event or jump. In (A), 
we start with a completely unpolarized initial state ①, which subsequently collapses into the 
subspace 𝑚� = 0 upon NV spin optical pumping (state ②); nuclear spin polarization emerges after 
a MW sweep across the LZ crossing (state ③). In (B) we explicitly show the evolution of these 
populations and in (C) the corresponding 13C polarization. In (D-F) we show evolution during the 
second sweep assuming the initial state ① (blue circles in (D)). After the LZ crossing the polarization 
is lost (state ②, green circles) since there is no more nuclear spin population imbalance. An NV spin 
repolarization jump in ③ brings back the NV population to the subspace 𝑚� = 0 (with no effect on 
the 13C polarization). In (G-I) we show that under these conditions the third sweep creates again 13C 
polarization (state ②) and a final NV spin repolarization (state ③) brings the system population to 
the subspace 𝑚� = 0. In this case, a fourth sweep would add more 13C polarization instead of 
destroying it.  
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Figure S6. Single MW sweeps for large hyperfine in the presence of light-induced stochastic jumps. 
In this example, 𝜃 = 65°, 𝜙 = 0°, and 𝐴.. = 𝐴// = 𝐴00 = 10 MHz, and  𝐴.0 = 0.3𝐴00. In (A) and 
(D) the labels for states in each energy curve are the same as in Fig. 2B in the main text. In (A-C) we 
show a single sweep for an initially polarized NV (blue circles, state ①). The first LZ crossing 
already generates 13C polarization (green circles, state ②). The second LZ crossing generates even 
more nuclear spin imbalance (red circles, state ③). In (D-E) we repeat the same simulation but with 
a jump at a time between the two LZ crossings. This NV spin repolarization event brings the 
population in −1, 𝛽↑  back into the state 0, 𝛼↑  (red circles in (D), state ③). The second LZ crossing 
not only destroys the net 13C polarization created, but it turns it into negative (black circles, state ④).  

 

 

 

 

 

 


