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Abstract 

Early life stress and injury can have long-term effects on nociceptive processing and the risk of 

persistent pain in later life. Neonates requiring prolonged intensive care, particularly those born 

extremely preterm, are at risk due both to immaturity at birth and exposure to tissue injury and pain 

from procedural interventions and surgery. This review will summarise clinical evaluations of pain 

experience and somatosensory function in preterm-born young adults; and highlight data from 

laboratory studies evaluating the potential for tissue injury in neonatal rodents to prime nociceptive 

processing and alter the response to subsequent injury in adulthood.  
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Introduction 

The Global Burden of Disease studies highlight the impact of chronic pain, both in terms of 

prevalence and years lived with disability [1,2]. There is increasing evidence that health outcomes in 

later life are influenced by early life stress and adversity [3-7], and epidemiological studies associate 

adversity and illness in childhood with chronic pain throughout the lifespan [8,9]. Identifying high-

risk groups and evaluating the mechanisms by which early-life experience influences the transition 

to chronic pain [10] are essential for improving long-term outcome.  
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The developing nervous system is vulnerable to altered levels of activity that may disrupt normal 

developmental trajectories. Conversely, enhanced plasticity may be beneficial if neuroprotective 

factors and interventions can be identified [11]. Neonates born preterm are at particular risk, both in 

terms of physiological immaturity and the type and degree of exposures associated with neonatal 

intensive care [3]. Advances in clinical care have increased survival following birth at younger ages 

(eg. very preterm <32 weeks gestational age, VP; and extremely preterm <28weeks, EP)[12], but 

preterm birth remains a significant contributor to long-term disability [1,2]. This review will focus on 

recent clinical reports evaluating pain-related outcomes in adults born preterm, and laboratory 

studies identifying alterations in injury response in adulthood following neonatal tissue injury. 

 

Persistent effects following neonatal pain: clinical cohorts  

Pain exposure  

Large numbers of repeated painful procedural interventions are required for monitoring and 

treatment during neonatal intensive care, and up to one-third of extremely preterm neonates also 

require surgery [13,14]. Noxious stimuli evoke changes in peripheral sensitivity, spinal reflex activity, 

and nociceptive-specific electroencephalography and near-infrared spectroscopy cortical responses 

that change with gestational age in preterm and term neonates [15,16]. Therefore, increased 

afferent input has the capacity to induce activity-dependent effects at multiple points within 

developing nociceptive pathways, and produce persistent changes in structure and/or function. 

Quantifying the overall allosteric load of pain exposure in preterm neonates, and differentiating 

effects of pain from other confounding factors, is difficult in clinical cohorts. The number of tissue-

breaking procedures, requirement for surgery, and duration of mechanical ventilation or hospital 

stay are often used as proxy measures [14,17]. 

 

Pain report and experience in young adults  

Evaluating associations between preterm birth, neonatal experience and the incidence of chronic 

pain in later life are hampered by differences in patient populations, definition of chronic pain, 

methodology and outcome [14,18-21](Table 1). In addition, differentiating persistent biological 

effects related to neonatal exposures, and subsequent modulation by psychosocial and 

environmental factors, becomes more difficult at older ages [22]. Epidemiological studies have the 

advantage of large sample sizes, but the sensitivity of the outcome and details of the type and 

impact of pain may be limited. Alternatively, more detailed evaluations in high-risk cohorts with 

more sensitive outcomes may be hampered by smaller sample size or loss to follow-up. Recent 
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reports in preterm born young adults tend to show greater differences in high-risk cohorts born at 

younger gestational ages (Table 1).   

 

Persistent behavioral and emotional difficulties, altered relationships between risk and resilience for 

mood disorders and anxiety, and different levels of social support following preterm birth may 

influence the psychosocial aspects of pain experience [23,24](Figure 1). In EP young adults, anxiety 

was higher in preterm males and females, but sex had a greater impact on pain catastrophising than 

EP status [14]. Associations between extreme preterm birth and reduced cognitive function also 

extend into adulthood, albeit with inter-individual variability, and potential increased vulnerability in 

males [22,25]. Requirement for neonatal surgery also has an added impact on neurodevelopmental 

and cognitive outcome throughout childhood [13,22] and into early adulthood [14](Figure 1). 

 

Somatosensory function 

Quantitative sensory testing protocols incorporate a range of somatosensory modalities and 

intensities to evaluate small unmyelinated C-fibre, myelinated A-and A- fibre function. Identifying 

different sensory profiles with increased and/or decreased sensitivity to thermal and mechanical 

stimuli improves phenotyping and may predict underlying mechanisms or treatment response [26]. 

Persistent somatosensory changes show some relationship to gestational age and degree of pain 

exposure. Generalized decreased sensitivity was more marked in VP versus term-born children 

following neonatal intensive care [27], and in EP children who also required neonatal surgery [3]. In 

VP young adults, thermal and pressure thresholds did not differ from term controls [28], whereas 

significant differences were seen in an EP cohort born at lower birth weight and gestational age who 

required longer hospital stay [14]. Despite reduced sensitivity to static stimuli (i.e. higher 

thresholds), more intense or prolonged stimuli may unmask increased sensitivity. A prolonged heat 

stimulus resulted in perceptual sensitization in VP-born children [27] but not adults [28]. Reduced 

prolonged cold tolerance has been reported in VP and EP young adults, particularly females 

[14,29,30], and those with additional neonatal exposures such as surgery [14] and necrotising 

enterocolitis [30].  

 

As the prevalence of chronic pain and experimental pain sensitivity is increased in adult females 

[31], sex and/or gender should be considered. In EP young adults, a composite measure of 

generalized thermal sensitivity (time to HPT, CPT, and cold pressor tolerance) identified increased 

sensitivity in females, but decreased sensitivity in males, with greater change following neonatal 

surgery (Figure 1)[14,18]. Peripheral sensitivity adjacent to neonatal scars showed a different 
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pattern with brush allodynia and mechanical perceptual sensitization in both EP males and females 

[14]. 

 

Pain and brain structure following preterm birth 

Preterm birth and early life stress alter brain structure and connectivity in sensory, cognitive and 

emotional networks [32,33]. Alterations in regions for integration of somatosensory input (e.g. 

thalamus), and central modulation of affective and behavioral responses (e.g. amygdala and frontal 

regions) have been related both to the degree of neonatal exposure, and to subsequent functional 

outcomes. Following VP/EP birth, adverse neonatal experience (higher skin breaking procedures, 

surgery, or illness severity) at earlier gestational ages was associated with slower thalamic growth, 

and poorer cognitive scores at 3 years of age [34]; lower thalamus and amygdala volumes with 

adverse effects on cognitive, visual-motor and behavioral outcomes at 8 years [35]; and increased 

frontal theta connectivity (resting state magnetoencephalography at 8 years) with poorer cognitive 

flexibility and behavioral regulation potentially reflecting disrupted maturation of top-down 

regulation [36]. In EP young adults, differences in thermal sensitivity were independent of cognitive 

scores. However, lower amygdala volume was associated with increased thermal sensitivity in EP 

females, but reduced sensitivity in EP males, suggesting that central affective circuits contribute to 

sex-dependent differences in experimental pain sensitivity [14]. Ongoing multimodal evaluation in 

longitudinal cohorts will improve awareness of early life experience effects on future pain, identify 

those at risk of persistent pain, and evaluate the most appropriate interventions to improve long-

term outcome. 

 

Persistent effects following tissue injury in neonatal rodents 

Different aspects of early life tissue injury have been covered in recent reviews, including: age-

dependent effects in specific injury models such as traumatic nerve injury [37]; persistent alterations 

in nociceptive processing following inflammation [6] and/or stress [4]; effects at different points 

along nociceptive pathways from the periphery and spinal cord [38] to brain networks [32]; potential 

epigenetic mechanisms [39,40]; and inter-related involvement of neuroimmune, neuroendocrine 

and stress systems [41-43]. 

 

To parallel data from clinical cohorts, the focus here is on injury during the first postnatal week in 

neonatal rodents, that have parallels with preterm human development [41]. Data demonstrating 

‘priming’ of nociceptive networks by exposure to stimuli during the neonatal period that alter the 

response to a subsequent stimulus in adulthood are highlighted.  
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Immune challenge 

Priming is a central function of the immune system function as early life exposures trigger enhanced 

responses to a subsequent challenge. Lipopolysaccharide (LPS) is a powerful activator of innate 

immune responses and neonatal intraperitoneal administration alters not only long-term response 

to a subsequent immune challenge, but also nociceptive thresholds [44] and injury response in later 

life [41]. Neonatal LPS enhances the response to subsequent hindpaw formalin with increases in 

behavioural hyperalgesia and excitability of local spinal networks [45], and increased cytokine 

release in the periphery and centrally (e.g. hippocampus)[41]. Intraperitoneal LPS in male and 

female rats on postnatal day 5 (P5) increased spinal microglial reactivity, and the non-specific 

microglial inhibitor minocycline decreased acute hyperalgesia and pro-inflammatory cytokine 

concentrations in the serum and spinal cord [46], but responses to later life injury were not 

assessed. 

 

Hyperalgesic priming 

Hindpaw injection of an inflammatory insult (eg. TNF induces long-lasting primary afferent 

nociceptor plasticity, with enhanced hyperalgesic responses to a subsequent stimulus (eg. PGE2) in 

the same paw. Hyperalgesic priming is sexually dimorphic in adult rodents as PKC-dependent 

mechanisms are not induced by TNF, and are negatively regulated by estrogen, in females [47]. 

Primed hyperalgesic responses to PGE2 were attenuated by microglial inhibition only in adult males  

[48]. Effects also vary during postnatal development: males showed more robust priming following 

TNF at older than at younger ages (4-7 versus 1-3 weeks). Priming was induced by TNF in juvenile 

females with low estrogen levels (1-4 weeks), but at older ages priming required co-administration 

of an estrogen receptor antagonist [49].  

 

Surgical incision and tissue injury 

Plantar hindpaw incision increases spinal reflex sensitivity at all ages, albeit with a shorter duration 

in younger animals [50]. To mirror clinical surgical injury both the skin and underlying plantaris 

muscle are incised, and muscle afferents may have a greater propensity than cutaneous afferents to 

increase excitability and long-term potentiation (LTP) in the spinal cord [51]. In juvenile rodents (P7-

P11), excitatory cutaneous and muscle afferents converge on spinal lamina I projection neurons, but 

muscle afferents have increased probability of glutamate release, expression of Ca-permeable AMPA 

receptors, and potential for activity-dependent potentiation [52]. 

 

Neonatal incision has persistent effects on the balance of excitatory and inhibitory signalling in the 

dorsal horn and ascending pathways (Figure 2). The frequency of miniature excitatory post-synaptic 
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potentials (mEPSC) is increased, and reduced glycinergic and GABAA inhibition persists in adulthood 

[53]. Sensory drive onto adult projection neurons is enhanced, with widening of spike timing-

dependent LTP, increased direct input from low threshold afferents, and reduced feed-forward 

inhibition [53]. While neonatal incision did not alter metabotropic GABAB receptor-mediated 

inhibition signalling in inhibitory interneurons, post-synaptic signalling in ascending projection 

neurons was enhanced, and may partially compensate for weaker GABAAR-mediated inhibition [54].  

 

As with hindpaw inflammation [3,6,55], neonatal incision has dual effects in adulthood that differ in 

time course and distribution: injury-induced changes in descending modulation and generalized 

hypoalgesia emerge after the fourth postnatal week; but enhanced responses to re-injury are 

evident from 1-2 weeks after the initial injury, and persist into adulthood [3](Figure 2). Effects are 

activity-dependent as blocking primary afferent input (sciatic nerve local anesthetic) at the time of 

neonatal incision normalizes adult sensory thresholds [56] and alterations in descending inhibition 

from the rostroventral medulla [57], and also prevents the enhanced hyperalgesic response to adult 

re-incision [56]. Recently, neonatal incision at different sites (ipsi- or contralateral hindpaw or 

forepaw or thigh) confirmed generalized hypoalgesia in adulthood; whereas re-incision hyperalgesia 

was segmentally restricted and maximal following incision in the same paw or ipsilateral hindlimb, 

while contralateral incision had no effect [50]. Although initial priming is dependent on primary 

afferent input, enhanced re-incision hyperalgesia is centrally mediated and not dependent on 

peripheral re-injury as a standardized afferent input (tibial nerve electrical stimulation) also evoked 

greater reflex sensitivity in adults with prior neonatal incision [58]. In addition, primed responses are 

not restricted to the same type of re-injury: neonatal hindpaw inflammation enhanced adult 

incision-induced hyperalgesia [59]; and repeated needle insertions in the paw during the first 1-2 

postnatal weeks (to model repeated procedures in NICU) increased hyperalgesia following 

inflammation [60] or incision [61] in adulthood.  

 

Sex-dependent responses to microglial inhibition 

Sex-dependent differences following tissue injury [31] are increasingly identified; including 

differences in baseline thresholds in adolescence following neonatal incision [62] and in adult 

rodents following neonatal inflammation [63]. While different injury models produce hyperalgesia 

and increase microglial reactivity in both male and female adult rodents [31,64,65], spinal 

neuroimmune signalling is sexually dimorphic and microglial inhibitors reduce hyperalgesia in males 

only. Neonatal incision primes the spinal microglial response, and the enhanced hyperaglesic 

response to re-incision is reduced by intrathecal microglial inhibitors in males [58,66]. Microglial 

inhibitors at the time of neonatal incision also have long-term sex-dependent effects as adult re-
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incision hyperalgesia is prevented in males, but not females [50]. In the developing brain, early-life 

stress and tissue injury can disrupt the normal sex-dependent developmental trajectories of 

microglia [67,68], or trigger long-term changes in phenotype, that alter reactivity to future immune 

or environmental challenges and influence neurodevelopmental and neurodegenerative outcomes 

[42,69]. In the spinal cord, long-term sex-dependent effects of microglial inhibition may relate to 

alterations in phenotype and/or alterations in microglial roles in the normal activity-dependent 

refinement of sensory system circuitry [70]. 

 

Neonatal pain and brain structure 

Exposure to chronic early-life stress (e.g. maternal separation in rodents) alters the structure and 

function of cognitive and emotional brain networks [32]. Persistent effects of early tissue injury on 

brain structure are now being evaluated [71], and will provide opportunities for correlation with 

functional pain outcomes and identification of mechanisms underlying structural differences 

reported in preterm clinical cohorts. While repeated paw needle insertion from P1-P6 in mice did 

not alter regional brain volumes in adulthood, changes associated with repeated sucrose 

administration were exacerbated in regions relevant for pain signalling and the hippocampus [71] 

and associated with long-term impairment of spatial memory [72]. 

 

 

Conclusion 

Awareness and interest in the impact of early life experience has significantly increased, and there is 

a need to consider sex as a biological variable in both clinical and laboratory studies. As increasing 

numbers of extremely preterm born infants are now reaching adulthood, long-term effects on both 

physiological and pathophysiological systems need to be considered when evaluating health 

outcome and well-being. Identification of underlying mechanisms and potential preventive 

interventions in males and females will inform clinical studies to improve long-term outcome. 
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Figure Legends 

Figure 1. Longitudinal data to 19 years from the EPICure cohort demonstrate persistent differences 

between extremely preterm (EP) and term control groups born in 1995. A-C: Strength and Difficulty 

Questionnaire Total Disability (A) and Emotional Symptoms B) and Peer Problems (C) subscale 

scores. D-E: Thresholds for heat pain (D) and cold pain (E) change with age, and group differences 

persist. F: Generalized thermal sensitivity (higher scores represent increased tolerance and reduced 

sensitivity) at 19 years demonstrates sex-dependent differences and the added impact of prior 

neonatal surgery. G: Cognitive test scores based on Bayley scores at 2.5 years, Kauffman Assessment 

Battery at 6 and 11 years, and Wechsler Abbreviated Scale of Intelligence generated Full Scale IQ 

score at 19 years. H: Full scale IQ scores for participants completing quantitative sensory testing 

demonstrate impact of EP birth and neonatal surgery. IQ scores do not account for sex differences in 

sensitivity. Data points=mean ± 95%CI. A-C reproduced from [23]; G from [25]; D-F,H redrawn from 

[14]. 
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Figure 2. Schematic representing impact of neonatal tissue injury at multiple points in nociceptive 
pathways: initial hindpaw incision and afferent input; enhanced reflex sensitivity to adult re-incision 
[3,46,52,54]; alterations in spinal dorsal horn and ascending pathways [34, 49]; descending 
modulation [53]; and regional volumetric changes in brain following repeated needle insertion [67]. 
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Table 1  A: Pain report in recent studies of young adults born very or extremely preterm 

 Preterm Term-
born 
Control 

Age Assessment Result  
(Preterm vs 
Control) 

Self-reported 
musculoskeletal  
pain [21] 

VP  
(<34 weeks) 
N=184 (52%F) 

N=641 
(54%F) 

24 yrs Any aches or 
pains in the last 6 
months 
Options: no / yes 
/ yes and health 
provider 

 any pain 83% 
vs 86% 

 widespread 
pain requiring 
health provider 
6% vs 5%  

Bodily pain [20] VP 
N=42 

N=65 19 yrs Bodily pain in last 
4 weeks at least 
moderate 
severity 

 21% vs 15% 

Bodily pain 
[20] 

VP (29±2.7wks; 
1200±257g) 
N=62 (48%F); 
NICU/ward 
median 75 days 
[23-386] 

N=87 
(57%F) 

24 yrs Bodily pain last 4 
weeks at least 
moderate 
severity 
Duration > 6 
months 

 29% vs 13% 

 16% vs 7% 
 

Self-reported 
chronic pain 
[28] 

VP 
(28.8±2.6 wks; 
1198±231g) 
N=51 (51%F) 
NICU/ward 
median 63 days 
[23-386] 

N=86 
(56%F) 

28 yrs 
[27.3-
29.9] 

Pain at least 
moderate 
severity in the 
last 4 week 
Duration >6 
months 

 25% vs 15% 

Temporo-
mandibular pain 
[19] 

VP 
(28.8±2.6wks) 
N=145 (54%F) 

N=140 
(51%F) 

17-19 
yrs 

Facial pain once 
a week or more 
Pain when open 
mouth wide or 
chew once a 
week or more 

 23% vs 26%  

Pain History 
[14,18] 

EP  
(24.9±0.8 wks; 
732±127g) 
N=102 (60%F) 
NICU/ward 
median 126 days 
[73-497] 

N=48 
(60% F) 

19 yrs 
[18.1-
20.5] 

Recurrent pain of 
at least moderate 
severity 
Activity 
interference due 
to pain (0-10 
VRS) 

 54% vs 58% 

 22% vs 8% 

 3.3/10 vs 
1.4/10 

 
B: Somatosensory function in young adults born very or extremely preterm  
 

 Preterm Term-born 
Control 

Age Assessment Result 
(Preterm vs Control) 

QST 
[28] 

VP 
(28.8±2.6 wks; 
1198±231g) 
N=51 (51%F) 
NICU/ward median 63 
days [23-386] 

N=86 
(56%F) 

28 yrs 
[27.3-
29.9] 

Test site: wrist; lower 
leg 
Modalities: thermal 
(CDT, WDT, CPT, 
HPT); mechanical 
(PPT) 
Prolonged heat 
(change in VRS) 

Thresholds: n.s. 
No sex differences 
 
All increase VRS with 
prolonged stimulus 

QST 
[14] 

EP  
(24.9±0.8 wks; 
732±127g) 
N=102 (60%F) 
NICU/ward median 126 
days [73-497] 
Surgery 30/102 (43%F) 

N=48 
(60% F) 

19 yrs 
[18.1-
20.5] 

Test site: thenar; 
chest wall (± 
neonatal scar) 
Modalities: thermal 
(CDT, WDT, CPT, 
HPT); mechanical 
(MDT, MPT, PPT); 

Generalized 
thresholds: decreased 
sensitivity; 
predominantly males 
with neonatal surgery 
Neonatal scars: 
decreased static 
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dynamic (brush 
allodynia, punctate 
wind-up ratio) 

sensitivity, increased 
dynamic allodynia; 
males and females 

Cold 
pressor 
test 
[18] 

EP  
(24.9±0.8 wks; 
732±127g) 
N=102 (60%F) 
NICU/ward median 126 
days [73-497] 

  Immersion: 50C, 30 
secs 

Tolerance to 30s: 53% 
vs 71% 
Male EP+surgery vs 
EP vs TC (67% vs 
70% vs 68%) 
Female EP+surgery vs 
EP vs TC (23% vs 
49% vs 72%) 

Cold 
pressor 
test 
[30] 

VP  
(31.1±2.5 wks; 
1299±301 g 
N=412 (55%F) 
NICU/ward median 63 
days [49-79] 
NEC 30/412 (7%) 

Compare 
within 
subgroups 

19 yrs Immersion: 4-60C, 

180 secs 

Tolerance to 180s:  
SGA vs AGA (18% vs 
27%) 
NEC vs no NEC (7% 
vs 25%) 
Female vs male (19% 
vs 29%)  

Cold 
pressor 
test 
[29] 

VP 
(26.8±1.8 wks; 942±209 
g 
N=31 (58%F) 

N=29 
(69%F) 

17-18 yrs Immersion: 0-20C, 

180 secs) 

Tolerance to 180s: 
32% vs 61% 

Legend: VP, very preterm (<32 weeks gestational age at birth); EP, extremely preterm (<28 weeks gestational 
age at birth); TC, term control; F, female; g, birth weight in grams; AGA, appropriate for gestational age; SGA, 
small for gestational age; NEC, necrotizing enterocolitis; NICU, neonatal intensive care unit; CDT, cold detection 
threshold; WDT, warm detection threshold; CPT, cold pain threshold; HPT, heat pain threshold; MDT, 
mechanical detection threshold; MPT, mechanical pain threshold; PPT, pressure pain threshold. Numerical data 
are (mean±SD) or [range] 
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