
Identifying and Detecting Attacks in
Industrial Control Systems

Nilufer Tuptuk

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

UCL DEPARTMENT OF COMPUTER SCIENCE

UCL DEPARTMENT OF SECURITY AND CRIME SCIENCE

University College London

May 29, 2019

2

I, Nilufer Tuptuk, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Abstract

The integrity of industrial control systems (ICS) found in utilities, oil and natural

gas pipelines, manufacturing plants and transportation is critical to national well-

being and security. Such systems depend on hundreds of field devices to manage

and monitor a physical process. Previously, these devices were specific to ICS

but they are now being replaced by general purpose computing technologies and,

increasingly, these are being augmented with Internet of Things (IoT) nodes.

Whilst there are benefits to this approach in terms of cost and flexibility, it has

attracted a wider community of adversaries. These include those with significant

domain knowledge, such as those responsible for attacks on Iran’s Nuclear Facil-

ities, a Steel Mill in Germany, and Ukraine’s power grid; however, non-specialist

attackers are becoming increasingly interested in the physical damage it is possible

to cause. At the same time, the approach increases the number and range of vulnera-

bilities to which ICS are subject; regrettably, conventional techniques for analysing

such a large attack space are inadequate, a cause of major national concern.

In this thesis we introduce a generalisable approach based on evolutionary mul-

tiobjective algorithms to assist in identifying vulnerabilities in complex heteroge-

neous ICS systems. This is both challenging and an area that is currently lack-

ing research. Our approach has been to review the security of currently deployed

ICS systems, and then to make use of an internationally recognised ICS simulation

testbed for experiments, assuming that the attacking community largely lack spe-

cific ICS knowledge. Using the simulator, we identified vulnerabilities in individual

components and then made use of these to generate attacks. A defence against these

attacks in the form of novel intrusion detection systems were developed, based on

Abstract 4

a range of machine learning models. Finally, this was further subject to attacks cre-

ated using the evolutionary multiobjective algorithms, demonstrating, for the first

time, the feasibility of creating sophisticated attacks against a well-protected adver-

sary using automated mechanisms.

Impact Statement

The objective of the research described in this thesis is to develop an approach that

can be used to identify vulnerabilities in Industrial Control Systems (ICS). ICS are

used to monitor and control many of the national critical services, including energy

production, manufacturing plants, chemical processing, financial services, trans-

portation and healthcare, to a name but a few. Any failures or disruptions can have

severe consequences, from economic damage and lost production, through injury

and loss of life, to catastrophic nation-wide effects. The security of these systems is

therefore important to national security as well as individual manufacturing enter-

prises. As a result, research in this area is of significant interest to policy makers,

industry and academia.

Given the novelty of Internet-facing ICS to the attacker communities, the po-

tential variety of attacks is extensive and unknown. The only way we can begin

to understand our exposure to the risk of attack is to conduct practical research

studies in which systems and countermeasures are actively attacked in advance of

deployment. Recognising that conducting experiments on real systems is not safe

and is often not feasible, this research offers an alternative: to create realistic ICS

testbeds, and carry out attacks diagnosed to identify vulnerabilities proactively in-

stead of waiting for the adversaries to find these vulnerabilities. Our methodology

is a new approach to the design of better security. It can be implemented by those

that do not have special security knowledge needed to test their systems for vul-

nerabilities, in a more conventional manner to help them in making security related

decisions.

This research has further benefits for academia. The research carried out ap-

Impact Statement 6

plies to several academic domains: control engineering, information security and

evolutionary computation. Control engineers can use the insight gained from this

work to analyse the implications of security on process control, and to design

security-aware control algorithms. The detection models we built will interest the

information security, machine learning and the fault detection and diagnosis com-

munities. The training dataset we have generated in this thesis contains a rich set

of attacks; this will be made opensource and will provide a new resource to the

research community in this area who are currently reliant on a limited set of exam-

ples.

We designed a methodology for securing ICS using evolutionary multiobjec-

tive optimisation algorithms, and applied this to a domain that is more realistic than

has been. Existing studies that make use of adversarial machine learning and evo-

lutionary computation tend to focus on simplified examples.

ICS security is currently on the agenda of many governmental bodies, stan-

dards bodies and business. This research will be beneficial in understanding some

of the security threats we are facing, both as the community of attackers changes

and as ICS become increasingly Internet facing. Finally, the potential of our ap-

proach to handle complexity makes it ideal for application to the IoT systems that

underpin Industry 4.0 since these have more complex dynamics and a much larger

attack surface.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Prof. Stephen

Hailes for his constant guidance, patience, motivation and support throughout the

completion of this thesis. Thank you for always being available, you were always

very generous, kind and helpful.

Thank you to my second supervisor Prof. David Pym. Thank you to Dr. Bill

Langdon and Dr. Hector Menendez for showing interest in my work, and helping

me to understand the field of evolutionary computation.

I am grateful to Prof. Richard Wortley for his valuable support throughout the

years, and giving me the opportunity to do this PhD as part of the UCL Security

Science Doctoral Training Centre (SECReT). I would like to also say thank you to

administrative staff for their support, and my fellow PhD students at the Department

of Security and Crime Science for all the good times and laughs.

Thank you to staff and students at the Department of Computer Science for

creating a positive and enjoyable work environment.

To all my friends: thank you for your friendship, support and patience through-

out the years, with special thanks to Rae and Veronika, for always cheering me up

and listening to me.

I am thankful to my parents, my sisters, my three year and a half old niece

Aliya (for reminding me that “a good rabbit never gives up”), and my extended

family for their love, support and encouragement, without them none of this would

have been possible.

Finally, I would like to express my gratitude for the generous funding awarded

by the Engineering and Physical Sciences Research Council (EPSRC). The research

Acknowledgements 8

presented here was made possible through the grant provided via the EPSRC Secu-

rity Science Doctoral Training Centre with reference number EP/G037264/1. The

final year of this work was supported by the PETRAS – EPSRC IoT Research Hub.

Contents

1 Introduction 23

1.1 Motivation . 24

1.1.1 Attacks against Industrial Control Systems 27

1.1.2 Security of Industrial Control Systems 29

1.2 Research Questions . 31

1.3 Thesis Structure and Key Contributions 32

1.4 List of Publications . 35

2 Background 37

2.1 Terminology . 38

2.2 History of Attacks . 39

2.2.1 Nuclear Power Plants . 40

2.2.2 Petrochemical Plants . 41

2.2.3 Wind Turbines and Solar Systems 42

2.2.4 Factories . 43

2.2.5 Tunnels . 44

2.2.6 Electricity Industry . 45

2.2.7 Oil and Gas Industry . 46

2.2.8 Water Treatment Systems and Canals 48

2.2.9 Defence Industry . 49

2.2.10 Traffic Lights . 49

2.2.11 Transportation Systems . 50

2.2.12 Ports . 51

Contents 10

2.3 ICS Attack Taxonomy . 52

2.3.1 Threat Origin . 52

2.3.2 Threats . 54

2.3.3 Attack Vectors . 56

2.3.4 Vulnerabilities . 58

2.3.5 Initial Infection . 60

2.3.6 Attack Impact . 60

2.3.7 Countermeasures . 61

2.4 Summary . 61

3 Literature Review 63

3.1 Detecting Attacks on Industrial Control Systems 63

3.1.1 Performance Metrics for Intrusion Detection Systems 63

3.1.2 Intrusion Detection for ICS Network and Hosts 65

3.1.3 Anomaly Detection in Process Control 68

3.2 Evolutionary Computation . 73

3.2.1 Evasion and Adversarial Learning 74

3.2.2 Coevolution Approaches 78

3.3 Summary . 79

4 Case Study, Threat Model and Methods 80

4.1 Case Study: Tennessee Eastman Process Control Problem 81

4.1.1 Disturbances . 86

4.2 Threat Model . 89

4.2.1 Denial of Service Attacks 90

4.2.2 Integrity Attacks . 91

4.2.3 Replay Attacks . 92

4.2.4 Attack Model . 92

4.3 Evolutionary Algorithms and Multiobjective Optimisation 95

4.3.1 Multiobjective Optimisation 97

4.3.2 Evolutionary Multiobjective Optimisation Algorithms . . . 99

Contents 11

4.4 Machine Learning Methods . 108

4.4.1 Decision Trees . 111

4.4.2 Ensemble Learning using Decision Trees 114

4.4.3 Support Vector Machines 116

4.4.4 Deep Learning and Deep Neural Network 125

4.4.5 Recurrent Neural Networks 131

4.4.6 Autoencoder Neural Networks 134

4.5 Summary . 136

5 Developing Attacks and Investigating their Potential Impacts 138

5.1 Normal Operating Ranges . 139

5.1.1 Normal Process Operating Cost 139

5.2 Single Random Attacks . 141

5.2.1 Impact of Attacking Process Variable Measurements 142

5.2.2 Impact of Attacking Manipulated Variables 148

5.3 Summary . 150

6 Searching for an Effective and Efficient Attack Generation Approach 152

6.1 Comparison of Random Search and Genetic Algorithm 153

6.1.1 Practical Challenges . 153

6.1.2 Generating Attacks using a Single Objective Genetic Algo-

rithm . 155

6.1.3 Generating Attacks using Random Search 158

6.1.4 Results of Random Search and Genetic Algorithm 158

6.1.5 Evolving Multiple Attacks using Genetic Algorithm 164

6.2 Searching Attacks using Evolutionary Multiobjective Optimisation . 168

6.2.1 Evolutionary Multiobjective Optimisation Approach 171

6.2.2 Using Evolutionary Multiobjective Optimisation for Shut-

down Attacks . 175

6.2.3 Using Evolutionary Multiobjective Optimisation for Eco-

nomic Damage Attacks . 185

Contents 12

6.2.4 Discussion . 190

6.3 Summary . 194

7 Attack Detection using Supervised and Unsupervised Learning 195

7.1 Supervised and Unsupervised Learning Methods 195

7.2 Dataset Generation and Description 196

7.2.1 Dataset for Supervised Learning 197

7.2.2 Dataset for Unsupervised Learning 200

7.2.3 Preprocessing Data . 200

7.3 Evaluation Metrics . 201

7.3.1 Declaring Attack . 202

7.4 Hyperparameter Optimisation . 202

7.4.1 Hyperparameter Tuning for Supervised Learning 202

7.4.2 Hyperparameter Tuning for One-Class SVM 204

7.4.3 Hyperparameter Tuning for Deep Neural Network 205

7.5 Results and Analysis . 211

7.5.1 Supervised Learning . 211

7.5.2 Unsupervised Learning . 212

7.5.3 Dealing with False Positive Rates and Detecting Attacks . . 215

7.6 Summary . 218

8 Evolving Attacks Against the Intrusion Detection System 221

8.1 Evading Detection using Evolutionary Multiobjective Optimisation

Approach . 221

8.1.1 Evolutionary Multiobjective Optimisation Algorithm 222

8.2 Results and Analysis . 227

8.2.1 Generating 2-Objective Attacks against AdaBoost 227

8.2.2 Generating 3-Objective Attacks against AdaBoost 228

8.2.3 Generating Attacks against Decision Tree and Random Forest237

8.2.4 Generating Attacks against One-Class SVM 242

Contents 13

8.3 Application of the EMO Approach against other Industrial Control

Systems . 244

8.4 Summary . 245

9 Conclusions and Future work 248

9.1 Summary . 248

9.1.1 Main Contributions . 251

9.2 Future work . 252

Bibliography 255

List of Figures

1.1 A typical closed loop control . 25

1.2 Industrial network architecture layers 26

1.3 Thesis structure . 33

4.1 Tennessee Eastman process control problem [20] [210] 83

4.2 Behaviour of the TE process disturbances 88

4.3 ICS attack model against the networked control system 91

4.4 General process of an evolutionary algorithm [229] 95

4.5 Operations of NSGA-II algorithm [244] 103

4.6 NSGA-II algorithm [244] . 104

4.7 Example of the archive truncation method used in SPEA2 with N,

image taken from [228] . 108

4.8 An example of a partitioned two dimensional input space and the

corresponding decision tree [248] 113

4.9 A binary SVM classifier with maximal margin hyperplane (adapted

from [271]) . 117

4.10 Slack variable for the SVM (adapted from [248]) 119

4.11 Mapping of inseparable training data from R2 to R3 121

4.12 Data classification based on One-Class SVM 124

4.13 A single-layer perceptron network (adapted from [264]) 126

4.14 Common ANN activation functions 127

4.15 A three-layer feedforward neural network [276] 128

4.16 Gradient descent algorithm (adapted from [278]) 129

4.17 A recurrent neuron (left), unfolding in time (right) [264] 131

List of Figures 15

4.18 LSTM cell, image taken from [284] 132

4.19 GRU cell, image taken from [284] 133

4.20 A single hidden layer autoencoder neural network 134

6.1 The tournament selection process for selecting candidates for mat-

ing pool . 157

6.2 Two-point crossover and mutation operation for DoS Attacks 157

6.3 Fitness distribution of attacks generated using Random Search . . . 159

6.4 Fitness distribution of attacks generated using Genetic Algorithm . . 159

6.5 GA results: maximum (best) and average fitness obtained for evolv-

ing DoS attacks . 162

6.6 GA showing the maximum (best) and average fitness rates for mul-

tiple attacks (averaged over all runs) 165

6.7 Generation of multiple types of attacks using GA 165

6.8 Example of Pareto front of a two objective (min-min problem) and

the set of solutions . 168

6.9 Hypervolume indicator in the 2-objective case: Pareto front solu-

tions (red dots) and hypervolume (grey area) [300] 170

6.10 Flow diagram of the EMO-based approach designed to generate at-

tacks . 173

6.11 Shutdown attacks generated using NSGA-II (2-Objective optimisa-

tion: minimise shutdown time (f1) versus minimise effort (f2)) . . . 177

6.12 Shutdown attacks generated using SPEA2 (2-Objective optimisa-

tion: minimise shutdown time (f1) versus minimise effort (f2)) . . . 177

6.13 Shutdown attacks generated using NSGA-II and SPEA2 (over all

runs) . 180

6.14 Distribution of shutdown attacks generated using NSGA-II and

SPEA2 (over all runs) . 180

6.15 Hypervolume results for NSGA-II and SPEA2 for generating shut-

down attacks (averaged and normalised over all runs) 181

List of Figures 16

6.16 Shutdown attacks generated against XMVs using NSGA-II and

SPEA2 . 182

6.17 Shutdown attacks generated against XMEASs using NSGA-II and

SPEA2 . 185

6.18 Example of economic attacks generated using NSGA-II and SPEA2

(single run) . 187

6.19 Hypervolume results for NSGA-II and SPEA2 (single run) 188

6.20 Distribution of economic attacks generated using NSGA-II and

SPEA2 (single run) . 189

6.21 Hypervolume results for NSGA-II and SPEA2 for generating eco-

nomic damage attacks (averaged and normalised over all runs) . . . 190

7.1 Position of the intrusion detection system 196

7.2 Impact of the attack on A and C Feed (XMV 4) 198

7.3 Structure of an autoencoder . 207

7.4 MSE error on validation dataset (under normal operating conditions) 208

7.5 MSE values for a replay attack started at Hour 62 (around 31000

data samples) . 208

7.6 Comparison of LSTM and GRU model loss 210

7.7 Performance of LSTM for different MSE thresholds 213

7.8 Example of a LSTM prediction . 214

7.9 Percentage of false positives for detection models in a window size

of 100 (under normal operating conditions) 215

7.10 EWMA smoothing to reduce false positives 216

7.11 Example of an attack detected after it has stopped 217

8.1 Flow diagram of the EMO-based approach designed to generate at-

tacks against detection . 226

8.2 Pareto front of attacks generated against AdaBoost (2-Objective op-

timisation) . 228

8.3 Pareto fronts of attacks generated using (µ ,λ) and (µ+λ) strategies 230

List of Figures 17

8.4 Pareto fronts of two best runs: attacks generated against AdaBoost

using (µ+λ) strategy (3-Objective optimisation) 231

8.5 Comparing two objectives of the Pareto front: damage caused

against detection probability . 233

8.6 Impact of the attack on A Feed (XMEAS I) 235

8.7 Comparing objectives: effort against detection probability and dam-

age against effort . 236

8.8 Hypervolume results for NSGA-II and SPEA2 (averaged and nor-

malised over all runs) . 237

8.9 Generated attacks against Decision Tree and Random Forest (2-

Objective optimisation) . 238

8.10 Generated attacks against Decision Tree and Random Forest (3-

objective optimisation) . 240

8.11 Generated attacks from a seeded population against Random Forest 241

8.12 Generated DoS and replay attacks against One-Class SVM (3-

Objective optimisation) . 242

8.13 Generated attacks against One-Class SVM using seeding and evolv-

ing only replay attacks . 243

List of Tables

2.1 Attack taxonomy for Industrial Control Systems 55

3.1 Confusion matrix . 64

3.2 Some proposed IDSs for ICS . 66

4.1 Process variable measurements of the TE process [20] 84

4.2 Process manipulated variables of the TE process [20] 85

4.3 TE process operating constraints [20] 85

4.4 TE process disturbances [20] . 87

4.5 Selected supervised and unsupervised models for detection 110

5.1 Observed XMEAS signals under normal operating conditions (1000

runs) . 140

5.2 Observed XMV signals under normal operating conditions (1000

runs) . 140

5.3 Impact of IntegrityMin and IntegrityMax attacks on XMEAS sig-

nals (500 Runs) . 143

5.4 Impact of DoS and replay attacks on XMEAS signals (500 Runs) . . 144

5.5 Impact of IntegrityMin and IntegrityMax attacks on XMV signals

(500 Runs) . 148

5.6 Impact of DoS and replay attacks on XMV signals (500 Runs) . . . 149

6.1 Evolutionary operators and parameters for generating DoS attacks

using GA . 156

6.2 Example of a GA generated attack with high operating cost 161

List of Tables 19

6.3 Evolutionary operators and parameters for evolving multiple types

of attacks using GA . 164

6.4 GA generated attack strategy utilising multiple types of attacks . . . 166

6.5 Evolutionary operators and parameters for generating shutdown at-

tacks using EMO . 175

6.6 Results for shutdown attacks (averaged over all runs) 176

6.7 Example of a Pareto front obtained for shutdown attacks using

NSGA-II . 178

6.8 Example of a Pareto front obtained for shutdown attacks using SPEA2179

6.9 Description of the Pareto front set for shutdown attacks generated

against XMVs using NSGA-II . 183

6.10 Description of the Pareto front set for shutdown attacks generated

against XMVs using SPEA2 . 183

6.11 Description of some of the elements in the Pareto front for shutdown

attacks against XMEASs generated using SPEA-2 185

6.12 Evolutionary operators and parameters for generating economic

damage attacks using EMO . 186

6.13 Results for operating cost attacks (averaged over all runs) 187

6.14 Description of a Pareto front obtained for economic damage attacks

generated using NSGA-II . 187

6.15 Description of a Pareto front obtained for economic damage attacks

generated using SPEA2 . 188

6.16 A selection of vulnerable combinations that could bring the plant

down under 17 minutes . 192

6.17 A selection of vulnerable combinations that could increase the op-

erating cost of the plant . 193

7.1 Selected supervised and unsupervised models for IDS 196

7.2 Characteristics of the IDS dataset 197

7.3 Parameters for learning algorithms 203

List of Tables 20

7.4 Effects of sliding window size on the performance of the Tree Clas-

sifiers (%) . 204

7.5 Effects of sliding window size on the performance of the SVM (%) . 204

7.6 F1 scores for the One-Class SVM Parameters (%) 205

7.7 Architecture for Deep Neural Networks 206

7.8 Tuning number of hidden units in the autoencoder 207

7.9 Effects of look-back window size on the performance of the GRU (%)209

7.10 Effects of look-back window size on the performance of the LSTM

(%) . 210

7.11 Detection performance comparison for supervised learning (%) . . . 211

7.12 Detection performance comparison for unsupervised learning (%) . 213

7.13 Attack detection thresholds . 217

7.14 Attack detection probabilities for supervised learning (%) 218

7.15 Attack detection probabilities for unsupervised learning (%) 218

8.1 Evolutionary operators and parameters for generating attacks

against detection using EMO . 223

8.2 Description of an individual (attack) generated by the EMO 229

8.3 Results for µ+λ and µ ,λ strategies 229

8.4 Results for attacks generated against AdaBoost (averaged over all

runs) . 229

8.5 Examples of high scored attacks generated using NSGA-II and SPEA2232

8.6 Some of the individuals in the Pareto front generated using NSGA-II 234

LIST OF ABBREVIATIONS

AdaBoost Adaptive Boosting

ANN Artificial Neural Network

CART Classification And Regression Trees algorithm

COTS Commercial off-the-shelf

DCS Distributed Control Systems

DoS Denial of Service

EMO Evolutionary Multiobjective Optimisation

EMOA Evolutionary Multiobjective Optimisation Algorithms

EWMA Exponentially Weighted Moving Average

FNN Feedforward Neural Network

GA Genetic Algorithm

GP Genetic Programming

GRU Gated Recurrent Units

ICS Industrial Control Systems

IDS Intrusion Detection Systems

LSTM Long Short-Term Memory

List of Tables 22

MOO Multiobjective Optimisation

MSE Mean Square Error

MitM MitM Man-in-the-middle

NCS Networked Control System

NSGA-II Non-Dominated Sorting Genetic Algorithm II

PLC Programming Logic Controller

RAT Remote Access Trojan

RBF Radial Basis Function

RNN Recurrent Neural Network

SCADA System Collection and Data Acquisition

SPEA2 Strength Pareto Evolutionary Algorithm 2

SVM Support Vector Machine

TE Tennessee Eastman Control Process

XMEAS Process Variable Measurements Vector

XMV Manipulated Variable Vector

Chapter 1

Introduction

An Industrial Control System (ICS) is an instance of a more general class of cyber-

physical system (CPS), and the term is used to describe the command and control

systems that are found at the core of the national critical infrastructure services.

The industry covered by these areas includes: gas; electricity; oil; water treatment;

telecommunication; transportation; process manufacturing (chemicals, pharmaceu-

ticals, paper, food, beverages and other batched-based manufacturers); and discrete

manufacturing (automobiles, ships, computers and many other durable goods).

The security of ICS is an important concern in modern society as national secu-

rity, economic prosperity and public health and safety rely on the services of these

systems. In the past, security of ICS was achieved simply through isolation and

control of physical access. However, for reasons of economics and convenience, it

is increasingly becoming the case that the adoption of networks as a complement

to bus technologies, the increasing use of commercial-off-the-shelf (COTS) compo-

nents, and the deployment of wireless systems are becoming a core part of modern

factories. Factory and plant networks are often connected to the wider corporate net-

work to increase efficiency of production and reduce the risk of the downtime that

costs manufacturing 33% of its profits per year [1]. Similarly, to extend network

infrastructure to remote field areas, increase sensing capacity, handle mobility and

reduce installation costs, there is an increase in the member of wireless networks

being deployed. These approaches are leaving ICS networks vulnerable. To give

a sense of the scale of this vulnerability, according to outputs from Project SHINE

1.1. Motivation 24

there were, in 2012, in excess of 500,000 Internet-accessible devices that could be

loosely classified as control system devices [2]. The consequences are substantial:

by making ICS easier to access, the number and the geographic spread of poten-

tial adversaries increases massively, and the risks to the attacker are reduced both

because it is hard to establish their identity and because they may anyway be in a

different legal jurisdiction.

The number of motivated and highly skilled adversaries carrying out complex

attacks targeting critical infrastructures is also on the increase. As the evidence

from successful attacks [3] [4] [5] [6] [7] shows, they can cause catastrophic con-

sequences. The potential outcome of a successful attack on a critical service ranges

from injuries and fatalities, through serious damage to the environment, to catas-

trophic nation-wide economic loss due to production losses or degradation of prod-

ucts and services. Shutting down or denying access to these systems (for example

those operating the production and distribution of utilities such as electricity, water

and gas), even for a short time, may cause significant harm to people and erode the

public’s confidence, leading to a general feeling of insecurity.

Despite the technological advances in ICS, understanding the vulnerabilities of

systems that have a large attack space, and the consequences when these vulnerabil-

ities are exploited, remains a major concern. In this thesis, we develop an approach

that can assist in determining the vulnerabilities of these complex heterogeneous

ICS systems at the process level. Our aim is to produce a novel reactive security

tool that can improve security against ICS attacks.

1.1 Motivation

Industrial control systems are complex systems integrating computing, communica-

tion protocols and controls. Figure 1.1 shows the elements of a simple closed-loop

system, as used in the operation of most automated industrial processes. The desired

output of the system is given as a reference signal (setpoint). The sensor measures

the value of the process, and the controller compares the setpoint variable to the sen-

sor reading, and adjusts the system based on the difference between them (error).

1.1. Motivation 25

Figure 1.1: A typical closed loop control

Adjustment is done according to some control algorithm, and appropriate signals

are sent to the actuators in an attempt to reduce the error. Actuators drive the plant

by modulating the process according to the input received from the controller. This

kind of control has ability to maintain a physical process at the desired value in the

presence of external disturbances [8]. The entirety of this process is monitored by

the operators and engineers using special computers and a group of diagnostic and

maintenance utilities to detect, prevent and respond to faults and any other unusual

behaviour [9]. An adversary who is trying to cause damage will carry out attacks

that aim to push the plant away from the setpoint by manipulating the signals in

some part of the control loop.

The signals from sensor to controller (process variable measurements) and con-

troller to actuator (manipulated variables) are no longer sent using traditional point-

to-point ICS communication in which a wire connects the controller to the sensors

and actuators. Instead, there has been a move towards networked control systems

(NCS), in which the communication between spatially distributed controllers, sen-

sors and actuators is carried over communication networks [10]. This means the

basic feedback control system illustrated in Figure 1.1 is increasingly being closed

using a shared network.

With technological advances, factory and plant networks are becoming highly

connected over multiple layers, creating opportunities for a range of adversaries

aiming to reach the process level. Figure 1.2 illustrates the network levels that are

likely to be found in these environments [11]. Level 4, the corporate network, is

the level at which business decisions are made, and in which the regular corpo-

rate systems (enterprise desktops and servers) operate. At Level 3, the operation

1.1. Motivation 26

Figure 1.2: Industrial network architecture layers

network, operational management systems such as domain controllers, data collec-

tion servers (historians) and application servers are found. Level 2, supervisory

control, consists of devices that monitor and control the process at the lower lev-

els. Typically, these consist of supervisory interfaces for the operators, engineer-

ing workstations, and distributed control server monitoring and controlling various

parts of the production. At Level 1, controllers monitor and control a set of de-

vices according to decisions that come from the supervisory system. They receive

inputs from process equipment (e.g. field devices) such as sensors, and send output

signals to the other devices (actuators). Level 0 is where the actual process takes

1.1. Motivation 27

place, containing the sensors and actuators connected via a fieldbus network. It is

worth dismissing one common misconception here: at the moment, these networks

are typically not protected from unauthorised access through strong access control

mechanisms. If security exists at all, it is usually minimal, with the use of firewalls

to protect the input and output traffic between the networks, as illustrated in Fig-

ure 1.2. These vulnerabilities open doors to a range of adversaries with different

motivations. However, to be able to cause physical damage against the process, the

adversaries will need to manipulate the process directly by altering the parameters

set at Level 0. The focus of this thesis is to analyse the vulnerabilities at this level,

the sensor-control-actuator level.

1.1.1 Attacks against Industrial Control Systems

[Some of the text in this section has been published in [12]]. At present, there have

been rather few publicly reported attacks against industrial control systems. The at-

tack against Ukraine’s power grid in December 2015 [13] caused several blackouts,

causing 225,000 customers to lose power across Ukraine. The attack in December

2014, against a steel factory in Germany, caused massive physical, damage to the

system by manipulating individual control components, thereby bringing the blast

furnace under the control of the attackers. The skill sets required to carry out this

attack were not only in the field of information security, but extended to control

systems and production processes [14]. In 2014, a Remote Access Trojan (RAT)

called Havex/Dragonfly was used to compromise industrial control systems includ-

ing Programmable Logic Controllers (PLC), Distributed Control Systems (DCS)

and System Collection and Data Acquisition (SCADA) systems used within the en-

ergy sector [15] across the globe. In 2011, a sophisticated instance of a RAT, known

as Duqu [7], infected control systems in Europe, Asia and North Africa. Duqu’s

payload modules contained remote access capabilities that were used to connect to

a command and control (C&C) server. Stuxnet [3], first reported in 2010, is be-

lieved to be the first worm that was designed with the sole aim of causing physical

damage. It specifically targeted Iran’s uranium enrichment facility at the Natanz

enrichment plant. Researchers estimated Stuxnet may have destroyed about 1,000

1.1. Motivation 28

(10%) of the centrifuges installed at the time of the attack [3].

These attacks demonstrated that specialist knowledge is required to launch ef-

fective targeted attacks and, in the past, these systems might have been targeted only

by adversaries with this significant domain knowledge. At present, we might still

be protected only by the difficulties inherent in the process of launching an attack

on a specialised system; however, this is changing.

Some predict that the number of “things” connected to the Internet, will reach

a number between 20 and 50 billion by 2020 [16] [1]. The integration of Internet

of Things (IoT) [17] technologies into industrial systems is widely seen as the next

logical step in the move towards Industry 4.0 and building smarter factories. This

vision promises to enhance productivity by increasing efficiency, providing better

management of processes, and being more predictable with the use of technologies

and cloud analytics. The ICS sectors that will be most impacted by this growth are

utilities, manufacturing and government. Specifically, the adoption of IoT will be a

critical element of future smart factories and plants. For ICS, this will mean replac-

ing the existing integrated infrastructure with a decentralised autonomous model in

which devices will become active participants in the IoT. These devices will act as

autonomous intelligent agents that are not exclusively under the control of a central

controller. Decentralised decision making facilitated by wireless communication, is

key to this vision. Such an open environment, with increased connectivity and data

sharing, promises unprecedented convenience and long-term economic potential.

However, it is also prone to a wide range of both passive and active security at-

tacks ranging from conventional eavesdropping and denial of service (DoS) attacks

to man-in-the-middle (MitM) attacks that subtly alter the quality or consistency of

the end product. Furthermore, adapting COTS technologies such as workstations

running well-known operating systems (Microsoft Windows, Linux) has reduced

installation costs and provided greater interconnectivity; however, these also inherit

the vulnerabilities of such products, and so provide attackers with the opportunity

to use existing exploits and well developed scanning methods amongst other things

to attack these systems. As a result, it is no longer possible to assume that those

1.1. Motivation 29

attacking these systems require special skills or capabilities, such as might be found

at the level of foreign intelligence services and nation states. Instead, these systems

will attract a range of adversaries with non-specialist capabilities, including crim-

inals and hackers. Furthermore, with an increased number of connections in ICS,

adversaries can organise and acquire the necessary skills and intelligence to get into

these systems remotely.

1.1.2 Security of Industrial Control Systems

The security of ICS is an area that has received relatively little attention and scrutiny

by the security community. This is due to lack of testbeds, datasets and domain

knowledge. By and large, the focus of the existing security research relates to the

vulnerabilities of the industrial communication networks and protocols. However, it

is possible that adversaries can evade detection at the network level and, since there

is an increasing use of COTS-based technology, assuming the network is secure is

likely to be a mistake. Once an adversary reaches the process level, they can carry

out attacks with the intention of causing damage to the process, equipment or even

in violating regulatory compliance requirements [18].

A variety of attack types can be perpetrated against the ICS components in-

volved directly in the process: these involve the modifications of process variable

measurements (sensor measurements) or manipulated variables (values going from

controller to actuators), or manipulation of the control algorithm (e.g. set points).

Real-world ICS systems are complex systems with a large number of devices and

non-linear dependencies. Although there are some studies that have looked at single

attack instances, we are not aware of any adversarial studies exploring the control

processes in the presence of combinations of attack instances, let alone doing this

in an automated manner. This is a problem that can be solved by searching; how-

ever, conventional search methods are not suitable for identifying attacks in this

space. Evolutionary algorithms are a class of stochastic population-based optimisa-

tion techniques that take their inspiration from neo-Darwinian evolution. Instead of

working from a single solution, these algorithms start from a population of potential

solutions (often generated randomly), and evolve towards better solutions using op-

1.1. Motivation 30

erators inspired by biological evolution and genetics. They have been successfully

applied to hard optimisation problems, and their applications can be found in en-

gineering, manufacturing, transportation, robotics, medicine, software engineering

and security. Motivated by the existing work in this area, we decided to investigate

evolutionary algorithms as a means of analysing ICS security. We believe this ap-

proach can be utilised by the control community to design security-aware control

algorithms, since it can be applied even by those without a deep knowledge of se-

curity.

Intrusion detection systems play an important role in early detection of attacks

in industrial control. There is a considerable general literature on Intrusion detec-

tion systems (IDS) as applied to networked systems. The focus of most of the earlier

studies in this area has been on the network level: intrusion detection systems look-

ing for abnormal behaviour or patterns. The detection of attacks that are carried out

to disrupt a physical process is only just starting to receive more attention; however,

analogous situations have been studied more thoroughly by the control community

in the context of fault detection and fault diagnosis. The weaknesses of many of the

proposed approaches is that they assume that faults are known prior to training; this

is a strong assumption because obtaining anomalous behaviour (attacks or faults),

as obtaining anomalous samples may try to avoid detection; as a result, their be-

haviour is often different to random faults.

Many machine learning techniques, both supervised and unsupervised, have

been successfully applied to detection of abnormal behaviour. Given the vast

amount of data produced by ICS systems, there is an increasing number of stud-

ies proposing deep learning neural networks as a means of detecting anomalous

behaviour. However these techniques are subject to attack: adversaries may seek to

compromise what is learned and so evade detection. Such attacks include causative

attacks, which influence the learning by altering the training data, and exploratory

attacks, which alter the classification (i.e. report wrong classification), but do not

alter the training [19]. These attacks could be serious for ICS as adversaries may

remain in the system causing substantial damage over a long period of time.

1.2. Research Questions 31

1.2 Research Questions

It is critical to national economic resilience that we explore better ways of search-

ing for vulnerabilities and/or weaknesses in the industrial processes and intrusion

detection, and understand what the consequences of these vulnerabilities would be

if they were to be exploited. Motivated by this gap, this work focuses on answering

the following research question:

“Is it feasible to establish a methodology by which vulnerabilities in an indus-

trial process can be established?”

To explore this question, we selected a well-known benchmark, the Tennessee

Eastman (TE) Process [20], a modified model of a real chemical process, with a

large number of sensors and actuators.

In order to establish the vulnerabilities of the process and the likelihood that

evolutionary approaches would be useful in synthesising attacks, the first question

that we addressed focused on individual sensors and actuators:

R1: “Can one generate a range of attacks that has a range of physical conse-

quences”

Given an affirmative answer to the first question, the second question then

focuses on whether it is possible automatically to identify vulnerabilities in an in-

dustrial process control:

R2: “How should one search the attack space effectively and efficiently and

identify the most vulnerable components of the process?”

Given the ability to identify attacks, the next logical question to pose is whether

it is possible to detect these attacks:

R3: “How should one design a novel intrusion detection system to detect at-

tacks?”

Finally, if it is possible to perform attacks against the defence:

R4: “Can one evolve new attacks against the intrusion detection system?”

1.3. Thesis Structure and Key Contributions 32

1.3 Thesis Structure and Key Contributions

This thesis is composed of nine chapters. Figure 1.3 illustrates the structure of the

thesis. Chapter 1 presents our motivation for carrying out this work, and introduces

our research questions. In Chapter 2, we review the background material related

to attacks against ICS. We introduce the terminology used in the thesis and review

the malicious public incidents that have taken place against a wide range of ICS

sectors since 1982 to identify: the types of threats ICS are facing; the source of

threats; attack vectors; the vulnerabilities of the ICS systems; how systems are

initially infected; the intentions of the malicious actors; and countermeasures that

are used protect ICS from attacks. Based on examinations of these incidents and

the literature, we present an attack taxonomy.

The objective of this thesis is to identify vulnerabilities in existing systems and

countermeasures by carrying out attacks against a real-world complex ICS system.

The countermeasures we considered are intrusion detection systems. Chapter 3 in-

troduces existing intrusion detection models for ICS and evolutionary computation.

There are a wide variety of techniques that are used to detect attacks against ICS,

both at the network level and at the process level. However, the details of these

studies are often not available or the studies are not mature enough to determine

how effective the approaches describe they describe at detecting ICS attacks.

In Chapter 4, we introduce our selected benchmark, a widely used Tennessee

Eastman (TE) chemical process control model for along with the threat model for

our case study. We consider an attacker that wants to cause some physical damage to

the chemical process, but does not have any detailed knowledge about it. We assume

the adversary is able to access sensor and actuator signals using vulnerabilities in

the ICS, and can manipulate them at some cost to herself. Identifying the most

vulnerable components of a large system is cast as an optimisation problem. In

Chapter 4, we introduce two evolutionary multiobjective algorithms to employ to

optimise attacks and so to use identify the most vulnerable components: those that

result in the worst outcomes using the least effort. In this chapter we also selected

a number of detection models from machine learning and deep learning that can be

1.3. Thesis Structure and Key Contributions 33

Fi
gu

re
1.

3:
T

he
si

s
st

ru
ct

ur
e

1.3. Thesis Structure and Key Contributions 34

used to detect attacks.

Using the TE process control model and the selected methods, we carried out

a set of investigations to address the research questions. We describe these investi-

gations in detail in Chapters 5-8. In Chapter 5, we investigated Research Question

1 by designing a set of attacks and analysing their the impact on the plant. Based on

the threat model, we consider DoS, man-in-the-middle and replay attacks, and de-

termine the impact of these attacks on the safety of the system, on the operating cost,

and on the production quality. In Chapter 6, we investigate Research Question 2.

We use random search, a single objective genetic algorithm, and evolutionary mul-

tiobjective optimisation to generate combinations of attacks and report their results.

Multiobjective optimisation is based on Pareto dominance, and was implemented

using the selection operators of the two reputable evolutionary multiobjective op-

timisation algorithms. In Chapter 7, we investigate Research Question 3, and im-

plement a range of supervised (Decision Tree, Random Forest, AdaBoost, Support

Vector Machines(SVM)) and unsupervised learning methods (One-Class SVM, Au-

toencoder, Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU)

recurrent neural networks) and determine their performance against the different

types of attacks. In Chapter 8, we investigate Research Question 4, and evolve

attacks against some of the detection models we implemented in Chapter 7, to iden-

tify any remaining vulnerabilities. Finally, in Chapter 9, we summarise our findings,

main contributions and discuss possible areas of future work.

The key contributions of this PhD are as follows:

1. Developed an attack taxonomy based on a review of malicious public inci-

dents against in a wide variety of ICS sectors over the past 35 years.

2. Identified a novel area of research for ICS: the development of tools to iden-

tify vulnerabilities before they are exploited by malicious actors. It is criti-

cal to national economic resilience that we explore better ways of searching

for vulnerabilities in industrial processes and evaluating existing countermea-

sures.

1.4. List of Publications 35

3. Extended an implementation of a well-known chemical benchmark model

with security attacks to carry out the set of investigations to address the re-

search questions.

4. Developed an approach based on evolutionary multiobjective optimisation to

automate the process of identifying vulnerabilities in ICS, and tested exten-

sively on the complex benchmark model, and against a range of intrusion

detection models.

5. Developed and evaluated a range of classic machine learning model and new

models from deep learning in their ability to detect attacks.

1.4 List of Publications
Some of the work detailed in this thesis contributed to publications that have been

published or, are currently in the submission process:

1. N. Tuptuk and S. Hailes, ‘Identifying Vulnerabilities of Industrial Control

Systems using Evolutionary Multiobjective Optimisation’ (In Submission).

2. N. Tuptuk and S. Hailes, ‘Using Unsupervised Learning for Early Detection

in Industrial Control Systems’, (In Preparation).

3. N. Tuptuk and S. Hailes, ‘Crime in the age of the Internet of Things’, in Rout-

ledge Handbook of Crime Science, Editors: Richard Wortley, Aiden Sidebot-

tom, Gloria Laycock, Nick Tilley, 2018.

4. N. Tuptuk and S. Hailes ‘Security of Smart Manufacturing Systems’, Journal

of Manufacturing Systems, 2018.

5. K. Mrugala, N. Tuptuk, and S. Hailes, ‘Evolving Attackers against Wireless

Sensor Networks using Genetic Programming’ in IET Wireless Sensor Sys-

tems, 2017.

6. K. Mrugala, N. Tuptuk, and S. Hailes, ‘Evolving Attackers against Wire-

less Sensor Networks’ in Proceedings of the 2016 on Genetic and Evolution-

1.4. List of Publications 36

ary Computation Conference Companion (GECCO ’16 Companion), Tobias

Friedrich (Ed.), 2016.

7. N. Tuptuk and S. Hailes, ‘A survey: Security of Industrial Control Systems’,

UCL Department of Computer Science, Technical Report, 2015.

8. N. Tuptuk and S. Hailes, ‘Covert channel attacks in pervasive Computing’,

in IEEE International Conference on Pervasive Computing and Communica-

tions (PerCom), St. Louis, MO, 2015.

Chapter 2

Background

The number of attacks against industrial control systems, or at least those that have

been reported in public domain, is low compared to the number of attacks against

public and corporate IT systems. This could be down to some combination of four

factors: (i) attacks are hard: they require specialist knowledge of ICS that are not

widely present in the community of potential attackers; (ii) attackers shun ICS for

their own social reasons: given a similar amount of effort, it may be possible to

generate an IT systems attack that has global reach and so generate kudos for the at-

tacker; (iii) people are simply unaware that they are under attack because the effects

of those attacks are subtle or because there is a failure to associate the symptoms

with the possibility of an attack (as occurred in, for example, Stuxnet); (iv) sharing

incidents is not a common practice of the industry: companies tend to avoid making

these incidents public to reduce the risk of reputational damage. The evidence from

the security community indicates the first two reasons are no longer true. According

to a published Symantec security report, the manufacturing sector has become one

of those at most risk of attacks [21].

In this chapter we first introduce the terminology used in the thesis. Then, we

review the malicious public incidents that have taken place against a wide range of

ICS sectors since 1982 to understand the threats ICS are facing. Based on exam-

inations of these incidents and the literature, we present an attack taxonomy cov-

ering the source of threats; attack vectors; common exploited vulnerabilities; how

systems are initially infected; types of malicious actors and their intentions; and

2.1. Terminology 38

countermeasures that are used protect ICS from attacks. Some of the text in this

chapter has been published in [12].

2.1 Terminology
In this section, we introduce the relevant terminology used throughout this thesis:

• Availability:Availability is a security property that ensures the data, system

or device is accessible when required. Loss of availability could undermine

the industrial process as timeliness of real-time information is often crucial

for ICS process.

• Integrity: Integrity is a security property that prevents unauthorised modifi-

cation or introduction of information by unauthorised users or systems. Vio-

lation of this property could undermine the safety of the systems.

• Confidentiality: Confidentiality is a security property that ensures informa-

tion is only disclosed to authorised entities. There is a vast amount of sensitive

information in ICS including data from sensors and actuators, the plant pro-

duction process, system specifications, and the chemicals used. Unauthorised

access to this information is industrial espionage and has a range of conse-

quences.

• Safety: Safety is a critical factor in ICS design to ensure dangerous or haz-

ardous conditions are detected, and appropriate actions are taking on time to

bring the system back to a safe condition to prevent consequences that can

endanger the environment, people, equipment and the process.

• Attack: According to Oxford Dictionaries, the verb to attack is defined as

to “take aggressive military action against (a place or enemy forces) with

weapons or armed force” [22]. Based on this definition, we define a cyber

attack as unauthorised action taken against ICS network infrastructure (cor-

porate, control, field), process (software process), system (hardware system,

field devices), people, or environment (where the ICS components are lo-

2.2. History of Attacks 39

cated or operated) to compromise availability, integrity, confidentiality [9]

and safety.

• Threat: Following the definition given by the National Institute of Standards

and Technology (NIST) [23], a threat is “any circumstance or event with the

potential to adversely impact organisational operations (including mission,

functions, image, or reputation), organisational assets, or individuals through

an information system via unauthorised access, destruction, disclosure, mod-

ification of information, and/or denial of service”.

• Threat Actor: An individual, group or state posing seeking an opportunity

to target the industrial control systems to achieve a desired impact.

• Vulnerability: Taken from NIST [9], “a weakness in a system, system secu-

rity procedures, internal controls, or implementation that could be exploited

or triggered by a threat” actor.

• Attack Vector: The means or methods used to collect information, access

and carry out attacks on ICS.

• Attack Impact: The undesirable consequences or effects of the successful

execution of an attack.

• Countermeasures: Operational, technical, management or other measures

that are designed to reduce the vulnerability of ICS [24].

2.2 History of Attacks
In the following section, a non-exhaustive history of some of the key incidents be-

tween 1982 and 2018 is presented to illustrate the vulnerability of ICS, and the at-

tack potential for industrial espionage and physical damage. These attacks illustrate

the potential of attacks across critical national infrastructure, plants and factories of

all types.

2.2. History of Attacks 40

2.2.1 Nuclear Power Plants

Stuxnet [3], first reported in 2010, is believed to be the first worm that was de-

signed with the sole aim of causing physical damage. Stuxnet was different to any

other malware seen before in terms of complexity and the advanced set of skills,

knowledge and resources needed to implement it [25]. Very little is known about its

heritage but it is thought to have been created by or on behalf of a government due to

the technical expertise and resources needed perform such an attack. Analysis car-

ried out by Symantec [3] showed that most of the infected machines (approximately

60%) were from Iran. This led the security experts to suspect that the attack was

specifically targeting Iran’s uranium enrichment facility at the Natanz enrichment

plant. Researchers estimated that Stuxnet may have destroyed about 1,000 (10%)

of the centrifuges installed at the time of the attack [3].

The malware was designed to attack two models of Siemens PLC (Siemens S7-

125 and S7-417) which were controlled by Siemens’ Step 7 software. It exploited

four zero-day vulnerabilities, propagated itself via removable media that would later

be connected to the control systems, and used advanced techniques to mask itself

under legal programs to avoid detection. The worm used legitimate certificates,

using private keys stolen from two separate companies to sign Windows operating

system device drivers [3]. It is not known if Iran was the sole target of Stuxnet,

but other countries reported the worm on their ICS equipment including Finland,

China and Germany. It is also not known if these wider attacks resulted in any

damage, or if they were just used as test cases in preparation for launching the attack

against Iran. Stuxnet played an important role in increasing awareness of security

for industrial control systems. Prior to Stuxnet, the perception was that control

systems, especially those used within nuclear plant facilities, were hard to attack as

they were not connected directly to a public network and they operated in isolated

rooms with secure physical access. Another perception was that, if an attack was to

happen, it would be detected in a timely manner. Stuxnet changed these perceptions,

and showed what a highly motivated attacker with the right resources could achieve.

Existing countermeasures would have difficulty detecting an attack like Stuxnet.

2.2. History of Attacks 41

However, by no means does one need to design a malware as advanced as Stuxnet

to cause damage to ICS. Beresford [26] demonstrated inadequate authentication

mechanisms on Siemens Simatic S7 PLCs could be exploited remotely to launch a

DoS attack and reveal passwords.

There were several other incidents relating to nuclear power plants. In 2008,

Unit2 of the Hatch nuclear power plant near Baxley in Georgia was shut down

for 48 hours after a software update was installed on one of the computers on the

plant’s corporate network [27]. The updated computer was used to monitor and

control chemical diagnostic data, and the software was used to synchronise data

between the computers on the corporate and the control network. After the update,

the computer was reset, and the lack of data was interpreted as a significant change

in the physical process. This unexpected event caused the emergency safety system

to shut down the plant. Although this was not a malicious attack, it illustrates an

important vulnerability that system updates are not carried out with security in mind.

Furthermore, operators and engineers are not aware of the risks associated with

their actions, and they often assume the connection between the corporate network

and the control network is secure. In another incident, in 2006 two recirculation

pumps that control the flow of the water that goes into the reactor at the Browns

Ferry Nuclear Plant in Alabama failed and triggered an automatic shut down of

the plant [28]. The pumps failed as a result of the excessive data traffic on the

control network generated by a malfunctioning PLC. The details of the incident are

unknown; however, it is plausible this might have been due to remote attack.

2.2.2 Petrochemical Plants

An attack against a petrochemical plant in Saudi Arabia was detected in 2017. Ac-

cording to the security researcher investigating the attack, the detected malware was

developed to take over the plant’s safety instrumented systems controller and cause

physical damage; however, due to an error in the code, the malware caused the plant

to automatically shut down twice and prompted the plant owner to call for an inves-

tigation instead [29]. The malware, now known as Triton (also called Trisis), which

was named after the Triconex Safety Instrumented System (SIS) controller it was

2.2. History of Attacks 42

targetting, is the first publicly known ICS malware targetting safety instrumented

systems [30]. It is thought attackers infected and remained within the petrochemical

company’s corporate IT network a few years earlier, in 2014, and found a way into

the plant’s network to accessed the SIS engineering workstation, either by stolen

credentials or exploiting an unpatched system vulnerability. Once the attackers ac-

cessed the SIS workstation, they were able to shut down the SIS or reprogram it

to move the process to an unsafe state and cause physical damage. The examina-

tion of the malware showed that the intention of the attacker was beyond causing a

shutdown, instead attempting to cause the maximum physical damage. In the worst

case, the physical damage could have been involved the release of toxic gas or an

explosion putting the lives of people within the plant and in the surrounding area at

risk [29]. The actor behind the malware is not known but, given the complexity of

the malware, the resources required to test it, and the intended damage, it is likely

to be a nation state. According to the Schneider Electric, the distributor of the Tri-

conex SIS controllers, these controllers are widely used in nuclear plants, oil and

gas refineries, and chemical plants [31]. Security investigators claim the malware is

being used to target companies in North America and others in the world [29].

2.2.3 Wind Turbines and Solar Systems

Problems with the security of wind turbines and solar systems were exposed by

an independent German security researcher in the first half of 2015 [32]. The

researcher demonstrated the insecurity of several globally deployed energy prod-

ucts: the Nova-Wind Turbines HMI, 442SR Wind Turbine and Sinapsi eSolar Light

firmware, and ICS-Cert subsequently issued public warnings [33] and [34]. The

authentication credentials used by the HMI were stored in a plaintext file and, there-

fore, anyone who could access the file could use it to control the HMI remotely and

modify the settings of wind turbines. The 442SR Wind Turbine used a web-based

system that was vulnerable to cross-site request forgery, and a successful exploit

released the authentication credentials (usernames and passwords). The Sinapsi

eSolar Light is a system for monitoring and managing remote or local small (less

than 50 kWp) photovoltaic plants. There were other authentication vulnerabilities

2.2. History of Attacks 43

found in products that are used in control automation systems including monitoring

systems [35], ethernet switches [36], clients for remote communications [37], and

a PLC programming environment (which lacked authentication mechanisms) [38].

The level of skill required to exploit these vulnerabilities would have been low, and

attacks could have been carried out remotely.

2.2.4 Factories

According to an annual IT security report [14] published by the German Federal Of-

fice for Information Security (Bundesamt fur Sicherheit in derInformationstechnik,

abbreviated as BSI) in December 2014, attackers gained access to a steel factory in

Germany and control of a blast furnace. The attackers leveraged spearphishing and

other social engineering techniques to gain access to the control network through

the corporate network. As a result, the attackers managed to cause unspecified but

“massive” physical damage to the system by manipulating individual control com-

ponents, and bringing the blast furnace under their control. The skill set needed to

carry out this attack required knowledge of information security, industrial control

systems and production processes [14].

Another key incident in 2014 was Havex/Dragonfly, in which a Remote Ac-

cess Trojan (RAT) was used to compromise industrial control systems including

SCADA, PLC and DCS used within the energy sector across the globe [15]. The

aim of the RAT was industrial espionage. Security companies observed targeted

spearphishing attempts with PDF attachments against mainly US and UK compa-

nies from the energy sector from early 2013 [39]. A Watering-hole attack was used

to install the RAT on the machines operating industrial control systems. Multiple le-

gitimate ICS energy vendor websites were compromised and seeded with malware

to be included with the intended software download.

In 2011, a sophisticated instance of a RAT known as Duqu [7] [40] infected

control systems in Europe (France, Netherlands, Switzerland and Ukraine), Asia

(India, Iran and Vietnam) and North Africa (Sudan). The source code showed sim-

ilarities to Stuxnet from 2010, indicating that the creators had access to the source

code of Stuxnet [40]. Unlike the Stuxnet malware, Duqu was not intended to cause

2.2. History of Attacks 44

damage. Primarily a RAT, Duqu’s payload modules contained remote access capa-

bilities that were used to connect to the command and control (C&C) server and

download additional executables, including those used to perform network enumer-

ation, record keystrokes and collect system information. The intention of the RAT

was to gather intelligence that could be used to carry out future attacks on indus-

trial control system facilities and other industries. The intelligence collected was

encrypted and packed into an empty JPG image file received from the C&C server

[7]. Duqu had a number of variants, and made use of C&C servers located in various

places including India, Belgium and Vietnam. By default, Duqu was configured to

run for 30 days, and then remove itself from the system automatically [7]. However,

by adopting a peer-to-peer C&C model, it had the capability to receive additional

commands to extend the length of the attack.

In 2005, a worm called Zotob disabled 13 of Daimler Chrysler’s auto manu-

facturing plants across the US, causing them to be offline for 5-50 minutes (a sub-

stantial amount of production time), stopping the activities of 50,000 assembly line

workers [41]. The worm exploited a buffer overflow vulnerability on a TCP port,

found in Windows 2000 systems and some earlier versions of Microsoft Windows,

to open a backdoor [42]. According to reports [42], while executing the worm, the

operating systems became unstable, resulting in an unplanned cycle of shutdown

and rebooting. It is believed that the worm and the new variants of it affected more

than 100 companies, including the construction and mining equipment company

Caterpillar, news companies CNN and the New York Times, and the airplane com-

pany Boeing [43, 44].

2.2.5 Tunnels

In 2013, a Trojan horse targeted the road camera systems of the Israel’s Carmel

Tunnels in Hafia, causing two outages [45]. The first outage lasted 20 minutes, and

the second outage started at the morning rush hour and lasted 8 hours, causing major

traffic delays. It is not known who was behind the attack and the details of the mal-

ware. Besides causing a significant amount of monetary damage, these tunnels are

designed to be used for public shelter in case of emergency. Another attack against

2.2. History of Attacks 45

Israel took place on the 6th May 2013 when a hacker group, the Syrian Electronic

Army (SEA), sent an email with screenshots of the attack to cryptome.org reporting

they had carried out attacks against critical national infrastructure systems in Haifa

[46]. The analysis of the screenshots showed the attacks were authentic; however,

they had actually gained access to the irrigation control system of the Kibbutz Sa’ar

in western Galilee in Israel.

2.2.6 Electricity Industry

In 2007, an ex-employee of the California Independent System Operator (Cal-ISO),

the organisation responsible for the California’s electricity transmission lines and

the electricity market, carried out malicious acts against the organisation [47]. The

ex-employee tried a remote attack against the data centre and, when this failed,

he entered the facility at night using his unrevoked entrance card, broke the glass

cover and pushed the button of the emergency power cut-off, causing disruption and

crashing computers.

In 2001, an attack carried out against California’s primary electric power grid

operator Cal-ISO went undetected for 17 days [48]. Whilst the attack was in

progress, there were widespread blackouts affecting hundred of thousands of cus-

tomers, but Cal-ISO officials denied connections between the blackouts and the

attack. According to the investigations, the attack might have been used to gather

intelligence about the system and identify vulnerabilities with which to carry out fu-

ture attacks. It is predicted that attackers gained access to the system by exploiting

an unpatched Solaris web server vulnerability. The servers were connected directly

to the Internet and they were outside the network’s firewall.

In December 2015, one of the first significant, publicly reported, cyberattacks

on civil infrastructure was the attack against Ukraine’s electric grid [13] resulting in

power outages. The electricity distribution management systems of three regional

electricity distribution companies that were attacked. Experts examining the attacks

found that BlackEnergy malware appeared to have been used to gain entry to the

corporate networks of the companies [49]. The method of entry was spearphish-

ing, with malware hidden in Microsoft Word documents with the aim of harvesting

2.2. History of Attacks 46

credentials and information related to the ICS systems. There were several vari-

ants of BlackEnergy malware [50], which has been used in the past for launching

distributed denial of service attacks and espionage attacks ICS networks. A Rus-

sian hacking group known as the Sandworm Team (suspected to have links to the

Russian Intelligence Service), is known to conduct espionage against ICS networks

without causing disruption. The skill set needed to carry out these attacks required

knowledge of both IT and ICS operational infrastructure for the electricity distribu-

tion such as uninterruptible power supply, SCADA and HMI systems [49].

An attack was carried out against the electric transmission substation in Kiev in

December 2016, cutting off electricity for several hours. Unlike previous malware

(e.g. BlackEnergy2 and Havex) that were designed for reconnaissance and espi-

onage, the attackers used a malware, CrashOverride (also known as Industroyer),

that specifically targets ICS to cause physical damage [51]. This was the second

publicly known malware (the first was Stuxnet), that targetted ICS to cause physi-

cal damage. It had had functionality that was not used during this attack, but could

potentially cause longer outages [51]; indeed it is possible that the attackers were

testing the malware as a proof of concept [51]. A modular framework, CrashOver-

ride has multiple modules [51]: a main backdoor to access the infected system,

install the module to manipulate the system, and to receive new control modules

from a remote server; a launcher module to manipulate the ICS and cause physical

damage; a spare backdoor in the event the first backdoor gets discovered; and a

wiper module to clean up the evidence of the attack. It is thought that the actor be-

hind CrashOverride is the Russian hacking group, Sandworm. The malware is not

designed for equipment from a particular vendor in a particular setting, instead it

adapts to the electricity grid operations and network communications by connecting

to external command and control server to receive new modules. In this way, it can

be easily adapted to target other electrical grids around the world.

2.2.7 Oil and Gas Industry

Probably the first publicly known cyberattack against a physical infrastructure is

the attack against the Siberian gas pipeline [52]. In 1982, during the Cold War, the

2.2. History of Attacks 47

CIA installed a Trojan horse to control systems of the Urengoy–Pomary–Uzhhorod

pipeline (also known as the West-Siberian Pipeline), which transports natural gas to

Central and Western European markets. The malware covertly changed the speeds

of the pumps and valve settings to generate pressure that went above the maximum

pressure with which the pipeline joints and welds were able to cope, resulting in a

dramatic explosion.

In 2012, the Iranian government confirmed that the computers of their Oil Min-

istry were infected with malware [4]. The damage this caused is unknown but Iran

disconnected their oil terminals from the Internet. The file referencing used by the

malware was similar to that used by the Flame malware and, therefore, it is thought

that a version of Flame might have been used to carry out this attack. If so, it had the

potential to erase data from the hard disks of the computers it infected. Flame, also

known as Wiper, has similar complexity to Stuxnet and Duqu with advanced spying

capabilities including data gathering, evading detection and maintenance and up-

grade [53]. The industry sector targeted by Flame is unclear, but the targets were

mainly located in the Middle East and Eastern Europe.

In 2012, a malware known as Shamoon targeted energy companies. Unlike

other malware of this kind, Shamoon was not designed for data exfiltration pur-

poses; instead, it was designed to make the infected machines unusable by delet-

ing data and overwriting existing drivers [54]. Saudi Aramco, one of the largest

oil companies in Saudi Arabia and RasGas, one of the largest producers of liquid

petroleum gas based in Qatar, were among the targets of Shamoon. The damage

caused is unknown; however, given the nature of the worm, it is highly likely that

data related to the production might have been destroyed. The control systems of

other energy companies were also targeted in 2012. The energy company Telvent’s

firewall and other security mechanisms were bypassed. Telvent reported the attack

to customers, and said the attackers installed malware and stole OASyS SCADA

files[55]. OASyS is a platform that integrates all the tools used within the control

and business level under one centralised system [56]. The intention of the attackers

might have been to obtain these files to search for other vulnerabilities with which

2.2. History of Attacks 48

to carry out further attacks.

In 2000, the Russian government confirmed that hackers had succeeded gain-

ing access to the systems controlling one of the largest natural gas pipeline networks

in the world, the Gazprom pipeline network. According to the Interior Ministry

spokesman ”some type of Trojan” was used, but the details of the malicious soft-

ware, and the damage it caused, are unknown [57].

2.2.8 Water Treatment Systems and Canals

On the 8th November 2011, the SCADA systems of an Illinois water utility started

to misbehave, causing a water pump to burn out [58]. Initially, the system officers

investigating the SCADA log files reported a hack that was traced back to Russia;

later, contradictory press releases were made by the officials and government agen-

cies. The FBI and DHS claimed there was no evidence attributing the hack to a

Russian IP address [58]. A hacker known as prOf claimed he hacked into the HMIs

used by the water systems of South Houston (Texas) to illustrate how vulnerable

they were. To support his claims, he posted screenshots of the breach. In an inter-

view, the hacker said “this was barely a hack” as the attack consisted of determining

the three character long password used for logging into the HMI [59].

In 2000, an ex-employee of Hunter Watertech, the water treatment control sys-

tem supplier to Maroochy Shire Council of South East Queensland, took control of

the waste water management system of the Council [60]. The sewage control sys-

tem had over 140 pumping stations connected by radio communication to a control

centre. The disgruntled employee exploited a vulnerability of the radio channel by

masquerading as a controller and sending commands to the pumping station. He

was able to stop pumps from running and prevent them from sending alarms to the

legitimate controller, causing a release of some 800,000 litres of sewage into the en-

vironment, including onto hotel grounds, local parks and rivers, endangering public

health, fish and wildlife.

In 2007, an ex-employee of a canal operator, the Tehama-Colusa Canal Au-

thority (TCCA) in California, installed malicious software on the SCADA system

that is used to divert water from the Sacramento River and to around California for

2.2. History of Attacks 49

agricultural irrigation [61]. The attacker, who had been an employee of the com-

pany for 17 years, was fired the day before the incident. The intrusion damaged

the SCADA system, which had to be operated manually, causing TCCA financial

losses.

2.2.9 Defence Industry

The security wake-up call for Japan was the attack carried out against Japan’s ma-

jor defence contractor Mitsubishi Heavy Industries (MHI) Ltd in 2011 [62]. The

attackers used spearpshing attacks to infect 45 servers and 38 computers. Using a

collection of viruses, the attacks targeted data on submarines, rockets, missiles and

nuclear power stations [62]. According to the reported investigations, carried out by

the MHI and the Japanese Police, there was no evidence to indicate that adversaries

got hold of any highly sensitive information, but network information such as the IP

addresses of systems and devices were compromised [62]. In August 2015, security

lab Kaspersky discovered a cyberespionage campaign known as Blue Termite that

was specifically targeting Japanese organisations, including heavy industry, chem-

ical, electrical and manufacturing companies [63]. According to the research lab,

the attacks had been active at least for the previous two years. It is still active. The

attackers leveraged a zero-day vulnerability and a backdoor, tailored to each vic-

tim, to obtain sensitive information. Organisations were infected using a number of

techniques including, watering-hole attacks and spearphishing attacks.

2.2.10 Traffic Lights

In 2009, an Italian court shutdown the smart traffic lights system known as the T-

RedSpeed that had been implemented across Italy and started an investigation that

involved over 100 people, including police officers and government officials [64].

They were accused of rigging the traffic lights to stay on the amber light for shorter

than the regulated time of 5-6 seconds, and issuing over a million fines to inno-

cent motorists. The engineer in charge of the project was held under house arrest

and others were further investigated [64]. Other traffic signs are also vulnerable to

security attacks, and have been attacked. In 2009, several states in US were com-

2.2. History of Attacks 50

promised by hackers to change the legitimate traffic warning notices to nuisance

ones such as “Zombies Ahead” [65]. The details of the attack have not been given,

but it is often the case that access panel of the display electronics is simply locked

with a padlock and the default password is not changed.

When the traffic engineers in Los Angeles went on strike in 2006, the city de-

cided temporarily to block all engineers from accessing the computers that control

most of the traffic signals of the city, to prevent any attacks [66]. However, this mea-

sure was not enough. Two of the engineers on strike pleaded guilty to programming

the traffic signal system to cause the traffic lights at key intersections to stay much

longer on a red light, causing congestion for several days [66] [67]. The engineers

programmed the system remotely from a laptop using the code they stole before-

hand, and modified the code to prevent others from programming the system back

to normal [66]. Another incident from 2006 involving an employee’s compromised

laptop, was the infection of water treatment system at Harrisbury, Pennsylvania

[68]. According to police investigations, the attackers carried out the attack from

outside the US. The attack utilised the affected machines as bots to spread spam

and other malware. The consequences of this kind of attack could have been catas-

trophic as the attackers could have used the system to raise the level of chemicals

such as chlorine used in water treatment operations.

2.2.11 Transportation Systems

In 2008, the security of transportation systems was questioned when a 14-year-old

Polish teenager brought the tram system down in the city of Łódź by changing

the track lines [69]. The teenager gathered the necessary intelligence about the

system from tram depots, and adapted a TV remote control to switch tram tracks.

12 people were injured as a result of derailing four trams, and other trams had to

make emergency stops, causing chaos.

In 2003, the computers belonging to CSX, one of the major rail network oper-

ators in the United States, were infected with a virus [70]. The virus shut down the

operation of crucial services of the transportation system, including those responsi-

ble for dispatching and signalling. The signalling outage affected the entire trans-

2.2. History of Attacks 51

portation system, causing major delays and cancellations. Another major incident

of 2003 was the Microsoft SQL Slammer worm [71], infecting the Davis-Besse Nu-

clear Power Plant in Ohio causing network traffic overload on the process control

network [72]. It entered the control network through the corporate network, by-

passing the firewall via a connection created by a software contractor’s firm. When

the attack took place, most parts of the plant were offline, and the consequences

were not catastrophic, but the Safety Parameter Display System was inaccessible

for about five hours and it took an additional six hours to restore the plant process

computer.

2.2.12 Ports

In 2001, the web servers belonging to the major US port, the Port of Houston in

Texas, were used as an intermediary system to carry out a denial of service attack

on another target [48]. The attack exploited a vulnerability in Microsoft’s Internet

Information Services (IIS) Web Server to send thousands of ping requests, making

the server inaccessible to legitimate users [48]. Pilots and shipping companies were

unable to access vital navigation and weather information.

In 2013, a group of drug traffickers who hacked into the container management

system at the Belgian port of Antwerp to control the movement of containers con-

taining tonnes of cocaine and heroin among legitimate cargoes such as fruit shipped

from South America [73]. According to the investigation carried out by Interpol

[74], the criminals hacked into the system using a number of methods, over a pe-

riod of over 2 years. The first breach consisted of carrying out spearphishing attacks

to trick employees of the companies into installing malware. Using the malware,

they managed to control two of the computers running the port administration sys-

tem. This breach allowed attackers to change the location and the delivery time of

the containers, as well as the security details required to pick up the containers. In

this way, drug traffickers were able to send their drivers to steal the shipments be-

fore the legitimate drivers came to pick them up. When these breaches were found,

criminals carried out other attacks by breaking into the premises housing these sys-

tems and installing hardware such as keyloggers and tiny computer boards to access

2.3. ICS Attack Taxonomy 52

secure data and manage attacks remotely[73].

2.3 ICS Attack Taxonomy
On the basis of the examination of previous attacks, and the common techniques

used against IT networks, the taxonomy shown in Table 2.1 was devised. In the

following subsection, we explain the components of the taxonomy.

2.3.1 Threat Origin

On the basis of the examination of previous attacks, the sources of those attacks

would appear to come from a wide variety of actors:

• Foreign Intelligence Services/Nation States: Nation-state sponsored attacks

are sophisticated attacks and their potential to cause damage is high. The orig-

inators have significant power to finance, obtain necessary resources and mo-

bilise people with advanced skills, and influence vendors to modify software

or hardware systems/devices and install malware or backdoors with which

they can carry out these attacks.

• Rivals: Rival organisations or companies may carry out attacks to damage

reputation or for industrial espionage to steal intellectual property.

• Terrorist Groups: Terrorist groups may want to attack the operation of ICS

to threat national security, cause causalities, damage the economy and create

fear.

• Organised Crime: Attacks by an organised criminal network are usually

motivated by financial gain. Criminals are currently very active in the online

world. So, for example, attacks on control systems may be carried out to

extort money by threatening asset owners for ransom [75].

• Thieves/Vandals: Electricity substations have been an attractive target to

metal thieves who steal steal copper cables from stations and other structures

[76] [77], costing the UK economy an estimated £770 million a year [78].

While trying to take metal out of substations, thieves risk their lives: in 2010,

2.3. ICS Attack Taxonomy 53

six people in the UK died while stealing copper cables [76]. Given their de-

termination and the substantial revenue they can generate from metal theft, it

is plausible to suggest that vandals might try to hack ICS to reduce the risk of

harm.

• Hacker Hobbyist: Attacks carried out by hacker hobbyists are typically mo-

tivated by curiosity, the thrill of doing something not permitted, or the desire

for recognition and status. These attacks are generally unsophisticated, often

exploiting vulnerabilities that are public, but that can still cause substantial

damage.

• Hacktivists: Hacktivists are hackers that are often driven by a political idea;

hactivism is used as a form of online activism [79]. The motivations for

their actions may be anything from defence of free speech to an anti-nuclear

stance. Over the past several years, two powerful hacking collectives, Anony-

mous and Lulzsec, have carried out a large number of attacks on the Internet.

These attacks include support for protests in Iran [80], protesting against the

Australian Government for Internet filtering legislation and web censorship

regulations [81], compromising web sites and email of oil and gas companies

to protest against oil prices, and bringing attention to WikiLeaks and other po-

litical causes [82]. Security services with responsibility for critical national

infrastructure have also been targeted by hacking communities [83].

• Insiders: An insider could be a company executive, current or former em-

ployee, business partner, contractor, service provider, vendor, guest, support

staff (e.g. cleaners, system support technicians) “or someone else who has a

formal or informal business relationship with an organisation” [84]. The most

common insider attacks are: unauthorised access to, and use of, corporate in-

formation; unintentional exposure of private or sensitive data; virus, worms

or other malware; and theft of intellectual property [85]. However, threaten-

ing insider behaviour occurs in many contexts and appears in various forms,

and, unfortunately, only becomes public if legal action is taken against the

2.3. ICS Attack Taxonomy 54

attackers. This is not often the case due to concerns about negative public-

ity, being unable to identify the individual/s committing the act, and lack of

evidence [86]. The motives behind insider attacks are very diverse, [87] in-

cluding financial gain [88]; problems at work; nationalistic/ideology (serving

another nation or political cause); fear or coercion; and excitement/challenge

(the thrill of doing something not permitted, or the desire for recognition and

status). Not all apparent attacks from insiders are malicious: insiders may

cause unintentional exposure of sensitive data or systems by error or mis-

use. Furthermore, rules are often broken due to deadlines, lack of awareness,

unusable or ineffective policies or procedures.

2.3.2 Threats

On the basis of previous attacks there appears to be two primary motivations behind

attacks aimed at industrial control systems: 1) exfiltration: harvesting sensitive in-

formation 2) sabotage: disrupting control performance:

• Data Exfiltration: Adversaries may carry out malicious actions to gather in-

telligence about a target, either as a preliminary step to allow for the design

of further attacks (reconnaissance), or for industrial espionage. This may

involve identifying network infrastructure, insecure applications, unpatched

systems, process implementation details and other sensitive information (in-

cluding credentials). These attacks can be carried out against the corporate

network to acquire knowledge (e.g. operating system and versions, unpatched

system vulnerabilities, firewall rules, or whether the control network is reach-

able). The primary objective is usually to obtain the credentials needed to in-

fect other systems and devices, and so to propagate and escalate privileges to

gain access to the actual control network. Data exfiltration can also be carried

out against the systems and devices at the control level to harvest sensitive

information related to the system (known as the operational technology) in-

cluding the software used for programming control devices, operation of the

safety system, network communication interface and protocols and any other

2.3. ICS Attack Taxonomy 55

Ta
bl

e
2.

1:
A

tta
ck

ta
xo

no
m

y
fo

rI
nd

us
tr

ia
lC

on
tr

ol
Sy

st
em

s

2.3. ICS Attack Taxonomy 56

knowledge related to the control and countermeasures.

• Direct Control: These are attacks against the process by either reprogram-

ming control systems or field devices (e.g. modifying setpoints, process val-

ues, sending false system status to operator machines) or modifying control

settings or configurations (e.g. modifying safety thresholds/alarm, introduc-

ing rogue devices) [9].

• Indirect Control: These are attacks against the integrity of the control data

by modifying the data in transmission(e.g. modifying the data sent by sensor

or controller); tampering with data in storage; or denial or delaying flow of

control data (e.g. stopping or delaying new data reaching the controller or the

actuators).

2.3.3 Attack Vectors

A wide variety of techniques have been used to carry out attacks on ICS:

• Eavesdropping: This attack involves obtaining sensitive information related

to the ICS such as: identifying devices, services or vulnerabilities on the

network; or extracting password and other information from network traffic

to perpetrate further attacks. Eavesdropping techniques include :scanning the

network to identify possible methods of entry (e.g. open ports); probing the

network by sending packets to target devices and monitoring their response;

and sniffing the network to capture, analyse and monitor network traffic to

gain sensitive information.

• Denial of Service (DoS): To deny the availability of a system to legitimate

entities by flooding the targeted system with traffic.

• Impersonation: This attack involves impersonating a device, system or an

entity to gain unauthorised access to a network or a host. Because many ICS

communication protocols do not provide mechanisms for authenticating the

source or destination of a message, ICS systems are vulnerable to: imper-

sonation attacks such as IP and ARP spoofing; and communication hijacking.

2.3. ICS Attack Taxonomy 57

Inadequate authentication control mechanisms mean that entities can mas-

querade as one another by falsifying their identity to gain illegitimate access,

and so to steal or modify data, spread malware or carry out DoS and man-in-

the-middle attacks.

• Man-in-the-middle (MitM): In this attack, the attacker sits between com-

municating devices and alters the communication between them.

• Replay data: Replay is a specific, but common, form of MitM attack in

which old, but valid, network data are retransmitted by the attacker.

• Delay data: The attacker delays the network data between the sender and

receiver (e.g. causing a controller to receive old data from a sensor). Delays

may cause operational errors, inefficiencies or cause the system to fail.

• Dropping data: This attack happens when a compromised node selectively

drops or deletes some of the network data (such as data packets) in wireless

industrial control networks.

• False data injection: This attack is a deception attack, injecting bogus or

malicious data into the network. This is different to MitM as it does not alter

the traffic between communicating devices.

• Data tampering: Data tampering involves unauthorised modification of data

in storage or at rest, for example through device configuration, settings or

programming code.

• Side-channels: Attackers use a variety of techniques to gain information

about a system or a device by analysing apparently incidental sources of data

such as power consumption, light emissions, traffic flow, timings, electromag-

netic, acoustic and thermal emissions from hardware components [89].

• Covert-channels: This is an attack that relies on device compromise. Given

this, an attacker uses a channel that was not designed for data transfer to leak

2.3. ICS Attack Taxonomy 58

confidential information from a secure environment (bypassing the existing

security measures) [90].

• Physical access: Attackers with physical access to a system can modify the

location of devices (node displacement); can decalibrate devices such as sen-

sors to modify input signals, or can exploit physical properties of the devices

(e.g. through glitch attacks involving modification of the clock or the power

supply to the chip to manipulate the operation of the system). Moreover, they

can simply install physical nodes (rogue device) to carry out passive attacks

(monitor the physical process) or more active attacks (act as an controller);

and can install malware via infected removable media such as USB memory

sticks.

• Blended attacks: Blended attacks consist of the use of multiple attack vec-

tors packed as exploit kit or another form of malware that will be installed on

the target infrastructure to exfiltrate data and/or sabotage the system.

2.3.4 Vulnerabilities

On the basis of the examination of previous attacks and NIST’s Guide to Industrial

Control Systems Security [9], the categories of vulnerabilities are as follows:

• Zero-day Vulnerabilities: These are previously unknown vulnerabilities in

software or hardware. Once these vulnerabilities become public, it can take a

while for the software developer or hardware manufacturer to provide a patch,

and longer for it to be installed. Once these vulnerabilities are disclosed, the

number of attacks exploiting them may actually increase since more attackers

are able to launch the attack and do so in an attempt to find unpatched systems

[91].

• Insecure architecture: Traditionally, industrial control systems have been

been designed without security in mind, or with the explicit presumption that

the system is isolated and so not subject to attack. Bringing security into ex-

isting systems or evolving systems (e.g. adoption of COTS products, Industry

2.3. ICS Attack Taxonomy 59

4.0) could create vulnerabilities if security controls are not not deployed and

configured for new changes in the architecture.

• Insecure communication protocols: Industrial Control Systems make use

of a wide variety of communication protocols that may have no or limited

security mechanisms for authentication, confidentiality and integrity. Adver-

saries can exploit these vulnerabilities to monitor unecrypted communication

between devices, replay, modify or spoof data or introduce rogue devices into

the network [9].

• Backdoors and holes in the network perimeter [9]: A backdoor is any

mechanism that bypasses normal security controls in order to access a com-

puter system. Known as hidden-accounts, backdoors have often been delib-

erately inserted into the ICS infrastructure for purposes such as ease of main-

tenance and troubleshooting by vendors. These backdoors can be exploited

by adversaries to access the ICS. Similarly, there could be vulnerabilities re-

lated to network design, such as weak network segmentation, non-existent or

inadequate firewalls.

• Inadequate configuration and maintenance: The components of ICS in-

frastructure, including hardware, firmware and software need to be config-

ured and maintained throughout their lifecycle. Inadequate configuration and

maintenance, such as using default settings (e.g. default passwords, connec-

tions or settings not changed); using systems and applications that are no

long supported (updates not available); not patching on time; deploying new

security measures without testing; leaving unused ports and protocols open;

poorly maintained access control mechanisms; and lack of, or outdated, in-

trusion detection systems can be exploited by the adversaries.

• Poor policies and procedures: Inadequate security policies and procedures

open the door to vulnerabilities. All countermeasures should be traceable to

a policy to ensure accountability and uniformity [9]. Security policies and

procedures should be documented, updated, enforced and usable. If secu-

2.3. ICS Attack Taxonomy 60

rity policies and procedures become a burden to staff, history suggests that

they will be unwilling to comply with these policies and procedures and may

misuse the system deliberately. Lack of formal ICS security training and

awareness will also create an insecure ICS environment, and may make staff

vulnerable to social engineering attacks.

• Poor physical access: Weak physical access can lead to physical tamper-

ing with ICS systems and devices; installing malicious malware (including

keyloggers), and making unauthorised changes to the system and operating

environment of the ICS.

2.3.5 Initial Infection

Advanced attacks against industrial control systems, such as Stuxnet, Havex, Black-

Energy and Triton, required attackers initially to install malware on the target in-

frastructure. This step is known as the initial infection. Initially the purpose of

the malware could just be data exfiltration at the corporate level but this might be

followed by scanning other systems and propagation. Methods used for initial in-

fection include the exploitation of insiders; the use of social engineering techniques

(e.g. malicious attachments, spearphishing); drive-by download (the use of vulner-

abilities in web servers, web browsers and browser plugins to install malware on

users’ computers without their consent); hacking the supply chain (e.g. watering

hole attacks in which malware is placed with the original software updates from a

compromised trusted vendor website); and physical access.

2.3.6 Attack Impact

Impact refers to the consequences of carrying out successful attack against ICS.

These can be divided into two main categories: direct impact and indirect impact.

Direct impact is tangible and immediate, including process disruption; damage to

production, equipment, safety and environment; data disclosure; data destruction;

and injuries and loss of life [9]. Indirect impact is often hard to define and quantify

since it frequently aims to have long-term consequences such as damage to repu-

tation and business relationships; economic damage; legal prosecution; and loss of

2.4. Summary 61

public confidence [9].

2.3.7 Countermeasures

Table 2.1 lists some of the common types of countermeasures that are used to pro-

tect ICS from attacks. Existing countermeasures [9] can be divided into three main

categories: preventive, reactive and response. Preventive defence measures include

restricting access to the ICS network through: perimeter control such as firewalls

and demilitarised zones; authentication and access control mechanisms for users of

the ICS; cryptographic protection to achieve confidentiality and integrity of data;

active scanning of systems, devices and the network for vulnerabilities; software

updating; the development of security policies that are feasible and usable and

that define roles and procedures for maintaining security; personnel awareness and

training programmes to avoid misuse of systems the enforcement of physical se-

curity; and measures for protecting the supply chain. Reactive defence measures

include: intrusion detection at the host and network level, including monitoring for

unusual behaviour and malware; and anomaly detection at the process level. After

an attack is detected, response measures may include: reconfiguring the network,

including removing or redirecting network traffic and blocking ports; isolating or

removing certain systems or devices from the network; and the development indus-

trial safety systems that incorporate security measures to protect the safety of the

process, equipment and personnel, such as the automatic shutdown of equipment

and the raising of alarms when hazards are detected.

2.4 Summary
Although some of the more sophisticated attacks carried out against ICS required

a vast amount of knowledge and resources, the attacks discussed here show that it

is not sensible to rely on this assumption remaining true for the indefinite future:

adversaries are using a variety of techniques to sabotage ICS and to exfiltrate data.

As past attacks show, the potential consequences of security attacks on ICS include

injury, death, and damage to physical infrastructure, equipment and environment. It

is becoming increasingly vital that we identify the vulnerabilities in ICS before they

2.4. Summary 62

are exploited by threat actors. In the next chapter, we review the related work for

detecting attacks, and possible methods that can be used to identify vulnerabilities

before they are exploited by malicious actors.

Chapter 3

Literature Review

In this chapter, we discuss the existing research related to our study, including cur-

rent approaches to the detection of new vulnerabilities. We first introduce existing

work related to intrusion detection systems, and then introduce a potential tool that

can be used to search for new vulnerabilities, evolutionary computation. Previous

work related to generating attacks while evading detection is examined.

3.1 Detecting Attacks on Industrial Control Systems
Security is a dynamic process that requires proactive measures to manage attacks

that are continuously evolving. There will always be some vulnerabilities, and at-

tackers will continue to search for vulnerabilities to exploit. Response is needed to

detect and discourage these attempts. In this section, some of the existing academic

approaches to intrusion detection in industrial control systems are discussed.

3.1.1 Performance Metrics for Intrusion Detection Systems

In traditional IT systems, the performance of intrusion detection systems (IDS) are

measured and reported using the standard metrics including accuracy, precision,

recall (true positive rate), F1 score, false positive rate and false negative rate, defined

as follows [92]:

Accuracy(A) =
T P+T N

T P+FP+FN +T N
(3.1)

Precision(P) =
T P

T P+FP
(3.2)

3.1. Detecting Attacks on Industrial Control Systems 64

Actual
Attack Not-Attack

Pr
ed

ic
te

d Attack True Positive (TP) False Positive (FP)

Not-Attack False Negative (FN) True Negative (TN)

Table 3.1: Confusion matrix

Recall(R) =
T P

T P+FN
(3.3)

F1 = 2
P×R
P+R

(3.4)

False Positive Rate (FPR) =
FP

FP+T N
(3.5)

False Negative Rate (FNR) =
FN

FN +T P
(3.6)

Their definitions are as shown in Table 3.1, and they are as follows:

• True Positive (TP) indicates an attack signal correctly labelled as an attack.

• True Negative (TN) indicates a not-attack signal correctly labelled as a not-

attack.

• False Positive (FP) indicates a not-attack signal incorrectly labelled as an at-

tack.

• False Negative (FN) indicates an attack signal incorrectly labelled as not-

attack.

Accuracy measures the proportion of instances that were assigned to the correct

classes. Precision measures the proportion of the positive results that are identified

as positive (how many of the attack indications are really attacks). Recall (also

known as the true positive rate (TPR)) measures the proportion of actual attack sig-

nals that are correctly identified as such. The F1 score considers both false positives

and false negatives, and it is calculated using the weighted average of precision and

recall [92]. Like all the other measurements, the best value for F1 score is 1 and the

worst is 0.

3.1. Detecting Attacks on Industrial Control Systems 65

3.1.2 Intrusion Detection for ICS Network and Hosts

IDSs are generally classified by detection technique and by audit source. The for-

mer is often classified into two groups: knowledge-based or behaviour-based, and

the later network-based or host-based [93]. Host-based IDS are based on a single

node and, therefore, make use of data maintained by that node to identify unau-

thorised behaviour. Network-Based IDS often have a single node that is dedicated

to collecting and analysing the network activity to detect intrusions. Thus, they

are based on models of network traffic or host (device or software application) be-

haviour. The majority of existing intrusion detection studies focused on industrial

control systems are also related to detecting intrusions by analysing host/application

level access and usage of network communication protocols.

Knowledge-based intrusion detection systems, also known as pattern or

signature-based detection systems are based on collecting knowledge about previ-

ous well-known attacks, and designing signature rules specifying intrusion-specific

patterns. Data from events, such as patterns of network traffic, are compared with

these specific signatures to detect the presence of intrusions. Proposed IDS often

focus on designing attack signatures for detecting unauthorised access to networks

and hosts [94] as well as detecting DoS and spoofing attacks [95]. A major draw-

back of these systems is that they are only able to detect attacks if their signatures

are available. Furthermore, a world in which attackers are constantly changing their

attack vectors to avoid these IDS systems means that the identification and update

of signatures also becomes a constant activity.

Behaviour-based intrusion detection systems also known as anomaly-based

systems, look for deviations from normal system behaviour. An understanding of

what is normal is derived from learning the behaviour by employing unsupervised

learning or semisupervised learning under conditions that are believed to be attack-

free. Most of these approaches make use of data related to traffic between ICS com-

ponents. For example, in [100], a neural network is presented that is trained on nor-

mal network traffic data with the aim of detecting abnormal network traffic between

ICS components. A semisupervised anomaly detection system based on measur-

3.1. Detecting Attacks on Industrial Control Systems 66

Sp
ec

ifi
c

D
om

ai
n/

R
ef

er
en

ce
D

et
ec

tio
n

Pr
in

ci
pl

e
A

ud
it

So
ur

ce
A

tta
ck

V
ec

to
r

D
at

a
So

ur
ce

Sm
ar

tg
ri

d
[9

4]
kn

ow
le

dg
e

ho
st

im
pe

rs
on

at
io

n,
ta

m
pe

ri
ng

te
st

be
d/

un
re

le
as

ed
Sm

ar
tg

ri
d

[9
5]

kn
ow

le
dg

e
ne

tw
or

k
sn

iffi
ng

,i
m

pe
rs

on
at

io
n,

D
oS

si
m

ul
at

io
n/

un
re

le
as

ed
N

/A
[9

6]
[9

7]
be

ha
vi

ou
r-

sp
ec

ifi
ca

tio
n

ne
tw

or
k

D
oS

,p
ro

bi
ng

te
st

be
d/

un
re

le
as

ed
N

/A
[9

8]
be

ha
vi

ou
r-

sp
ec

ifi
ca

tio
n

ne
tw

or
k

fa
ls

e
da

ta
in

je
ct

io
n,

de
la

y,
re

pl
ay

te
st

be
d/

un
re

le
as

ed
N

/A
[9

9]
be

ha
vi

ou
r-

sp
ec

ifi
ca

tio
n

ne
tw

or
k

ta
m

pe
ri

ng
,r

ep
la

yi
ng

op
er

at
io

na
l/u

nr
el

ea
se

d
N

/A
[1

00
]

be
ha

vi
ou

r
ne

tw
or

k
un

kn
ow

n
si

m
ul

at
io

n/
un

re
le

as
ed

N
/A

[1
01

]
be

ha
vi

ou
r

ne
tw

or
k

19
C

V
E

at
ta

ck
s

(t
am

pe
ri

ng
,i

nj
ec

tio
n,

m
as

qu
er

ad
in

g)
op

er
at

io
na

l
Sm

ar
tg

ri
d

[1
02

]
be

ha
vi

ou
r

ne
tw

or
k

ta
m

pe
ri

ng
,d

en
ia

l,
de

la
yi

ng
no

da
ta

se
t

N
/A

[1
03

]
be

ha
vi

ou
r

ne
tw

or
k

im
pe

rs
on

at
io

n,
D

oS
,M

itM
si

m
ul

at
io

n/
un

re
le

as
ed

N
/A

[1
04

]
be

ha
vi

ou
r

ne
tw

or
k

fa
ls

e
da

ta
in

je
ct

io
n

op
er

at
io

na
l

In
du

st
ri

al
se

ns
or

ne
tw

or
ks

[1
05

]
be

ha
vi

ou
r

ne
tw

or
k

D
oS

,e
av

es
dr

op
pi

ng
,i

m
pe

rs
on

at
io

n,
M

itM
op

er
at

io
na

l
Sm

ar
tg

ri
d

[1
06

][
10

7]
be

ha
vi

ou
r

ho
st

D
oS

,s
ni

ffi
ng

,p
ro

bi
ng

K
D

D
’9

9,
N

SL
-K

D
D

(p
ub

lic
)

Sm
ar

tg
ri

d
[1

08
]

be
ha

vi
ou

r
ne

tw
or

k
re

pl
ay

,i
nj

ec
tio

n,
ze

ro
-d

ay
H

IL
si

m
ul

at
io

n
N

/A
[1

09
]

be
ha

vi
ou

r
ho

st
fa

ls
e

da
ta

in
je

ct
io

n,
D

oS
,M

itM
,r

ep
la

y
op

er
at

io
na

l/u
nr

el
ea

se
d

N
/A

[1
10

]
be

ha
vi

ou
r

ne
tw

or
k

sc
an

ni
ng

,t
am

pe
ri

ng
,D

oS
te

st
be

d/
un

re
le

as
ed

N
/A

[1
11

]
be

ha
vi

ou
r

ne
tw

or
k

sc
an

ni
ng

,t
am

pe
ri

ng
,i

nj
ec

tin
g,

M
itM

,D
oS

te
st

be
d/

un
re

le
as

ed
W

at
er

tr
ea

tm
en

t[
11

2]
,[

11
3]

,[1
14

][
11

5]
be

ha
vi

ou
r

pr
oc

es
s

36
M

itM
ty

pe
of

at
ta

ck
s

te
st

be
d/

pu
bl

ic
B

io
ch

em
ic

al
pr

oc
es

s
[1

16
]

be
ha

vi
ou

r
pr

oc
es

s
M

itM
,t

am
pe

ri
ng

no
da

ta
se

t
N

/A
[1

17
],

be
ha

vi
ou

r-
sp

ec
ifi

ca
tio

n
pr

oc
es

s
ea

ve
sd

ro
pp

in
g,

M
itM

,t
am

pe
ri

ng
si

m
ul

at
io

n/
un

re
le

as
ed

G
as

-o
il

pl
an

t[
11

8]
be

ha
vi

ou
r

pr
oc

es
s

M
itM

si
m

ul
at

io
n/

un
re

le
as

ed
T

E
ch

em
ic

al
pl

an
t[

11
9]

,[
12

0]
,[

12
1]

[1
22

]
be

ha
vi

ou
r

pr
oc

es
s

D
oS

,M
itM

si
m

ul
at

io
n/

un
re

le
as

ed
T

E
ch

em
ic

al
pl

an
t[

12
3]

be
ha

vi
ou

r
pr

oc
es

s
D

oS
,M

itM
si

m
ul

at
io

n/
re

le
as

ed

Ta
bl

e
3.

2:
So

m
e

pr
op

os
ed

ID
Ss

fo
rI

C
S

3.1. Detecting Attacks on Industrial Control Systems 67

ing similarities (using Manhattan and Euclidian distance) between transport-layer

packet payloads is introduced in [101]. The work carried out by Zhang et. al [107]

[106] proposes a distributed IDS based on support vector machines and an artificial

immune system to detect and classify attacks for smart grids, utilising data from

systems and devices in multiple network layers of the grid network (home area net-

work, neighbourhood area networks, wide area networks). One of the assumptions

that IDS models in Industrial Control Systems often make is that the traffic from

these networks is deterministic because there is a static network with well-defined

protocols and strict timing requirements. Examples of this behaviour are sensors

that may send data to a controller at certain times. Leveraging the determinism of

the information cycle, a semi-supervised model is proposed to detect anomalies by

auditing sensor and actuator data [102]. Some researchers have proposed models

that combine the advantages of signature-based detection and behaviour-based de-

tection to determine whether a system is under attack. In [96], authors propose a

model that monitors the Modbus/TCP protocol function codes and lengths with a

Bayesian detector, and uses rules to detect deviations from expected communication

patterns. In their subsequent work, the authors developed a visualisation tool that

can be used to analyse network patterns [97]. In [98], authors present another IDS

system designed for detecting anomalies in Modbus/TCP networks using a finite

state machine model.

One of the limitations of IDS studies in ICS is lack of realistic testbeds and

datasets. In [109], authors use an ICS testbed that contains SCADA systems for

a water storage tank control system to test their intrusion detection systems. Mo-

tivated by the lack of authentication support in ICS communication protocols (e.g.

MODBUS, DNP3 and EtherNet/IP), they make the assumption that anyone with ac-

cess to these systems can carry out a number of attacks: false data injection attacks

(injecting false commands to devices such as RTU, MTU), sending false responses

to master devices and denial of service attacks. They designed a supervised classi-

fier using neural networks to detect these crafted attacks.

A list of some of the IDS systems designed to detect attacks or anomalous

3.1. Detecting Attacks on Industrial Control Systems 68

behaviour by monitoring the traffic at the network or host level is given in Table

3.2. A fuller list of IDS systems designed for cyber physical systems can be found

in [93]. The data source used to evaluate the effectiveness of the various IDS is one

of three types: i) operational data from real-world systems; ii) testbeds (real-world

systems designed for experimentation); iii) simulation (including co-simulation and

hardware-in-loop). In general, the studies tend to show limitations that result from

a lack of common testbeds and open datasets: there are oversimplified test cases

and threat models; there is a lack of reported performance metrics; and evaluation

is sometimes subjective. At the same time, sophisticated attackers are deploying

mechanisms to evade detection. This is done by making use of the vulnerabilities

of the detection systems to hide their actions, making the detector ineffective. In

terms of IDS, this means avoiding actions that would trigger signature detectors or

using actions that are hard to distinguish from the normal behaviour of the plant.

Detection that adapts to an adaptive adversary is an area of IDS research that has

not been studied extensively for ICS applications.

3.1.3 Anomaly Detection in Process Control

Detecting attacks against network communication protocols is part of the solution,

but IDS that only do this fail to identify attacks against the process control itself.

The focus of our research is precisely these later attacks. To counter these cases,

researchers in [116] and [117], proposed IDS systems that can detect attacks on

process control. McEvoy and Wolthusen [116] proposes a causal model that is

used to define the relationship between sensor readings using non-linear structural

equations. They use a brewery bulk and fill pasteuriser as a case study to evaluate

their approach but, as pointed out by the authors, this approach requires extensive

modelling of the system. Hadziosmanovic et. al [117] propose an approach that

extracts model variables from the ICS network traffic, characterises the extracted

variables into relevant categories and then creates an autoregressive model to cap-

ture the behaviour at the process level. They test their model on network data (not

open-source) collected from two real-world water purification plants.

Although detecting attacks against ICS processes has received little attention

3.1. Detecting Attacks on Industrial Control Systems 69

in the information security field, fault detection and diagnosis for industrial pro-

cesses is an active research area that has been widely studied by the control commu-

nity. Faults are defined as abnormal process deviations from the standard behaviour

and are caused by equipment failing, human errors, signal interrupts and any other

anomalies. Essentially, these approaches have been proposed both to detect anoma-

lies (fault detection) in process data and to identify where the anomaly occurred

(fault diagnosis). As approaches, they are equally applicable to cyber attack detec-

tion in industrial control systems.

As a benchmark, the Tennessee Eastman (TE) Chemical process model [20]

has been broadly studied for fault detection and diagnosis. The TE process model

comes with 21 programmed disturbances identified as faults. The simulation deliv-

ers multivariate timeseries data containing 53 variables: 41 process measurements

and 12 manipulated variables. Training datasets can be gathered using the Fortran

simualtion code provided by Tennessee Eastman company, or by using the MAT-

LAB/Simulink model that was implemented in 2002, and updated by the Chemi-

cal Engineering Department, University of Washington. Both original Fortran and

MATLAB versions are available at [124]. However, most of the existing studies use

the Braatz Dataset [125], which has been made available by MIT’s Braatz Group,

from the Process Systems Engineering Laboratory, and that was generated using the

Fortran code. This dataset contains a training dataset and a testing dataset. These

are fairly small datasets: each fault is described by a 480x52 matrix; and testing

datasets are of size 960x52 (rows representing different measurements, columns

representing different features).

Early studies on the TE process model focused common dimensionality reduc-

tion techniques such as Principal Component Analysis (PCA) [126] [127] [128],

Dynamic Principal Component Analysis (DPCA) [129] and Canonical Variate

Analysis (CVA) [129], with distance metrics such as Hotelling’s T-squared dis-

tribution (T2) and Q statistics used to detect faults. Others have proposed mod-

els to improve the performance of classic PCA using various techniques such as

nonlinear dynamic principal component analysis [130], multiway principal com-

3.1. Detecting Attacks on Industrial Control Systems 70

ponent analysis (PCA) [131] and PCA-wavelets [132]. Bakdi and Kouadri [133]

proposed a model using PCA with a modified exponentially weighted moving aver-

age (EWMA). Authors in [134] applied Discriminant Partial Least Squares (DPLS)

and argued that it improves the fault diagnosis on small scale classification prob-

lems compared to classic Fisher’s Discriminant Analysis (FDA). Misra et al. [135]

applied a multi-scale PCA to a multivariate process on an industrial gas phase tubu-

lar reactor system. Later models focused more on utilising machine learning tech-

niques such as support vector machines (SVM). Chiang et al. [136] showed SVMs

were better at classifying faults on the TE process in comparison to Fisher Discrim-

inant Analysis. In [121], the authors integrated PCA with a neural network and

tested their approach using both the TE process model and a continuous cast steel

slab process. In [137], Kernel Independent Component analysis (KICA PCA) and

SVM were used to diagnose on faults on the TE process. In [138], the authors pro-

pose a One-Class SVM to detect faults in Heating, Ventilation and Air Conditioning

(HVAC) chiller systems. Mahadevan and Shah [139] applied One-Class SVM with

recursive feature elimination to the TE process model for fault detection and diag-

nosis, and report that SVM outperforms PCA and DPCA. In [140], Gao and Hou

used multi-class SVM to predict the status of the TE process by first applying PCA

to reduce the dimensionality of the data. The authors used grid search, genetic al-

gorithms and particle swarm optimisation to select the parameters for the SVM.

Chen et al. [141] proposed cognitive fault diagnosis, in which they assume no prior

knowledge of faults. The authors also propose “learning in the model space” [142],

in which they map the signal space into a reservoir model space and then apply

incremental single learning algorithms to this model to detect faults. They carried

out experiments in both supervised settings using supervised machine learning al-

gorithms (e.g. Classification and Regression Trees, SVM, NaiveBayes, ensemble

algorithms), and cognitive settings, using unsupervised algorithms (e.g. K-means,

HCluster, One-Class SVM).

The dataset used for all these approaches is very small and is not represen-

tative of the big data problem the industry is facing. Furthermore, most of these

3.1. Detecting Attacks on Industrial Control Systems 71

approaches assume faults are known prior to training. Unlike these, Marti et al.

[143] proposes using a time series segmentation method to segment the dataset into

homogeneous subsets that can be analysed in a separate fashion, and use one-class

support vector machines on unlabelled normal operational data to learn to detect at-

tacks. To test their approach, they applied it to a real-life (private) dataset obtained

from over 250 sensors attached to an operational oil turbomachine in Brazil.

Some deep learning approaches have also been used for anomaly detection. In

particular, recurrent neural networks have been applied to range of complex sequen-

tial problems. In [144], a Long Short Term Memory Network (a type of recurrent

neural network) was tested on two proprietary real-life engine datasets and three

publicly available datasets (ECG, space shuttle, power demand); however, the focus

of this work was univariate time series prediction. Lv et. al [145] used unsuper-

vised deep learning (an autoencoder) to learn features of the data, and then applied

a deep learning softmax classifier to classify faults. Zhao et al. [146] proposed a

fault diagnosis method based on LSTM, and evaluated it on the TE process model

using the Braatz dataset.

The security community also carried out a number of studies in an attempt

to detect attacks on the industrial control processes. Table 3.2 lists some of these

detection models. We have not added the studies related to the fault detection and

diagnosis to this, as most of these studies are based on known faults. Although this

is still a poorly researched area, these studies focussed on the TE process model,

and the dataset (available upon request) from the Secure Water Treatment (SWaT)

testbed at Singapore University of Technology and Design [147]. SWaT is a fully

functional version of a water treatment plant designed for cybersecurity research.

The dataset is a multivariate time series dataset like the TE process, containing nor-

mal continuous operational data (7 days) and data collected under attack scenarios

(4 days) containing 36 different network attacks [112]. In [113], the authors com-

pared unsupervised LSTM based deep neural network and One-Class SVM, and

showed that LSTM performed slightly better than One-Class SVM. Kravchik and

Shabtai [114] provide further research on a variety of DNN architectures (convo-

3.1. Detecting Attacks on Industrial Control Systems 72

lutional and LSTMs) of unsupervised DNNs to detect attacks on SWAT test data.

In [115], authors also used LSTM to detect attacks on the SWaT testbed, but used

Cumulative Sum control Chart (CUSUM) to calculate the deviations, and so to de-

termine anomalies.

If not the first, one of the earliest studies that looked at the security of ICS

using the TE process model as a case study was by Cardenas et al. [119]. They in-

troduced an attack model (DoS and integrity attacks), and used a variant of the TE

process model obtained by linearising the (non-linear) TE model, coupled with a

non-parametric CUSUM to detect anomalies. Filonov et. al [118] created their own

model using part of a real gasoil plant. They generated attacks on the model, such

as modifying temperature and tank flow levels. They developed an unsupervised

LSTM model using the normal multivariate time series data to detect anomalies.

The same team applied another variant of RNN, a Gated Recurrent Units (GRU)

model on the normal operation of the TE process model [123] to detect attacks.

They used their own implementation of the TE process (not open-source), imple-

mented in Python, and simulated cyber attacks (DoS, Integrity, Noise) and gener-

ated data for the model. They report that their model performs better than dynamic

PCA. Similarly, Keliris et al. [120], extended the TE process model to a Hardware-

In-The-Loop testbed, and simulated their own cyber attacks (integrity, DoS). They

used a supervised machine learning algorithm, SVM, to detect attacks. The authors

do not report performance metrics. Kiss et al. [122] extended and carried out cy-

ber attacks (replay, DoS, integrity) against the TE process, and applied a clustering

method based on Gaussian mixture models to detect attacks. They also do not report

performance metrics, only indicate whether the attack was detected or not.

In this section, we covered a number of anomaly detection systems that were

designed to incorporate the behaviour of the process under control. Machine Learn-

ing techniques such as SVM and deep neural networks techniques, in particular the

newly developed recurrent neural networks, show promise for further research to

secure ICS, and we will focus on investigating these techniques in the design of

our anomaly-based intrusion detection. Unfortunately, making a consistent com-

3.2. Evolutionary Computation 73

parison with existing research is not possible due to limitations of reported results.

In general, not all studies report clear detailed descriptions of performance met-

rics, including true positive rate and false positive rates. The security community

is more at fault in this than fault detection community. Detection latency is also an

important metric, and researchers rarely report this. We found only two studies that

report it from the fault detection and diagnosis community [129] [139], and a single

one from the security community [123]. A common metric is essential to achieve a

consistent way to evaluate and compare future studies.

As a benchmark, the TE process model has been widely studied, because there

are few other realistic nonlinear process models. Fault detection and diagnosis stud-

ies tend to use the open-source fault data generated by the Braatz Group; however,

this dataset may not be suitable for security studies. As discussed earlier, it is a very

small dataset, and how well the proposed learning algorithms will perform in more

realistic scenarios requires further research. Furthermore, industrial control systems

are attracting a range of adversaries, and the behaviour of these adversaries will be

different to generated fault data. Thus, the anomaly detection systems suitable for

fault detection and diagnosis on the TE process may not be suitable for detecting

attacks. The security research literature in this area is in need of more studies on

adversary modelling, and the creation of high quality public datasets. Whilst the

Researchers from Kaspersky Lab made available their simulated attack data on the

TE process model [123], these contain only a few types of attack. The SWaT dataset

seems to be the only open-source data in this area.

3.2 Evolutionary Computation

Identifying those attacks that cause most damage against the components of a com-

plex system with non-linear dependencies can be defined as a combinatorial opti-

misation problem. Developing attacks against existing defence mechanisms is an

adversarial learning problem. Evolutionary computation provides promising solu-

tions to these problems.

Due to the complexity of the problem, conventional methods such as exhaus-

3.2. Evolutionary Computation 74

tive search are not useful. Local search methods, such as hill climbing, which start

from a single solution and move towards a local best by selecting a new solution

in the neighbourhood are, by definition, local in scope. These solutions suffer from

a major weakness that makes them unsuitable for most problems: success depends

on the single initial starting point, and so they are prone to becoming stuck in local

optima, especially for complex noisy search spaces. Random search algorithms are

inefficient [148]. There are two popular search methods tabu search [149], a local

search with memory; and simulated annealing [150], an iterative search imitating

the annealing process in metallurgy. These algorithms may sometimes perform bet-

ter than evolutionary approaches [151]; however, their application to problems in

security domain is limited, and we are not aware of any studies using them for

evolving attacks. As a result, we decided to eliminate them from consideration and

to focus instead on how best to utilise evolutionary algorithms. This decision was

supported by our own earlier work, [152] [153], which showed that evolutionary

algorithms can be applied successfully to evolve attackers against an intrusion de-

tection system protecting a wireless sensor network.

3.2.1 Evasion and Adversarial Learning

We assume an adversary who has control over her attack vector and knows the

feature space used by the anomaly-based intrusion detection system. However, she

does not know the detail of the underlying detection mechanisms. So far as she

is concerned, the detection is a black-box that can be queried. She queries the

detection with the attack vector, and obtains a detection probability. Her goal is to

find attacks that cause damage whilst evading detection and using the least effort.

Thus, the problem becomes a search problem with objectives.

Evolutionary algorithms [148] are inspired by analogies from natural selection

and include elements such as mutation, selection and crossover. They are cate-

gorised as global search heuristics, which are used for finding solutions to opti-

misation and search problems. In the last two decades, evolutionary algorithms

have been one of the most promising tools to emerge for solving challenging real-

world problems with multiple conflicting objectives, chaotic disturbances, random-

3.2. Evolutionary Computation 75

ness, and complex non-linear dynamics that can be too complex for conventional

algorithms to handle [154]. Evolutionary algorithms have been successfully ap-

plied to real-world problems, such as: electrical energy consumption forecasting

[155]; improving weather prediction [156]; smart grid management [157]; under-

standing evolution of antimicrobial resistance [158]; optimising UAVs [159]; and

optimisation of smart buildings [160], as well as a range of security problems.

The most widely known evolutionary algorithms are genetic algorithms (GA). To

solve a problem, GAs start with an initial population of randomly generated list of

candidate solutions represented as chromosomes (also called the genotype or the

genome). This evolves towards a population of better solutions over a number of

generations using the Darwin’s principle of natural selection, as implemented by

genetic operators [161]. Chromosomes can be represented using a wide variety of

data structures, including binary and real-numbers.

Some of the earlier work on evading intrusion detection was categorised under

a concept called mimicry attack. The notion of mimicry attacks, and a theoretical

framework for them, were introduced by Wagner et al. [162] with the aim of cre-

ating attacks that take steps to hide their existence from the IDS. They introduced

the concept as a theoretical framework and called for further research in this area.

The authors developed a framework to evolve a malicious sequence of system calls

against the IDS with the intention of evading detection, and yet carrying out mali-

cious behaviour. Similarly, Tan et al. [163] illustrated how adversaries can generate

attacks that could render anomaly-based intrusion detection ineffective. The attacks

they considered were those that exploited the privileges of UNIX systems programs,

in the presence of an open-source anomaly detector (Stide). The attacks were gen-

erated using evolutionary algorithms by modifying malicious system call sequences

so that they are ordered in a legitimate manner.

Evolutionary algorithms have been widely studied to improve the defence

mechanisms used within IT networks. They are one answer to the problem of how

to detect new forms of attack (exploiting unknown vulnerabilities) and to use this

knowledge to improve detection. Early work in this area focused on generating new

3.2. Evolutionary Computation 76

attack signatures (rules) to detect new types of intrusions. Forrest et al. [164] [165]

showed how to identify weaknesses in existing anomaly detection systems, and how

one can manipulate these weaknesses to generate new attacks that are not detected

by the existing IDS. Using the open-source DARPA Intrusion Detection dataset

[166], Li [167] showed how to use genetic algorithms to evolve new rules that

could help identify abnormal network behaviour before attacks take place. These

rules are evolved by modifying network protocol fields. A significant number of

studies followed this work, using GA to design better sets of rules for intrusion de-

tection purposes, testing various attacks against benchmark network datasets [168]

[169], [170] [171] [172] [173] [174]. Budynek et al. [175] used GA to evolve at-

tack scripts against a simulated operating system, and covered their tracks to avoid

detection from log file analysis.

Another evolutionary approach that has been widely used to evolve rules

against intrusion detection is Genetic Programming (GP) [176]. GP extends the idea

of GA to provide better expressive ability, by evolving more complex tree structures

as opposed to lists in GA. Lu and Traore [177] produced one of the earliest works

to apply GP to the detection of new forms of network intrusion. This work involved

designing rules using Internet network parameters (e.g. protocol type, number of

connections from the same source). They used the DARPA dataset [166] to show

that GP can be used to evolve new attack rules to detect known or novel attacks on

the network. Pastrana [178] used GP against a decision tree classifier (C4.5) and a

Bayesian classifier (Naive Bayes). As before, GP evolves rules by making changes

to network parameters.

In our previous work, [152] [153], GP was used to develop attacks, intended

to help identify vulnerabilities in detection before they can be exploited by the at-

tackers and so to improve the IDS. To assess the effectiveness of our approach, we

tested against a wireless sensor network (WSN) with publish-subscribe communi-

cations, defended by an artificial immune intrusion detection system [179]. The

use of GP for WSNs had not been studied in much detail prior to our work. The

GP was used to evolve cache poisoning attacks against the WSN, and the evolved

3.2. Evolutionary Computation 77

attacks were successful in suppressing significantly number of legitimate messages

while decreasing the likelihood of detection. Then, the IDS was improved by tun-

ing the parameters based on the attack vectors. Kayacik et al. [180] used GP to

evolve variants of buffer overflow attacks against a open-source (Snort) signature-

based IDS. In [181], they used multi-objective genetic programming to generate

multiple mimicry buffer overflow attacks to evade detection. In [182], the same

researchers compared two attack generation approaches, “white-box” and “black-

box”, in which the white-box assumes internal knowledge of the detectors, and the

“black-box” is limited by the response from the IDS.

Genetic algorithms have also been successfully applied to the evolution of mal-

ware samples designed to evade detection. Noreen et al. [183] used a genetic al-

gorithm to evolve computer viruses against commercial antivirus software. Meng

[184] used a multiobjective evolutionary algorithm (the Indicator-Based Evolution-

ary Algorithm [185]) to evolve Android malware against open-source malware de-

tection tools. Calleja et al. [186] also evolved Android malware using genetic

algorithms, but with the aim of forcing misclassification (i.e. if the target belongs

to class A, evolve to classify it as another class) rather than evading the IDS. This

was used against a malware detection system modelled as a decision tree classifier

(C4.5) and 1-nearest neighbour algorithm. They successfully fooled the detection to

misclassify 28 out of 29 cases. Aydogan and Sen used [187] GP to evolve Android

malware and tested it against anti-virus systems available for mobile security. Xu

et al. [188] attempted to evade malware classifiers for PDF files since PDF files are

often used by adversaries to hide malware. The GP successfully evolved malware

against two malware classifiers (a random forest classifier and a SVM classifier).

Genetic algorithms have also been applied to other defence mechanisms. The

study by John et al. [189] applied genetic algorithms to the improvement of moving

target defence, in which the attack surface is changed to disrupt the intelligence

gathered by the attacker (often during the reconnaissance phase). Experiments were

carried out on a prototype moving target defence system to evolve diverse set of

security configurations based on old solutions to form new defence configurations.

3.2. Evolutionary Computation 78

In the study carried out by Dewri et al. [190], multiobjective optimisation was

used with genetic algorithms to investigate optimal security measures for a system,

defined using the attack tree model.

3.2.2 Coevolution Approaches

In biology, the term coevolution describes the process in which two or more species,

e.g., predators and their prey, reciprocally cause changes in each other’s evolution.

The concept of coevolution has been incorporated into evolutionary computation

[191] [192] [193] to solve increasingly complex problems. It has also been used

to model the arms race between attackers and defenders, where both attackers and

detection change over the time of the evolution. The studies discussed earlier relied

on offline or manual changes to detection systems once new attacks were learned.

Rush et al. [194] simulated a coevolutionary agent-based network defence sys-

tem, to coevolve attacker and defender strategies, in which the goal of the attacker

is to explore and exploit the machines on a network, and the goal of the defender

is to select the appropriate protection measure based on the detection and mitiga-

tion techniques (e.g. shutting down targetted machines based on a threshold). The

authors carried out experiments using a simple simulation environment they imple-

mented for this study; nevertheless, the work is a proof of concept that shows the

potential applicability of coevolution to computer network security. Research car-

ried out by Garcie et al. [195], applies coevolution to a peer-to-peer network in

which attackers are tasked with disrupting the network by carrying out DoS attacks

against a set of nodes for some duration, and the defender’s goal is to protect the

network by selecting the one of three routing strategies. The fitness of opposing

strategies is defined as a multiobjective problem reflecting the goal of the attack-

ers and defenders. The authors tested several coevolutionary techniques, and found

that their adaption of the Incremental Pareto-Coevolution Archive (IPCA) algorithm

[196] produced better results.

Coevolutionary concepts have also been investigated: to prevent faults and cas-

cading blackouts in electric power transmission systems [197] [198]; to automate

red teaming for military scenarios [199]; and to improve the performance of mal-

3.3. Summary 79

ware detectors [200].

3.3 Summary
In this chapter, we surveyed the literature relevant to our work. There is a large body

of work related to intrusion detection for industrial control systems. However, the

focus of these studies has largely been on the network level and, on their own, they

are not sufficient to protect the security of ICS as they cannot detect the anomalous

behaviour that arises if the data flow between sensors, controller and actuators is

comprised. Furthermore, these studies, have also limitations due to oversimplified

threat modelling, and lack of realistic test environments and datasets. Somewhat

surprisingly, few studies focus on the interactions between different network layers

of industrial control systems. Most of the studies relevant to our work are carried out

by the fault detection and diagnosis community, as there is a considerable literature

focussed on fault detection for nonlinear systems. However, the applicability of

their approaches to attack detection is not well understood, because the behaviour

of adversaries is different to those generated by equipment malfunctions, signal

interruptions or human error.

The security community is starting to pay some attention to the detection of

attacks in the industrial control processes, which is encouraging. The focus of these

studies has been on unsupervised deep neural networks, and we will explore some

of these techniques in this thesis. However, due to shortage of open-source datasets,

attack detection in process control is an area not well studied by the community.

In this chapter, we also covered the related work in evolutionary computation.

Studies based on co-evolution, mimicry attacks and evasion techniques are all in-

tended to help identify vulnerabilities before systems are attacked. These studies

appear to be promising; however, with the exception of studies on evolving mal-

ware, they tend to focus on simple use cases and weak detection mechanisms. In

this thesis, we will investigate if it is possible to use techniques from evolutionary

computation to evolve attacks on a complex real-world system.

Chapter 4

Case Study, Threat Model and

Methods

We based an investigation of research questions outlined in Section 1.2 on a re-

alistic process model that represents a real-world ICS process, and a simulation

environment in which we can study the security properties of and damage caused

to a industrial plant. Setting up a laboratory based system, or even a hardware-in-

the-loop (HIL) systems that combines with real devices was beyond scope of this

thesis. Although there is some work related to ICS testbeds, this often fails to repro-

duce the process accurately [201]. In either case, simulations is essential to allow

machine learning to conduct many experiments in a short space of time.

We focused on software simulations that are realistic, the most mature of which

was the Tennessee Eastman process control problem [20]. This simulated system

has credibility because it represents a real industrial process and was created and

validated by the owners of that process. Our reasons for selecting the TE process

model are: i) it is a well-known model that has been widely studied; ii) it is a

complex, highly non-linear system with a number of components that reflects a real

process; iii) safety and economic viability can be quantified; iv) the code and model

is available, and have been revised and validated over the years; v) it continues to be

a relevant model for both control and, more recently, the security community. The

National Institute of Standards and Technology (NIST) has developed a hardware-

in-the-loop cybersecurity performance testbed using the TE process model [202].

4.1. Case Study: Tennessee Eastman Process Control Problem 81

We are not aware of any other open source model that has these properties.

In this chapter, the TE process control model is introduced. The objective

of the plant, the components, in terms of sensors and actuators, and the potential

disturbances are illustrated. We introduce the threat model and discuss some attacks

we will be investigating using the TE model. Next, we introduce the background

material for evolutionary multiobjective optimisation, and explain the evolutionary

algorithms we have selected for optimisation. Finally, we give a brief overview of

machine learning and deep learning, and introduce the techniques we identified as

potential methods for detection.

4.1 Case Study: Tennessee Eastman Process Control

Problem
The Tennessee Eastman (TE) process control problem was first introduced at a

meeting organised by the American Institute of Chemical Engineers AIChE in

1990 by Downs and Vogel [20]. The purpose of this problem was to provide

the academic process control community with a realistic model of a real-plant

wide industrial process. The behaviour of the plant was provided in Fortran code,

with a flow-sheet, and a description of the process. Since the 1990s, the TE

process model has been studied by many people in the control community: for

control design [203, 204, 205, 206] optimisation, fault detection and diagnosis;

[129, 134]; for teaching; and now, by security researchers, to study the security

of ICS [119, 207, 208, 209]. The TE model is based on a real process; however,

some changes were made to keep the identity of the reactants and products secret.

The process has a total of eight components: four gaseous reactants (A, C, D, E),

two products (G, H), an inert component (B) and a by-product (F). The reactions

are [20]:

A(g) + C(g) + D (g)→ G(liq), Product 1,

A(g) + C (g) + E (g)→ H(liq), Product 2,

A(g) + E (g)→F(liq), Byproduct,

3D(g)→ 2F(liq), Byproduct.

4.1. Case Study: Tennessee Eastman Process Control Problem 82

The reactions are irreversible and exothermic, and their rates are a function of

temperature, as determined by an Arrhenius equation [20]. The process is illustrated

in Figure 4.1, and consists of five major components [20]: the reactor, the product

condenser, a vapour-liquid separator, a recycle compressor and a product stripper.

The gaseous reactants (A, C, D and E), are fed to the reactor, in which they react

to form liquid products. The process has four feed streams (A, D, E and A+C),

one product stream (a mix of G and H) and one purge stream. Most of the inert

component (B) enters as part of C feed. The gas phase reactions are catalysed by

a non-volatile catalyst dissolved in the liquid phase within the reactor. The reactor

uses an internal cooling capability for removing the heat produced by the reaction.

The products leave the reactor as vapours along with the unreacted feeds, while

the catalyst remains in the reactor [20]. The product stream from the reactor goes

through a cooler that condenses the products and, from there, it passes to a vapour-

liquid separator. Noncondensed components are recycled back to the reactor feed

through a centrifugal compressor. Condensed components are moved to product

stripper column to strip any remaining reactants with feed stream 4. Products (G and

H) come out from the bottom of the stripper and they are separated in a downstream

refining section that is not present in this model [20]. The inert component and

byproducts are purged from the plant as vapour through the vapour-liquid separator.

The process has six modes of operation with different G/H mass ratios designed to

produce different production outputs at different rates to meet market demands.

There are 41 process variable measurements known as XMEAS (sensors illus-

trated in Table 4.1) and 12 manipulated variables (known as XMV (valves/actuators,

illustrated in Table 4.2) that are involved in controlling and monitoring the plant.

4.1. Case Study: Tennessee Eastman Process Control Problem 83

Fi
gu

re
4.

1:
Te

nn
es

se
e

E
as

tm
an

pr
oc

es
s

co
nt

ro
lp

ro
bl

em
[2

0]
[2

10
]

4.1. Case Study: Tennessee Eastman Process Control Problem 84

Measurements Variable Number Variable Name
Continuous XMEAS (1) A feed (stream 1)

XMEAS (2) D feed (stream 2)
XMEAS (3) E feed (stream 3)
XMEAS (4) A and C feed (stream 4)
XMEAS (5) Recycle flow (stream 8)
XMEAS (6) Reactor feed rate (stream 6)
XMEAS (7) Reactor pressure
XMEAS (8) Reactor level
XMEAS (9) Reactor temperature
XMEAS (10) Purge rate (stream 9)
XMEAS (11) Product separator temperature
XMEAS (12) Product separator level
XMEAS (13) Product separator pressure
XMEAS (14) Product separator underflow (stream 10)
XMEAS (15) Stripper level
XMEAS (16) Stripper pressure
XMEAS (17) Stripper underflow (stream 11) XMEAS
XMEAS (18) Stripper temperature
XMEAS (19) Stripper steam flow
XMEAS (20) Compressor work
XMEAS (21) Reactor cooling water outlet temperature
XMEAS (22) Separator cooling water outlet temperature

Reactor Feed Analysis (Sampled) XMEAS (23) A
XMEAS (24) B
XMEAS (25) C
XMEAS (26) D
XMEAS (27) E
XMEAS (28) F

Purge Gas Analysis (Sampled) XMEAS (29) A
XMEAS (30) B
XMEAS (31) C
XMEAS (32) D
XMEAS (33) E
XMEAS (34) F
XMEAS (35) G
XMEAS (36) H

Product Analysis (Sampled) XMEAS (37) D
XMEAS (38) E
XMEAS (39) F
XMEAS (40) G
XMEAS (41) H

Table 4.1: Process variable measurements of the TE process [20]

4.1. Case Study: Tennessee Eastman Process Control Problem 85

Variable Number Variable Name
XMV(1) D Feed Rate (stream 2)
XMV(2) E Feed Flow (stream 3)
XMV(3) A Feed Flow (stream 1)
XMV(4) C Feed Rate (stream 4)
XMV(5) Compressor Recycle Valve
XMV(6) Purge Valve (stream 9)
XMV(7) Separator Pot Liquid Flow (stream 10)
XMV(8) Stripper Liquid Product Flow (stream 11)
XMV(9) Stripper Steam Valve
XMV(10) Reactor Cooling Water Flow
XMV(11) Condenser Cooling Water Flow (stream 13)
XMV(12) Agitator Speed

Table 4.2: Process manipulated variables of the TE process [20]

The first 22 XMEAS variables are continuous, and the remaining process vari-

ables are sampled with frequencies that vary between 0.1-0.25 hours, and a dead

time (the time between the sample taken and the analysis is complete) also of 0.1-

0.25 hours [20]. The main control objectives of the plant are [20]: to maintain the

process variables at the desired values; to ensure that the operational conditions are

within the equipment constraints; reduce the variability of the product rate and prod-

uct quality during disturbances; minimise valve movement; and to recover fast and

smoothly from disturbances, production and product changes. For example, product

composition variability of greater than ±5mol% G is assumed to be harmful, and

therefore plant needs to avoid this. The process operating constraints are illustrated

in Table 4.3. A detailed description of the TE process model can be found in [20].

Process Variable
Normal Operating Limits Shut Down Limits
Low Limit High Limit Low Limit High Limit

Reactor Pressure none 2895 kPa none 3000 kPa
Reactor Level 50% 100% 2.0 m3 24.0 m3

(11.8 m3) (21.3 m3)
Reactor Temperature none 150◦C none 175◦C
Product separator Level 30% 100% 1.0 m3 12.0 m3

(3.3 m3) (9.0 m3)
Stripper Base Level 30% 100% 1.0 m3 8.0 m3

(3.5m3) (6.6m3)

Table 4.3: TE process operating constraints [20]

4.1. Case Study: Tennessee Eastman Process Control Problem 86

The TE process problem makes no recommendation as to what need to be con-

trolled, and leaves the selection of controlled variables and control strategies to the

control engineers. Most proposed solutions do not control all the variables. The

process model used in this work is developed by Ricker, and it is available from

his home page [124]. The code is implemented in C, with a MATLAB/Simulink

interface available via an S-function implementation. The control control strategy

used is by Larsson et al. in [210]. Isakov and Krotofil [211] extended the Simulink

model by enhancing it with Simulink blocks that enable one to carry out integrity

and DoS attacks on the process measurement and manipulated variables. We ex-

tended their model to add replay attacks, have more control over the disturbances

(which can now be turned on at a particular time) and corrected some small prob-

lems we saw in their implementation. The attacks in this report are carried out using

the model we extended. The simulated control system has 18 proportional-integral

controllers, 16 process vector measurements XMEAS (1-5,7-12,14-15,17,31,40),

and 9 setpoints controlled by eight multivariable control loops and one single feed-

back control loop [208] [210]. The mode used throughout the experiments in this

thesis is Mode 1 with a given 50/50 mass ratio between components G and H [20].

The problem includes 20 disturbances (defined as faults by the fault detection

and diagnosis studies) illustrated in Table 4.4. These can be turned on and off.

4.1.1 Disturbances

One of the objectives of processes like TE is to react appropriately to the distur-

bances that occur as the results of random fluctuations in the real-world. Thus, the

control configurations need to recover quickly and smoothly from the variations

that are caused by process dynamics. Table 4.4 illustrates typical disturbances of

the process, using the acronym from the original paper, IDV for Disturbance. To

understand the full effect of the disturbances, the model was executed using the dis-

turbances in Table 4.4. Figure 4.2 illustrates the variability in reactor pressure when

disturbances are turned on. Disturbances 6 and 8 are harder to handle. Disturbance

8 (IDV 8) introduces random variation in A, B and C feed flow composition (stream

4), and generates large variations in reactor pressure (Figure 4.2) and the flow rate of

4.1. Case Study: Tennessee Eastman Process Control Problem 87

Variable Number Process variable Type
IDV (1) A/C feed ratio, B composition constant(stream 4) Step
IDV (2) B composition, A/C ratio constant (stream 4) Step
IDV (3) D feed temperature (stream 2) Step
IDV (4) Reactor cooling water inlet temperature Step
IDV (5) Condenser cooling water inlet temperature Step
IDV (6) A feed loss (stream 1) Step
IDV (7) C header pressure loss-reduced availability (stream 4) Step
IDV (8) A, B, C feed composition (stream 4) Random Variation
IDV (9) D feed temperature (stream 2) Random Variation
IDV (10) C feed temperature (stream 4) Random Variation
IDV (11) Reactor cooling water inlet temperature Random Variation
IDV (12) Condenser cooling water inlet temperature Random Variation
IDV (13) Reaction kinetics Slow Drift
IDV (14) Reactor cooling water valve Sticking
IDV (15) Condenser cooling water valve Sticking
IDV (16) Unknown Unknown
IDV (17) Unknown Unknown
IDV (18) Unknown Unknown
IDV (19) Unknown Unknown
IDV (20) Unknown Unknown

Table 4.4: TE process disturbances [20]

the products. The process is able to control and reject IDV 8 disturbances. However,

as shown in Figure 4.2, the IDV 6 disturbances are the most drastic: the process is

unable to cope after 7 hours. IDV 6 disturbs the stoichiometric ratio of components

A and C and drives the concentration of the purge gas stream down rapidly.

Fault detection and diagnosis studies use these disturbances to distinguish be-

tween normal operating conditions and disturbances.

4.1. Case Study: Tennessee Eastman Process Control Problem 88

Normal 1 Disturbances IDV 1 Disturbances IDV 2 Disturbances IDV 3

Disturbances IDV 4 Disturbances IDV 5 Disturbances IDV 6 Disturbances IDV 7

Disturbances IDV 8 Disturbances IDV 9 Disturbances IDV 10 Disturbances IDV 11

Disturbances IDV 12 Disturbances IDV 13 Disturbances IDV 14 Disturbances IDV 15

Disturbances IDV 16 Disturbances IDV 17 Disturbances IDV 18 Disturbances IDV 19

Disturbances IDV 20

Figure 4.2: Behaviour of the TE process disturbances

4.2. Threat Model 89

4.2 Threat Model
To explore our research questions we analysed a number of attack scenarios against

the TE model. We assume an adversary that has no special knowledge of the plant

but is able to monitor and modify the measurements from process variables that are

sent from sensors to the controller, and control commands that are sent from the

control to actuators [212]. As past attacks show, these are common attack vectors

that are often used to carry out attacks. How attackers compromised these signals is

outside the scope of our work. However, it is worth noticing that there are examples

of situations in which networks are compromised. As discussed in Chapter 2, the

security of ICS and, in particular, the communication protocols is poor; it is regret-

tably a low barrier to attack in many existing systems. Our assumptions is that the

adversaries can indeed obtain the necessary means to compromise the confidential-

ity of the system and so they have access to the communication between the control

components. As discussed in Section 2.3.6, there are a wide range of threat actors,

and their motives for carrying out the attacks are not all the same. For a process

like the TE model, this could mean targeting the safety of the system, increasing the

operating cost, and targeting the production quality:

• Safety: As illustrated in Table 4.3, the TE process has a set of operating con-

straints that are captured as normal plant operating limits and plant shutdown

operating limits. The process should operate within the normal limits. If the

process strays outside the shutdown limits, it will shut the plant down immedi-

ately [210]. These limits are put in place to protect the personnel, equipment

and production, and to meet regulatory compliance requirements. For the TE

model, when the process reaches the low or high limits of reactor pressure, re-

actor level, reactor temperature, product separator level or stripper base level,

it will shut down. An adversary may therefore target the availability of the

plant by attempting to it shut down.

• Operational Cost: The operational costs of the TE process are calculated

according to the following equation [20]:

4.2. Threat Model 90

totalcosts = (purgecosts)(purgerate)+(productstreamcosts)(productrate)+

(compressorcosts)(compressorwork)+(steamcosts)(steamrate)

(4.1)

An adversary may try to increase the total operating costs of the plant. This

cost is based on the loss of raw materials, calculated considering the loss

of product in the purge stream, product leaving in the product stream, the

cost of associated with amount of compound F formed, and the cost of the

compressor work and stripper steam costs [20].

• Quality of the Product: Chemicals are often classified into three grades:

reagent (highest purity available), laboratory (relatively high purity) and

technical (contains impurities), and prices are determined according to the

purity. Manufacturing pure chemicals is an expensive process, and impurities

not only determine the sale price for the products, but they may also cause

harmful effects. An adversary may try to cause economic damage by attack-

ing the quality of the product. Thus, an adversary may try to damage the

process by causing composition variability.

Figure 4.3 shows our underlying threat model that is based on common at-

tacks against the NCS. The adversary is capable of intercepting the communication

from the sensor to controller, and controller to actuator. The attacks we consider

are categorised as DoS, integrity (man-in-the-middle) and replay attacks. We will

investigate the impact of these attacks in terms of measuring the impact on safety,

operational cost, and product quality. In the following section, we briefly discuss

what this means, and explain how the attacks are modelled.

4.2.1 Denial of Service Attacks

An adversary may attack the signal sent from the sensor to controller and or from

controller to the actuator. In the past, DoS attacks were carried out on industrial con-

trol equipment by exploiting a range of vulnerabilities, including unauthenticated

4.2. Threat Model 91

Figure 4.3: ICS attack model against the networked control system

remote attackers causing devices go into states such as defect mode [213] [214];

flooding the network with large amount of traffic to prevent legitimate packets from

reaching the master devices or any other connected devices; sending incorrect data,

for example longer parameters [215]; buffer overflows [216]; sending specially cre-

ated packets to certain ports [217] [218]; and hardware vulnerabilities [219]. Often,

these types of vulnerabilities require devices to be manually reset and/or patched to

allow the system to continue with normal operation.

4.2.2 Integrity Attacks

This is a form of man-in-the-middle attack, in which the adversary modifies the

process values that are sent from the sensors to the controllers, and/or from the

controller to the actuators. This kind of attack can be carried out, firstly by ex-

ploiting the vulnerabilities that bypass authentication and escalate privileges using

a variety of techniques such as scanning and sniffing the network [220]; weak ar-

chitecture design that permits interception and change of authentication requests

[221]; weak default passwords and insecure authentication generation [222]; miss-

ing authentication when exceptions occur (e.g. entering safe mode without security)

[223]; security practices such as hard coded private SSH and HTTPS keys [224] and

storing credentials without sufficient encryption [225]; using broken or insufficient

cryptographic algorithms; lack of two-way (mutual) authentication; transmitting or

4.2. Threat Model 92

storing credentials in clear; keeping default credentials; inadequate authentication

and integrity verification methods; poor access control mechanisms; back-doors in-

tended for software update and maintenance; and exploiting insiders. The attack

vector is not limited to this, and is constantly expanding.

4.2.3 Replay Attacks

An adversary may gather data from a sensor or controller for some duration, and

then replay this data at another time to carry out a more subtle attack. It can be

carried out using the same exploits as integrity attacks, but, in addition, needs a

memory in which to record data sequences.

4.2.4 Attack Model

Others have investigated the impact of DoS and man-in-the-middle attacks on the

TE model in terms of safety and economic consequences [226] and [208]. We are

following their attack model; however, the focus of the previous study in [226] con-

centrated on a simplified version of the TE model, and [208] examined at single

DoS and integrity attacks. We extend their analysis by undertaking a more compre-

hensive search and examining the possibility of forming combinations of attacks.

The attack parameters are as follows:

• Duration of the Attack: The maximum length of the attack is limited to the

process run time. In the used TE model, this is limited to 72 hours. An attack

begins at time ts and ends at te. It can start any time, between start of the plant

and the end: t ∈ [0−72]. Let Ia be the attack interval, let yi be the output of

sensor i at time t, and let ui be the controller to actuator signal i at time t. The

modified signals ya
i (t), ua

i (t) are as follows:

ya
i (t) =

y(t)i , f or t /∈ Ia

ŷ(t)i , f or t ∈ Ia

(4.2)

ua
i (t) =

u(t)i , f or t /∈ Ia

û(t)i , f or t ∈ Ia

(4.3)

4.2. Threat Model 93

where ŷ(t)i and û(t)i are the modified values the adversary sends.

• Attack Mode: There are two types of attack modes built into the simulation

[211]: interval and periodic. Interval attacks start from the time of the attack

and continue for the given duration. The periodic attack starts from the start-

ing time of the attack, and lasts until the duration of the attack is complete,

but it does this periodically, as defined by setting a pulse (wait) period.

• Attack Value: For the DoS attack, we assume the response strategy for the

controller or the actuator is to use the last received value as the current read-

ing:

ŷ(t)i = yi(ts−1)

û(t)i = ui(ts−1)
(4.4)

where the ts is the attack start time.

Man-in-the-middle attacks on systems similar to TE models involve forging

the signals that go from the sensor to the controller and or from the controller

to the actuator. The receiving end, for example the controller, will respond

to the forged signal. Rather than sending random values, an attacker may

prefer to listen to the transmitted signals and modify values so that they are

still within the ranges of possible plant signals: this has the potential to cause

damage. One way to achieve this is by modifying the sensor measurements

(yi) and manipulated values (ui) using observed upper (maximum) and lower

(minimum) limits [226]. For the remaining of the thesis, we will call these

attacks IntegrityMin and IntegrityMax attacks.

The IntegrityMin is where the actual output of the sensor or controller signal

i at time t is replaced with a minimum value:

ŷ(t)i = min
t∈T

(yi(t))

û(t)i = min
t∈T

(ui(t))
(4.5)

The IntegrityMax is where the actual output of the sensor or controller signal

4.2. Threat Model 94

i at time t is replaced with a maximum value:

ŷ(t)i = max
t∈T

(yi(t))

û(t)i = max
t∈T

(ui(t))
(4.6)

The replay attack manipulates signals that are sent from the sensor to con-

troller, or from controller to the actuator as in the integrity attack but, this

time, it repeatedly replays the signals it collected earlier for the duration of

the attack:

yr
i = [y(rstart)

i ,..., y(rend)
i]

ur
i = [u(rstart)

i ,..., u(rend)
i]

ŷ(t)i = ŷr
i [t mod len yr

i]

û(t)i = ûr
i [t mod len ur

i]

(4.7)

where yr
i and ur

i are the signals recorded by the adversary from the replay

period, rstart to rend .

• Attack Targets: Possible attack targets are process variable measurements

sent by the sensors or manipulated variables received by the actuators. The

control strategy selected for the TE process uses 16 process variable mea-

surements (XMEASs) from sensors, and 12 manipulated values (XMVs) for

valves. XMV 5, XMV 9 and XMV 12 are fixed, and so they are not used

by the control strategy. We denote the remaining XMEAS and XMV as the

potential targets for attacks. Controllers can be attacked by manipulating the

setpoints but, given the size of the search space and limited resources, we will

focus on the sensors and actuators.

4.3. Evolutionary Algorithms and Multiobjective Optimisation 95

4.3 Evolutionary Algorithms and Multiobjective Op-

timisation
In this section, we introduce the terminology that relates to the evolutionary al-

gorithms, and explain the details of two candidate methods we have selected for

further investigation: the Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

[227] and Strength Pareto Evolutionary Algorithm 2 (SPEA2) [228].

Genetic algorithms (GA) [148], like other members of the evolutionary compu-

tation family, are inspired by genetic processes of biological organisms, mimicking

the process of natural evolution. Although these techniques are similar, they dif-

fer in the way they use genetic operators and how they are represented (the data

structures used). To cover the new developments in the field, many people have

been using general umbrella terms such as evolutionary computing or evolutionary

algorithms. In this thesis, we use the term evolutionary multiobjective optimisation

(EMO) to describe genetic algorithms for multiobjective optimisation. Furthermore,

to avoid any confusion, the evolutionary algorithms developed as part of the work

reported in this thesis implements the evolutionary concepts shown in Figure 4.4.

Figure 4.4: General process of an evolutionary algorithm [229]

The terms used in discussing genetic algorithms are generally accepted and

used by other evolutionary algorithms. A GA starts with a population of individuals,

4.3. Evolutionary Algorithms and Multiobjective Optimisation 96

each describing a possible solution to the given problem. Each individual in the

population gets assigned a fitness value according to a fitness function that calculates

how close the individual is to the desired solution. Before, a GA can be executed,

a suitable representation or (encoding) and a fitness function need to be devised to

evaluate the performance of the individuals. These solutions are represented as a

set of parameters. These parameters are known as genes. The individual solutions

composed of genes are chromosomes. Each gene may have some number of values

called allele, and the position of the gene is known as its locus. The term that

is often used to describe the genetic matter of the individuals in decision space

(i.e. referring to the encoding of the individual, chromosome) is genotype. The

performance of this genotype can be evaluated once it is expressed in the objective

space known as the phenotype. The individuals in the population are subject to

reproduction and evaluation for a number of iterations, known as generations, with

the aim that individuals evolve in a way that increases their fitness.

During reproduction, individuals are selected from the current population and

variation is performed to change the genetic material of the individuals. This vari-

ation involves crossover (also called recombination and mutation). Given two in-

dividuals in the current population (parents), crossover operators (e.g. one-point

crossover, two-point crossover, ordered crossover, uniform crossover) are used to

randomly select some portions of the parents to generate a new offspring, inheriting

some genes from each parent. The number of individuals selected for crossover is

defined as a probability, typically a rate of 0.8 or greater is selected to ensure the

parents have a high chance of passing their genes to their offspring. On the other

hand, mutation (e.g. bit flip mutation, swap mutation, scramble mutation, uniform

mutation) involves making a small alteration in a current individual, and the proba-

bility of the mutation is often small, typically in the region of 0.1, to avoid delaying

convergence unnecessarily. These parameters are often selected using self-tuning

techniques. If the rates of crossover and mutation do not add up to 1.0, then some

individuals are copied, reproduced (verbatim) to the next generation.

As with most evolutionary algorithms, selection is used to ensure the individ-

4.3. Evolutionary Algorithms and Multiobjective Optimisation 97

uals with the highest fitness value survive to the next generation. This is known

as environmental selection. The selection of individuals that are used to produce

offspring is known as mating selection.

If the GA is effective, it will evolve the population over successive genera-

tions such that the fitness of the solutions increases in each generation, towards the

global optimum. A GA converges when it progresses to the point at which most of

the individuals in the population are identical and diversity is at a minimum. An un-

desirable, but common problem in GAs is premature convergence [230] when a few

individuals with high, but not optimal, fitness values rapidly dominate the popula-

tion, causing it to get stuck at a local minimum (or maximum). When this occurs,

the GA loses its ability to improve the fitness of the individuals in the population, as

the crossover of similar parents fails to generate offspring that are superior to their

parents.

4.3.1 Multiobjective Optimisation

In many real-world problems, decisions need to be made based on multiple com-

peting or conflicting objectives and constraints. This is often the case in security

for making decisions related to cyber security investment or security hardening,

where resources must be allocated on the basis of risks, in the presence of con-

straints such as a limited security budget for buying control measures. In such

situations, where there might not be a single solution, formulating the problem as

a multiobjective optimisation (MOO) with multiple choices can help to balance the

trade-offs among the objectives in a more effective manner [190, 231, 232]. These

approaches search for the set of non-dominated solutions (i.e. individuals in evolu-

tionary computation). A solution is defined as being non-dominated if there are no

other solutions that would improve any objective without degrading one or more of

the other objectives [233]. Once the set of these solutions is identified, known as

the non-dominated set or the Pareto-optimal set, then the decision maker can make

decisions by examining these solutions.

MOO takes problems with multiple objectives and simultaneously seeks to

optimise all objectives and provide solutions on, or close to, the Pareto-optimal set.

4.3. Evolutionary Algorithms and Multiobjective Optimisation 98

More often, this is an estimate because real-world problems are too complex to

allow the complete Pareto-optimal set to be determined, either because the search

space is too large or because obtaining solutions is costly in time and computation.

The multiobjective optimisation problems we have are related to increasing

the impact of an attack whilst avoiding detection. We are concerned with finding

optimal solutions for the following cases:

1. Attack the safety of the plant: Minimise plant operating time, minimise

effort required to carry out attacks

2. Cause economic damage: Maximise operating cost, minimise effort re-

quired to carry out attacks

3. Cause economic damage and avoid detection: Increase operating cost, min-

imise Detection Rate, minimise effort

Such real world problems are often complex and NP-hard, many containing

parameters related to decision making, objectives and constraints. Generating at-

tacks against a process like the TE process could involve the selection of: attack

target (controllers, sensors, actuators); attack types; parameters for these attacks;

attack start times; attack duration; and so forth. As explained earlier, in practice,

identifying the exact Pareto-optimal set for such problems is often not feasible. In

these cases, the concept of estimation, ε-dominance [234] and ε-approximation are

applied. Evolutionary algorithms have become a promising approach for solving

multiobjective optimisation problems [235] that try to find near optimal solutions

using reasonable computational power due to their inherent parallelism, and their

ability of generating a set of solutions in a single run [236].

4.3.1.1 Multiobjective Optimisation Terminology

Without loss of generality, we assume that a MOO problem involves minimising all

objectives. A MOO minimisation problem is defined in terms of a set of m decision

variables and n objectives [233]:

Minimise : y→ f (x) = (f1(x), f2(x), ..., fn(x)) (4.8)

4.3. Evolutionary Algorithms and Multiobjective Optimisation 99

where individuals from the decision space X are mapped into the objective Y space:

x = (x1,x2, ...,xm) ∈ X

y = (y1,y2, ...,yn) ∈ Y
(4.9)

and where x is the decision vector and y is the objective vector. A decision

vector u ∈ X dominates another one v ∈ X (u < v) if and only if (iff) [233]:

∀i ∈ (1,2, ...,n) : fi(u)≤ fi(v) and ∃i ∈ (1,2, ...,n) : f j(u)< f j(v)

(4.10)

That is, none of the objectives in u is worse than the objectives in v, and u

contains at least one objective that is strictly better than v.

Based on these relations, the non-dominated individuals can be defined. Let

x ∈ F be an arbitrary decision vector. x is non-dominated regarding the set F ′ ⊆ F

iff there is no vector in F ′ which dominates x [233]:

@x′ ∈ F ′ : x′ < x (4.11)

Based on these definitions, the decision vector x is Pareto optimal iff x is de-

fined as non-dominated regarding F . The Pareto optimal set is defined as the set of

all non-dominated individuals, that is Pareto optimal individuals. The correspond-

ing objective values of the Pareto optimal set is known as Pareto optimal front (also

known as Pareto frontier)[233].

4.3.2 Evolutionary Multiobjective Optimisation Algorithms

Application of evolutionary algorithms in multiobjective optimisation, known as

evolutionary multiobjective optimisation (EMO) [233], has attracted research inter-

est from researchers with a wide range of backgrounds, and has become an active

research areas in the field of evolutionary computation. As a result, a number of

algorithms have been proposed to solve multiobjective optimisation problems. In

general, EMO algorithms (EMOA) can be classified into three groups based on

their selection operators: Pareto-based, aggregation-based and indicator-based al-

4.3. Evolutionary Algorithms and Multiobjective Optimisation 100

gorithms [237]. The Pareto-based algorithms first measure the quality of individ-

uals based on Pareto dominance, and then a secondary operation is used to make

selections among the non-dominated individuals to maintain population diversity.

Some of the more popular Pareto-based EMOA include the Non-Dominated Sorting

Genetic Algorithm II (NSGA-II) [227], Strength Pareto Evolutionary Algorithm 2

(SPEA2) [228], Pareto archived evolution strategy (PESA) [238], Pareto Envelope-

based Selection Algorithm II (PESA-II) [239] and Niched Pareto Genetic Algorithm

for Multi-Objective Optimization (NPGA) [240].

Non-Pareto algorithms measure the quality of individuals based on aggre-

gation or indicator. Aggregation-based algorithms reformulate the MOO prob-

lem into a set of scalar optimisation sub-problems, optimise them simultaneously

and aggregate the objectives using an aggregation function to accumulate a single

scalar value [237]. Multiobjective Evolutionary Algorithm Based on Decompo-

sition (MOEA/D) [241] is the most popular aggregation-based EMOA. Indicator-

based EMOA use a performance indicator function (e.g. s-metric or hypervolume,

see Section 6.2) to determine the quality of the solution sets. S-metric Selection-

EMOA (SMS-EMOA) [242], indicator-based EA (IBEA) [185] and HypE [243] are

the three of the best-known indicator-based EMOA.

Due to the computationally intensive nature of this work, and the selected TE

model simulator in MATLAB being slow, it was not possible for us to compare a

wide range of EMO algorithms. We decided to focus on the Pareto-based algo-

rithms, among which NSGA-II and SPEA2 are well-known, and generally accepted

as being two of the most reliable forms of EMOA. They have both been subject to

changes over the years to improve performance and accuracy, and they have been

successfully applied to a range of problems. They work well for problems with a

small number of objectives. They are also straightforward to implement and they

can easily be altered to meet the needs of the problem. Considering these options,

we decided to utilise NSGA-II and SPEA2 in our work. In the following sections,

we present how these two algorithms work and in subsequent chapters, we explain

how we have utilised them.

4.3. Evolutionary Algorithms and Multiobjective Optimisation 101

4.3.2.1 The Non-Dominated Sorting Genetic Algorithm II (NSGA-

II)

The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) [227] [244] is one of

the most widely used EMOAs. It is an improved version of the earlier NSGA [245]

and is computationally faster, better at keeping good individuals once they are found

through use of elitism, and better at preserving diversity through the guidance of the

crowding distance operator. Before describing the whole process, we first explain

two important components of NSGA-II: fast non-dominated sorting and crowding

distance computation. The non-dominated sorting procedure takes a population P0,

containing N individuals, applies a ranking to each individual in P, and returns a

list of non-dominated fronts F using the steps illustrated in Algorithm 1. For each

individual p in a population P, a comparison is made to all other individuals q in P. If

p dominates q then q is added to the set of individuals dominated by p, Sp, however,

if p is dominated by q then the domination counter of p, np is increased by 1 (i.e.

sum of individuals that dominate p) [244]. If there are no individuals that dominate

p, then p belongs to the first front, F1 [244]. While Fi is not empty, for each member

p in Fi and q in Sp, if the size of nq is 0, then q is added to the next front [244].

This process is used to identify all fronts, each assigned a ranking. Assuming it

is a two-objective minimisation of fitness, Figure 4.5a illustrates an example of the

ranking, and assignment of individuals to these fronts. Each individual is assigned a

rank according to its non-domination level, where 1 is the best level, 2 is the second

best level, and so on [244].

In the next step, NSGA-II computes the crowding distance of each individual

within its front to determine the density of individuals surrounding a particular in-

dividual in the population [244]. NSGA-II considers each of the values of the M

objectives independently, and sums the distances between their neighbouring indi-

viduals. As we show later, this density value is used to select individuals within

a set. Figure 4.5b illustrates an example of the crowding distance of an individ-

ual, i, within its front with two objectives M=(f1, f2). Each of these objectives are

processed independently and nearest neighbour individuals change for each objec-

4.3. Evolutionary Algorithms and Multiobjective Optimisation 102

Algorithm 1: Fast non-dominated sorting process [244]
Input: P = population of individuals
Output: Fr = F1,F2, ... - set of non-dominated fronts

1 F ← /0
2 foreach p in P do
3 Sp = /0
4 np = 0
5 foreach q in P do
6 if p < q then
7 SP = SP∪{q}
8 else if q < p then
9 nP = nP +1

10 if np = 0 then
11 prank = 1
12 F1 = F1∪{p}

13 i = 1
14 while Fi 6= /0 do
15 Q = /0
16 foreach p in Fi do
17 foreach q in Sp do
18 nq = nq−1
19 if nq = 0 then
20 qrank = i+1
21 Q = Q∪{q}

22 i = i+1
23 Fi = Q
24 return F

tive. The crowding distance for i is calculated as the sum of average side-lengths of

the cuboid (dashed box) that is formed using its neighbouring individuals, i-1 and

i+1, as vertices [244]. The steps illustrated in Algorithm 2 are used to calculate the

crowding distance of each individual in the Pareto front F, composed of N individ-

uals. Each individual in F is initialised to 0 (line 2). The m in line 4 is used to index

each objective. The F [i]m is the mth objective of the ith individual in the set, F. f max
m

and f min
m represents the maximum and minimum values for objective m [244]. For

each objective m, the individuals in F are sorted in ascending order of magnitude

based on their value for that objective (line 6). An infinite distance value is assigned

4.3. Evolutionary Algorithms and Multiobjective Optimisation 103

(a) Non-dominated sorting, where the population is di-
vided into ranks

(b) Crowding distance calculation

Figure 4.5: Operations of NSGA-II algorithm [244]

to the individual with smallest and largest objective values (line 6). The distance of

remaining individuals, that is i=2 to (N-1), are calculated according to line 8, com-

puting the normalised difference between the two nearest neighbours for the current

objective. The total crowding distance is equal to the sum of the individual distance

values of each objective [244].

Algorithm 2: Crowding distance procedure in NSGA-II [244]
Input: N = |F |

1 for i=1...N do
2 F [i]distance = 0

3 for m=1...M do
4 F = SORT (F,m)
5 F [1]distance = F [N]distance = ∞

6 for i=2..(N-1) do
7 F [i]distance = F [i]distance +(F [i+1]m−F [i−1]m)/(f max

m − f min
m)

NSGA-II uses a crowded-comparison operator <c, that guides the selection

process during the evolution [244]. Each individual in the population is assigned a

non-domination rank (irank), and a crowding distance (idistance). The partial order

≺c is defined as follows [244]:

4.3. Evolutionary Algorithms and Multiobjective Optimisation 104

Figure 4.6: NSGA-II algorithm [244]

i≺c j := (irank ≺ jrank)∨ (irank = jrank∧ idistance > jdistance) (4.12)

That is, for two individuals with different non-dominations ranks, preference

is given to individual with lower/better rank [244]. If both individuals are of the

same rank, then the individual that is positioned in the less crowded region (has the

higher crowding distance), is preferred [244]. This is to maximise the spreading of

the individuals, thereby enforcing better diversity in the population.

Figure 4.6, which is adapted from [244], shows a single step of the NSGA-II

algorithm. The initial population is generated randomly, and sorted on the basis of

non-domination. Then the genetic operators, binary tournament selection, crossover

and mutation operators are used to select the offspring, Q, a population of size

N. For the next population, as illustrated in Figure 4.6, the parents Pt and Qt , of

size N, are combined to generate a population Rt of size 2N, which is sorted into

k non-dominated fronts Fi,Fi+1, ...,Fk. Individuals in the best non-dominated set

are the fittest individuals in the combined population, and these appear in the top

fronts such as F1. If the size of these fronts is smaller than N, they are added to

the new population. In this example, F1 and F2 are added to the new population,

4.3. Evolutionary Algorithms and Multiobjective Optimisation 105

as |Pt+1| < |F1|+ |F2| < N. However, there is not enough space to take all the

individuals in F3 and F4. F4 is rejected, because it is of lower rank, and there is

only limited space to take some members of F3. To determine which members to

select, F3 is sorted according to crowding distance, and only those with the highest

crowding distance are added to the new population Pt+1 to make it up to size,N.

After this, Pt+1 is used to produce the next N offspring, Qt+1, using crossover and

mutation. In NSGA-II, selection for mating is done using a binary tournament based

on the crowded-comparison operator (<c) [244]. This process is repeated until the

termination conditions are satisfied.

4.3.2.2 Strength Pareto Evolutionary Algorithm (SPEA2)

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) [228] is an extension of the

previous version of the Strength Pareto Evolutionary Algorithm (SPEA) [246] with

significant improvements intented to obtain a population that has greater diversity

and precision. The SPEA algorithm maintains an external archive that is used to ac-

cumulate non-dominated individuals. The algorithm starts with an initial population

and an empty archive, the first step involves copying all non-dominated individu-

als in the population to the archive [228]. Once these individuals are added to the

archive, any individuals that become dominated by these new entries are removed

[228]. If the size of the archive is greater than the predefined size, further individu-

als are removed from the archive based on a clustering technique [228]. After this

update operation, each member of the archive and population are given a fitness

value computed using the number of individuals that the current individual domi-

nates [228]. Then, using a binary tournament, the individuals for mating (crossover

and mutation) are selected from the union of population and archive [228]. The re-

sulting offspring population is used to replace the old population, and this processes

is repeated until the termination conditions are met.SPEA2 makes some improve-

ments on this process in several ways. It keeps the archive size constant and, if

the non-dominated individuals are unable to fill the archive, the remaining space is

filled by dominated individuals. SPEA2 has a fitness assignment strategy in which

individuals are ranked on their raw fitness since the archive now contains domi-

4.3. Evolutionary Algorithms and Multiobjective Optimisation 106

nated individuals. Finally, another change introduced in SPEA2 is that mating takes

places only amongst the members of the archive.

The steps involved in the SPEA2 algorithm are illustrated in Algorithm 3 [228].

The description and notation used in this section are taken from [228].

Algorithm 3: Procedure of SPEA2 [228]
Input: N = Size of Population, P
N = Archive Size
T = maximum number of generations
Output: ND - Set of non-dominated individuals

1 ND = /0
2 P0 = Generate initial Population randomly
3 t = 0
4 P0 = /0
5 while t < T do
6 Evaluate fitness of individuals in Pt and Pt

7 Pt+1← non-dominated individuals in Pt and Pt

8 if |Pt+1|> N then
9 Remove individuals in Pt+1 using the Truncation Operator

10 else if |Pt+1|< N then
11 Insert dominated individuals from Pt ∪Pt
12 if t=T then
13 ND = Pt+1
14 else
15 Apply binary tournament selection over Pt+1

16 Apply the crossover and mutation over Pt+1
17 t = t +1

18 return ND

The fitness assignment used by SPEA2 for each individual takes into account

both the dominating and the dominated individuals. Every individual in the archive

Pt and the population Pt has a strength value S(i), denoting the total number of

individuals it dominates. This is defined as [228]:

S(i) = |{ j| ∈ Pt ∪Pt ∧ i≺ j}| (4.13)

where i ≺ j denotes the dominance relation. Based on the strength S(i), the

raw fitness R(i) of an individual i is computed as follows [228]:

4.3. Evolutionary Algorithms and Multiobjective Optimisation 107

R(i) = ∑
j∈Pt∪Pt ,∧ j≺i

S(j) (4.14)

This means that the raw fitness of i is calculated by summing the strength of

its dominators in the archive and the population [228]. If R(i) = 0, then i is a non-

dominated individual, and a high value of R(i) corresponds to an individual i that is

dominated by high number of individuals.

SPEA2 uses a density function to choose between individuals when they do not

dominate each other. It computes the density using the classic kth nearest neighbour

method [247], where the density of an individual is a function of the distance to

the kth nearest individuals [228]. The distance of every individual i to all other

individuals j in the population and archive is computed and saved in a list. Then,

this list is sorted in ascending order and, for each individual i, the k-th nearest

element yields the distance sought (σ k
i). The recommended setting for k is the

square root of combined sum of the population and archive size, k =

√
|N|+ |N|

[247]. Then, the density value for individual i is calculated as [228]:

D(i) =
1

σ k
i +2

(4.15)

The value 2 is used in the denominator to ensure that 0 < D(i) < 1. Finally,

the total fitness value for each individual i is obtained by adding both raw fitness R

and the density, D values [228]:

F(i) = R(i)+D(i) (4.16)

A new archive is made up of all non-dominated individuals with fitness less

than 1 from archive and population [228]:

Pt+1 = {i|i ∈ Pt ∪Pt ∧F(i)≺ 1} (4.17)

If there is still space in the new archive, that is |Pt+1|< N, then the best domi-

nated individuals in the previous population and archive can be copied into the new

4.4. Machine Learning Methods 108

Figure 4.7: Example of the archive truncation method used in SPEA2 with N, image taken
from [228]

archive. If the size of the new archive is too large, (Pt+1|> N), individuals are trun-

cated in overcrowded regions until |Pt+1| = N, based on their distance σ k
i to other

individuals. At each iteration of the truncation, the individual that has the smallest

distance to another individual is removed [228]. Figure 4.7 shows an example of the

truncation method. Assuming an archive size N, the figure on the right illustrates

the truncated individuals in the order of removal using the truncate operator.

4.4 Machine Learning Methods

Previous work found in the literature shows that there is a wide variety of techniques

that have been applied to detect faults, and a few that have been used to detect at-

tacks on the TE process model. Making a reliable comparison of these studies is

not possible due to a lack of common metrics used to measure performance (some-

times none), different datasets and sizes. Furthermore, the nature of our data (at-

tacks rather than faults) and the fact that the size of our data is much larger than

the examples in the fault detection and diagnosis studies makes the problem more

challenging. According to the no-free lunch theorem, there is no universal detection

algorithm that is superior for all tasks, thus the performance of these algorithms is

task-dependent. As a result, we decided to test a range of classical machine learning

models, and some new techniques from deep learning, in attack detection.

The goal of machine learning is to learn patterns in the data, such as classifying

the data into categories [248]. It draws from many fields including statistics, arti-

ficial intelligence, information theory, biology, psychology, cognitive science and

4.4. Machine Learning Methods 109

control theory [249]. Machine learning has been widely and successfully used in

many applications of modern society: from web searches to autonomous vehicle

training to cancer prognosis and prediction. In the information security field, ma-

chine learning has become a common tool for anomaly detection, spam filtering

and malware classification. Since the beginning of 2000, there have been important

advances in the theory and practice of the field, because of the creation of a class of

techniques called deep learning [250].

Machine learning systems are classified based on the type and amount of data.

There are four main classes: supervised learning, unsupervised learning, semi-

supervised learning and reinforcement learning. In supervised learning, the learn-

ing uses training data that is composed of examples of the input vectors and their

corresponding labels [248]. The tasks to which this is applied can be classification,

assigning each input vector to a finite set of discrete categories [248], for example

a spam filter with categories spam or not-spam. If the task is to predict a desired

output as a continuous variable, for example price of a house, then the task is known

as regression [248]. Often, especially in the security domain, the availability of la-

belled data is a problem or the process of labelling is expensive and prone to errors.

In such cases the training data may not have any corresponding targets (labels),

and the learning is done on unlabelled data, using a technique called unsupervised

learning. The goal of this kind of learning includes [248]: grouping similar ex-

amples (clustering); determining the distribution of the data within the input space

called density estimation; or dimensionality reduction (simplifying the data to a

lower dimensional space by reducing the number of features without losing too

much information). In cases, in which there is not large amount of labelled data,

but some small amount of labelled data is available, then semi-supervised learning

models can be used to train the models using the labelled data,incorporating with

unlabelled data using the labels predicted from the trained model. Finally, rein-

forcement learning has a different learning goal, is to take actions that maximise

rewards [251]. Here, the learning system is called an agent, which observes the

environment, selects and carries out actions and gets a reward or penalties (negative

4.4. Machine Learning Methods 110

rewards). Thus, the algorithm is trying to learn a policy that defines actions that

are taken when the system is in a particular state. Some popular applications of

reinforcement learning include learning to play board games, tabula rasa, to a very

advanced level [252], optimising manufacturing [253] and robotics [254].

Supervised Learning Unsupervised Learning
Single Decision Tree (CART) One-Class SVM
Ensemble Learning (Bagging, Boosting, Recurrent Neural Network (LSTM,
Random Forest) using CART GRU)
Support Vector Machine Autoencoder Neural Network

Table 4.5: Selected supervised and unsupervised models for detection

To investigate the effectiveness of supervised learning (classification) and un-

supervised learning (anomaly detection) we selected some of the approaches that

have been used in the past. Supervised learning requires both labelled data contain-

ing attacks and normal operational data, and it suffers from several limitations: ob-

taining attack data is often difficult; the process of labelling the data may be prone to

errors or may be expensive; and performance deteriorates significantly for unknown

attacks [255]. Given the limitations of supervised learning, there is an increasing

move towards generating unsupervised learning approaches for ICS security, but the

effectiveness of these approaches in practice requires further study. Unsupervised

learning models work on unlabelled normal operating data and from, this learn what

is normal; detection then involves deciding what is not normal. Table 4.5 shows

the learning models selected for further investigation. SVM and One-Class SVM

were selected because they were widely used in the literature for detecting both

faults and attacks. However, they tend to be slow and computationally expensive on

large datasets. Therefore, they may not be suitable for real ICS systems with large

datasets. Decision tree models often perform well on large datasets and, therefore,

one of the most popular decision tree algorithms, Classification And Regression

Trees (CART) [256] algorithm was selected for further investigation. The ensemble

method is often used with decision tree algorithms (combining multiple decision

trees to improve the performance of the classifier over a single tree).

Taking advantage of large datasets and efficient algorithms, deep learning tech-

4.4. Machine Learning Methods 111

niques have been effective in solving problems in many disciplines including com-

puter vision, speech and voice recognition, natural language processing, robotics,

bioinformatics, healthcare, finance, and advertising [257] using supervised and un-

supervised learning. They are currently attracting an increasing amount of research

to investigate their application to solution of security tasks. However, further work

is needed to compare them to more conventional methods to understand the bene-

fits of these approaches. Two powerful forms of Recurrent Neural Network (RNN),

LSTM and GRU, with the addition of an autoencoder neural network were selected

for anomaly detection as a comparator for One-Class SVM. LSTM and GRU have

been applied to predict unsupervised anomaly detection in time series. Autoen-

coders are unsupervised neural metwork models that have been used to learn mean-

ingful features in datasets. They can outperform conventional methods like PCA on

tasks like reducing the dimensionality of complicated datasets [258]. Some of their

applications include classification, clustering and generative problems. They can

be useful for modelling important features of complex and larger datasets in ICS.

Details of all these models will be discussed in details in the following subsections.

4.4.1 Decision Trees

Decision trees are one of the most powerful and widely used supervised learning

techniques and are used for classification and regression tasks in medicine, science

and engineering. They are easy to understand and implement, are computationally

cheap to build, and do not require special data preparation. These models work by

recursively partitioning the input data space into subset regions, and then assigning

a prediction model to each region [248]. These partitions correspond to a sequential

decision making process, which is represented as a decision tree with a set of if-

then-else decision rules, starting from the top of the tree and travelling to the leaf

nodes.

The Classification and Regression Tree (CART) [256] algorithm is one of the

most widely used algorithms in training decision trees, and it is the algorithm that

is used for decision trees classification in this thesis. A Python implementation is

available in scikit-learn [92] and was used in this work. However, there are other

4.4. Machine Learning Methods 112

variants of decision tree algorithms including ID3 [259] and C4.5 [260].

The CART algorithm uses a greedy top-down binary recursive partitioning

technique that divides the data space into heterogeneous cuboid regions [256, 248].

The term binary implies that each data set can be split into two subsets. Figure

4.8b, adapted from [248], provides an instance of the recursive partitioning of the

input data and the corresponding decision tree structure with two X variables and

five classes (A-E). It splits the input data into two regions based on (X1 ≤ θ1) or

(X1 > θ1), where θ1 define the parameter of the model [248]. These two subregions

can then be further divided. For example, the region corresponding to (X1 > θ1)

is further divided into two other regions based on (X2 ≤ θ3) or (X2 > θ3), giving

rise to a region E, and a region that is further subdivided to give rise to the regions

denoted C and D [248]. Since the decision trees will be used for classification, each

of the regions will correspond to a specific class [248]. This process then can be

described as a binary decision tree, as illustrated in Figure 4.8a. The decision tree

starts from the root node which takes in the entire input data or sample and splits

it into two child nodes, creating the first decision condition (X1 <= θ1) to do so

[248]. Child nodes can be further divided into further child nodes, known as de-

cision nodes [248]. Nodes that do not split into further decision nodes are called

leaf or termination nodes, representing the predicted class value [248]. The depth

of the tree is defined as the maximum length of a path from the root node to a leaf

node [248]. Each path from the root to a leaf node can be transformed into a rule

by joining the parameters and conditions tested at each child along the path [248].

To build a decision tree model from the training set, the CART algorithm needs

to determine how to split the node into two child nodes. Starting from the input

training data (root node), CART considers all the input variables (features), and

selects the best split on a cost function that aims to decrease the impurity to the

greatest extent possible. The decrease in the impurity is defined as [256]:

4i(s, t) = i(t)− pLi(tL)− pRi(tR) (4.18)

where 4i(s, t) is the impurity at parent node t with split s, i(t) is the impurity

4.4. Machine Learning Methods 113

(a) Decision Tree (b) Decision Boundaries

Figure 4.8: An example of a partitioned two dimensional input space and the corresponding
decision tree [248]

of t, pL and pR are probabilities of data instances for the left child tL and right child

tR nodes and i(tL) and i(tL) are the impurities of the left and right child node[256].

There are various purity measures that are used by decision trees including Gini

impurity, entropy impurity, Chi-square test, variance reduction and misclassification

measure. The implementation of the CART algorithm used in this thesis comes with

two possible measures: Gini impurity and entropy impurity. However, the trees

obtained are usually the same. The default Gini impurity measure was selected for

the work carried out in this thesis because it is slightly faster than using entropy.

The Gini impurity measure of the node t is defined as [256]:

I(t) = 1−
K

∑
k=1

pt,k
2 (4.19)

where pt,k is the ratio of class k instance among the training instances of node

t. When the Gini impurity measure is zero, all instances in the node fall into the

same class, and the node is pure.

This splitting process continues recursively until it reaches some stopping cri-

terion. Two of the common stopping conditions are maximum tree depth and the

point at which it fails to find a split that will reduce the impurity. As for all other

machine learning models, overfitting is one of the weaknesses of decision trees.

In this case, the tree structure adapts itself to fit all samples in the training data,

losing its generalisation capabilities to new data. Decision trees are defined as non-

parametric models. This means that the model makes no assumptions about the

4.4. Machine Learning Methods 114

distribution of the data, which may cause the model to align itself too closely with

the training data. To reduce the risk of overfitting the training data, it is recom-

mended that constraints are placed on the training process. Generally, this is done

by restricting the maximum depth of the tree. However, the growth of decisions tree

can be further controlled using other parameters, some of which are defined also by

the Scikit-Learn package [92], such as the minimum number of instances required

to be a leaf node; maximum number of leaf nodes in a tree; and minimum number

of samples required to split a node to improve the performance of the decision trees.

4.4.2 Ensemble Learning using Decision Trees

Ensemble learning is a powerful machine learning technique in which a group of

learning algorithms (predictors) are used to solve the same problem and, when com-

bined, produce better predictions than using a single learning algorithms. Using a

group of multiple predictors is known as an ensemble [261]. There are several tech-

niques used to achieve this.

A simple approach is to use the same training data with different classifiers

such as decision tree, SVM and Logistic Regression. One then outputs the result

with the most votes. A second approach uses a single classification algorithm for

every predictor and trains them using random subsets of the training data. In this

thesis, the second approach has been leveraged to test the performance of ensemble

learning using the CART algorithm. The techniques used are Bagging, Random

Forest and Boosting (AdaBoost algorithm) techniques.

In Bagging [262], multiple predictors (in our case decision trees) are used train

a group of classifiers to reduce the variance of the predictions. It is a technique

widely used with high-variance and low bias learning models, and this includes

decision trees [263]. Bagging uses random sampling to generate a subset of data

for each classifier. Once all predictors are trained, the instances of new data can

be tested by asking all individual predictors for a prediction, and aggregating these

to obtain an overall prediction. This aggregation involves taking the mode of the

individual predictions. Bagging is a general technique that can be used with learning

methods other than decision trees.

4.4. Machine Learning Methods 115

Random Forest is an ensemble of decision trees using bagging method with

some improvements to ensure the growth of diverse trees. Decision trees consider

all features in order to split a node and select the best; however, Random Forest

searches for the best feature from a subset of features selected at random [264].

This increases the diversity of the tree and, in general, improves the performance of

the classifier and provides better control on overfitting. Experiments were carried

using both Random Forest and Bagging with CART to determine the performance

difference.

Boosting [265] is another powerful ensemble learning technique used in ma-

chine learning and is suitable for classification tasks. The motivation for the boost-

ing technique was to combine multiple weak learners to produce a strong one.

Boosting works by training predictors iteratively, each current predictor trying to

improve on its predecessor [264]. The most popular and widely used Boosting al-

gorithm is AdaBoost (Adaptive Boosting) [265]. It is also the algorithm used in

this thesis with decision trees. AdaBoost is often used with weak classifiers (e.g.

one whose accuracy is slightly better than random guessing); however they can be

applied to any classifiers. Our investigation aimed to determine if there were any

benefits of using boosting with decision trees.

Algorithm 4: Procedure of Adaptive Boosting [265]
Input: Given the training data = (x1,y1),(xm,ym) where

xi ∈ X ,yi ∈ {−1,+1}
Initialise the set of weights w1(i) = 1/N

1 for t = 1 to T do
2 Train a base classifier Gt(x) using weights w(i)

3 Get weighted error rate εt =
∑

N
i=1 wiI[yi 6=Gt(xi])

∑
N
i=1 wi

4 Compute αt = log1−εt
εt

5 For i = 1,2, ..N update weights: wi← wi.exp(αt .I(yi 6= Gt(xi))]

6 Output the final classifier G(x) = sign(∑T
t=1 αtGt(x))

The AdaBoost algorithm starts with a base classifier (in our case the decision

tree) and iteratively forms a number of classifiers [264]. It maintains the relative

weights of misclassified training instances. Initially these weights are equal but,

4.4. Machine Learning Methods 116

at successive iterations, the weight of the missclassified instances are increased so

that the next classifier will pay more attention to the underfitted instances that were

missed in the previous iteration. Algorithm 4 shows the steps for the AdaBoost.

Given a training dataset X with N instances, consider a classification problem with

two classes, Y ∈ −1,1. Initially, each instance of X is set to 1/N and the classifier

trains on the data in the usual manner. Then the current classifier Gt(x) is run on

the weighted instances, and the resulting weighted error rate for Gt(x) is computed

(line 3). Line 4 computes the weight α(t) assigned to Gt(x) in producing the final

classifier (line 7). Next, the instance weights are updated ready for the next itera-

tion, and the missclassified instances are scaled by a factor exp(αt), boosting their

influence on the next classifier Gt+1(x). The algorithm terminates when the desired

number of classifiers (T) is reached, and the algorithm outputs the final classifier.

To make new predictions, the algorithm gathers the predictions of all the classifiers

and weights their contribution using classifier weights α(t). The final class predic-

tion is based on a weighted majority vote: that is, the class that has the highest total

weight is the predicted class.

The most important parameter to adjust when using ensemble algorithms is

the number of estimators; in our case, this is the number of decision trees in the

ensemble.

4.4.3 Support Vector Machines

Support Vector Machines (SVMs)[266] [267] are one of the most powerful ap-

proaches to supervised learning and are widely used in for classification, regression

and outlier detection tasks in many real-world applications, including security. In

this section, we introduce how SVM is used to solve classifications problems, and

later we will introduce how SVM can be used for outlier detection.

SVMs are inherently two-group (binary) classifiers, and they have been used to

model a binary classifier in this thesis. However, it is worth noting they have been

also extended to multi-class classifications using a variety of approaches [268]. The

description and notation used in this section are taken from [269, 270]. SVM aims to

solve classification problems by determining a good decision boundary between two

4.4. Machine Learning Methods 117

Figure 4.9: A binary SVM classifier with maximal margin hyperplane (adapted from [271])

sets of data belonging to two different classes. Figure 4.9 describes the fundamental

idea behind the SVM classifier using a linearly separable binary set. The aim of the

SVM is to determine the best hyperplane that can be used to separate the instances of

the training data into two classes. This involves finding the widest margin between

the two classes. In the SVM literature, these two classes are commonly denoted as

+1 and−1. The SVM is given x as the training samples, where each instance in the

training set has n dimensions, and a class label with two possible values y∈{−1,1}.

The separating hyperplane is defined by the equation wTx+ b = 0, and relies on a

weight vector w and a bias parameter b that separates the inputs of the two classes.

Based on this, the ith sample xi is predicted to belong to class positive if wTxi+

b is positive, and to class negative if wTxi+b is negative. Given the maximal margin

hyperplane (w,b) that separates the training data, the decision function [270]:

f (x) = sign(wTx+b) (4.20)

assigns the training data to their classes.

Figure 4.9 [271] shows the decision boundary in SVM, which is a separating

4.4. Machine Learning Methods 118

hyperplane represented as the dark line in the middle (H0). The elements above this

hyperplane belong to class −1, and the elements below the hyperplane belong to

class +1. The goal of the SVM is to select the hyperplane that gives the maximal

geometric distance between the hyperplane and the closest points from either class

(known as support vectors) as shown by the two grey lines (H1 and H2) which

represent the wTxi+b=−1 and wTxi+b= 1. As shown in Figure 4.9, this distance

is the total distance between H1 and H2. Recall that in vector algebra, the distance

from the origin along the direction w to a point x is defined as [270]:

wTx√
wTw

(4.21)

Based on this, which is the margin, the distance between H1 and H2, is calcu-

lated as [270]:

wT
√

wTw
(x+− x−) =

2√
wTw

=
2
‖w‖

(4.22)

Maximising the distance between the two margin hyperplanes is done by min-

imising the length wTw. This is transformed into an optimisation problem such that

[270]:

minimisew,b
1
2

wTw subject to yi(wTxi +b)≥ 1, ∀i ∈ {1, . . . ,N} (4.23)

In addition, each instance xi in the training set is assigned a label yi ∈ −1,+1

and the distance between the two hyperplanes (H1 and H2) is maximal. This makes

it a quadratic programming problem. The classifier defined so far, known as the

maximal margin classifier or hard-margin SVM [269], makes the assumption that

the data is linearly separable and there are no training errors; however, this is often

not the case in the real-world, where many problems contain noise and outliers. In

these cases, finding a hyperplane that will completely separate all training data into

the correct classes may not be possible, and one might prefer a more robust solution

that separates the majority of the data while ignoring some outliers. To account for

4.4. Machine Learning Methods 119

these cases, slack variables, ξ i, are used to relax the margin constraints [270]:

yi(wTxi +b)≥ 1−ξ
i, ∀i ∈ {1, . . . ,N}, ξ

i ≥ 0, ∀i ∈ {1, . . . ,N} (4.24)

As illustrated in Figure 4.10, if the sample point ξ i has a value 0 < ξ i < 1 then

it is on the correct side of the decision boundary; however, if ξ i > 1 then the data

instance is of the opposite class [270]. Each xi has its own slack variable, and this

is considered when solving the optimisation problem such that [270]:

minimisew,b,ξ
1
2

wTw+C
N

∑
i=1

ξ
(i) (4.25)

subject to y(i)(wTx(i)+b)≥ 1−ξ
(i), ∀i ∈ {1, . . . ,N}

ξ
(i) ≥ 0, ∀i ∈ {1, . . . ,N}.

Figure 4.10: Slack variable for the SVM (adapted from [248])

In this, C is the parameter that allows some data points to be misclassified. C

is a tunable parameter that is usually selected based on testing a wide range of val-

ues by using search techniques and by validating on separate test data. A higher C

corresponds to greater importance in classifying all the training samples correctly

and a lower C can make the optimiser to search for a larger-margin separating hy-

4.4. Machine Learning Methods 120

perplane, which may result in misclassifying training data samples. This concept

is known as soft-margin optimisation, and there are two standard approaches to it,

namely 2-Norm Soft Margin and 1-Norm Soft Margin [269] using duals.

4.4.3.1 Soft Margin Optimisation

The optimisation problem introduced in the previous section is known as the pri-

mal problem. This problem can be reformulated into a related problem called its

dual problem that builds a lower bound of the primal problem while ensuring that

the optimal solution is the same as the primal problem. Transforming the primal

problem to the dual problem allows classification problems to be solved faster es-

pecially in situations where the dimensionality of the data (that is the number of

features) is larger than the number of data instances. Furthermore, dual represen-

tation is required for the kernel trick technique which will be discussed shortly.

The Lagrange Multipliers method is use to derive the dual problem from the primal

problem. So as to not lose focus in this chapter, we refer the readers interested in the

full mathematical details of this transformation to [269]. Here we only the show the

transformation for 1-norm soft margin technique as it tends to be used more often

in practice. The optimisation problem primal in Equation 4.26 is represented using

the Lagrangian [269]:

L(w,b,ξ ,α) =
1
2

wTw+C
N

∑
i=1

ξ
i−

N

∑
i=1

α
i[yi(wTxi

+b)−1+ξ
i]−

N

∑
i=1

ri
ξ

i

subject to α
i ≥ 0,ξ i ≥ 0,ri ≥ 0 ∀i ∈ {1, . . . ,N}

(4.26)

where α i ≥ 0 and ri ≥ 0 are multipliers.

The corresponding dual for the optimisation problem is found by differenti-

ating the Lagrangian with respect to primal variables, w,ξ and b, and setting the

results equal to zero as follows [269]:

∂L(w,b,ξ ,α,r)
∂w

= w−
N

∑
i

yi
α

ixi = 0 (4.27)

4.4. Machine Learning Methods 121

∂L(w,b,ξ ,α,r)
∂ξ i =C−α

i− ri = 0 (4.28)

∂L(w,b,ξ ,α,r)
∂b

=
N

∑
i, j

yi
α

i = 0 (4.29)

From this, w is obtained by:

w =
N

∑
i=1

α
iyixi (4.30)

Support vectors have non-zero values, α i > 0. Using these conditions and

resubstituting Equations 4.27 to 4.29 back into the primal problem, the following

dual problem is derived [269]:

L(w,b,ξ ,α,r) =
1
2

α
i− 1

2

N

∑
i, j=1

yiy j
α

i
α

j(xi)T x j (4.31)

Figure 4.11: Mapping of inseparable training data from R2 to R3

To find the hyperplane of complex non-linear data sets, the input samples x

are transformed to a higher dimensional feature space by applying a mapping func-

tion φ . When the data is mapped to a higher dimensional feature space, finding

a separating linear hyperplane is easier as then data points are linearly separated,

as illustrated in Figure 4.11. This is achieved by replacing x with φx, and can be

written as follows [270]:

L(w,b,ξ ,α,r) =
1
2

α
i− 1

2

N

∑
i, j=1

yiy j
α

i
α

j
φ(xi)T

φ(x j) (4.32)

4.4. Machine Learning Methods 122

The values for φ can be computed using a kernel, K, defined as [270]:

K(xi,x j) = φ(xi)T
φx j (4.33)

Adding the kernel function, the optimisation problem is simplified into [270]:

maximise
N

∑
i=1

α
i− 1

2

N

∑
i, j

yiy j
α

i
α

jK(xi,x j)

subject to
N

∑
i

yi
α

i = 0, 0≤ α
i ≤C ∀i ∈ {1, . . . ,N} (4.34)

The optimisation problem learns α i using the (xi,yi) of the training set. Once

the optimal solution for α i is learned, the decision function in Equation 4.20 be-

comes [270]:

f (x) = sign(
N

∑
i=1

α
iyiK(xi,x)+b) (4.35)

4.4.3.2 Kernel Trick

As mentioned previously, if the data is not linearly separable in the original space,

SVM uses the kernel trick [272], which involves defining a mapping function that

transforms the data from a lower dimensional to a higher dimensional feature space.

It is worth noting that the input used in the dual Lagrangian so far uses scalar prod-

ucts (xi)T x j. x can be mapped to a vector function of x [270]:

K(xi,x j) = φ(xi)T
φ(x j) (4.36)

So, the kernel is the function that maps xi,x j to the inner product φ(xi)T φ(x j).

Kernels are used to transform the input data into the required feature space, and then

a linear classification is achieved in this new space. This technique is known as the

kernel trick, and it makes it possible for the SVM to be generalised to nonlinear

cases. Some of the commonly used kernel functions are [264]:

• Linear Kernel: K(x,y) = xT y

4.4. Machine Learning Methods 123

• Polynomial Kernel: K(x,y) = (γxT ·y+ r)d,γ > 0

• Radial basis function (RBF) kernel: K(x,y) = exp(‖x−y‖2),γ > 0

• Sigmoid kernel: K(x,y) = tanh(γ · xT y+ r)

where r, d and γ are kernel parameters. The selection of the kernel depends on

the problem, and the general recommendation is to experiment with different ker-

nels (and kernel parameters) to search for the best for the problem at hand. However,

using the RBF kernel (sometimes known as the Gaussian Kernel) and polynomaial

kernels has been shown to be a good initial approach. The RBF kernel was selected

for the SVM models in this thesis. This is based on performance of initial exper-

iments and previous work carried out by others on the TE process model, which

shows that if the right parameter for γ is selected, the RBF kernel performs well.

4.4.3.3 One-Class SVM

The original Support Vector Machine was been extended for unsupervised learning

by Schölkopf et al [272]. The objective of this algorithm is novelty detection or

outlier detection. Given a single class training dataset, the one-class SVM learns

the decision boundary of this single class. Once it captures this decision region,

new test samples can be used to determine whether they belong to this class. Data

samples falling outside this boundary are known as outliers. In the context of in-

trusion detection, normal operational data is used to train the model to learn the

boundary of the normal data. During the test phase, any samples that fall within the

normal boundary are considered normal, otherwise they are classified as outliers or

as anomalies.

Figure 4.12 illustrates the basic idea behind the One-Class SVM. After map-

ping the input data into feature space using some kernel, it is separated from the

origin with maximum margin to determine the hyperplane. Once the optimal hy-

perplane is found, the class of the new data instance x can be determined. If x falls

below the hyperlane, it is classified as class −1 (outlier), if it falls on or above the

hyperplane it is belongs to class +1 (normal). The notation used here are adapted

from the original description of the One-Class SVM [272].

4.4. Machine Learning Methods 124

Figure 4.12: Data classification based on One-Class SVM

To separate the data, the One-Class SVM solves the following optimisation

problem [272]:

minimisew,ξ i,ρ
1
2
‖w‖2 +

1
νn

n

∑
i=1

ξ
i−ρ (4.37)

subject to (w ·φ(xi))≥ρ−ξ
i, ∀i ∈ {1, . . . ,n}

ξ
i ≥ 0 ∀i ∈ {1, . . . ,n}

where (w,ρ) are the weight vector and the offset, ξ i is the slack variable for

data i, n is the size of the training dataset, and ν is a regularisation parameter. In the

binary SVM, the penalty parameter C was used to control the number of errors; in

this equation, it is the parameter ν that sets an upper bound on the fraction of outliers

in the training data and a lower bound on the number of support vectors. As in the

binary SVM, this problem is converted into the dual problem using Lagrangian mul-

tipliers. For mathematical details please see [272], however as before after applying

multipliers and selecting an appropriate kernel function (K(x,y) = φ(x) ·φ(y)), the

decision function takes the following form:

f (x) = sgn(
n

∑
i=1

αiK(x,xi)−ρ) (4.38)

That is, a data instance x belongs to class 1 if f (x)≥ 0 and class−1 otherwise.

4.4. Machine Learning Methods 125

4.4.4 Deep Learning and Deep Neural Network

In 2006, Hinton proposed a fast learning algorithm for deep structured networks

called the deep belief network (DBF) [273]. Since then, interest in deep learning

has undergone rapid growth. Deep learning is been successfully applied to prob-

lems in which traditional machine learning models have failed to produce satis-

factory performance, such as image and speech recognition, computer vision, and

natural language processing; in all of these, the training data is noisy and complex.

Deep learning builds on the concept of Artificial Neural Networks (ANNs) com-

posed of multiple layers. The work, ‘A Logical Calculus of the Ideas Immanent

in Nervous Activity’ [274], by neurophysiologist Warren McCulloch and logician

Walter Pitts in 1943 is considered to be the starting point for ANNs. McCulloch and

Pitts presented a model of how biological neurons might work together to perform

computational functions. ANNs have received significant research attention over

the intervening years; however, they have become substantially more popular over

the last decade or so. This is mainly due to availability of data (they require large

datasets to work well); an increase in available computing power to train them in

reasonable time; and an increase in research funding from the public and private

sectors to carry out more practical research.

The mammalian brain contains over 100 billion interconnected neurons, each

of these neurons consists of a cell body, dendrites, and an axon [275]. The neuron

activity is inhibited through connections to other neurons. The axons are like wires

that extend from the cell body, and split off into branches before ending into many

axon terminals. These terminals at the end of axons connect to other neurons to

transmit electrical signals. Dendrites sprout from the neuron cell body and serve

as receptors for receiving incoming signals from other neurons, and relay them to

the cell body for a response. When a neuron receives a strong signal, it fires its

own signals. Each individual neuron has the ability to form thousands of synaptic

connections and, overall, to form a vast network of billions of neurons, which ef-

fectively gives humans the ability to process information in the way they do. ANNs

are a simplified representation of this behaviour.

4.4. Machine Learning Methods 126

Figure 4.13: A single-layer perceptron network (adapted from [264])

The simplest type of ANN is called a perceptron. As shown in Figure 4.13 the

behaviour of the perceptron is similar to the biological neuron [264]. It takes several

inputs, multiplies them by a set of weights and a bias, and then sums all this together

and feeds into an activation function. There are a number of common activation

functions that are used with ANNs. Figure 4.13 shows a unit step function, that

output a 1 if the calculated value is greater than a threshold, and 0 otherwise. This

simple functionality can be effectively used for binary classification, in which one

wants to classify inputs into two groups. More specifically, each input, xi to xp is

multiplied by a weight wi, and all the values are added:

f (x) =

1 if w1x1 +w2x2 ++wpxp +b > 0

0 otherwise
(4.39)

The weights determine the contribution of the input xi to the perceptron output

y. Often, an additional constant value, bias, b, is added to the weighted sum to

enhance the activation. The result is used by the activation function to determine

the output of the neuron.

Learning in a perceptron requires one to determine the values for the weights

wi to wp and the bias, b, all of which are done by training. There are a number

of activation functions in use with artificial neural networks. Some of the most

common are logistic, sigmoid, and tanh (or hyperbolic tan), and their behaviours

are illustrated in Figure 4.14:

4.4. Machine Learning Methods 127

(a) Linear (b) Rectified Linear units (ReLU)

(c) Sigmoid (d) Tanh (or Hyperbolic Tan)

Figure 4.14: Common ANN activation functions

linear: f (x) = x (4.40)

ReLu: f (x) =

x for x≥ 0

0 for x < 0
(4.41)

sigmoid: f (x) =
1

1+ e−x (4.42)

tanH: f (x) = tanh(x) =
2

1+ e−2x −1 (4.43)

Stacking multiple layers of perceptrons is known as multilayer perceptrons or

feedforward neural network (FNN) [276]. These networks are composed of an input

4.4. Machine Learning Methods 128

Figure 4.15: A three-layer feedforward neural network [276]

layer that receives the input, one or more hidden layers and an output layer that

produces the output of the neural network. An example of a three layer feedforward

neural network is illustrated in Figure 4.15. Computing the output for neuron h1 in

the hidden layer h j, (in this case there is one hidden layer, j = 1) involves computing

the dot product for input data X : x1,x2...xp, with the weight of the neurons of the

layer, W l = wl
1,wl

2, ..wl
p and adding the bias. Computed as:

z =
p

∑
i=1

wixi +bias (4.44)

By feeding z into the activation function, φ(z), the output for the hidden layer’s

first neuron is obtained. This procedure is repeated for all the other neurons in the

hidden layer, from h2 to hm. These values are then used as inputs to calculate the

values of the output layer:

yi = φ(
m

∑
i=1

wh j

i h j
i +bias) (4.45)

4.4. Machine Learning Methods 129

4.4.4.1 Training an Artificial Neural Network

Training an ANN is an optimisation problem with the intention of minimising the

loss function, which measures the inconsistency between actual and predicted out-

puts. This is achieved by tuning the parameters of the network, weights and biases

(θ) so that the loss is minimised. The most common loss function used for regres-

sion task is mean squared error:

J(φ) =
1
N

N

∑
i=1

(y(i)− ŷ(i))
2 (4.46)

where N is the number of observations, yi is the actual value, and ŷi is the

predicted value. ANNs use a gradient descent algorithm [277] to calculate the

gradient of the loss function J(θ) with respect to the θ . In ANNs, gradients are

computed using back propagation [277]: that is, the gradient calculation operation

begins from the final layer and proceeds backwards to the first layer of weights

to make the appropriate weight and bias changes in such a way that the error is

minimised. Figure 4.16 illustrates the operation of the gradient descent algorithm.

Figure 4.16: Gradient descent algorithm (adapted from [278])

Starting from a random a population of initial weights, θ , it measures the local

gradient of θ and takes steps towards the direction of the descending gradient to

reduce J(θ) [278]. The size of these steps moderate the weight change, and they

are determined by the learning rate (α) parameter [279], according to Equation

4.47. A small learning rate will slow the convergence and cause the algorithm go

4.4. Machine Learning Methods 130

through too many iterations, and a large learning rate can cause the algorithm jump

in the wrong direction, overshooting the minimum and failing to converge [278].

The user needs to consider these cases and adjust the learning rate manually. A

common approach is to experiment with different values and adjust the rates based

on the results; however, there are some techniques for adapting learning rates to

improve optimisation [280].

θ = θ −α
∂J(θ)

∂θ
) (4.47)

One of the challenges of using ANNs is selecting the right hyperparameters to

get the best from the network. The network learns the weight and biases through

training, but the user needs to select the hyperparameters for the network architec-

ture (network layers, number of neurons), loss function, gradient descent optimi-

sation algorithms, and the parameters for the algorithm such as the learning rate,

decay, epochs and batch sizes. As neural network systems are becoming increas-

ingly complicated, they are utilising more hyperparameters, and the tuning process

is becoming more challenging.

The learning process is an iterative process that involves making m iterations

over the entire training data. Iterating over the training data is called an epoch.

Lighter-weight variants of gradient descent algorithms which operate by picking

some random instances of the training data to compute the gradient are more ef-

ficient than calculating the gradient over the entire dataset. The batch size is the

number of training examples utilised in one iteration of the algorithm to compute

the gradient; in the case of, stochastic gradient descent (SGD) [279], the batch size

is 1. In the case of mini-batch gradient descent [279], the batch size is more than

one instance and less than the size of the training dataset, usually 32-512. Some of

the most widely used gradient descent optimisation algorithms [279] include Adam,

RMSprop, Adagrad AdaMax and Nadam. Another parameter often used with these

optimisers is the decay (learning rate schedules) [281], which can be used to further

control the learning rate of the algorithm by reducing the learning rate after a set

time, e.g. after a defined number of training epochs.

4.4. Machine Learning Methods 131

4.4.5 Recurrent Neural Networks

One of the shortcomings of traditional artificial neural networks such as feedfor-

ward neural networks (FFNs) was that they were unable to learn from previous data

samples to predict the current data sample. Recurrent Neural Networks (RNNs)

were introduced to address this shortcoming and for modelling sequential data. The

structure of a RNN is similar to that of a standard multilayer FFN but includes con-

nections pointing backwards to allowing it to maintain information about the past.

Figure 4.18 illustrates the simplified functionality of an RNN composed of a single

neuron, receiving inputs, computing an output, and feeding the output back to itself

[264]. At each time step t, it receives the inputs xt and its own output from the

previous time step, yt−1. In this way, the output yt depends on the current input and

output of the previous steps.

Figure 4.17: A recurrent neuron (left), unfolding in time (right) [264]

Unfortunately, properly training RNNs is difficult due to vanishing gradient

and exploding gradient problems [282]. In these problems, gradient values become

extremely small (vanishing gradient) or large errors accumulate (exploding gradi-

ents), as a result of which effective learning is significantly impaired. Long short-

term memory networks [283] were introduced in 1997 to overcome these problems

and produce solutions in which the gradient can flow for longer durations. Since

then, they have become of the most effective sequence models, and have been re-

fined and applied to many complex tasks, including time series prediction, robot

control, music composition and language translation. In this thesis, we investigate

LSTM and another variant of RNN, GRU as time series prediction models to com-

pare how well they learn the normal time sequences of the TE process and so detect

4.4. Machine Learning Methods 132

attack data that differs from this.

4.4.5.1 Long-Short Term Memory Network

LSTM [283, 284] overcomes the vanishing gradient and exploding gradient prob-

lems of the usual RNN networks by using a complex memory cell and four neural

network layers with gating controllers to control the flow of information. These

cells can be connected recurrently to each other to create a layer of hidden units of

recurrent neurons. Figure 4.18, (image taken from [284]), shows the architecture

of an LSTM cell. The pink circles represent vector multiplication and addition,

and yellow lines are learned neural network layers. LSTM maintains two memory

states: a long term state, ct and a short term state, ht (hidden state).

Figure 4.18: LSTM cell, image taken from [284]

The long term state ct−1 runs from left to right [264, 284]. The first step is

to decide what to forget. To decide this, the input first goes through the sigmoid

layer, also called the forget gate ft , which decides which instances in the current

input vector xt and the previous short term-state ht−1 should be removed. Note that

the output of the sigmoid functions that are used in three gates ranges from 0-1. If

they output a 0, the gate is completely closed, and if the output is 1, it is completely

open. Next, the cell decides what new information should be added to the long term

state. This is done by the tanh layer on the diagram, which analyses the current

inputs xt and the candidates from the previous short term state (ht−1) and creates a

vector of new candidates c̃t that can be added to the state. The input gate (it) layer

decides what part of the c̃t is to be transferred to the long term state. After this,

4.4. Machine Learning Methods 133

the new long term state, ct is obtained. Lastly, the output gate (ot) decides what the

next short-term state (ht) should be, by first passing the previous ht−1 and xt through

the sigmoid function, and then multiplying the result with the results obtained from

passing the ct through the tanh.

This process is expressed by the following equations [264]:

it = σ(Wxixt +Whiht−1 +bi)

ft = σ(Wx f xt +Wh f ht−1 +b f)

ot = σ(Wxoxt +Whoht−1 +bo)

c̃t = tanh(Wxc̃xt +Whc̃ht−1 +bc̃)

ct = ft� ct−1 + it� c̃t

ht = ot� tanh(ct)

where Wx∗ are weight matrices for the four layers and Wh∗ are the weight ma-

trices for their connection to ht+1 and b∗ are the bias terms for the layers.

4.4.5.2 Gated Recurrent Unit Network

The Gated Recurrent Unit (GRU) [285] is a simplified version of an LSTM, that has

become popular over the years due to its simplicity and faster training time.

Figure 4.19: GRU cell, image taken from [284]

The differences are illustrated in Figure 4.19 (image taken from [284]). In

4.4. Machine Learning Methods 134

GRU, the cell state and hidden state are merged into a single state ht ; GRU also

uses a single gate controller, forget and input gate are combined into an update gate

[284]. The following equation summarises the operation of the cell for a single

instance [264]:

zt = σ(Wxzxt +Whzht−1)

rt = σ(Wxrxt +Whrht−1)

h̃t = tanh(Wxh̃xt +Whh̃(rt�h(t−1)))

ht = (1− zt)� tanh(Wxh̃ht−1 + zt� h̃t)

4.4.6 Autoencoder Neural Networks

Autoencoder neural networks are unsupervised learning algorithms that are ca-

pable of learning an efficient representation of their inputs from unlabelled data

[258, 264]. Autoencoders have been used for the purpose of data compression,

dimensionality reduction and, more recently, to facilitate feature learning for unsu-

pervised pretraining in deep learning tasks, and in generative models.

Figure 4.20: A single hidden layer autoencoder neural network

Figure 4.20 illustrates a simple case of an autoencoder composed of three lay-

4.4. Machine Learning Methods 135

ers: an input layer, an encoder (hidden) layer and a decoder layer. This is a simple

form of a one-hidden-layer FFN; however, the goal of the autoencoder is not to

learn a trivial identity function, but to learn hW,b(x) ≈ x [286]. That is, to learn an

useful approximation of the data, so that the output x′ is similar to input x. There-

fore, as illustrated in Figure 4.20, the number of the neurons in the output layer

must be equal to that for the input. The input, x, is introduced into the network

using the input layer. In the encoding process, the hidden layer takes the input and

maps it to a hidden representation, h , (called the code or latent representation) using

weights and biases, and applying the activation function, h = f (Wx + b). Then, in

the decoding process, the autoencoder maps h back to the original format to obtain

a reconstruction x′ = f (W ′h + b′). Autoencoders are trained using the backpropa-

gation algorithm, applying the “chain rule to backpropagate error derivatives first

through the decoder and then the encoder layer” [258]. The goal of the algorithm

is to learn the optimal set of weights and biases by minimising the reconstruction

error between x and x′. By imposing constraints on the network, such as reducing

the number of neurons in the hidden layer as shown in Figure 4.20, it is possible

to prevent the autoencoder from trivially learning the exact mapping from the input

to ouput, forcing the autoencoder to learn important features about the data [286].

There are a number of autoenencoders, including stacked autoencoders, variational

autoencoders, denoising autoencoders, and sparse autoencoders. Autoencoders

with multiple hidden layers are called stacked autoencoders, and these provide a

greater representative power to help in learning complex datasets. Reducing the

number of neurons in the hidden layer is one way to constrain the network, but it

is not always necessary. It is also possible to use a large number of neurons in the

hidden layers, adding a sparsity constraint to discover useful structures in the data.

The sparsity is defined as the average activation of hidden neurons averaged over

the training set [286]. Sparsity can be added as penalty term to the cost function of

the optimisation to penalise those with high average activation values. Another way

to force the autoencoder to learn interesting structures about the data is to feed noise

to it. This is the principle behind denoising autoencoders, which are given data that

4.5. Summary 136

contains corrupting noise to prevent the autoencoder from just learning the identity

function, forcing it to learn the most important features of the input (i.e. original

uncorrupted data) [257]. Another popular autoencoder, which was discovered in

2013 [287], is the variational autonencoder which is sometimes called a generative

autoencoder because it is used to generate new instances of the data that look like

they were taken from the same distribution [264].

Given the capabilities of the autoencoders, we decided to investigate if they

can be used as an unsupervised learning model trained on normal operational data

to detect attacks. The assumption is that because the autoencoders are not trained

on the attack data, they will produce a higher reconstruction error for these cases.

Choosing a threshold based on the normal reconstruction error, one could determine

if an attack is taking place.

4.5 Summary

In this chapter, we introduced the benchmark Tennessee Eastman process control

model to investigate our research questions. The model represents a complex non-

linear real-world plant-wide industrial process, and is widely used in control sys-

tems research. More recently, it has received some attention from the security

community for ICS security studies. We selected an open source reputable MAT-

LAB/Simulink implementation of the model, developed by Ricker [124] containing

multiple control loops, 16 process variables and 9 manipulated variables. The model

was further extended by Isakov and Krotofil [211] with Simulink blocks to enable

attacks to be carried out against the process variable measurements and manipulated

variables. We assume an adversary that is capable of carrying out DoS, Integri-

tyMin, IntegrityMax and replay attacks against these signals. Adversarial motives

included causing damage to the safety of the system, and causing economic damage

by increasing the operating cost of the plant or damaging the quality of the product.

To identify the most vulnerable components of the process, we specified the

problem as a multiobjective optimisation problem, and selected two Pareto-based

evolutionary multiobjective algorithms, NSGA-II and SPEA2, for further explo-

4.5. Summary 137

ration. In Chapter 5, we develop single attacks against the sensors and actuators

in the TE process, and analyse their impacts. In Chapter 6, we use random search,

single objective genetic algorithms, and the evolutionary multiobjective algorithms

to search the attack space effectively and efficiently to identify the most vulnerable

components of the process.

Based on the analysis of literature, we identified a set of classic machine learn-

ing models (single Decision Tree, Random Forest, Bagging, AdaBoost, SVM, One-

Class SVM), and three deep learning techniques (LSTM, GRU and autoencoder) as

the basis for supervised and unsupervised detection models to detect attacks. We

discussed their behaviour and key hyperparameters that are important for learning.

These models are explored in Chapter 7. Detection models are also vulnerable to

attacks, and it is important to identify these vulnerabilities before deployment. As

a result, we study detector vulnerabilities by evolving attacks against the detection

models using the developed evolutionary multiobjective optimisation approach in

Chapter 8.

Chapter 5

Developing Attacks and Investigating

their Potential Impacts

In this chapter, we investigate Research Question 1: Can one generate a range of

attacks that have a range of consequences? To explore this, individual attacks were

carried out against the sensors and actuators of the TE process control model. In

the TE model, there are, in total, 25 sensors (measuring process variables) and ac-

tuators (receiving manipulated variables) that can be attacked, and for our scenario

of attackers who lack control expertise, there are four types of attacks we explored:

integrity minimum (IntegrityMin), integrity maximum (IntegrityMax), DoS and re-

play attacks. The DoS and replay attacks do not involve any preparation prior to

launch; however, the integrity attacks do require it.

When crafting an integrity attack, an attacker may seek to modify values so that

they still lie within the ranges of possible plant signals, but possess the potential to

cause some damage, for example to put the plant into an unsafe mode, or increase

the operating cost of the plant. To achieve this, attackers first need to listen to

the transmitted signals and learn the operating ranges. In the following sections,

we carry out experiments to achieve this. Once these parameters are learned, we

study the impact of all four attacks on the sensors and actuators to answer Research

Question 1.

5.1. Normal Operating Ranges 139

5.1 Normal Operating Ranges
To carry out the IntegrityMin and IntegrityMax attacks, experiments were con-

ducted to determine the minimum and maximum values of the sensors and actu-

ators observed under normal operating conditions. The plant was operated using

operating Mode 1 without attacks and disturbances (the most commonly used con-

figuration in the literature, with a 50/50 product ratio between components G and

H) [288], to determine the minimum and maximum values for each of the XMEAS

and XMV variables. To provide a credible distribution, 1000 replicates were used

with independent random number seeds. The rationale for investigating these vari-

ables is to determine the scale of the damage caused by adversaries that use this

knowledge to devise attacks. Table 5.1 shows the ranges for sensor (XMEAS) sig-

nals, and Table 5.2 illustrates the values for the actuator (XMV) signals. XMV 5,

9 and 12 are constants because they are not updated as part of the control strategy,

and thus attacks are not carried out against these actuators. It is worth noting that,

although actuators such as these valves take values in the ranges of 0-100 (valves

fully open/closed), as shown in the observed values (Table 5.1 and Table 5.2) the

full range is not used in practice. This is often the case in the industry; to pro-

tect against wear or stiction, valves in plants are never fully closed or opened. The

values observed from these experiments were used to devise the IntegrityMin and

IntegrityMax attacks described below.

5.1.1 Normal Process Operating Cost

To be able to compare the cost of the attacks with the cost of normal operating,

1000 runs were executed without disturbances, and later in the presence IDV 8

disturbances. This causes random variation in A, B, C feed composition (stream 4),

and generates large variations in reactor pressure that better reflect the stochastic

nature of a real plant. The following operating costs were obtained:

Operating Mode($) Max ($) Mean ($)

Normal 8218.80 8208.02

Normal (with Disturbance IDV8) 8932.97 8305.27

5.1. Normal Operating Ranges 140

Variable Variable Number Min Max Mean Units
A Feed (stream 1) XMEAS 1 0.25 0.27 0.26 kscmh
D Feed (stream 2) XMEAS 2 3579.20 3744.46 3662.18 kgh−1

E Feed (stream 3) XMEAS 3 4339.06 4536.27 4436.62 kgh−1

A and C Feed (stream 4) XMEAS 4 8.98 9.48 9.24 kscmh
Recycle Flow (stream 8) XMEAS 5 31.32 33.13 32.20 kscmch
Reactor pressure XMEAS 7 2793.54 2806.12 2800.00 kPa gauge
Reactor level XMEAS 8 62.77 67.24 65.00 %
Reactor temperature XMEAS 9 122.85 122.95 122.90 °C
Purge rate (stream 9) XMEAS 10 0.1545 0.2689 0.2088 kscmch
Product separator temperature XMEAS 11 91.46 92.12 91.77 °C
Product separator level XMEAS 12 45.28 54.74 50.00 %
Product separator underflow (stream 10) XMEAS 14 24.76 25.92 25.35 m3 h−1

Stripper level XMEAS 15 45.29 54.57 50.00 %
Stripper underflow (stream 11) XMEAS 17 22.37 23.41 22.89 m3 h−1

Component C (Purge Gas Analysis stream 9) XMEAS 31 11.87 14.22 13.10 mol %
Component G (Product Analysis stream 11) XMEAS 40 51.64 55.89 53.88 mol %

Table 5.1: Observed XMEAS signals under normal operating conditions (1000 runs)

Variable Variable Number Min Max Mean Units
D feed flow (stream 2) XMV 1 62.89 63.12 63.02 kgh−1
E feed flow (stream 3) XMV 2 52.99 53.24 53.11 kgh−1
A feed flow (stream 1) XMV 3 25.12 27.045 26.11 kscmh
A and C feed flow (stream 4) XMV 4 59.93 61.32 60.57 kscmh
Compressor recycle valve XMV 5 0.0 0.0 0.0 %
Purge Valve (stream 9) XMV 6 19.39 32.76 25.71 %
Separator pot liquid flow (stream 10) XMV 7 37.21 37.46 37.33 m3 h−1
Stripper liquid product flow (stream 11) XMV 8 46.36 46.55 46.46 m3 h−1
Stripper steam valve XMV 9 0.0 0.0 0.0 %
Reactor cooling water flow XMV 10 35.46 36.33 35.90 m3 h−1
Condenser cooling water flow XMV 11 5.20 19.69 12.52 m3 h−1
Agitator Speed XMV 12 100.00 100.00 100.00 rmp

Table 5.2: Observed XMV signals under normal operating conditions (1000 runs)

5.2. Single Random Attacks 141

As expected with disturbances, the mean value is slightly higher, and it reaches

a maximum value of $8932.97. This shows that the control system is able to com-

pensate for the disturbances smoothly without causing large production rate changes

and significantly increased overall operating costs. Both from the attacker’s per-

spective and plant owners’ perspective these values are important benchmarks. An

attacker needs to ensure that the investment in attacks, such as buying vulnera-

bilities to exploit, developing skills and other preparation can be justified by the

consequences of the attack, assuming their intended impact is economic damage.

Similarly, the plant operators may only mitigate vulnerabilities if they can justify

the downtime of the plant and other costs relating to patching of these vulnerabili-

ties.

We decided not to use disturbances in the presence of attacks because they

make the job of the detection harder: the detection will need to recognise the differ-

ence between normal operating, disturbances and the attacks. This is beneficial to

the attacker and is particularly vulnerable when generating new attacks using evo-

lutionary computation, since the detector’s performance will be less accurate. The

variations in the disturbances may also improve the impact of the attack, such as

causing the plant to shut down faster, and increase the operating cost. We opted to

make the generation of new attacks harder, and decided not to use the disturbances.

This also makes the comparison of our detection mechanisms easier. The exist-

ing intrusion detection mechanisms proposed in the literature for the TE process

control model focus on detecting attacks without the disturbances, and the fault

diagnosis mechanisms are designed to distinguish between normal operation and

disturbances. The generation of attacks in the presence of disturbances is therefore

left as future work.

5.2 Single Random Attacks

As mentioned above, the TE plant was operated using operating Mode 1, and all

subsequent experiments were carried out using this mode. Before investigating the

random strategy and techniques from evolutionary computation to search for op-

5.2. Single Random Attacks 142

timal combinations of attacks, we carried out 500 random attacks on each of the

sensors and actuators to determine the consequences of single attacks. We later, in

Chapter 6, use this knowledge as a comparison for the results obtained from the ran-

dom strategy and evolutionary computation algorithms. The attacks can be carried

out using:

• interval mode: attacks start from the time of the attack and continue for the

given duration.

• periodic mode: attacks start from the starting time of the attack, and last until

the duration of the attack is complete. However, this is done periodically, as

defined by setting a pulse (wait) period.

As expected, periodic attacks were slower and required more elapsed time to

have a significant effect. Because the aim of this work was to understand the par-

ticular vulnerabilities of the system by maximising damage, we elected to focus on

the interval attacks and report the results of this in the following subsections.

5.2.1 Impact of Attacking Process Variable Measurements

For each of the process variables (XMEAS), integrity attacks were carried out using

the maximum and minimum values obtained from the normal execution, together

with DoS attacks and replay attacks. 500 attacks were carried out on each sensor,

each started at hour 2 and was intended to run for the rest of the 72 hours simulation

time (i.e. a duration of 70 hours). The impact of integrity attacks on the sensors

is shown in Table 5.3 and the impact of the DoS and replay attacks on the sensors

is shown in Table 5.4. If the plant exceeds the safety limits, it shuts down, and a

warning message is displayed to explain the reason for the shut down. The plant

automatically shuts down as a result of: Low/High Reactor pressure, High Reactor

Temperature Low/High Product Separator Level and Low/High Stripper Base Level,

as described in [20]. The shutdowns column denotes the total number of times the

plant shut down as a consequence of the attack out of 500 runs. The shutdown range

column indicates the time at which the plant shuts down after the attack was started.

5.2. Single Random Attacks 143

XMEAS Attack Max Cost Mean Cost Shutdowns Shutdown Range(Hrs)
(1) A-Feed Max 8449 8407 0 -

Min 8364 8260 0 -
(2) D Feed Max 1158 1152 500 3.43-3.48

Min 915 902 500 4.31-4.4
(3) E Feed Max 739 730 500 2.66-2.72

Min 1320 1312 500 4.17-4.22
(4) A and C Feed Max 384 378 500 1.25-1.34

Min 392 361 500 0.52-0.65
(5) Recycle Flow Max 2099 2040 500 8.15-8.42

Min 3456 3415 500 10.58-10.78
(7) Reactor pressure Max 24507 24468 0 -

Min 671 650 500 8.37-8.78
(8) Reactor level Max 381 375 500 2.81-2.87

Min 1017 1008 500 2.83-2.89
(9) Reactor temperature Max 364 356 500 0.59-0.63

Min 377 366 500 1.23-1.28
(10) Purge rate Max 8228 8195 0 -

Min 8246 8218 0 -
(11) Separator temperature Max 10427 10364 0 -

Min 10444 10358 0 -
(12) Separator level Max 896 888 500 5.85-5.95

Min 1256 1245 500 8.57-8.68
(14) Separator underflow Max 1370 1357 500 9.09-9.79

Min 1449 1385 500 9.71-10.41
(15) Stripper level Max 1756 1740 500 13.48-13.71

Min 1804 1793 500 13.31-13.54
(17) Stripper underflow Max 312 305 500 1.02-1.03

Min 387 379 500 1.01-1.02
(31) C in Purge Max 20515 20438 500 65.65-66.1

Min 13493 13455 500 50.02-50.4
(40) G in product Max 8312 8298 0 -

Min 8117 8106 0 -

Table 5.3: Impact of IntegrityMin and IntegrityMax attacks on XMEAS signals (500 Runs)

5.2. Single Random Attacks 144

XMEAS Attack Max Cost Mean Cost Shutdowns Shutdown Range(Hrs)
(1) A-Feed DoS 8447 8331 0 -

Replay 8429 8316 0 -
(2) D Feed DoS 3149 1761 500 6.9-21.86

Replay 3897 2765 500 13.64-30.42
(3) E Feed DoS 2480 1494 500 3.57-18.16

Replay 3350 2330 500 11.65-22.9
(4) A and C Feed DoS 1318 743 500 1.38-6.48

Replay 1227 825 500 2.32-5.99
(5) Recycle Flow DoS 21942 10675 322 10.4-69.7

Replay 22429 9169 3 64.67-64.67
(7) Reactor pressure DoS 24299 10430 254 9.01-60.3

Replay 23889 10894 233 9.73-66.15
(8) Reactor level DoS 7435 1989 494 3.77-35.79

Replay 11302 5058 418 15.67-67.34
(9) Reactor temperature DoS 10464 1554 489 0.92-61.64

Replay 10774 3681 467 2.35-67.04
(10) Purge rate DoS 8235 8201 0 -

Replay 8236 8201 0 -
(11) Separator temperature DoS 10386 10270 0 -

Replay 10393 10264 0 -
(12) Separator level DoS 8210 3816 463 8.38-66.43

Replay 8217 7802 143 39.66-69.96
(14) Separator underflow DoS 4038 2274 500 11.07-32.98

Replay 4431 3004 500 19.17-36.51
(15) Stripper level DoS 8234 5368 413 19.77-69.61

Replay 8234 8181 16 57.03-68.13
(17) Stripper underflow DoS 4512 2298 500 6.68-37.75

Replay 5716 4312 500 28.45-48.24
(31) C in Purge DoS 17205 9841 0 -

Replay 10951 8818 0 -
(40) G in product DoS 8267 8208 0 -

Replay 8268 8212 0 -

Table 5.4: Impact of DoS and replay attacks on XMEAS signals (500 Runs)

5.2. Single Random Attacks 145

5.2.1.1 Impact of Attacks on Plant Safety

As shown in Table 5.3, most of the integrity attacks on the sensors caused the plant

to shut down. Integrity attacks are able to bring down the plant faster than the DoS

and replay attacks shown in Table 5.4. An adversary that wants to bring down the

plant in the shortest time may want to choose to attack the sensor that achieve this.

This is necessary to give the defender less time to react. Our experiments show that

the fastest attack that can bring the plant down are an IntegrityMin attack on A and C

Feed Flow (XMEAS 4), requiring an attack to last for a duration of 0.52-0.65 hours

(31.2-39 minutes), and an IntegrityMax attack on Reactor Temperature (XMEAS 9),

resulting in a shut down at between 0.59-0.63 hours (35.4-37.8 minutes). In these

cases, the controller receives fake values from XMEAS 4 and XMEAS 9, which

are lower for XMEAS 4 and higher for XMEAS 9 than the legitimate values, and

calculates the control values that are sent to the actuators using these fake values.

This behaviour causes a significant increase in the reactor pressure, and the plant

shuts down as result.

The integrity attacks on XMEAS 17 (Stripper underflow) on average take just

over one hour to shut down the plant. Attacks on other sensors can take anything

from 1.2 to 68 hours to achieve the same effect. These are long durations for at-

tacks and make detection likely. What happens after attacks are detected, including

whether the operators have enough time to take the necessary countermeasures to

bring the plant back to safe operating conditions are important questions; however,

they will be the focus of future work. The IntegrityMax attack on Reactor Pressure,

and attacks on A-Feed, Purge Rate, Product Separator Temperature and mol% in G

were not successful, so these variables do not appear to be good candidates to bring

down the plant using the values observed.

In common with previous studies [208], and for reasons for comparability,

the objective of the DoS attack is to stop signals reaching the controllers and/or

actuators. In the absence of new data, we assume that the controller or the actuator

uses the last received signal for the period of the attack. For the replay attack, the

data collected earlier in the plant, before hour 2, were replayed later when carrying

5.2. Single Random Attacks 146

out the attacks. The results obtained from these attacks are illustrated in Table 5.4.

DoS attacks outperformed replay attacks but they take longer to shut down the plant

in comparison to integrity attacks.

5.2.1.2 Impact of Attacks on Economic Cost

In the long run, attacks that could cause economic damage by increasing the op-

erating costs of running the plant can cause the plant owner more damage than by

shutting down the plant. The operating cost is determined by considering the loss

of product in the purge stream, loss of product in the product stream, the cost of

amount of F formed, and the cost of running the compressor and stripper steam, as

discussed in Chapter 3. This cost is dominated by the loss of raw materials in purge

and in operating the compressor [288]. Rather than define arbitrary metrics our-

selves, we use the predefined operating function that calculates the operating cost

of the plant to determine the economic damaged caused by the attacker.

As reported in Table 5.3, the experiments carried out showed that the integrity

attacks that have the potential to increase the cost of operating the plant are:

• An IntegrityMax attack on Reactor Pressure (XMEAS 7), which increased the

operating cost from the average of $8208 to $24507 with no risk of shutting

the plant down.

• IntegrityMax and IntegrityMin attacks on the separator temperature (XMEAS

11), which increased the operating cost to $10427-10444 with no risk of shut-

ting the plant down.

• An IntegrityMax attack on the sensor measuring Component C in Purge

(XMEAS 31), which increased the operating cost to $20515; however, one

needs run this attack for a duration of less than 65 hours, as longer attacks

cause the plant to shut down.

The economic impact of the DoS attacks and replay attacks are reported in Ta-

ble 5.4. Some of the attacks that increase the operating cost of the plant significantly

are:

5.2. Single Random Attacks 147

• A DoS attack on Reactor Pressure (XMEAS 7), which increased the operating

cost to $24299 with 50% risk of shutting the plant down.

• A replay attack on Recycle Flow (XMEAS 5), which increased the operating

cost to $22429 with low (0.4%) risk of shutting the plant down.

• A DoS attack on C in Purge (XMEAS 31), which increased the operating cost

to $17205 with no risk of shutting the plant down.

• A DoS or a replay attack on Separator Temperature (XMEAS 11), which

increased the operating cost to $10386-10393 with no risk of shutting the

plant down.

If attacks are not designed carefully, they have the potential to shut down the

plant. To avoid this risk, the attacker will need to decide the best time to attack

in real time, or choose a less effective attack. For example, carrying out DoS or

replay attacks on Separator Temperature (XMEAS 11) has the potential to increase

the cost to just over $10380, and, a DoS attack on Component C in Purge (XMEAS

31), has the potential to increase the cost to $17205; both avoid shutting down the

plant.

5.2.1.3 Impact of Attacks on Quality of the Product

None of the attacks carried out had a harmful effect on product quality.

5.2. Single Random Attacks 148

5.2.2 Impact of Attacking Manipulated Variables

As with XMEAS, to assess the impact of the attacking the manipulated values is-

sued by the controller to actuators, 500 attacks were launched against the plant for

each attack type and against each actuator. Attacks were started at hour 2 with the

intention of running them for the remainder of the simulation time (i.e. 70 hours).

XMV Attack Max Cost Mean Cost Shutdowns Shutdown Range(Hrs)
(1) D Feed Max 8209 8198 0 -

Min 8226 8217 0 -
(2) E Feed Max 8234 8221 0 -

Min 8204 8194 0 -
(3) A Feed Max 8352 8342 0 -

Min 8259 8248 0 -
(4) A and C Feed Max 10101 10085 0 -

Min 9339 9290 500 38.49-39.08
(6) Purge Valve Max 9552 9542 0 -

Min 7223 7215 0 -
(7) Separator Pot liquid Max 2382 2313 500 17.65-18.92

Min 3355 3273 500 25.83-27.35
(8) Stripper Liquid Max 2014 1962 500 15.18-15.99

Min 2097 2060 500 15.38-16.11
(10) Reactor Cooling Max 786 701 500 1.65-2.01

Min 11703 6651 489 18.88-67.49
(11) Condenser Cooling Max 325 319 500 1.59-1.6

Min 414 408 500 0.64-0.65

Table 5.5: Impact of IntegrityMin and IntegrityMax attacks on XMV signals (500 Runs)

The impact of these attacks is reported in Table 5.5 and Table 5.6. Please note

that attacks that were not carried on actuators XMV 5, XMV 9 and XMV 12 and

these are missing from Table 5.5 and Table 5.6 because these have constant values

and their positions are not modified by the simulated control strategy.

5.2.2.1 Impact of Attacks on Plant Safety

As reported in Table 5.5, the model is resilient to integrity attacks on valves con-

trolling the D feed flow (XMV 1), E feed flow (XMV 2) and A feed flow (XMV

3) and Purge Valve (XMV6), as these do not seem to damage plant safety. The re-

mainder of the actuators are not resilient to integrity attacks. The attack that caused

the fastest damage is the IntegrityMin attack on the Condenser Cooling water flow

5.2. Single Random Attacks 149

XMV Attack Max Cost Mean Cost Shutdowns Shutdown Range (Hrs)
(1) D Feed DoS 8216 8204 0 -

Replay 9347 8223 0 -
(2) E Feed DoS 8215 8204 0 -

Replay 8216 8203 0 -
(3) A Feed DoS 8277 8216 0 -

Replay 8247 8210 0 -
(4) A and C Feed DoS 14972 8433 2 68.09-68.09

Replay 8873 8248 0 -
(6) Purge Valve DoS 9064 8221 0 -

Replay 8876 8234 0 -
(7) Separator Pot liquid DoS 8217 7578 131 26.01-69.42

Replay 8217 7975 82 44.05-68.92
(8) Stripper Liquid DoS 8231 5698 366 22.32-68.72

Replay 8235 6387 356 24.54-69.52
(10) Reactor Cooling DoS 6093 1976 500 6.18-34.73

Replay 5909 2283 500 6.4-34.61
(11) Condenser Cooling DoS 10803 2268 477 1.61-54.62

Replay 11596 7782 108 38.32-69.49

Table 5.6: Impact of DoS and replay attacks on XMV signals (500 Runs)

(XMV 11), resulting in a shut down time of 0.64 hours (38.4 minutes) due to low

separator liquid level. Carrying out a IntegrityMax attack on Reactor cooling water

flow (XMV 10) can shut down the plant in 1.65 hours (99 minutes) due to high

reactor pressure. A and C feed flow (XMV 4), Separator pot liquid flow (XMV 7)

and Stripper liquid product flow (XMV 8) are also vulnerable to shut down attacks,

causing the plant to shut down due to high pressure, low/high stripper or low/high

separator liquid level. As shown in Table 5.5, these attacks require more time to

shut down the plant. The impact of the DoS and replay attacks showed similar per-

formance to integrity attacks; however, overall they require more time to cause the

plant to shut down as illustrated in Table 5.6.

5.2.2.2 Impact of Attacks on Economic Cost

Integrity attacks on A and C feed flow (XMV 4), Purge valve (XMV 6) and Reactor

Cooling water flow valve (XMV 10) have the potential to increase the operating

cost; however, the effect is smaller than the attacks on XMEAS, as shown in Table

5.5:

5.3. Summary 150

• An IntegrityMax attack on A and C Feed valve (XMV 4), which increased the

operating cost from the average of $8208 to $10101 with no risk of shutting

the plant down.

• An IntegirtyMin attack on the Reactor Cooling valve (XMV 10), which in-

creased the operating cost to $11703 but has a high risk of shutting the plant

down, at 97.8% (489/500).

• An IntegrityMax attack on the Purge valve (XMV 6), which increased the

operating cost to $9552 with no risk of shutting the plant down.

The economic impact of the DoS attacks and replay attacks are for XMVs are

reported in Table 5.6. Some of the attacks that increase the operating cost of the

plant are:

• A DoS attack on A and C Feed valve (XMV 4), which increased the operating

cost to $14972 with low risk of shutting the plant down.

• A DoS attack on Condenser Cooling valve (XMV 11), which increased the

operating cost to $10803 with high risk of shutting the plant down. A replay

attack did better than the DoS, increasing the operating cost to $11596, and

being less likely to shut down the plant.

• A replay attack on D Feed valve (XMV 1), which increased the operating cost

to $9347 with no risk of shutting the plant down.

• DoS and replay attacks on Purge valve (XMV 6) increased the operating cost

to $9064-8876 with no risk of shutting the plant down.

5.2.2.3 Impact of Attacks on Quality of the Product

None of the attacks carried out had an harmful effect on the product quality.

5.3 Summary
The results obtained from these experiments answer our Research Question 1: we

are able to generate a range of attacks that have consequences for the safety of

5.3. Summary 151

the plant and the operating cost. Our results show that attacks against the process

variable measurements are capable of causing more damage than attacks against the

manipulated variables. Integrity attacks have the potential to cause more significant

damage both in terms of economic damage and the time required to shut down the

plant. However, the attacker needs to carefully select both the right target and time

of the attack to achieve the intended impact, itself a choice between shutting down

the plant or causing economic damage without shutting it down. Interestingly, no

single attack is able to affect product quality significantly.

Given an affirmative answer to Research Question 1, we next explore Research

Question 2 in the following chapter to determine whether it is possible to automate

this process and find even better attacks, by developing an effective and efficient

search to combinations of attacks.

Chapter 6

Searching for an Effective and

Efficient Attack Generation

Approach

In the previous chapter, we studied the TE model, implemented a range of attacks

and tested single attacks against each sensor and actuator. Our results showed that

we can generate a range of attacks with different consequences. Based on these

results, in this chapter we investigate Research Question 2 (How should one search

the attack space effectively and efficiently, and identify the most vulnerable com-

ponents of the process?) using the methods we identified in Chapter 4 to design

an approach that can be used to study combinations of attacks. To achieve this, we

broke Research Question 2 further into two parts:

• Can we search for the attacks that cause the most damage (e.g. increase the

operating cost by the greatest amount)?

• Can we optimise these attacks in terms of effort required (number of sensors

and actuators attacked) and damage caused (in terms of safety and economic

damage) to determine the most vulnerable combinations of devices?

In Section 6.1, we investigate the first part of the question, using a single objec-

tive genetic algorithm (GA), and compare the performance of the GA to a random

search to determine if evolutionary algorithms are suitable candidate for our prob-

6.1. Comparison of Random Search and Genetic Algorithm 153

lem. For the comparison study, we decided to keep the search simple by evolving

only DoS attacks. In Section 6.1.5, we use the GA to evolve multiple types of

attacks to determine the ability of the evolutionary algorithms to identify good can-

didates in a larger space of attacks. Following this, we chose to investigate if it is

possible to optimise attacks using evolutionary multiobjective optimisation (EMO)

to identify the vulnerabilities in a complex industrial control system without requir-

ing a detailed mathematical model of it. In Section 6.2, we develop and test the

EMOs to generate attacks to damage the safety of the system, and to cause eco-

nomic damage.

Please note that the word individual and chromosome, which is also known as

genotype in other literature, are used interchangeably throughout the Chapter.

6.1 Comparison of Random Search and Genetic Al-

gorithm
In order to measure the effectiveness of using evolutionary algorithms as an attack

generator and show their ability to find vulnerabilities, random search was com-

pared to a GA, and both results compared to the single attacks studied in previous

chapter. For this part of the study, the two approaches were used to generate DoS at-

tacks aimed at increasing the operating cost of the plant whilst avoiding shut down.

The duration of DoS attacks was 70 hours, starting at hour 2. In the following sub-

sections, we discuss some practical challenges we faced, then explain the random

generation and GA algorithms used to generate attacks. Finally, we discuss and

report results.

6.1.1 Practical Challenges

The TE model is implemented in MATLAB/Simulink. Once the attacks are gen-

erated, they need to be executed on the TE model to determine the performance of

the attack on the process in terms of the total cost of the operating the plant, the

operating length of the plant and the quality of the product. Due to the compu-

tationally intensive nature of this work, all experiments were carried out using the

6.1. Comparison of Random Search and Genetic Algorithm 154

high performance computing facilities at UCL. The computing platform used for all

experiments throughout this chapter are cluster nodes running 2.00GHz Intel Xeon

E5-2620 CPUs under CentOS release 6.5.

One of the key challenges running experiments has been the execution time

of the MATLAB/Simulink TE model on the high performance computing facilities.

Leaving the MATLAB startup overhead aside, running a single model could take up

to 25 seconds, and, for some attacks such as replay attacks, it can take longer. Run-

ning an evolutionary algorithm, with a population of 200 individuals for 200 gener-

ations, may require 40,000 evaluations. This means run time of the evaluation can

take 278 hours or 11.6 days on a single machine, excluding the additional overhead

of the generation of the attacks. To improve the performance, multiple individuals,

MATLAB jobs were run to evaluate the fitness of the individuals in parallel, and the

genetic algorithm library we used was extended to collect the fitness of each attack

from these jobs. The main program running the random search or the evolutionary

computation distributes the individuals MATLAB jobs; for example, if there are 20

MATLAB compute nodes running, the 200 individuals are distributed among these

20 nodes. The main program then waits for these jobs to be completed, collects the

fitness values for the distributed individuals and then generates a new generation of

the individuals. It repeats this until the evolutionary algorithm terminates. Given

the time and resource constraints, the genetic material of the algorithms describes

only a limited set of attack durations and start times.

6.1.1.1 Implementation Library

It is neither ideal nor recommended to write evolutionary algorithms from scratch

as there are many good frameworks that have been extensively used and tested. We

tested several of these open source frameworks for evolutionary computation. At

the beginning of our work, we made a choice to use Python library called Pyevolve

[289] for its ease of use and extensible capabilities, based on our previous work

[152] [290]. However, this did not offer any support for implementing multiobjec-

tive evolutionary algorithms. We found several widely used frameworks supporting

multiobjective evolutionary algorithms, including a Java framework, the Evolution-

6.1. Comparison of Random Search and Genetic Algorithm 155

ary Computation Toolkit (ECJ) [291], and a Python framework, Distributed Evo-

lutionary Algorithms in Python (DEAP) [292]. We opted to use DEAP because it

was superior in terms of prototyping: it required fewer lines of code, making the

implementation and testing more manageable. Once the attacks are generated using

DEAP in Python, they are converted to MATLAB scripts in the main program (also

implemented in Python) to be executed on the TE Model.

6.1.2 Generating Attacks using a Single Objective Genetic Al-

gorithm

Table 6.1 shows the parameters chosen for the single objective GA. Algorithm 5

shows the pseudocode for the GA. This GA uses a list of bits to indicate which of

the two forms of each gene are encoded. Thus, an individual (chromosome) is a

list of binary values, such as [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0,

0, 0, 1, 0, 1, 0], where the first 16 genes correspond to the 16 sensors (XMEAS)

and the remaining 9 genes (XMV) correspond to the actuators. For example, this

chromosome corresponds to an attack using the following parameters:

XMEAS1NoAttack,XMEAS2Noattack,XMEAS3DoS,XMEAS4DoS,XMEAS5DoS,

XMEAS7DoS,XMEAS8DoS,XMEAS9DoS XMEAS10DoS,XMEAS11DoS,XMEAS12DoS,

XMEAS14DoS,XMEAS15NoAttack,XMEAS17NoAttack,XMEAS31NoAttack,XMEAS40DoS,

XMV 1NoAttack,XMV 2DoS,XMV 3NoAttack,XMV 4NoAttack,XMV 6NoAttack,

XMV 7NoAttack,XMV 8NoAttack,XMV 10NoAttack,XMV 11NoAttack.

Initial Population. The GA uses a random number generator that takes an

integer as a seed and is used to generate the initial population randomly. Each

member of the population encodes a possible combination of attacks. The initial

population can impact the search and consequent evolution can converge towards

different solutions; thus, it is important to run the GA multiple times to study the

reproducibility of the results. A different seed was used for each replicate to ensure

diversity in the initial population. Each gene of the chromosome is sampled from a

uniform Bernoulli distribution.

6.1. Comparison of Random Search and Genetic Algorithm 156

Parameters Value
Chromosome size 25
Types of genes 2
Chromosome encoding Binary
Description of genes Do not Attack, DoS
Number of generations 200
Parent population size 200
Offspring population size 200
Crossover probability 0.8
Mutation probability 0.2
Probability of mutating a gene in a chromosome 0.05
Crossover operator Two-point crossover
Mutation operator Flip-bit
Selection operator Tournament
Parallel evaluations 20
Computation time ≈ 15 hrs

Table 6.1: Evolutionary operators and parameters for generating DoS attacks using GA

Algorithm 5: Genetic algorithm for generating attacks
Input : mut pb = mutation rate, cxpb=crossover rate,

ngen = number of generation
Output: best individual

1 pop = generate initial population randomly
2 pop=evaluate(pop)
3 gen=1
4 while gen≤ ngens do
5 o f f spring = selTournament(pop)
6 for child1, child2 in o f f spring do
7 random = randomGenerator(0, 1)
8 if random()< cxpb then
9 child1,child2 = crossover (child1,child2)

10 for child in o f f spring do
11 if random()< mut pb then
12 child = mutate(child)

13 o f f spring = evaluate(o f f spring)
14 pop = o f f spring
15 gen = gen+1

16 best=selectBest(pop)
17 return best

6.1. Comparison of Random Search and Genetic Algorithm 157

Figure 6.1: The tournament selection process for selecting candidates for mating pool

(a) Two-Point Crossover Operator used on two selected chromosomes

(b) Mutation Operator used on an chromosome

Figure 6.2: Two-point crossover and mutation operation for DoS Attacks

Tournament Selection. The selection method used for the GA is the tourna-

ment selection method [293]. This selects the best chromosome among tournament

size (tournsize) randomly chosen chromosomes. This process is repeated k times,

as illustrated in Figure 6.1.

Two-point Crossover. Two-point crossover was used since the chromosomes

are composed of binary values. These points are chosen randomly and the rele-

vant genetic material is exchanged, ensuring that chromosomes keep their original

length, as illustrated in Figure 6.2a.

Flip-bit Mutation. For this particular GA, in which the chromosomes are

6.1. Comparison of Random Search and Genetic Algorithm 158

composed of only binary values, flip mutation is used to modify the value of the

gene. The number of genes in each chromosome selected for mutation is determined

by the selected probability of each mutation which, in this case, is 0.05, as shown in

Table 6.1. Figure 6.2b shows application of the mutation operator on a chromosome.

Population and Offspring Size. The number of offspring produced at each

generation is the same as the parent population size. At each generation, new off-

spring are produced using the genetic operators, and the previous population is en-

tirely replaced by the new offspring.

Fitness Function. The goal of the GA is to maximise fitness. In our case,

the fitness of a chromosome is measured according to the total operating cost of

the plant after converting the chromosome to a MATLAB script and executing the

attack on the plant. Thus, the higher the operating cost, the better the chromosome.

Termination Condition. The GA was designed to run for a maximum number

of generations. After running the GA for the defined number of generations, the

fittest individual in the final population is returned as the best attack strategy.

6.1.3 Generating Attacks using Random Search

The attacks for the random generator are produced in the same way the evolutionary

computation generates its initial population. Each individual in the population has a

chromosome with 25 genes, and each gene corresponds to an sensor or an actuator.

The first 16 genes correspond to the sensors (XMEAS), and the last 9 correspond

to the actuators (XMV). Using this approach, 6 sets of 40,000 randomly generated

attack strategies were generated and evaluated. The size of the set is much larger

than the number of possible attacks that the GA is able to generate throughout its

evolution.

6.1.4 Results of Random Search and Genetic Algorithm

The metrics used for the analysing the GA are: the statistics collected at each gener-

ation for the maximum, minimum and average fitness; the fittest individual returned

by the algorithm; and the number of unique attack solutions obtained.

Histograms showing the fitness of the attacks generated using random search

6.1. Comparison of Random Search and Genetic Algorithm 159

Figure 6.3: Fitness distribution of attacks generated using Random Search

Figure 6.4: Fitness distribution of attacks generated using Genetic Algorithm

6.1. Comparison of Random Search and Genetic Algorithm 160

are shown in Figure 6.3. The histograms illustrate the unique attacks (duplicates re-

moved) that kept the plant operating while causing economic damage by increasing

the operating cost. On average, random search found 86 unique DoS attacks per run,

far fewer than the number of attacks generated by the GA, which generated on aver-

age 299 unique attacks, as illustrated in Figure 6.4. Only 4 of the attacks generated

by random search increased the operating cost (from $8,218 to $20,000), causing a

loss in the excess of $11,782. Earlier, in Section 5.2, the maximum operating cost

we found using single DoS attacks was the attack on Reactor Pressure (XMEAS 7),

which caused the operating cost to increase to $24,299. Random search produced

only one attack strategy that was better than the single DoS attack on XMEAS 7,

and this increased the cost of the plant operating to $28,148. This involved attacking

XMEAS 7 with other sensors and actuators.

The GA was much more effective at generating attacks that kept the plant on

and increased the operating cost. The histograms in Figure 6.4 show the number

of attacks found, with their operating costs, for 6 runs of the GA. For each run,

a new random seed was used for the GA to ensure that the initial population was

changed. A different seed was also used for the plant for the each evolution to

ensure randomness of the plant.

Duplicates, and those attacks that shut down the plant, were removed from

the plotted results. Overall, the GA generated more unique attacks, giving a range

of attacks producing different operating costs. The best individual returned at the

end of the evolution caused more damage than the single attacks carried out on the

XMEAS and XMV values and results obtained from the random search, producing

attacks with operating cost from $29,553 to $31,449. Across the 6 runs, the GA

produced between 196-380 unique attacks. Given that these are long duration at-

tacks, and the probability of their success (i.e. causing damage whilst avoiding plant

to shut down) is very low, the GA proved to be an effective and efficient approach

for finding the set of feasible attacks. The best attack found during the evolution is

shown in Table 6.2.

Figure 6.5 shows the performance of the single objective GA. Figure 6.5a

6.1. Comparison of Random Search and Genetic Algorithm 161

Chromosome 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0

Description XMEAS1NoAttack,XMEAS2NoAttack, XMEAS3NoAttack,
XMEAS4NoAttack,XMEAS5NoAttack,XMEAS7DoS,
XMEAS8NoAttack,XMEAS9NoAttack, XMEAS10DoS,
XMEAS11NoAttack, XMEAS12NoAttack,XMEAS14NoAttack,
XMEAS15NoAttack,XMEAS17NoAttack, XMEAS31NoAttack,
XMEAS40DoS, XMV1NoAttack,XMV2NoAttack,
XMV3NoAttack, XMV4DoS, XMV6NoAttack,
XMV7NoAttack, XMV8NoAttack, XMV10DoS,
XMV11NoAttack

Cost ($) 31449.00

Table 6.2: Example of a GA generated attack with high operating cost

shows the best and average fitnesses and operating cost, averaged over all runs. It is

able to find the best solution around generation 110, and there are no improvements

after this. Figure 6.5b and 6.5c show the best and average fitness values obtained

for two of the single runs. Figure 6.5b shows a steady increase in the operating cost

until generation 16, and then it takes another 45 generations to produce a signifi-

cantly better offspring. The fittest individual is found at just over 100 generations,

causing an operating cost of $30,467. The evolution shown in Figure 6.5c finds

a solution that is particularly high very early in the evolution. It finds a good in-

dividual, as shown by the sharp increase achieved around generation 5 which has

an operating cost of $26,934. As the evolution continues, further improvement is

found in maximum fitness (to $29,116) and, after generation 17, no improvement is

observed. Given the dimensionality of the plant, it is not clear if this is the best that

can be achieved. For example, the best individual obtained in the run shown Figure

6.5b that resulted in the operating cost of $31,450, was not the best individual in

another run, shown in Figure 6.5c. In the latter, it had an operating cost of $27,537

in comparison to the best individual in this run at $29,116. In the TE Model, this

variability is a consequence of using a new seed for the random number generator

for each simulation run [18]. This means that two runs are never the same.

6.1. Comparison of Random Search and Genetic Algorithm 162

(a) Best and average fitness (averaged over all 6 runs)

(b) Best and average fitness for Run I

(c) Best and average fitness for Run II

Figure 6.5: GA results: maximum (best) and average fitness obtained for evolving DoS
attacks

6.1. Comparison of Random Search and Genetic Algorithm 163

As a result, a chromosome with the same genetic material may yield differ-

ent fitness scores in different runs because of the variability in the operating costs,

caused by the randomness of the plant. It is possible that this is the optimal point

for this particular run. It is also possible that the GA converges prematurely to a

local optimum. This is a common problem in GAs, in which individuals with better

finesses are favoured over those that are less fit. This favouritism helps to produce

individuals that are more fit than their early ancestors, but it also causes the diver-

sity of the population to decrease. When the global optimum is not known (which

is the case for open problems, as in our case), the only reference points we have are

the cost of the single attacks. To consider the variability caused by the randomness

of the plant, different runs with same genetic operators and the same initial popu-

lations were tested. This resulted in individuals with the same chromosome having

different fitness scores.

6.1.4.1 Discussion

The results obtained show that the GA is able to search the space efficiently, and

give some estimate of potential damage attacks could cause on the plant. However,

a more comprehensive set of experiments are required to test how much the random-

ness of the plant influences these results and whether it is possible to select attacks

that have higher expected fitness in such a stochastic environment. It would be de-

sirable to carry out multiple experiments using different parameters on the same

plant (using the same seed) to control convergence, and to determine if it is possible

to improve the best known solution. Maintaining strong diversity in the population

can be beneficial to reduce the risk of getting stuck in the current local optima, and

encourage the evolution to converge to better solutions. Strategies that can enhance

the genetic diversity include: increasing mutation rate; increasing the population

size; controlling the resemblance of the offspring to parents (for example, restrict-

ing mating individuals whose genetic material is too similar - incest prevention);

injecting new randomly generated individuals into the gene pool (known as random

immigrants); using island modelling; using diversity guided algorithms; and using

selection strategies that promote diversity (e.g. fitness uniform selection scheme)

6.1. Comparison of Random Search and Genetic Algorithm 164

[294].

Unfortunately, the requirements for additional computational resources pre-

vented an exhaustive comparison.

The results answer the first part of our Research Question 2: we are able to

search the space and find attacks that are better than those single attacks. Before

moving on to optimising our attacks, we carried out some experiments to analyse

how well the GA is able to cope with a larger space of attacks. In this section, we

asked the GA to evolve DoS attacks, in the following section, we use the GA to

include IntegrityMin and IntegrityMax attacks in addition to DoS.

6.1.5 Evolving Multiple Attacks using Genetic Algorithm

GA was used to search the attack space containing both DoS and Integrity attacks.

For this task, genes are defined using a range of numbers (0=Do not, 1=DoS, 2=In-

tegrityMax and 3=IntegrityMin). The GA was configured using the parameters in

Table 6.3. The chromosome size was 25, equal to the number of sensors and actua-

tors to attack. As before, the initial population of attacks were generated randomly.

Parameters Value
Chromosome size 25
Types of genes 4
Chromosome encoding Integers
Description of genes Do not Attack, DoS,

IntegrityMin, IntegrityMax
Number of generations 400
Parent population size 200
Offspring population size 200
Crossover probability 0.8
Mutation probability 0.2
Probability of mutating a gene in a chromosome 0.05
Crossover operator Two-point crossover
Mutation operator Uniform
Selection operator Tournament
Parallel evaluations 25
Computation time ≈ 20 hrs

Table 6.3: Evolutionary operators and parameters for evolving multiple types of attacks
using GA

6.1. Comparison of Random Search and Genetic Algorithm 165

Figure 6.6: GA showing the maximum (best) and average fitness rates for multiple attacks
(averaged over all runs)

(a) All Attacks (b) Attacks avoided Shutting-down of Plant

Figure 6.7: Generation of multiple types of attacks using GA

6.1. Comparison of Random Search and Genetic Algorithm 166

Figure 6.6 shows the best and average fitness value for each generation, av-

eraged over 6 runs. The results were comparable to the DoS-only attack set. The

GA was able to find attacks that increased the operating cost significantly more than

single attacks (to over $30,000); the best attack it found is listed in Table 6.4. On

average, the GA was able produce just over 1300 attacks that cause damage without

turning the plant off. The histograms in Figure 6.7 show the attacks found in one

of the runs: similar results were obtained for other runs. The number of attacks

found is significantly higher than the number of DoS-only attacks found previously.

However, although this yielded a higher number of attacks, it also confirmed why

optimisation is required.

Chromosome 0, 0, 2, 2, 1, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 3, 2, 3, 1, 1, 1, 0, 1

Description XMEAS1NOATTACK, XMEAS2NOATTACK,
XMEAS3IntegrityMin, XMEAS3NOATTACK,
XMEAS4IntegrityMin, XMEAS4NOATTACK,
XMEAS5DoS, XMEAS5NOATTACK,
XMEAS7IntegrityMax, XMEAS8NOATTACK,
XMEAS9NOATTACK, XMEAS10IntegrityMin,
XMEAS10NOATTACK, XMEAS11NOATTACK,
XMEAS12NOATTACK, XMEAS14NOATTACK,
XMEAS15NOATTACK, XMEAS17NOATTACK,
XMEAS31NOATTACK, XMEAS40IntegrityMax,
XMV1NOATTACK, XMV2IntegrityMax,
XMV3IntegrityMin, XMV3NOATTACK,
XMV4IntegrityMax, XMV6DoS,
XMV6NOATTACK, XMV7DoS,
XMV7NOATTACK, XMV8DoS,
XMV8NOATTACK, XMV10NOATTACK,
XMV11DoS, XMV11NOATTACK

Cost ($) 30107

Table 6.4: GA generated attack strategy utilising multiple types of attacks

Figure 6.6 shows the evolution was slower in comparison to DoS-only attacks,

and this is as expected because the search space is larger (425) and it took more

generations to converge.

Although the GA is able to find solutions fairly quickly, and gradually enhance

6.1. Comparison of Random Search and Genetic Algorithm 167

the average and maximum fitness until around generation 75, the results from all

6 runs appeared to suffer from premature convergence, so it is possible they were

not reaching the global optimum and were, instead getting trapped in local optima.

Increasing the mutation rate and population size [295] improved the premature con-

vergence only slightly; it is possible that the development of a more advanced GA

would help with the problem. This could be done using genetic diversity preserving

techniques [294]; however, it is also possible to encourage this by formulating the

problem as an multiobjective optimisation, and using diversity as one of the objec-

tives [236] to slow the convergence rate and widen the area of search. This is left as

future work.

The results obtained appear to show ability to generate better attacks. The

GA is able to produce a rich set of attacks using a small number of primitives.

However, this study also illustrates why optimisation is required. In this current

setting, it is not possible to determine if all these variables were required to cause

this damage. These attacks are not least effort and, thus, there are possible attacks

that could cause the same damage by attacking only a subset of these variables. One

of best solutions, in Table 6.4 necessitates attacking a combination of 13 sensors and

actuators. It is thus important to search for the attacks that are least effort to identify

the most vulnerable XMEAS and XMV variables.

A possible option to improve this GA is to consider the cost of the attack

by giving more weight to least effort attacks and, in this way punish those in-

volving high numbers of sensors and actuators. This is a common approach in

single-objective evolutionary algorithms: to combine multiple objectives into a sin-

gle function using methods such as utility theory and weighted sum methods [296].

However, the disadvantage of this option is that designing an aggregating function

such as a weighted sum (e.g. Weight1×ObjectiveA + Weight2×ObjectiveB) is of-

ten non trivial. We decided to solve this problem using evolutionary multiobjective

optimisation.

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 168

6.2 Searching Attacks using Evolutionary Multiob-

jective Optimisation
To investigate the second part of our Research Question 2: Can we optimise these

attacks in terms of effort (number of sensors and actuators attacked) required and

damage caused (in terms of safety and economic damage) to determine the most

vulnerable combinations?, we decided to formulate the search as an evolutionary

multiobjective optimisation (EMO) problem. As we discussed in Section 4.3, in

evolutionary multiobjective optimisation each solution is a trade-off between com-

peting objectives, and the evolution tries to find multiple optimal trade-offs, where

the measure of optimality is often based on Pareto dominance. Figure 6.8, presents

an optimal set containing non-dominated solutions in the decision space with the

Pareto front set shown in red. Obtaining this trade-off, and filtering out the domi-

nated solutions, can be carried out in a more efficient way using evolutionary mul-

tiobjective optimisation as they evolve a population of solutions simultaneously at

each iteration [297].

Figure 6.8: Example of Pareto front of a two objective (min-min problem) and the set of
solutions

The selection methods of two common and reputable multiobjective evolution-

ary algorithms, NSGA-II and SPEA2, were used as selection operators in our EMO

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 169

to achieve multiobjective optimisation. The genetic operators for varying the pop-

ulation (crossover, mutation or reproduction) that were used to modify the genes

of the chromosomes and their parameters were selected based on preliminary tests

done to tune the parameters. After testing we found our operators increased the

performance and exploration ability of the EMO better than those suggested for

NSGA-II and SPEA2 algorithms (Section 4.3.2).

We compare the performance and determine how effective and efficient our

EMOs are at finding the optimal attacks against the sensors and actuators. In this

section we analyse and show the performance of the EMOs for two scenarios: i)

search for the fastest attacks that cause the plant to shut down using the least effort;

ii) search for the attacks that cause the most economic damage while keeping the

plant operating until the end of the process (chemical production) using the least

effort.

In the following subsections, we first explain the performance metrics used for

comparing the performance of the selection operators, NSGA-II and SPEA2. Next,

we explain the generation of EMOs for the two scenarios and report the results.

Evolutionary multiobjective optimisation is different from the traditional sin-

gle objective GA used in the previous section, as there is more than one objective.

Measuring the performance of these multiple and conflicting objectives can be dif-

ficult [298], especially if the problem is large and complex. According to Zitzeler

[233] a good EMO should have three goals: i) to minimise the distance of the non-

dominated solution set to the true Pareto-optimal front; ii) to find good, in most

cases uniform distribution of solutions; iii) to maximise the extent of the resulting

non-dominated front. A wide variety of metric indicators have been proposed to

compare the performance of evolutionary optimisation algorithms. Often the goal

of these metrics is to determine [299]: the distance between the true Pareto front

(if it is known) and the predicted Pareto front; the convergence to true Pareto front;

the number of elements (cardinality) found in the Pareto front set; how well the true

Pareto front is discovered by the obtained Pareto front set; how well they approxi-

mate the true Pareto front; and the volume covered by the solutions in the obtained

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 170

Pareto front. A comprehensive list of these metrics can be found in [299]. Given

that the true Pareto fronts of the problem space we are trying to solve are unknown,

the following two metrics will be used to compare the performance of the EMO

algorithms:

Figure 6.9: Hypervolume indicator in the 2-objective case: Pareto front solutions (red dots)
and hypervolume (grey area) [300]

• The Hypervolume Indicator[246], also known as the Lebesgue measure [301]

or S metric has been widely used for comparing the performance of EMO al-

gorithms. It measures the size of volume between the estimated Pareto front

and a reference point. The reference point is defined as the worst possible

point for the space (sometimes called anti-optimal point). Figure 6.9 shows

the hypervolume (grey area) for two objectives, with solutions in which non-

dominated Pareto individuals are in red and the other solutions are in the grey

area. The choice of the reference can influence the comparison of the solu-

tions, and thus it needs to be carefully selected. The selection of this reference

point is an open problem but a common suggestion is to take the worst known

values for each of the objectives and shift it slightly towards some unattain-

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 171

able values to ensure it is placed in a way that will be dominated by every-

thing else. The same reference points are used to compare the performance

of the evolutionary multiobjective optimisation. The goal is to maximise the

hypervolume, so a Pareto front with a larger hypervolume is considered to

indicate a better set of trade-offs between the objectives. To calculate the hy-

pervolume, we used the Python library implemented by the researchers at TU

Dortmund [300], based on the proposed computation algorithm in [302], to

track the hypervolume at each generation.

• The number of solutions is used to determine the number of attacks found, and

the cardinality and the quality of the non-dominated solutions in the Pareto

front. Although the optimisation returns the obtained Pareto front, it is also

important to determine the number of feasible attacks the optimisation finds

as this information will help to identify the most vulnerable sensor and actu-

ator combinations.

6.2.1 Evolutionary Multiobjective Optimisation Approach

Before explaining the whole process of our evolutionary multiobjective optimisa-

tion, first, a brief explanation about evolutionary strategies. The (µ ,λ) strategy and

the (µ+λ) strategy [303] are two classic evolutionary strategies that are often used

with optimisation algorithms to determine which individuals will be considered to

be competitors in the selection of the next generation. The symbol µ denotes the

size of the parent population, and the symbol λ represents the size of the offspring

population. These strategies were proposed as part of the evolutionary strategy field

in the 1960s by the German researchers for continuous black-box optimisation prob-

lems. Since then, they have been widely used in evolutionary computation. In the

case of (µ+λ), the next generation population is selected from among the µ parent

individuals and the λ offspring. In the case of comma selection, (µ ,λ), the selection

takes place only among the λ offspring; their parents are disregarded.

When tuning the parameters for our algorithms, the results obtained from our

test experiments showed that by using the (µ ,λ) strategy we were able to delay

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 172

Algorithm 6: Evolutionary multiobjective optimisation algorithm for gen-
erating attacks
Input : µ = parents to select for next generation,

λ = offspring to produce at each generation,
mut pb = mutation rate, cxpb = crossover rate,
ngen = number of generation,
selOp = selection operators [NSGA-II, SPEA2]

Output: Pareto Front
1 Function Main(µ , λ , mut p, cxpb):
2 ParetoFront = []
3 pop = generate initial population randomly
4 pop=evaluate(pop)
5 gen=1
6 while gen≤ ngens do
7 o f f spring = vary(pop,λ , cxpb, mut pb)
8 o f f spring = evaluateOnTEModel(o f f spring)
9 if selOp is NSGA-II then

10 pop = selectNSGA-II(o f f spring, µ)
11 else if selOp is SPEA2 then
12 pop = selectSPEA2(o f f spring, µ)
13 ParetoFront.update(pop)
14 gen = gen+1

15 return ParetoFront

16

17 Function vary(pop, λ , mut p, cxpb):
18 o f f spring=[]
19 for i = 0 to λ do
20 random = randomGenerator(0, 1)
21 if random < cxpb then
22 parent1, parent2 = randomlySelectTwoParents(pop)
23 child1, child2 = crossover(parent1, parent2)
24 o f f spring.add(child1)
25 else if random < cxpb+mutp then
26 child = randomlySelectParent(pop)
27 child = mutation(child)
28 o f f spring.add(child)
29 else
30 parent = selectParentRandomly(pop)
31 o f f spring.add(parent)

32 return o f f spring

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 173

Figure 6.10: Flow diagram of the EMO-based approach designed to generate attacks

the convergence and increase the exploration ability of the search better than for

(µ+λ); the results showed that the (µ ,λ) strategy converged to a better Pareto front.

Therefore, in the following set of studies we used the (µ ,λ) strategy. However, a

more cautious analysis would require a comprehensive study of both strategies with

different sizes of µ and λ .

The attacks are generated and evolved as described in Algorithm 6: the flow

diagram in Figure 6.10 gives an overview of structural components of the EMO for

generating attacks. In the following section, we discuss the details of our approach.

Chromosome Encoding. Each individual in the population is represented as a

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 174

chromosome that consists of 25 genes corresponding to the total number of sensors

(XMEAS) and actuators (XMV). The position of the gene denoting a sensor or an

actuator and the value of the gene refers to the attack type and parameter.

Initialisation. The initial population of size µ parent chromosomes are gener-

ated randomly. The fitness of each chromosome in the initial population is evalu-

ated by converting the chromosome to an attack script written in MATLAB, and the

script is executed on the simulated TE model to determine the fitness of the chro-

mosome (i.e. shut down time or the operating cost of the plant obtained from the

MATLAB). The operating cost of the plant and plant operating time are written to

a file, from which the EMO can collect the fitness of the chromosomes. A pool of

MATLAB jobs was assigned to evaluate the fitness of the chromosomes.

Evolutionary Loop (Iterations). After establishing the fitness of the chromo-

somes in the initial population, the evolutionary loop generates the next generation

of chromosomes. First, the genetic variation takes µ parents, and generates λ off-

spring by applying the variation operators (crossover, mutation or reproduction).

The steps involved in this operation are: at each iteration beginning from 0 to λ ,

randomly chosen chromosomes are subject to one of the three operations: two-

point crossover (with a probability of cxpb), uniform mutation (with a probability

of mutpb), or reproduction. If crossover is selected, select two parent chromosomes

randomly in the population and apply the crossover operator. If mutation is se-

lected, select a parent chromosome randomly, and apply the mutation operator. In

the case of reproduction, one parent chromosome is randomly selected and copied

into the offspring population. These steps produce λ offspring. Next, the selection

operator (either NSGA-II or SPEA2) is used to select the µ chromosomes from λ

size population. The details of the selection method of both algorithms were dis-

cussed in Chapter 4. NSGA-II uses non-dominance sorting and crowding distance

procedures to rank and select individuals based on where the individual is located.

SPEA2 selects individuals based on the number of dominated and non-dominated

count as well as their density information. Next, the Pareto front set is updated with

the non-dominated chromosomes, and the elements of this set is used to calculate

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 175

the hypervolume in each iteration.

Termination Condition. The evolution loop runs for a defined number of gen-

erations, and at the end of the evolution, the algorithm returns the set of Pareto front

containing all the non-dominated solutions that were found during the evolution.

6.2.2 Using Evolutionary Multiobjective Optimisation for Shut-

down Attacks

To evolve attacks that cause the fastest shut down of the plant using the least effort,

the multiobjective evolution algorithms were configured using the parameters in Ta-

ble 6.5. For this evolution, two objectives were defined - f1: minimise the shutdown

time (shut down time - attack start time); and f2: minimise the effort required to

bring the plant down (total number of sensors and actuators attacked).

Parameters Value
Chromosome size 25
Types of genes 4
Chromosome encoding Integers
Description of genes Do not Attack, DoS,

IntegrityMin, IntegrityMax
Number of generations 400
Parent population size (µ) 100
Offspring population size (λ) 200
Selection strategy (µ,λ)
Crossover probability 0.85
Mutation probability 0.1
Probability of mutating a gene in a chromosome 0.05
Crossover operator Two-point crossover
Mutation operator Uniform
Selection operator NSGA-II, SPEA2
Optimisation objectives Minimise f1, Minimise f2

f1=shutdowntime, f2=effort
Parallel evaluations 50
Computation time ≈ 27 hrs

Table 6.5: Evolutionary operators and parameters for generating shutdown attacks using
EMO

Equal weights were given to each objective because both objectives are equally

important. For each evolution, the attack start time and the length of the attack were

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 176

held constant to ensure the conditions were the same for all individuals. Fluctua-

tions in the state of the plant can influence the behaviour of the attack, and thus it

was important to keep the conditions the same throughout the evolution. Attacks

were started at the same hour, and lasted until the end of the production time. Ef-

fort was defined as the total number of sensors and actuators attacked. As shown

earlier, in Table 5.3, the results obtained from the randomly generated single at-

tacks showed the fastest shut-down took place using (i) the IntegrityMin attack on

XMEAS 4 (A and C Feed flow), causing the plant to shut down in 0.52 hours (31.2

minutes) and (ii) the reactor temperature, with a shut down time of 0.59 hours (35.4

minutes). This is used as baseline against which to compare the performance of the

optimisation.

Performance Measure NSGA-II SPEA2
Unique attacks 5915 6315
Unique attacks ≤ 1hr 5707 5520
Cardinality of Pareto front 15 16
Hypervolume 0.8770 0.8860

Table 6.6: Results for shutdown attacks (averaged over all runs)

The results were collected over 10 runs for NSGA-II and SPEA2 algorithms.

For each of the 10 runs of evolution, a new seed was used to produce a different

initial random population to evolve. To compare the results of the optimisation, the

same seeds were used for NSGA-II and SPEA2 to ensure both algorithms started

with the same initial population. The results obtained were averaged over all runs,

and are shown in Table 6.6. After running the evolution for the defined number of

generations, the multiobjective optimisation returns the latest Pareto optimal front.

Figure 6.11 and Figure 6.12 show the solution space obtained from a single run of

the optimisation using NSGA-II and SPEA2.

Both algorithms started from the same randomly generated initial population.

The elements of the Pareto front set returned at the end of the final generation are

plotted in red dots, and their details are shown in Table 6.7 and Table 6.8. Both

optimisation algorithms were able to find almost the same element set in the Pareto

front set. SPEA2 outperformed NSGA-II in that it found an extra element in the

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 177

(a) All Attacks (b) Attacks less than 1hr

Figure 6.11: Shutdown attacks generated using NSGA-II (2-Objective optimisation: min-
imise shutdown time (f1) versus minimise effort (f2))

(a) All Attacks (b) Attacks less than 1hr

Figure 6.12: Shutdown attacks generated using SPEA2 (2-Objective optimisation: min-
imise shutdown time (f1) versus minimise effort (f2))

Pareto front set, a total of 13 elements, and found a better solution when effort is

1. For a single, 1-effort attack, the best option founded by NSGA-II was to attack

the XMEAS8IntegrityMin which takes 2.85 hours and is not the best option. SPEA2

discovered a better attack: an IntegrityMin attack on XMEAS4 will result in faster

shut-down of the plant, within 0.59 hours (35.4 minutes).

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 178

Attack Strategy Shut-Down (hr) Effort
XMEAS4IntegrityMin,XMEAS7IntegrityMin,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin, XMEAS31IntegrityMin

0.14 6.0

XMEAS4IntegrityMin,XMEAS7IntegrityMax,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin,XMEAS31IntegrityMin

0.14 6.0

XMEAS4IntegrityMin,XMEAS7DoS,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin, XMEAS31IntegrityMin

0.14 6.0

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin,XMEAS17IntegrityMin,
XMEAS31IntegrityMin

0.15 5.0

XMEAS4IntegrityMin,XMEAS7IntegrityMax,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin

0.15 5.0

XMEAS4IntegrityMin,XMEAS7DoS,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin

0.15 5.0

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin,XMEAS17IntegrityMin,
XMV6IntegrityMax

0.15 5.0

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin,XMEAS17IntegrityMin

0.16 4.0

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin

0.18 3.0

XMEAS8IntegrityMin,XMEAS11IntegrityMin 0.26 2.0
XMEAS8IntegrityMin 2.85 1.0

Table 6.7: Example of a Pareto front obtained for shutdown attacks using NSGA-II

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 179

Attack Strategy Shut-Down Times (hr) Effort
XMEAS4IntegrityMin,XMEAS7DoS,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin,XMEAS31IntegrityMin

0.14 6.00

XMEAS4IntegrityMin,XMEAS7IntegrityMax,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin,XMEAS31IntegrityMin

0.14 6.00

XMEAS4IntegrityMin,XMEAS7IntegrityMin,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin,XMEAS31IntegrityMin

0.14 6.00

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin,XMEAS17IntegrityMin,
XMEAS31IntegrityMin

0.15 5.0

XMEAS4IntegrityMin,XMEAS7DoS,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin

0.15 5.0

XMEAS4IntegrityMin,XMEAS7IntegrityMax,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin

0.15 5.0

XMEAS4IntegrityMin,XMEAS7IntegrityMin,
XMEAS8IntegrityMin,XMEAS11IntegrityMin,
XMEAS17IntegrityMin

0.15 5.0

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin,XMEAS17IntegrityMin,
XMV6IntegrityMax

0.15 5.0

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin,XMEAS17IntegrityMin

0.16 4.0

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin

0.18 3.0

XMEAS8IntegrityMin,XMEAS11IntegrityMin 0.26 2.0
XMEAS4IntegrityMin 0.59 1.0
Do Not Attack 0.0 0.0

Table 6.8: Example of a Pareto front obtained for shutdown attacks using SPEA2

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 180

(a) Shutdown attacks generated using NSGA-II (b) Shutdown attacks generated using SPEA2

Figure 6.13: Shutdown attacks generated using NSGA-II and SPEA2 (over all runs)

(a) Distribution of shutdown attacks generated using
NSGA-II

(b) Distribution of shutdown attacks generated using
SPEA2

Figure 6.14: Distribution of shutdown attacks generated using NSGA-II and SPEA2 (over
all runs)

The Pareto front set also had the case for the Do not Attack option. This was

also true in other runs: SPEA2 was able produce a more distributed set of solutions,

and, on average, a slightly better Pareto front set than the NSGA-II algorithm. This

is illustrated in Figure 6.13 and Figure 6.14.

As shown in Table 6.6, SPEA2 produced more attacks on average under 1 hour

than NSGA-II, that is 6315 for SPEA2, and 5915 for NSGA-II. The attacks that take

down the plant under 1 hour were higher for NSGA-II (5707) compared to SPEA2

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 181

Figure 6.15: Hypervolume results for NSGA-II and SPEA2 for generating shutdown at-
tacks (averaged and normalised over all runs)

(5520). Thus, it is possible that NSGA-II is able to search the space near the optimal

set better than SPEA2. Future work will investigate an appropriate metric to study

this.

Figure 6.15 shows the performance of the hypervolume indicator for each of

the 500 generations, averaged over all runs. At the end of each generation, the hy-

pervolume was computed according to the Pareto front achieved at that generation.

For convenience, plotted hypervolume results are normalised to the interval [0,1] ac-

cording to the best hypervolume value possible, estimated based on the maximum

measurement obtained. The reference point used for computing the hypervolume is

r =[71, 26]: 71 is the value for objective f1 (shutdown time) and 26 is value for f2

(effort).

The hypervolume results show the speed of the convergence for both SPEA2

and NSGA-II algorithms. As shown in Figure 6.15, SPEA2 converges faster to a

better Pareto front whereas NSGA-II requires more time to reach a slightly worse

Pareto front set. By generation 148, SPEA2 achieved a value of 0.8855, and from

then it converges, improving only slightly to reach 0.8860 by the end of the gener-

ation 500, but, overall, outperforming NSGA-II. NSGA-II achieved a hypervolume

of 0.8769 around generation 230, and then converges, improving only slightly and

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 182

finishing with a hypervolume of 0.8770 by the end of generation 500.

6.2.2.1 Exploring Attack Space for Process Variables and Manipu-

lated Variables Further

The evolutionary multiobjective optimisation approach returned a wide variety of

attacks with a range of trade-offs for effort and shutdown time. Most of these attacks

involved attacking sensors as we expected, because the single attacks showed that

attacks on sensors were more damaging than those on actuators. To determine if

this is actually the case, and to determine the individual vulnerability of these com-

ponents, further experiments were carried out on each set of actuators and sensors

separately.

Evolving attacks against manipulated variables (actuators)

Given that the search space for the actuators is much smaller (49 = 262144), the

size of the initial parent population was set to 50 individuals, and number of off-

spring to produce at each generation was set to 100. The evolution was run for 200

generations using the genetic parameters shown in Table 6.5.

Figure 6.16 illustrates the solution space for NSGA-II and SPEA2. The de-

scription of the Pareto front is shown in Table 6.9 and Table 6.10.

(a) Pareto front obtained using NSGA-II (b) Pareto front obtained using SPEA2

Figure 6.16: Shutdown attacks generated against XMVs using NSGA-II and SPEA2

The results indicate NSGA-II keeps the evolved populations closer to the non-

dominated solutions it finds and, as a result, it was able to find two extra solutions

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 183

Attack Strategy Shut-Down Times (hr) Effort
XMV6IntegrityMin,XMV10IntegrityMin,
XMV11IntegrityMin

0.26 3

XMV6DoS,XMV10IntegrityMin,
XMV11IntegrityMin

0.26 3

XMV4IntegrityMax,XMV10IntegrityMin,
XMV11IntegrityMin

0.26 3

XMV10IntegrityMax,XMV11IntegrityMax 0.27 2
XMV11IntegrityMax 1.59 1
Do Not Attack 0.0 0

Table 6.9: Description of the Pareto front set for shutdown attacks generated against XMVs
using NSGA-II

Attack Strategy Shut-Down Times (hr) Effort
XMV4IntegrityMax,XMV10IntegrityMin,
XMV11IntegrityMin

0.26 3

XMV10IntegrityMax,XMV11IntegrityMax 0.27 2
XMV11IntegrityMin 0.64 1
Do Not Attack 0.0 0

Table 6.10: Description of the Pareto front set for shutdown attacks generated against
XMVs using SPEA2

with effort three. However, during this evolution it found a worse solution for the

single effort attack; that is, attacking only one actuator. Given the option to attack

one actuator, the best strategy NSGA-II found was an IntegrityMax attack on XMV

11 which will bring down the plant in 1.59hr, whereas SPEA2 found an Integrri-

tyMin atttack on XMV11, that will result in failure in 0.64 hours. Figures 6.16a

and 6.16b shows that SPEA2 is better at searching a more diverse population, gen-

erating new solutions in regions NSGA-II fail to explore, and NSGA-II is better at

finding solutions near the solution space’s best trade-offs.

If the attacker only has access to actuators, the best strategy to bring the plant

down is to attack the valve XMV 10 (Reactor Cooling Water Flow) and valve XMV

11 (Condenser Cooling Water Flow). This solution provides the best trade-off be-

tween the two objectives. However, the attacker will need to devise the attack care-

fully, deciding what type of attack to carry out on each actuator. The EMOs found

that using XMV10IntegrityMax and XMV11IntegrityMin will shut down the plant in 1.12

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 184

hours, but, using XMV10IntegrityMax with XMV11IntegrityMax will shut down the plant

in 0.27 hours (16.2 minutes).

Evolving attacks against process variable measurements (sensors)

We also evolved attacks using only XMEAS sensors to test how these compared

to the combined XMEAS and XMV attacks using the genetic parameters shown in

Table 6.5.

The results were very similar to the previous results obtained from evolving

combined attackers using all XMEAS and XMV variables. The shutdown time was

not improved and there were no better attacks to reduce the shut down time of the

plant faster; however, the evolution was able to improve the size of the Pareto front

set. There were 20 elements in the Pareto set for SPEA2 and 18 elements in the

Pareto set for NSGA-II. Figure 6.17 shows the attacks that cause failures under 1

hour for both of the optimisation algorithms. The plot for the Pareto front may not

be sufficiently long, but some of the points on the diagram refer to multiple attacks

with equal fitness; for example, there were 3 attacks with equal fitness using 6 effort

and shutdown time of 0.14 hours; 9 attacks with 5 effort and shut down time of 0.15

hours. This is due to quantisation effects. When converting the shutdown time into

hours, we converted to nearest two decimal place, and, in reality these attacks are

very slightly different. For our experiments, this time granularity was sufficient, but

temporal granularity can be configured according to requirements.

We will not list all the attacks in the Pareto front, but the solutions with effort

≤ 4 obtained from EMO algorithm using the SPEA2 selection operator are listed

in Table 6.11. When compared to Table 6.8, there are three more attacks using

effort four. For this experiment, the population size was kept the same as for the

combined attacks as in the previous experiment but the chromosome size was 16

smaller than the combined size of sensors and actuators (25). This might have

improved the quality of the Pareto set for this exercise, resulting in mating more

offspring of similar genetic material. One might achieve similar results with the

combined attacks if the size of the population is increased, since the size of the

population can influence the quality of the Pareto set.

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 185

(a) Attacks under 1hr using NSGA-II (b) Attacks under 1hr using SPEA2

Figure 6.17: Shutdown attacks generated against XMEASs using NSGA-II and SPEA2

Attack Strategy Shut-Down (hr) Effort
XMEAS4IntegrityMin,XMEAS7IntegrityMin,
XMEAS8IntegrityMin,XMEAS11IntegrityMin

0.16 4.0

XMEAS4IntegrityMin,XMEAS7IntegrityMin,
XMEAS8IntegrityMin,XMEAS17IntegrityMin

0.16 4.0

XMEAS4IntegrityMin,XMEAS7DoS,
XMEAS8IntegrityMin,XMEAS11IntegrityMin

0.16 4.0

XMEAS4IntegrityMin,XMEAS7IntegrityMin,
XMEAS8IntegrityMin,XMEAS31IntegrityMin

0.16 4.0

XMEAS4IntegrityMin,XMEAS8IntegrityMin,
XMEAS11IntegrityMin

0.18 3.0

XMEAS8IntegrityMin,XMEAS11IntegrityMin 0.25 2.0
XMEAS4IntegrityMin 0.53 1.0
Do Not Attack 0.0 0.0

Table 6.11: Description of some of the elements in the Pareto front for shutdown attacks
against XMEASs generated using SPEA-2

6.2.3 Using Evolutionary Multiobjective Optimisation for Eco-

nomic Damage Attacks

We investigated evolutionary multiobjective optimisation to evolve attacks that

cause economic damage using the least effort. The evolutionary parameters used

for searching for these attacks are reported in Table 6.12. The attacks discussed in

the previous sections started at the same time. To cause monetary loss, the attackers

need to run attacks for longer periods whilst avoiding detection. Given the increased

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 186

Parameters Value
Chromosome size 25
Chromosome encoding Integers
Types of genes 36
Chromosome encoding Integers
Description of genes Do not Attack, DoS,

IntegrityMin, IntegrityMax, Replay,
(with various starting time and duration)

Number of generations 500
Parent population size (µ) 200
Offspring population size (λ) 400
Selection strategy (µ,λ)
Crossover probability 0.80
Mutation probability 0.15
Probability of mutating a gene 0.08

in a chromosome
Crossover operator Two-point crossover
Mutation operator Uniform
Selection operator NSGA-II, SPEA2
Optimisation objectives Maximise f1, Minimise f2

f1=operating cost, f2=attack effort
Parallel evaluations 50
Computation time ≈ 66 hrs

Table 6.12: Evolutionary operators and parameters for generating economic damage at-
tacks using EMO

length of the computation time, as shown on Table 6.12, we decided to configure

the attacks using only a limited set of attack times: starting time of the attacks (2,

10, 20, 30, 50 hours) and duration of attacks (10, 20, 22, 42, 52, 62, 70 hours).

The length of the attacks was kept long to estimate the maximum potential

economic damage inflicted on the plant. In total there were 36 attack strategies

(types of genes) for each chromosome, and this is a search space of size 3625. The

optimisation is a 2-objective fitness problem: maximise f1 and minimise f2, where

f1 is the total operating cost of the plant; and f2 is the effort (total number of sensors

and actuators attacked). The results were obtained over 10 sets of runs for each

optimisation algorithm. Table 6.13 reports the results obtained.

EMO was able to find attacks that were better than the single attacks reported

in Section 5.1, random search in Section 6.1.4 and the single objective GA dis-

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 187

Performance Measure NSGA-II SPEA2
Unique attacks 44846 44105
Maximum operating cost ($) 41938 42748
Cardinality of Pareto front 5.0 6.0
Hypervolume 0.8202 0.8608

Table 6.13: Results for operating cost attacks (averaged over all runs)

(a) Attacks generated using NSGA-II (b) Attacks generated using SPEA2

Figure 6.18: Example of economic attacks generated using NSGA-II and SPEA2 (single
run)

cussed in Section 6.1.5. The average operating cost of the plant is $8208. Starting

from a random population of individuals, multiobjective evolutionary computation

went through over 44,000 unique attacks on average, and increased the operating

cost to $42,748, a total increase of $34,540 from the average of operating the plant

normally.

Figure 6.18 shows the performance of the EMO with the Pareto front set gener-

Attack Strategy Operating Cost ($) Effort
XMEAS7IntegrityMax(2,70),XMEAS10IntegrityMin(2,70),
XMEAS31DoS(10,62),XMV3IntegrityMin(2,70)

41938.10 4

XMEAS7IntegrityMax(2,70),XMEAS31DoS(10,62),
XMV3IntegrityMin(2,70)

41121.75 3

XMEAS7IntegrityMax(2,70),XMV3IntegrityMin(2,70) 28141.06 2
XMEAS7IntegrityMax(2,70) 24473.12 1

Table 6.14: Description of a Pareto front obtained for economic damage attacks generated
using NSGA-II

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 188

Attack Strategy Operating Cost ($) Effort
XMEAS7IntegrityMax(2,70),XMEAS10IntegrityMin(2,70),
XMEAS31DoS(10,62),XMV3IntegrityMin(2,70),
XMV4IntegrityMin(10,20)

42748.16 5

XMEAS7IntegrityMax(2,70),XMEAS31DoS(10,62),
XMV3IntegrityMin(2,70),XMV4IntegrityMin(10,20)

42013.06 4

XMEAS7IntegrityMax(2,70),XMEAS31DoS(10,62),
XMV3IntegrityMin(2,70)

41121.75 3

XMEAS7IntegrityMax(2,70), XMV4Replay(2,70) 29675.01 2
XMEAS7IntegrityMax(2,70) 24473.12 1
Do Not Attack 8210.42 0

Table 6.15: Description of a Pareto front obtained for economic damage attacks generated
using SPEA2

Figure 6.19: Hypervolume results for NSGA-II and SPEA2 (single run)

ated using NSGA-II and SPEA2 selection operators. A description of the Pareto set

is given in Table 6.14 and Table 6.15. The values in the tuple show the attack start

time and duration, for example XMV4IntegrityMin(10,20) means an integrity attack was

carried out on XMV4, starting at hour 10, for a duration of 20 hours. These attacks

avoided shutting down the plant, and they were all able to run until the end of the

production; in other words the safety limits were not violated during these attacks.

At the end of generation 500, the SPEA2 algorithm produced a Pareto set containing

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 189

6 elements, and NSGA-II produced a Pareto set containing only 4 elements.

(a) Distributions of attacks generated using NSGA-II (b) Distribution of attacks generated using SPEA2

Figure 6.20: Distribution of economic attacks generated using NSGA-II and SPEA2 (single
run)

As for previous results NSGA-II required more time to find the Pareto front

than SPEA2. The hypervolume of this run is illustrated in Figure 6.19, and this sug-

gests optimisation might have improved if it was run for more generations. Whilst it

is not clear that the differences will be major, future work could use checkpoints to

continue an evolution beyond the predefined maximum generation criteria, stopping

only when search stagnates: that is, that there are no changes in the hypervolume

for a number of successive generations.

Figure 6.20 shows the proportion of these attacks that did not violate the safety

limits of the plants and kept the plant on, generated throughout the evolution of

each of the optimisation algorithms from the same single run. The diversity of

the solutions was better for SPEA2, producing 5272 unique attacks (ranging from

$4,2748.16-$7,150.82) as compared to 4468 unique attacks ($41,938.1-7,138.48)

for NSGA-II.

As these numbers illustrate, the plant was also able to produce some attacks

that reduced the operating cost to below the mean of the normal runs ($8208).

Moreover, none of previously studied attacks had an harmful effect on the prod-

uct quality. One possible explanation for this reduction is that it is a consequence

of producing less product output. The original TE model does not have a metric

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 190

Figure 6.21: Hypervolume results for NSGA-II and SPEA2 for generating economic dam-
age attacks (averaged and normalised over all runs)

for calculating the quantity of the final product of the plant. However, these results

suggest that an either there is scope to improve the process, or there is scope to

attack this system by forcing it to produce less product.

On average, SPEA2 performed better than NSGA-II both in the quality of the

Pareto front and the time it takes to converge. As indicated in Table 6.13, the average

over all the runs showed that SPEA2 has a hypervolume average of 0.86, against a

NSGA-II hypervolume of 0.82. Figure 6.21 shows the comparison of hypervolume

between NSGA-II and SPEA2, normalised and averaged over all 10 runs. These

results show that SPEA2 is able to search the space faster and produce a better

Pareto front of optimal solutions. Given the scale of the computation required, it was

infeasible to re-run these algorithms for a larger number of generations; however,

these results suggest both optimisation methods can be used to address this problem.

6.2.4 Discussion

At the beginning of this chapter to investigate Research Question 2 (How should one

search the attack space effectively and efficiently and identify the most vulnerable

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 191

components of the process?), we broke the question further into two parts:

• Can we search for the attacks that cause the most damage (e.g. operating cost,

increase the cost)?

• Can we optimise these attacks in terms of effort (number of sensors and actu-

ators attacked) required and damage caused (damage) to determine the most

vulnerable combinations?

The experiments carried out using evolutionary multiobjective optimisation an-

swer the second part of our Research Question. We were able to produce a rich

dataset of feasible attacks that can be carried out on the plant to damage its safety

or cause economic damage.

The EMO algorithms using either NSGA-II or SPEA2 selection operators were

able to produce an optimal set of solutions, but SPEA2 appears to be slightly faster

and results in a better quality Pareto front set and spread among the solutions. How-

ever, how well the evolved attacks represent the full extent of the trade-offs between

the objectives, and how close the non-dominated solution approximation set is to the

true Pareto Front can be hard to measure when the true Pareto front is not known.

Thus, the result obtained from 500 randomly generated attacks carried out on each

sensor and actuator were used as a comparator for these results. By calculating the

hypervolume of the Pareto front obtained at each generation, we were able to mon-

itor convergence. Overall, the attacks evolved for shutting down the plant took less

time to converge, and attacks evolved to increase the operating costs required more

time to converge as the attack space was larger. For practical reasons, we could

only run these algorithms for 500 generations. Although this was in general a sen-

sible number for most of the runs, there were a few cases in which the optimisation

required more time to converge. So, using the generation number as a termination

criterion may not always be appropriate, and population stagnation might be a better

stopping criterion.

Premature convergence is a general problem of evolutionary computation and

it is important to maintain the diversity of the population to reduce this risk. In-

creasing the mutation rate, population size and using the (µ ,λ) strategy reduced the

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 192

risk, but applying more advanced and dynamic techniques might help to find better

solutions.

Vulnerable Combinations SDT (min)
XMEAS4,XMEAS7,XMEAS8,XMEAS11,XMEAS17,XMEAS31 8.4
XMEAS4,XMEAS8,XMEAS11,XMEAS17,XMV6 9.0
XMEAS4,XMEAS8,XMEAS11,XMEAS31 9.6
XMEAS3,XMEAS4,XMEAS8,XMEAS11 10.2
XMEAS8,XMEAS9,XMEAS11 10.8
XMEAS8,XMEAS11,XMV6 11.4
XMEAS8,XMEAS11,XMV10 12.0
XMEAS8,XMEAS11,XMEAS31 12.0
XMEAS5,XMEAS8,XMEAS11 13.8
XMEAS9,XMV7,XMV11 14.4
XMV7,XMV10,XMV11 14.5
XMEAS4,XMEAS7,XMEAS17 15.0
XMEAS8,XMEAS11 15.0
XMV9, XMV10 16.2
XMV10,XMV11 16.2
XMEAS9,XMV11 16.8

Table 6.16: A selection of vulnerable combinations that could bring the plant down under
17 minutes

The results obtained provide a rich set of attacks that can be analysed and help

plant operators identify the most vulnerable combinations of sensors and actuators.

Table 6.16 shows a subset of vulnerable combinations of the sensors and actuators

that could shut down the plant in under 17 minutes. For example, carrying out a

single attack on XMEAS 8 (Reactor Level) was able to shut down the plant over 2.8

hours, and attacking XMEAS 11 (Separator Temperature) avoided shutting down

the plant for all types of attacks. The results show that attacking both of these

sensors at the same time could shut down the plant in 15 minutes. These results also

showed that the plant is less resilient to attacks on the sensors and, if an adversary

wants to bring down the plant in a very short period of time such as less than 10

minutes, attacking sensors is more likely to cause this to happen than attacking

actuators.

Table 6.17 reports the combinations of sensors and actuators attacked and their

influence on the operating cost. Most of these attacks involved carrying out an

6.2. Searching Attacks using Evolutionary Multiobjective Optimisation 193

Vulnerable Combinations Operating Cost ($)
XMEAS7, XMEAS10, XMEAS31, XMV3, XMV4 42748.16
XMEAS7, XMEAS17, XMEAS31, XMV3, XMV4 42527.14
XMEAS7, XMEAS31, XMV3, XMV4, XMV7 42085.96
XMEAS7, XMEAS31, XMV3, XMV4 42013.06
XMEAS7, XMEAS15, XMEAS31, XMV3 41141.87
XMEAS7, XMEAS31, XMV3 41121.75
XMEAS7, XMV4, XMV10 37865.92
XMEAS7, XMV3, XMV4 36474.95
XMEAS7, XMEAS15, XMV4 35007
XMEAS7,XMV1,XMV4 33846.47
XMEAS7, XMV4 29777.79
XMEAS7, XMV3 29777.79
XMEAS7, XMEAS31 29675.01
XMV4, XMV10 28152.05
XMV3, XMV4 28139.69
XMEAS9, XMEAS31 27019.83
XMEAS31, XMV10 27018.93
XMEAS5, XMEAS31 26995.75
XMEAS7 24479.21
XMEAS31 19611.87
XMV10 11046.02
XMEAS5 13500.75
XMEAS11 10389.3
XMEAS8 10300.15
XMV4 10097.58
XMV6 10095.01
XMEAS9 9134.93
Do No Attack (Average) 8210.94

Table 6.17: A selection of vulnerable combinations that could increase the operating cost
of the plant

IntegrityMax attack on XMEAS 7 (Reactor Pressure), which means sending higher

values than expected. When the controller receives these values, it attempts try to

reduce the pressure by opening the Purge valve, and a high value for the purge rate

increases the operating cost of the plant. Carrying out a single attack on XMEAS 7

increases the operating cost to $24479.21 but, as the results indicate, more damage

can be inflicted using the right combinations of sensors and actuators.

The use of evolutionary multiobjective optimisation to generate attacks can

help in the design of systems that are more resilient to cyber attacks. One way

6.3. Summary 194

to use this knowledge would be to consider the vulnerable combinations when de-

signing control network segments. The zone and conduit model is a framework

for network segmentation to manage security threats for Industrial Automation and

Control Systems, recommended as part of the standard such as ISA/IEC 62443.

Zones are defined as a group of logical or physical assets sharing common secu-

rity requirements, and conduits are the paths of communication between the zones

[304]. The use of EMO to identify particularly vulnerable combinations of sensors

and actuators that cause the plant to shut down or increase the operating cost of the

plant means that these can be aggregated in different zones, building a more secure

resilient network.

6.3 Summary
In this chapter, we investigated Research Question 2 by developing a random search,

a single objective GA, and evolutionary multiobjective optimisation algorithms.

The results shows that evolutionary multiobjective optimisation explores the search

space better than random search and the single objective GA, and provided a set

of solutions that were better. Starting from a random population, having no knowl-

edge about the system, evolutionary multiobjective optimisation was able to capture

the system’s behaviour, and identify the non-dominated solutions that correspond to

trade-offs between the defined objectives. This work shows that evolutionary mul-

tiobjective optimisation can successfully be used to generate attacks that cause the

most damage, by identifying the most vulnerable components in a complex system

automatically. It provides an effective and efficient search approach for cybersecu-

rity tasks. In the next chapter, we investigate a detection model for the generated

attacks.

Chapter 7

Attack Detection using Supervised

and Unsupervised Learning

In this chapter, we describe an investigation of Research Question 3 (How should

one design a novel intrusion detection system to detect attacks?) using the machine

learning and deep learning methods we identified in section 4.4. We used the TE

model to generate a large set of attacks to test the performance of the detection

methods. We explain the process involved in training, tuning and measuring perfor-

mance of the supervised and unsupervised learning methods. The performance of

the detection mechanisms are measured against four types of attacks: IntegrityMin,

IntegrityMax, DoS and replay attacks, which are used to manipulate the process

variable measurements sent by the sensors (XMEAS), and manipulated variables

received by the actuators (XMV).

7.1 Supervised and Unsupervised Learning Methods
To investigate the effectiveness of supervised learning (classification) and unsuper-

vised learning (anomaly detection) we selected the learning methods illustrated in

Table 7.1.

To implement the machine learning algorithms, the widely used machine learn-

ing library in Python, scikit-learn [92], was selected; to implement the deep learning

algorithms (LSTM, GRU, Autoencoder), Keras [281] was used on top of Tensor-

flow. Keras is an open source high level neural networks API in Python used to

7.2. Dataset Generation and Description 196

Supervised Learning Unsupervised Learning
Single Decision Tree (CART) One-Class SVM
Bagging Long Short-Term Memory (LSTM)
AdaBoost Gated Recurrent Unit (GRU)
Random Forest Autoencoder Neural Network
Support Vector Machine

Table 7.1: Selected supervised and unsupervised models for IDS

implement deep neural networks, and can be run over other deep learning libraries

such as TensorFlow and Theano.

7.2 Dataset Generation and Description
The TE model generates 41 process variable measurements (XMEAS) and 12 ma-

nipulated variables (XMV). We assume that intrusion detection is carried out close

to the controller, and that the IDS sees both process variable measurements from

the sensors and the manipulated variables sent to the actuators. As illustrated in

Figure 7.1, if attacks are carried out on the process variable measurements, the IDS

receives these values, as does the controller. If the attacks are carried out against

the manipulated variables, neither IDS nor the controller will become aware of this

directly, and IDS will use the manipulated variables computed by the controller.

Figure 7.1: Position of the intrusion detection system

The open source fault dataset generated on the TE process model by the Braatz

Group [125] uses a sample interval of 3 minutes (20 data points per hour). When

dealing with attacks on critical systems, the goal of the detection should be to detect

abnormality as rapidly as possible, so that the necessary countermeasures can be put

in place before significant damage has occurred. To cater for this, and to test how

7.2. Dataset Generation and Description 197

Supervised Learning Samples containing attacks: 60
Samples with normal mode: 12
Attack types: Integrity (Min and Max) attacks car-
ried out on 16 sensors (XMEAS)
Duration of attacks: 20 minutes to 3 hrs
Validation Data: 20 samples

Unsupervised Learning Samples with normal mode: 30
Validation Data: 10

Sample size 36000
Sample dimensions 51

41 XMEAS (process variable measurements)
9 XMV (manipulated variables)
1 Attack indicator

Sampling points 500 samples per Hour
Test Data 224 Samples with attacks:

92 Integrity attacks on XMEAS and XMV
56 DoS attacks on XMEAS and XMV
77 Replay attacks on XMEAS and XMV
Duration of attacks: 20 minutes to 2 hour

Table 7.2: Characteristics of the IDS dataset

well the learning algorithms cope with a dataset of the size commonly found in real-

world deployments, the TE process model was set up to record data at a sampling

rate of 500 data points per hour. As a result, each simulated run produces 36000

data points (72 hours x 500) for each of 12 manipulated and 41 process variable

measurements. This is just over 30MB of data. All attacks are interval attacks.

Table 7.2 shows the characteristics of the datasets used for designing and test-

ing our methods. Next, we explain the process involved in generating these datasets.

7.2.1 Dataset for Supervised Learning

Supervised learning methods require labelled data for training. We defined the clas-

sification as a binary classification problem with two labels: attack and normal. To

test the adaptability of training to unseen situations (unknown attacks), the training

data for supervised learning were generating using IntegrityMin and IntegrityMax

attacks on process variable measurements (i.e. sensors only). To avoid making the

task of detection too simple, the simulated attacks were launched against a single

sensor during the plant’s operation, and for a duration of between 20 minutes and

3 hours to ensure the plant can return to normal operation. The random seed that

7.2. Dataset Generation and Description 198

(a) Impact on A and C Feed (XMV4) (b) Impact on Purge Valve (XMV 6)

Figure 7.2: Impact of the attack on A and C Feed (XMV 4)

is used to generate stochastic measurement noise was changed before running each

replicate to reflect likely variability in the plant and so avoid overfitting. Using this

approach, many attack data cases were simulated.

7.2.1.1 Labelling Data

Supervised learning requires high quality labelled data to ensure that models can

learn and classify the phenomena of interest with accuracy. This process can be

complicated and costly since the labelling is often done manually by a human ex-

pert. The problem is particularly hard for cyber-physical systems, because deciding

how to label may not be a straightforward task.

Thus, for example, once attacks are launched, the anomalous behaviour often

continues even after the attack has stopped, and it takes a while before the system

returns to normal operating conditions. Labelling just the data between the start of

the attack and the end of the attack as malicious, and the data elsewhere as normal

is simplistic. Figure 7.2a shows an integrity attack that was carried out on XMV 4.

The attack starts at hour 50 and runs for a duration of 1 hour but it takes over 10

hours for the plant return to normal operating conditions. Moreover, carrying out an

attack on one variable will often have consequences on other variables. Figure 7.2b

shows the consequences of this attack on the purge valve. The behaviour between

the start of the attack and re-establishment of the normal operation is all the result

of the attack; therefore this data should also be labelled as anomalous.

To identify when the plant returns to a normal operating condition after an

7.2. Dataset Generation and Description 199

attack, a modified Z-score was used. In an ordinary Z-score test, the mean and stan-

dard deviation for each feature (XMEAS and XMVs) are used to estimate how many

standard deviations an element is from the mean. An observation is considered to

be an outlier if the sample is within a given distance of the mean, usually±3σ . The

sample mean and sample standard deviation used in calculating a Z-score can be af-

fected by a small number numbers of outliers. To avoid this, Inglewicz and Hoaglin

[305] proposed the modified Z-Score, which uses the sample’s median (x̃) and the

median of absolute deviation (MAD), instead of the mean and standard deviation:

Mi =
0.6745(xi− x̃)

MAD
(7.1)

where the constant 0.6745 (the 0.75th quartile of the standard normal distribu-

tion) is recommended for larger normal data. MAD is defined as:

MAD = median(|Yi− Ỹ |) (7.2)

where Yi is the median of the sample and |Ỹ | is the absolute value of Y .

Generally, a modified Z-score with an absolute value of ≥ 3.5 is considered

to be an indicator that the data is an outlier [305]. A large sample of normal plant

operation data were taken to calculate the modified Z-scores for each of 50 fea-

tures. These scores were used to estimate when the plant returned to normal after

the attack; in this case all 50 features returned to their normal range. Two types

of labelling were used. Binary classification: attack and not-attack, and multiple

classification, where labels describe what is being attacked: sensor attack, actuator

attack and not-attack. However, we decided to focus only on binary classifica-

tion for two reasons: i) multiple classification was harder to generate reliably; ii)

the proposed unsupervised learning methods are binary (anomalous, normal), and

therefore comparison would not be straightforward.

7.2.1.2 Forming the Datasets

To train the supervised learning algorithms, two datasets were formed: a training

dataset to train the algorithms, and a validation dataset to tune the algorithms (i.e.

7.2. Dataset Generation and Description 200

select the best hyperparameters). To test the adaptability of training to unseen sit-

uations (unknown attacks), the training data for supervised learning were selected

from IntegrityMin and IntegrityMax attacks on process variables (XMEAS). We

generated attack samples, runs containing integrity attacks (IntegrityMin or In-

etegrityMax) with an attack duration ranging from 20 minutes to 3 hours. We

generated 2 IntegrityMin attacks and 2 IntegrityMax attacks on each of 16 sensors

that could be attacked, at random hours, to generate the training set. Four attacks

brought the plant down, and therefore they were removed from the training set. In

total, these 60 samples (simulation runs) containing attacks were used in training.

To validate the model, another 20 runs containing attacks were used. Some initial

experiments were carried out using both Decision Tree and Random Forest, and the

results showed false positive rates were high. To ameliorate this problem, 12 sets of

normal plant runs were added to the training data.

The test dataset that was used to measure the performance of the supervised

learning methods was the same for both supervised learning and unsupervised learn-

ing. As illustrated in Table 7.2, the dataset contains 224 attack cases, comprised of

integrity, DoS and replay attacks not seen during training.

7.2.2 Dataset for Unsupervised Learning

The dataset used for training the unsupervised learning methods contains 30 normal

runs of the plant; another 10 runs were used to validate the model during learn-

ing. Initial experiments on One-Class SVM showed that small training datasets

produced a high number of false positives, and that adding more data had no signif-

icant influence on the accuracy of results, but did increase the training time, which

was already long.

7.2.3 Preprocessing Data

Standard machine learning algorithms assume that samples are independently and

identically (iid) drawn from some joint distribution; however, this is often not the

case with time series data like that from the TE model. The data contains signifi-

cant sequential correlation and, as a result, it needs to be converted into individual

7.3. Evaluation Metrics 201

feature vectors before applying machine learning methods. There are a number of

methods that have been proposed for this task, including sliding window, recurrent

sliding windows, Markov models and transformer networks [306]. Based on the

data, the most flexible method was to use a sliding window as it is agnostic to the

learning method, and this is the method most commonly used in past studies [141].

A sliding window is created by moving a fixed size window w across the training

data: (kt , ...kt+w−1) where kt = (ut,1,ut,2,ut,i,yt,1,yt,2, ..yt, j)
T and where the us and

ys are variable measurements and manipulated variables, and i and j are the dimen-

sions of the variables. The classifier operates on these resulting feature vectors.

Given the size of the dataset and the limited computation budget and storage, the

studied size of w was in the range of [1,10].

For SVM methods and neural networks, all training, validation and testing data

is normalised. All features were scaled using the min-max scaling method such that

the maximum value is 1 and the minimum value is 0 based on the training data,

using the following equation:

Xnorm =
X−Xmin

Xmax−Xmin
(7.3)

Classifiers using decision trees require no such normalisation.

7.3 Evaluation Metrics
The performance of the detection methods was measured using the standard metrics

of accuracy, precision, recall, F1 score, and false positive rate, defined in Section

3.1.1. Using these metrics, the performance of test dataset was measured based

on the pre-attack data and the duration of the attack. The length of the pre-attack

interval is defined as the length of the attack. So, if a DoS attack is started at hour 8

for a duration of two hours, these measurements are calculated using the data from

hour 6 to hour 10. The signal produced from hour 6 to 8 is labelled as not-attack,

and the signal labelled from 8-10 as attack. The duration after-attack is ignored to

avoid any contamination. However, to cater for detection after the end of an attack,

another metric is required, which we will explain in the following section.

7.4. Hyperparameter Optimisation 202

7.3.1 Declaring Attack

Declaring that an attack is taking place at present requires the detection to be robust

to false positives, which are caused by noise in the normal operation of the plant. To

cater for this, we use a sliding window to declare that an attack is present only if the

number of anomalous data points in a window exceeds a threshold. The length of

the window will be selected based on the false positive rates determined in normal

plant operation.

Detection latency should be a key metric of anomaly detection systems; how-

ever, it is often excluded. As a result, we introduce another metric to identify when a

detection takes place: during the attack or after it. The after-attack period is defined

to be of a period of length equal to the attack duration; so, for a 30 minute attack,

the after-attack period is the 30 minutes after the attack ended. Based on this, the

attack detection rate during and post attack is calculated:

Attack Detection Accuracy =
detected attacks

total number of attacks
(7.4)

7.4 Hyperparameter Optimisation

7.4.1 Hyperparameter Tuning for Supervised Learning

All learning algorithms require some tuning to determine the values of the param-

eters needed to optimise the performance of the learning. These parameters, which

are set before the learning process begins, are called hyperparameters. Hyperpa-

rameter tuning is critical in machine learning as different parameters may result in

models with significantly different performance. Grid search was used to determine

the hyperparameters. For Decision Tree (CART) learning, the most important pa-

rameter was the maximum depth of the tree. For assembly methods using CART

(Random Forest, Adaboost and Bagging) the critical parameter is the number of es-

timators used, which defines the number of trees in the forest or the estimators. We

did not have the resources to carry out a grid search for SVM, because it took just

over 48 hours to train a single model. As a result, the default parameters were used

for the SVM classifier. Table 7.3 reports the parameters used for the supervised

7.4. Hyperparameter Optimisation 203

Algorithm Parameters

Decision Tree Max Tree Depth = 50
Random Forest Max Tree Depth = 100, Number of Estimators= 25

Bagging Max Tree Depth = 100, Number of Estimators= 100
AdaBoost Max Tree Depth = 100, Number of Estimators= 50

SVM Kernel: RBF, C and γ=(default=auto)
One-Class SVM Kernel = RBF, υ = 0.00346 and γ = 0.018

Table 7.3: Parameters for learning algorithms

learning techniques.

During hyperparameter tuning, we also investigated the effect of using the slid-

ing window to generate the feature vectors, as discussed in Section 7.2.3. We de-

cided to operate on a window of size 1, meaning the learning algorithm operates

on each time step separately. Given the dimensionality of our data (50) the sliding

window rearranges consecutive time points into a single vector of size 50w using

the entire training data. This increases the size of the data further, making it un-

suitable for use with resource-hungry SVM algorithms. Increasing the window size

had only a small impact on the performance our algorithms, and we did not want to

slow the performance of our evolutionary algorithms further when later evolving a

large population of attacks against the IDS. However, we created the effect of the

window size on algorithms using decision trees, and studied a smaller version of

our dataset to study the effect on SVM methods. We report these results for future

reference.

Table 7.4 shows the performance of the Decision Tree and Random Forest

methods. The whole training data was used to train the model. The results obtained

are for the validation dataset using windows of size 1-10.

The effect of the window size on the supervised SVM was investigated using

subsets of the training and validation data. Table 7.5 shows that the SVM is able

to capture the correlation between the near neighbourhood datapoints using smaller

windows and this improves the performance of the classifier. The performance

started to decline after window > 30, and thus we stopped.

7.4. Hyperparameter Optimisation 204

Decision Tree Window Size Accuracy Precision Recall F1 score
1 96.37 94.86 81.44 87.64
3 96.35 94.94 81.29 87.59
5 96.36 94.24 82.29 87.71

10 96.37 94.09 82.25 87.77
Random Forest 1 96.78 95.57 83.5 89.13

3 96.84 95.58 83.93 89.23
5 96.80 95.59 83.66 89.37

10 96.85 95.58 83.99 89.41

Table 7.4: Effects of sliding window size on the performance of the Tree Classifiers (%)

Window Size Accuracy Precision Recall F1 score
1 96.23 96.64 76.91 85.65
3 96.46 97.11 78.13 86.59
5 96.54 97.15 78.65 86.92
7 96.59 97.31 78.90 87.14

10 96.6 97.41 78.91 87.19
15 96.61 97.51 78.93 87.24
20 96.62 97.56 78.93 87.26
30 96.59 97.45 78.86 87.17

Table 7.5: Effects of sliding window size on the performance of the SVM (%)

7.4.2 Hyperparameter Tuning for One-Class SVM

The effects of the sliding window size on the unsupervised, One-class SVM was

also examined using a subset of the training data. However, since One-Class SVMs

are more sensitive to choice of parameters, this time we did investigate using a grid

search to optimise the parameters. One-Class SVM has two parameters that require

tuning, υ and γ . υ is the upper bound on the fraction of outliers and a lower bound

of the fraction of support vectors [92]. The value of υ is tuned according to the

expected outliers in the data. The second parameter γ is the kernel coefficient. The

kernel used is the radial basis function (rbf). To investigate the effects of these

parameters, a simple grid search was carried out. This involved exhaustively gen-

erating solution instances from a grid of parameter values. The F1 scores for the

combinations of parameters are shown in Table 7.6. According to these results, the

best performing parameters are around window = 3, υ = 0.001 and γ = 0.01.

As stated above, given that the sliding window had no significant effect on

7.4. Hyperparameter Optimisation 205

window=1
υ \ γ 10−4 10−3 10−2 10−1

10−4 71.69 73.30 78.36 39.32
10−3 75.48 76.18 79.37 48.39
10−2 79.64 79.90 81.35 48.41
10−1 70.50 70.54 70.75 48.42
0.2 60.69 60.70 60.71 47.94
0.5 42.78 42.77 42.74 40.53

window=3
υ \ γ 10−4 10−3 10−2 10−1

10−4 72.77 77.13 83.35 29.48
10−3 76.62 78.99 83.35 29.48
10−2 80.58 81.36 82.81 29.48
10−1 71.01 71.13 71.02 29.48
0.2 60.95 60.96 60.47 29.48
0.5 42.70 42.69 42.62 29.48

window=5
υ \ γ 10−4 10−3 10−2 10−1

10−4 73.29 79.68 77.64 29.48
10−3 77.07 80.59 77.66 29.49
10−2 80.86 81.94 77.66 29.49
10−1 71.06 71.15 69.26 29.49
0.2 61.07 61.09 59.68 29.49
0.5 42.72 42.68 42.43 29.49

Table 7.6: F1 scores for the One-Class SVM Parameters (%)

outcomes for the decision tree classifiers, and SVMs are computationally expensive

for large datasets, a window size of 1 was used to ensure that the training data used

for all for the experiments were consistent. As we explain later, having the same

window size also helped us to compare the false positive rates for all the classifiers

as accurately as possible.

Grid search was used to find the optimal parameters for One-Class SVM on

the training data. The best parameters found were υ = 0.00346 and γ = 0.018, and

thus these were used to train our One-Class SVM.

7.4.3 Hyperparameter Tuning for Deep Neural Network

Training deep neural networks can be a complex task due to the number of hyper-

parameters to optimise. These parameters include: deciding on the architecture and

the number of layers to use; deciding on the number of neurons at each layer and

7.4. Hyperparameter Optimisation 206

Algorithm Network Architecture Optimizer Dropout Batchsize
Autoencoder 1 hidden dense layer x 40 units Adam - 1024
LSTM 2 layers x 64 units Adam 0.1 1024
GRU 2 layers x 64 units Adam 0.1 1024

Table 7.7: Architecture for Deep Neural Networks

activation functions (e.g. softmax, relu, tanh, sigmoid, exponential, linear); and se-

lecting an optimiser. Each optimiser has its own internal parameters to tune such

as learning rates and decay functions, all of which may themselves need to be op-

timised to help the learning. We approached the problem using the general advice

to start with just one or two hidden layers and gradually building from there using

manual tuning.

The parameters used for our Deep Neural Networks are given in Table 7.7;

any parameters not shown in this table use the default parameters obtained from the

Keras [281] library we used to implement these networks. In the following section,

we explain how these parameters were selected.

7.4.3.1 Training the Autoencoder

To remind the reader, as shown in Figure 7.3, the input values are introduced into the

network using the input layer. The encoder part of the function maps the input data

to a latent representation, and a decoder function attempts to transform the latent

representation back to the initial input at the output layer. By limiting the number

of hidden units, one is able to create a bottleneck and force the network to learn in-

teresting structure about the data. So, by forcing the network to learn a compressed

representation of the data, it learns the most important features. The parameters for

the autoencoder are designed to reduce the reconstruction error. As we explained

in Chapter 4, once the network is trained on normal data, it can be used to detect

anomalous behaviour by using a threshold based on the reconstruction error. Since

the training data does not include attack samples, the reconstruction error will be

high for these cases. Thus, using a threshold based on the reconstruction error, one

can try to predict whether new data is normal or abnormal (under attack).

50 units were used for the input and output layers (equal to the dimension-

7.4. Hyperparameter Optimisation 207

Figure 7.3: Structure of an autoencoder

ality of our data). The number of units used for the hidden layer was optimised

manually. Table 7.8 shows the performance of the network using various number of

hidden units tested on the test data containing the attacks. The best performance was

achieved using a network with a hidden dense layer of 40 units. The network was

trained using the Adam optimiser with its default parameters, and a batch size of

1024 with early stopping. Adding more hidden layers failed to improve the perfor-

mance of the network but, given that the hyperparameters were empirically decided,

it is possible that this is not the optimal network.

No. of Hidden Units Accuracy Precision Recall F1-score
20 94.89 91.10 65.10 71.90
36 94.40 91.11 64.2 71.25
38 94.51 90.90 65.85 72.20
40 95.07 90.34 71.01 75.86
41 94.93 89.86 70.59 75.12
42 94.55 90.06 66.73 72.50
48 94.01 92.07 59.84 67.45

Table 7.8: Tuning number of hidden units in the autoencoder

To predict anomalous behaviour, the reconstruction error is calculated using

the mean square error (MSE), using the actual values and the output (predicted)

7.4. Hyperparameter Optimisation 208

values (n=50 dimensions) for each time point:

MSEt =
1
n

n

∑
t=1

(actualt− predictedt)
2 (7.5)

Figure 7.4: MSE error on validation dataset (under normal operating conditions)

Figure 7.5: MSE values for a replay attack started at Hour 62 (around 31000 data samples)

If the error calculated at the time point t is larger than the defined anomaly

threshold, then it is classified as an attack. The anomaly detection threshold value is

calculated as the 99.90% confidence interval of the MSE error distributions on the

validation dataset that we used to tune our learning. This threshold was then used to

evaluate the unseen attacks in the test dataset. Figure 7.6 shows the MSE values for

the validation dataset, and the red horizontal line shows the defined threshold, which

is 0.008478. Points above the line are classified as attack, and anything below the

7.4. Hyperparameter Optimisation 209

line is considered not-attack. Figure 7.5 shows the MSE values for the plant being

attacked around hour 62.

7.4.3.2 Training Recurrent Neural Networks

We adapted the LSTM architecture proposed in [123] to implement the architec-

ture for the recurrent neural networks: GRU and LSTM. As indicated in Table 7.7,

these network used two consecutive hidden layers with 64 units. GRU networks are

simpler than LSTM and they tend to train faster. For both hidden layers, tanh activa-

tion functions were used with a dropout rate of 0.1 to prevent overfitting. The output

layer is a dense layer using the linear activation function. The number of neurons in

this output layer is equal to the number of dimensions in the data, 50, with one unit

for each feature predicted. The lookback and lookahed parameters are the number

of past steps used by the RNN to predict the number of steps in future. The optimal

value for these windows depends on the data and the correlations within the time

series. However, it is usually the case that the larger the forecast window, the harder

the problem. We made the problem simpler, but slower, by predicting one single

time step at a time.

Window Size Accuracy Precision Recall F1 score
3 80.90 83.47 51.17 58.13
5 81.01 83.34 51.46 58.34

10 81.1 83.2 51.80 58.70
20 80.58 83.62 51.58 58.41
50 80.71 83.68 51.90 58.72
70 80.64 84.16 52.25 59.06

100 80.55 84.38 52.61 59.52
120 81.00 85.11 54.65 61.22
150 78.65 85.68 46.86 55.05

Table 7.9: Effects of look-back window size on the performance of the GRU (%)

Table 7.9 and Table 7.10 show the performance of the various sized lookback

windows; this shows that the best look-back size is 120. Our experiments showed

that increasing the look-back window size improves the prediction performance up

to a limit, and window sizes over 120 produced no significant improvement on the

performance. Both RNNs were trained using the Adam optimiser with its default

7.4. Hyperparameter Optimisation 210

Window Size Accuracy Precision Recall F1 score
3 80.89 83.53 51.17 58.18
5 80.58 83.54 51.86 58.79

10 80.65 83.58 50.21 57.56
20 80.82 83.24 51.49 58.54
50 80.56 83.31 51.03 58.10
70 80.38 83.42 50.98 58.03

100 80.26 83.75 51.67 58.56
120 80.51 84.18 52.40 59.23
150 79.51 83.85 50.67 57.66

Table 7.10: Effects of look-back window size on the performance of the LSTM (%)

parameters, and a batch size of 1024 with early stopping. Figure 7.6 shows the

model loss for the LSTM and GRU during training. The LSTM model performed

slightly better than GRU, achieving a slightly lower model loss.

Figure 7.6: Comparison of LSTM and GRU model loss

7.5. Results and Analysis 211

7.5 Results and Analysis
In the following sections, we report the performance of our detection methods.

7.5.1 Supervised Learning

Table 7.11 shows the performance metrics for classifiers using supervised learning

for all three types of attacks, and also the overall statistics.

Decision Tree Random Forest AdaBoost Bagging SVM
All

Precision 82.61 87.91 77.75 82.91 81.81
Recall 54.89 59.08 35.65 56.55 51.37

F1 score 60.97 65.45 42.46 62.42 58.63
Integrity
Precision 95.09 96.10 98.04 95.78 99.07

Recall 83.13 86.87 62.87 84.79 76.17
F1 score 87.74 90.54 72.40 88.97 84.40

DoS
Precision 84.36 88.72 73.21 85.06 82.14

Recall 48.56 51.95 26.64 50.68 45.03
F1 score 56.63 60.60 33.29 58.42 52.75
Replay

Precision 66.43 77.54 56.83 65.97 60.96
Recall 25.75 31.08 9.68 27.08 26.35

F1 score 32.15 39.00 13.37 33.59 32.11
FPR 0.19 0.15 0.016 0.14 0.0067

Table 7.11: Detection performance comparison for supervised learning (%)

All classifiers achieved their best result for the integrity attacks, and failed to

show the same detection ability on previously unseen attacks. The results show that

using using multiple decision trees (predictors) is better than using a single decision

tree, as the performance of the Bagging and Random Forest are better than single

Decision Tree. As explained in Chapter 4, Random Forest is an ensemble of de-

cision trees formed using the bagging method, and improves on the Decision Tree

(CART algorithm) method by growing more diverse trees. Decision Tree construc-

tion considers all features when splitting a node whereas Random Forest searches

for the best feature from a subset of features selected at random. Boosting (Ad-

aBoost) had the worst F1 score of all the decision trees, Bagging and Random For-

est. There has been a number of studies using fault detection and diagnosis on the

7.5. Results and Analysis 212

TE model using Boosting with decision trees, and the logical next step was to in-

vestigate whether there were any benefits in using Boosting CART. This proves not

to be effective. Overall, Random Forest showed the best F1 performance; however,

it comes at a cost, with higher false positive rates than SVM and Boosting.

The SVM achieved the best false positive rates, at a rate of 0.0067% but it also

had a lower detection performance, and a wider gap between precision and recall,

as reflected in F1 score. Moreover, SVM is not suitable for large data. Tree-based

classifiers deal better with large datasets, and they are faster to train and test than

an SVM. The training and validation of the Random Forest took just under an hour,

whereas SVM took over 48 hours. Furthermore, Random Forest can be trained

in parallel to improve the training performance even further. This is particularly

important when searching the space for the optimal hyperparameters. Considering

the speed, accuracy and complexity, the best supervised learning method for this

particular problem is Random Forest.

7.5.2 Unsupervised Learning

Table 7.12 presents a comparison of the four unsupervised learning techniques eval-

uated.

All unsupervised techniques performed better at detecting the replay attacks

than supervised techniques; however, their performance on integrity attacks was

worse than supervised methods. One-Class SVM and LSTM did worse on DoS

attacks compared to Random Forest. Overall Autoencoder had the best performance

with a slightly better precision and recall than One-Class SVM. Autoencoder was

better than One-Class SVM at detecting DoS and replay attacks but peformed worse

on the integrity attack. The overall F1 score for these methods was better than

supervised learning methods because they were better at detecting DoS and replay

attacks. On average, LSTM and GRU performed worse than One-Class SVM and

Autoencoder. However, for DoS attacks, their performance was better than One-

Class SVM, indicating that no single algorithm might give the optimal performance

for all possible types of attack. The GRU network’s performance was better than

LSTM but it came at a slightly higher cost of false positives.

7.5. Results and Analysis 213

Overall: One-Class SVM Autoencoder LSTM GRU
Overall All
Precision 89.30 89.34 84.18 85.11

Recall 63.40 63.83 52.40 54.65
F1score 68.69 69.95 59.23 61.22

Integrity
Precision 92.19 91.84 85.43 86.08

Recall 83.18 75.91 66.06 69.55
F1score 86.62 81.36 72.27 75.74

DoS
Precision 87.94 92.65 87.09 89.08

Recall 50.20 66.05 53.46 53.98
F1score 57.01 72.89 60.54 61.14
Replay

Precision 84.76 83.94 80.56 81.06
Recall 41.42 47.78 36.76 37.33

F1score 47.61 54.18 42.68 43.93
FPR 0.44 0.10 0.90 0.99

Table 7.12: Detection performance comparison for unsupervised learning (%)

Figure 7.7: Performance of LSTM for different MSE thresholds

Figure 7.7 shows the performance of the LSTM network using various MSE

thresholds on the validation dataset. The threshold can be tuned further to increase

the F1 score and get the right balance between recall and precision. The lower

7.5. Results and Analysis 214

threshold used for this case was 0.01387 (99.90 % percentile of the error distribu-

tion). However, the performance measures showed that by using a lower threshold,

say 0.010, it is possible to achieve a higher F1 score of 75.07% with a more bal-

anced precision rate of 78.58% and a recall rate of 72.76%. Handling too many

false positives can be very expensive, and thus organisations will need to tune this

parameter based on their security policy. A more in-depth comparison of false posi-

tive rates is given in the following section, which looks at the ability of the detectors

to tell whether an attack is taking place.

7.5.2.1 Accuracy of RNN Predictions

LSTM and GRU show that not all features in the timeseries give the same prediction

accuracy: some features are easier to forecast than others. Figure 7.8 shows four of

the features, A Feed, E Feed, Reactor Pressure and Separator Underflow.

(a) A Feed (b) E Feed

(c) Reactor Temperature (d) Separator Underflow

Figure 7.8: Example of a LSTM prediction

Predicting the E Feed or Separator Underflow is harder than predicting the

values for Reactor Temperature and A Feed. The MSE used to identify what is

7.5. Results and Analysis 215

normal behaviour uses a combined score for all features. This might not be the best

option for multivariate non-linear time series data with noisy forecasts. As a result,

future work should examine this and investigate a better technique for calculating

the errors between the predictions and actual data. To achieve better MSE scores,

we suggest two options. The simpler option is to eliminate the features that are

difficult to predict, and use a subset of the features. The second option is to give

weights to features when calculating the MSE values so that features that are easier

to predict are have higher weights than those that are hard to predict.

7.5.3 Dealing with False Positive Rates and Detecting Attacks

All classifiers have some noise in the detection that manifests as false positives.

In a real physical system, there will probably be even more noise than that seen

in these simulations due to behaviour of the physical components of the systems

(e.g. actuator and sensors degrading over time, components of the plant wearing,

or other kinds of natural noise in the environment). Detection should be robust

against natural noise, and distinguish between the normal plant disturbances and

attack conditions.

Figure 7.9: Percentage of false positives for detection models in a window size of 100
(under normal operating conditions)

To achieve this, a sliding window of size 100 was used to study the percentage

7.5. Results and Analysis 216

of false positives under normal operating conditions. We run the plant 1000 times

under normal conditions, without any attacks, using a different random seed for

each replicate to ensure that randomness was achieved. Then, using each detection

method, we investigated the highest false positive percentage seen for each run.

The results show an interesting pattern, illustrated in Figure 7.9. The false positive

rate for LSTM was 0.90%; this means that when the plant is running under normal

condition and produces 36000 datapoints, about 324 (0.009 x 36000) of those points

are false positives. As the boxplots in Figure 7.9 show the range is not large. This is

further investigated in Figure 7.10, these are not long sequences of consecutive false

positives. Smoothing these errors using an exponentially weighted moving average

(EWMA), as shown in Figure 7.10, could improve the false positive, but this means

a slight delay in anomaly detection.

Figure 7.10: EWMA smoothing to reduce false positives

The proportion of false positives for the Decision Tree was 0.19%, about 68

(0.0019 x 36000) points per simulation. However, the boxplot in Figure 7.9 shows

the range for the percentage of false positive probabilities is wider. This is also the

case for Random Forest, Bagging and One-Class SVM, but RNNs, SVM, Autoen-

7.5. Results and Analysis 217

coder and AdaBoost have a smaller range. This is an advantage because a smaller

sliding window can be used to detect the presence of attacks. The data sampling

rate is 0.12 minutes per point, so a window of size 100 is equal to 12 minutes.

The thresholds shown in Table 7.13 were designed to determine the presence of

the attack. For example, SVM only declares an attack if 50% of the data points in

the sliding window is classified as attack, giving a minimum detection time of 6

minutes.

Algorithm Threshold (%)
Decision Tree 100

Random Forest 100
Bagging 100

AdaBoost 50
SVM 50

One Class SVM 100
Autoencoder 35

LSTM 6
GRU 20

Table 7.13: Attack detection thresholds

Figure 7.11: Example of an attack detected after it has stopped

7.6. Summary 218

As we discussed earlier, in carrying out a variety of attacks, we observed that

the anomalous behaviour is almost never equal to the attack interval, and it is pos-

sible that some attacks will be detected after the attack interval if the anomalous

behaviour persists. Figure 7.11 shows one of these attacks, a replay attack detected

by the autoencoder after the attack interval. Therefore, we decided to use a window

equal to the attack interval after the attack to investigate the attacks detected.

Using the attack detection thresholds in Table 7.13 and the number of attacks

detected during the attack and post attack periods, we calculated the attack detection

rates. Table 7.14 and 7.15 shows the attack detection probabilities for supervised

learning and unsupervised learning. For supervised learning, SVM detected all the

integrity attacks when the attacks were taking place. The Decision Tree, Random

Forest and Bagging methods achieved the highest DoS detection rate, 75%; this

score was achieved using the detection interval after the attacks stopped. Random

Forest and Bagging did better than the other classifiers on detecting the replay at-

tacks but, nevertheless, they were not as good as the unsupervised techniques.

Detector
Decision Tree Random Forest AdaBoost Bagging SVM

During After During After During After During After During After
Integrity 97.80 98.91 94.57 98.91 88.04 93.48 95.65 98.91 100.00 100.00
DoS 66.07 75.00 62.05 75.00 44.64 51.79 67.86 75.00 71.43 71.43
Replay 33.77 53.25 40.26 55.84 19.48 35.06 40.26 55.84 36.25 53.25

Table 7.14: Attack detection probabilities for supervised learning (%)

Detector
One-Class SVM Autoencoder LSTM GRU
During After During After During After During After

Integrity 96.74 96.74 95.65 95.65 97.83 97.83 95.65 95.65
DoS 78.57 80.36 87.50 90.74 80.36 83.93 78.57 80.36
Replay 53.27 58.44 62.34 67.53 63.63 66.23 61.04 63.64

Table 7.15: Attack detection probabilities for unsupervised learning (%)

7.6 Summary
In this chapter, we presented an extensive investigation of some of the classic ma-

chine learning techniques and some new deep learning techniques to answer Re-

7.6. Summary 219

search Question 3 (How should one design a novel intrusion detection system to de-

tect attacks?). Somewhat surprisingly, unsupervised techniques appear to be more

promising than supervised techniques for detecting attacks. The supervised learn-

ing algorithms performed better on the trained integrity attacks but failed to show

similar performance on the DoS and replay attacks for which they were not trained.

Unsupervised learning techniques are the subject of increasing research inter-

est, but the question of how to apply these techniques to ICS environment is an

area that requires further research. The techniques evaluated in this chapter show

promise for further study: they were able to raise more alarms, especially for DoS

and replay attacks. Using a single hidden layer, the autoencoder did better than the

One-Class SVM and RNNs. On average, RNNs did worse than One-Class SVM but

their performance on DoS was better. There were no methods that scored highest on

all three types of attacks; consequently, a single detection method may not be suit-

able for detecting all types of attacks. Autoencoders are often used with LSTM to

detect anomalous behaviour in time series data, making use of the correlation in the

sequences of the data. There is much more work to be done in this area, and future

research will look into this. Aside from a presence indication, proactive detection

and mitigation of anomalous behaviour in ICS requires two further steps:

• Diagnosis: Identify the cause of the anomaly

• Recovery: Take the necessary measures to return the system to normal oper-

ating conditions.

Future research will investigate how to achieve these steps using supervised

and unsupervised learning techniques. Although fault diagnosis is not feasible with

classic unsupervised learning techniques such as One-class SVM, neural networks

might offer some guidance by utilising the MSE errors. For example, identifying

the features that contribute the greatest amount to the MSE could potentially help

with the diagnosis.

The existing performance metrics that we used to measure the performance of

the detection are insufficient on their own for ICS as they do not cater for detection

7.6. Summary 220

latency. The community needs to develop generally accepted performance metrics

that encompass this dimension.

In the next chapter, we evolve attacks against some of the detection models

we implemented in this chapter using the evolutionary multiobjective optimisation

approach, to further investigate their performance.

Chapter 8

Evolving Attacks Against the

Intrusion Detection System

In this chapter, we investigate Research Question 4: Can one evolve new attacks

against the Intrusion Detection System? We adapt the approach developed in Chap-

ter 6, using evolutionary multiobjective optimisation and set it against the intrusion

detection mechanisms we developed in Chapter 7. Our objective is to generate at-

tacks that evade detection while causing some damage.

We first explain how we formulated the research problem, define the objectives,

and explain the algorithmic approach. Finally, we report the results and our analysis.

8.1 Evading Detection using Evolutionary Multiob-

jective Optimisation Approach
In this section, we explain the objectives of our evolutionary multiobjective optimi-

sation, and outline the steps involved in generating attacks that evade detection. For

this we considered three common objectives that both the adversary and defence

need to consider. These are maximise damage; minimise detection probability; and

minimise effort required to carry out the attacks:

F(x) = [f 1(max), f 2(minimise), f 3(minimise)] (8.1)

where f 1 is to maximise damage in terms of increasing the operating cost of

8.1. Evading Detection using Evolutionary Multiobjective Optimisation Approach222

the plant, f 2 is to minimise detection probability, and f 3 is to minimise the effort

required to carry out the attack:

f 1 = Difference between the cost of the plant under attack and the operating cost of

the plant under normal operation (the damage caused by an attack).

f 2 = Detection probability for the attack, denoted as a percentage.

f 3 = Total number of sensors and actuators attacked (the effort required to launch

an attack).

We generated attacks using two objectives (f1, f2) and three objectives (f1, f2,

f3), to understand whether minimisation of effort had a significant effect on damage

and detection.

The performance of anomaly-based detection for both supervised and unsu-

pervised learning showed that the integrity attacks carried out on both sensors and

actuators were detected with high accuracy; however, the performance of DoS and

replay attacks failed to achieve similar detection probabilities. For this reason, we

decided to use only DoS and replay attacks as a basis for the evolutionary algo-

rithms.

Intrusion detection was developed using supervised classifiers, AdaBoost, De-

cision Tree and Random Forest, and an unsupervised classifier, One-Class SVM.

AdaBoost has previously been used in Network Intrusion Detection, e.g. by Hu et

al. [307], but represents an approach that is currently not at the leading edge of

machine learning. Decision Tree, Random Forest and One-Class SVM are models

that are more frequently used, but these are selected both because they represent a

situation in which a system’s defences has become somewhat outdated, and they do

not require special computational resources.

8.1.1 Evolutionary Multiobjective Optimisation Algorithm

Algorithm 7 illustrates the steps involved in generating attacks against the detection

models. This is same as the previous Algorithm 6 that was developed in Section

6.2.1 except that this time user can specify the selection strategy. The flow chart

8.1. Evading Detection using Evolutionary Multiobjective Optimisation Approach223

shown in Figure 8.1 shows the structural components of the evolutionary multiob-

jective optimisation for generating attacks against the detection. Table 8.1 shows

the evolutionary operators and the parameters used to evolve attacks against detec-

tion. In the following section, we discuss the details of the approach.

Parameters Value
Chromosome size 25
Types of allele for each chromosome 140
Description of alleles Do not Attack, DoS, Replay

with various starting time
Number of generations 500-1000
Parent population size (µ) 200
Offspring populations size (λ) 300
Crossover probability 0.85
Mutation probability 0.1
Probability of mutating a gene 0.05
in a chromosome
Crossover operator Two-point crossover
Mutation operator Uniform mutation
Selection operator NSGA-II, SPEA2
Selection strategy (µ,λ),(µ +λ)
Objectives Maximise f1, Minimise f2, Minimise f3

f1=damage caused, f2=detection probability
f3=attack effort

Parallel evaluations 50
Computation time >70 hrs

Table 8.1: Evolutionary operators and parameters for generating attacks against detection
using EMO

Chromosome Encoding. As before, individuals are represented as chromo-

somes encoded as a list of 25 integers (genes). Position of the gene (locus) denoting

a sensor or an actuator. To make the problem computationally tractable, we limited

the types of genes to a pool of 140 in which half denoted DoS attacks and the re-

maining half denoted replay attacks. Each number type denotes the form and the

start time of the attack. The duration of the attacks was kept constant for all attacks,

≤ 2 hours. Increasing the duration of attacks increases damage on the plant, but it

also increases the risk of detection, consequently, we utilised short duration attacks.

This is a combinatorial search problem of size 14025.

8.1. Evading Detection using Evolutionary Multiobjective Optimisation Approach224

Algorithm 7: Evolutionary multiobjective optimisation algorithm for gen-
erating attacks against detection
Input : µ = parents to select for next generation,

λ = offspring to produce at each generation,
mut pb = mutation rate, cxpb = crossover rate,
ngen = number of generation,
selES = selection strategy [(µ+λ), (µ ,λ)],
selOp = selection operators [NSGAII, SPEA2]

Output: Pareto optimal front
1 Function Main(µ , λ , mut p, cxpb):
2 ParetoFront = []
3 pop = generate initial population randomly
4 pop = evaluate(pop)
5 gen = 1
6 selectionpop = []
7 while gen≤ ngens do
8 o f f spring = vary(pop,λ , cxpb, mut pb)
9 o f f spring = evaluate(o f f spring)

10 if selES is (µ+λ) then
11 selectionpop = pop+o f f spring
12 else if selES is (µ ,λ) then
13 selectionpop = o f f spring
14 if selOp is NSGAII then
15 pop = selectNSGAII(selectionpop, µ)
16 else if selOp is SPEA2 then
17 pop = selectSPEA2(selectionpop, µ)
18 ParetoFront.update(pop)
19 gen = gen+1

20 return ParetoFront

21

22 Function vary(pop, λ , cxpb, mut p):
23 o f f spring=[]
24 for i = 0 to lambda do
25 random = randomGenerator(0, 1)
26 if random < cxpb then
27 parent1, parent2 = randomlySelectTwoParents(pop)
28 child1, child2 = crossover(parent1, parent2)
29 o f f spring.add(child1)
30 else if random < cxpb+mutp then
31 child = randomlySelectParent(pop)
32 child = mutation(child)
33 o f f spring.add(child)
34 else
35 parent = selectParentRandomly(pop)
36 o f f spring.add(parent)

37 return o f f spring

8.1. Evading Detection using Evolutionary Multiobjective Optimisation Approach225

Initialisation. Given the high detection probability, we decided to generate

the initial parent population of chromosomes of size of size µ = 200 randomly, as

previously, but limited the number of attacks in each chromosome to 1-5 attacks to

speed up the evolution. These chromosomes are the initial population0. The fitness

of these chromosomes is evaluated by converting the chromosomes into MATLAB

scripts that can be executed on the TE process. A pool of MATLAB jobs was

assigned to evaluate the fitness of these chromosomes. As illustrated in the flow di-

agram, Figure 8.1, the MATLAB jobs take the assigned individuals (attack scripts),

runs each individual on the TE simulation model, and then use the output data from

the TE model to call the IDS determine the detection probability for each individ-

ual. The operating cost of the plant, plant operating time, and detection probability

are written to a file, from which the EMO can collect the fitness of the individuals.

To remind the reader, the detection mechanism uses a window of size 100; that is,

it looks at the previous 100 data points, and reports the number of attacks in this

window as a percentage.

Evolutionary Loop (Iterations). Once the fitness of the chromosomes in the

initial population has been established, the evolutionary loop generates the next

generation population, as illustrated in Algorithm 7. First, the chromosomes in the

initial population are subject to the genetic variation operators to generate the next

population of offspring of size λ . This is shown as the call to the vary function in

Algorithm 7 in which on each of the λ iterations, randomly chosen chromosomes

are subject to one of the three operations: two point crossover (with a probability of

cxpb), uniform mutation (with a probability of (mutpb), or reproduction. As a result,

the function vary takes an population of µ and expands it to an offspring population

of size λ . Next, the EMO uses the selection strategy to decide which chromosomes

should be used for the selection. If the (µ ,λ) strategy is selected, then the next

generation of the population is produced from only from the λ offspring just gener-

ated. If the (µ+λ) strategy is selected, then the next generation of the population is

produced from both the generated offspring and the parent. In the experiments car-

ried out in Chapter 6, the (µ ,λ) strategy was used to avoid premature convergence;

8.1. Evading Detection using Evolutionary Multiobjective Optimisation Approach226

Figure 8.1: Flow diagram of the EMO-based approach designed to generate attacks against
detection

here, we report and discuss results obtained for both strategies. The next population

is selected using the selection methods of NSGA-II or SPEA2 and the generation

counter is incremented. The Pareto front set is updated with results from the new

population, and we use the elements in this set to calculate the hypervolume.

Termination Condition. The evolution process continues until either a de-

fined number of generations has been reached, or until we exceed our maximum

time allocation limit on the high performance computing platform.

8.2. Results and Analysis 227

8.2 Results and Analysis
In the following section, we report the results obtained for generating attacks against

the supervised (AdaBoost, Decision Tree and Random Forest classifiers) and unsu-

pervised (One-Class SVM) intrusion detection models.

8.2.1 Generating 2-Objective Attacks against AdaBoost

Figure 8.2 presents the optimal set of individuals for the two objective optimisation

(f 1, f 2) obtained from four different attack generation runs against the AdaBoost

classifier using the genetic parameters in Table 8.1 with the (µ+λ) strategy and

over 500 generations. Figure 8.2 shows that the EMOs were able to find a range

of attacks for the two objectives, damage and detection probability. As compared

to integrity attacks, the DoS and replay attacks have less impact on the operating

cost. The duration for these attacks was 2 hours and, according to these runs, the

generated attacks were able to increase the cost by, at the very best, just under

$1400. As discussed in Chapter 7, the operator of the plant will need to decide

on a threshold for an alarm based on the detection probability. This is a trade-off

between actual attacks and false positives that are caused by randomness in the

plant. Assuming that the operator chooses a very low value for the threshold such

as threshold <= 5%, the damage caused is around $150, as shown in Figure 8.2c

and Figure 8.2d. The average operating cost of the plant was $8208.

Although formulating the problem as a 2-objective optimisation problem can

help to determine the range of the attacks the intrusion detection is able to detect,

it does not tell us anything about the effort required to carry out the attack. This

is an important parameter both for the adversary and the defence when making

decisions. One of the attack strategies generated is illustrated in Table 8.2. The

numbers in the brackets show the attack start time; that is, an attack denoted as

XMEAS15REPLAY(70) means a replay attack is carried out on XMEAS 15 starting at

hour 70. This attack therefore involves attacking a total of 11 sensors and actuators.

It might be the case that not all of these sensors and actuators are required to achieve

this impact, and it might also be possible that, even by attacking fewer sensors

and actuators, one can not reduce the detection probability further. To investigate

8.2. Results and Analysis 228

(a) Single Run I (b) Single Run II

(c) Single Run III (d) Single Run IV

Figure 8.2: Pareto front of attacks generated against AdaBoost (2-Objective optimisation)

these issues further, we decided formulate the problem as a 3-objective optimisation

problem.

8.2.2 Generating 3-Objective Attacks against AdaBoost

In order to determine the most effective selection strategy to use, we tested the 3-

objective optimisation using both (µ+λ) and (µ ,λ) strategies. Figure 8.3 shows the

performance of the two selection strategies used with NSGA-II and SPEA2’s se-

lection operator. These strategies select the set of individuals that compete in the

selection of offspring. Table 8.3 shows the performance metrics of the two selec-

tion strategies used with NSGA-II and SPEA2’s selection operators, averaged over

2 runs, for 800 generations. Both runs ideally required more time to converge, but,

8.2. Results and Analysis 229

Chromosome 0, 0, 0, 0, 70, 70, 30, 70, 70, 0, 0, 0, 70, 0, 0, 35, 0, 35, 0, 15,
65, 0, 0, 0, 70

Description XMEAS1NoAttack,XMEAS2NoAttack,XMEAS3NoAttack,
XMEAS4NoAttack,XMEAS5REPLAY(70),XMEAS7DOS(70),
XMEAS8REPLAY(30),XMEAS9DOS(70),XMEAS10REPLAY(70),
XMEAS11NoAttack,XMEAS12NoAttack,XMEAS14NoAttack,
XMEAS15REPLAY(70),XMEAS17NoAttack,XMEAS31NoAttack,
XMEAS40REPLAY(35),XMV1NoAttack,XMV2DOS(35),
XMV3NoAttack,XMV4DOS(15),XMV6DOS(65),
XMV7NoAttack, XMV8NoAttack, XMV10NoAttack,
XMV11REPLAY(70)

Damage ($) 170.00
Detection probability 28.0

Table 8.2: Description of an individual (attack) generated by the EMO

Selection Operator($) (µ+λ) Strategy (µ ,λ) Strategy ($)
SPEA2 457 83
NSGA-II 352 74
Average Hypervolume 0.6517 0.2739

Table 8.3: Results for µ+λ and µ ,λ strategies

resource and time limitations precluded this. As indicated in Table 8.3, the number

of elements in the Pareto front set, and the quality of the elements in the set as indi-

cated by the hypervolume were significantly better for the (µ +λ) strategy. Based

on the these results, the (µ +λ) strategy was used to carry out further experiments

to generate attacks against the detection models.

The results averaged over two runs using the (µ+λ) strategy are illustrated in

Table 8.4.

Performance Measure NSGA-II SPEA2
Unique Attacks 118,006 100,387
Damage Range ($) 0-1633 0-1114
Cardinality of Pareto Front 330 412
HyperVolume 0.7416 0.6653

Table 8.4: Results for attacks generated against AdaBoost (averaged over all runs)

NSGA-II focuses on maximising spreading, and this is reflected in the re-

8.2. Results and Analysis 230

(a) (µ ,λ) with NSGA-II (b) (µ ,λ) with SPEA2

(c) (µ+λ) with NSGA-II (d) (µ+λ) with SPEA2

Figure 8.3: Pareto fronts of attacks generated using (µ ,λ) and (µ+λ) strategies

sults, giving it a better spread of attack, and hence a better value for hyper-

volume. Throughout the process of evolution, NSGA-II generated, on average,

118,006 unique individuals with a range of damage from $0-1633. SPEA2 gener-

ated 100,387 unique individuals with a range of $0-1144. Although, the cardinality

of the Pareto front for the final population was larger for SPEA2; on average there

were 412 elements in the Pareto front set compared to 330 in the sets generated us-

ing NSGA-II, the attacks were less optimal than those found using NSGA-II. How-

ever, the distribution of the individuals appears to be better for SPEA2, as illustrated

in Figure 8.4b and Figure 8.4d.

More experiments are required for a reliable comparison; however, overall,

both algorithms found attacks that avoid detection and cause some harm. Assuming

the detection probability threshold is less than 5%, the highest cost attack NSGA-II

8.2. Results and Analysis 231

(a) Run I using NSGA-II (b) Run I using SPEA2

(c) Run II using NSGA-II (d) Run II using SPEA2

Figure 8.4: Pareto fronts of two best runs: attacks generated against AdaBoost using (µ+λ)
strategy (3-Objective optimisation)

found is $266.92, attacking 12 sensors and actuators, with detection probability 3%,

whereas SPEA2 found a slightly worse attack, $179.72 with effort 16 and detection

probability 4%. If the intention is to use the smallest effort and cause maximum

damage, then the optimal attack strategy produced using NSGA-II is an attack that

costs $179.72 using effort 6. SPEA2 found a similar attack using effort 6, at a cost

of $170.69. The descriptions of these attacks are given in Table 8.5. The attacks

generated using less effort were either detected or caused low economic damage,

that is ≤ $50.00.

Plotting the 2-objectives of the Pareto front set against each other (the dam-

age caused by detection probability), shows an interesting pattern. As illustrated in

Figure 8.5, as the damage caused against attacks gets significantly higher, the detec-

tion probability also increases. For attacks ranging around $100-250, where some

8.2. Results and Analysis 232

Attack generated using NSGA-II Damage ($) Detection (%) Effort
XMEAS2REPLAY(70),XMEAS5REPLAY(70),
XMEAS10REPLAY(70),XMEAS11REPLAY(70),
XMEAS12DOS(65),XMEAS15REPLAY(70),
XMEAS17REPLAY(70),XMEAS31DOS(70),
XMEAS40REPLAY(3),XMV4REPLAY(65),
XMV10REPLAY(70),XMV11REPLAY(70)

266.92 3.0 12.0

XMEAS3REPLAY(70),XMEAS5REPLAY(70),
XMEAS7DOS(70),XMEAS10REPLAY(70),
XMV2REPLAY(65),XMV11REPLAY(70)

170.00 4.0 6.0

Attack generated using SPEA2 Damage ($) Detection (%) Effort
XMEAS1DOS(63),XMEAS2REPLAY(70),
XMEAS3REPLAY(70),XMEAS4DOS(63),
XMEAS5DOS(70),XMEAS7DOS(70),
XMEAS8DOS(20),XMEAS10REPLAY(70),
XMEAS15REPLAY(70),XMEAS17REPLAY(50),
XMEAS31DOS(70),XMEAS40DOS(27),
XMV2REPLAY(65),XMV4REPLAY(63),
XMV6DOS(6),XMV11REPLAY(70)

179.73 4.0 16.0

XMEAS5REPLAY(70),XMEAS7DOS(70),
XMEAS8REPLAY(70),XMEAS9DOS(70),
XMEAS10REPLAY(70),XMEAS40DOS(27)

170.69 4.0 6.0

Table 8.5: Examples of high scored attacks generated using NSGA-II and SPEA2

of the best individuals were found in terms of the trade-off, both algorithms try to

maintain more individuals around this area. As compared to the 2-objective optimi-

sation problem discussed in Section 8.2.1, the 3-objective optimisation requires us

to optimise the effort. The results indicate that attacking a higher number of sensors

and actuators may not always lead to a higher detection probability. That is, if the

attacker attacks the correct combinations of the sensors and actuators, it can ensure

that the plant operates closer to the normal operating conditions and, therefore, one

can evade detection. This is further illustrated in Table 8.6.

8.2. Results and Analysis 233

(a) Run I using NSGA-II (b) Run I using SPEA2

(c) Run II using NSGA-II (d) Run II using SPEA2

Figure 8.5: Comparing two objectives of the Pareto front: damage caused against detection
probability

8.2. Results and Analysis 234

Attack Damage ($) Detection (%) Effort
XMEAS1DOS(65),XMEAS2DOS(27),
XMEAS3DOS(56),XMEAS4DOS(65),
XMEAS7REPLAY(70),XMEAS12REPLAY(33),
XMEAS17DOS(60),XMEAS31DOS(63),
XMV10REPLAY(35),XMV11REPLAY(65)

1567.43 100 10

XMEAS2DOS(70),XMEAS5REPLAY(70),
XMEAS8REPLAY(70),XMEAS9REPLAY(70),
XMEAS10REPLAY(70),XMEAS12DOS(65),
XMEAS15REPLAY(70),XMEAS17REPLAY(70),
XMEAS31DOS(70), XMV2REPLAY(60)

314.44 14 10

XMEAS2DOS(70),XMEAS5REPLAY(70),
XMEAS9REPLAY(70),XMEAS10DOS(70),
XMEAS15REPLAY(70)

304.24 99 5

XMEAS5REPLAY(70),XMEAS7DOS(70),
XMEAS10REPLAY(70),XMEAS12REPLAY(70),
XMEAS14REPLAY(65),XMEAS15REPLAY(70),
XMEAS31DOS(70),XMEAS40DOS(27),
XMV4REPLAY(65),XMV11REPLAY(70)

171.12 1 10

XMEAS5REPLAY(70),XMEAS7DOS(70),
XMEAS10REPLAY(70),XMEAS12REPLAY(70),
XMV2REPLAY(65)

170.45 44 5

XMEAS5REPLAY(70),XMEAS7DOS(70),
XMEAS10REPLAY(70),XMEAS12REPLAY(70),
XMEAS15REPLAY(70),XMEAS31DOS(70),
XMV2REPLAY(60),XMV4REPLAY(65),
XMV11REPLAY(70)

167.92 0 9

XMEAS9REPLAY(70) 81.10 100 1
XMEAS5REPLAY(70),XMEAS7DOS(70),
XMEAS10DOS(70),XMEAS12REPLAY(70),
XMEAS31DOS(65),XMEAS40REPLAY(3)

50.93 0 6

Table 8.6: Some of the individuals in the Pareto front generated using NSGA-II

8.2. Results and Analysis 235

The EMO was able to find the right combinations of sensors and actuators to

evade detection while causing some economic damage, and this may not involve

attacking fewer sensors and actuators, seen in the fourth row. Carrying out a single

replay attack (Attack I) against the XMEAS 9 (Reactor Temperature) is detected

immediately with a detection probability of 100%, whereas combining these attacks

with others, as seen in the second row (Attack II), reduces the attack detection

probability to 14%. The impact of these two attacks on the A Feed flow (XMEAS

1) is shown in Figure 8.6. The single replay attack, Attack I, causes the A Feed to

go below the normal range (0.25-0.27 kscmh), but the combined attack Attack II,

is able to keep the A Feed around the normal range. Most of the attacks generated

by our EMO that evade detection while causing some damage are generated around

the shutdown time of the plant, at hour 70, and these attacks last for the two hours

immediately prior to the completion of production. It is likely that the plant had no

time to react to the consequences of these attacks and our EMO was able to exploit

this weakness.

(a) Attack I Detected (b) Attack II Not Detected

Figure 8.6: Impact of the attack on A Feed (XMEAS I)

Figure 8.7a and Figure 8.7b are plots that show effort against the detection

probability for the attacks in the Pareto front for Run I. Other runs had similar re-

sults. Each attack lasts for 2 hours and using more effort does increase the damage,

as shown in Figure 8.7c and 8.7d; however, these high cost attacks also increase the

8.2. Results and Analysis 236

(a) Run I using NSGA-II (b) Run II using SPEA2

(c) Run I using NSGA-II (d) Run II using SPEA2

Figure 8.7: Comparing objectives: effort against detection probability and damage against
effort

probability of detection. The optimisation finds the right balance, by carrying out

attacks that cause less damage but evade detection, indicated by the increased spread

of points along the lower impact attacks that cause economic harm of ≤ $300.

Figure 8.8 shows the hypervolume indicator for the selection methods, NSGA-

II and SPEA2, using the selection strategy (µ ,λ), averaged over Runs I and II for

800 generations. As before, the values are normalised so that they lie between 0 and

1. Both optimisations started from the same initial population, which was changed

between Run I and Run II. SPEA2 appears to perform better than NSGA-II at the

beginning of the evolution, and leads until generation 158, after which it starts to

be overtaken by NSGA-II, with both reach similar hypervolume around generation

8.2. Results and Analysis 237

Figure 8.8: Hypervolume results for NSGA-II and SPEA2 (averaged and normalised over
all runs)

480. By generation 550, NSGA-II overtakes SPEA2 again. Overall, for these runs

NSGA-II shows better performance, finishing with a hypervolume of 0.74 in com-

parison to SPEA2 at 0.66. This is due to NSGA-II having a better spread for this

problem, having some individuals able to cause more damage than the individuals

obtained from SPEA2. However, those attacks that cause damage and evade de-

tection for both algorithms indicate a similar performance. The experiments were

executed for 800 generations but it is clear from Figure 8.8 that both algorithms

require more time to converge properly; this is especially the case for NSGA-II as

it has been steadily increasing.

8.2.3 Generating Attacks against Decision Tree and Random

Forest

We did not have enough time and resources to test our EMO comprehensively

against all supervised classifiers; however, we carried out three sets of runs against

the single Decision Tree and Random Forest classifiers, and both performed bet-

ter than the AdaBoost classifier on DoS and replay attacks, albeit with at a higher

rate for false positives. For these experiments, the genetic parameters in Table 8.1

8.2. Results and Analysis 238

were used in combination with the NSGA-II selection method and µ+λ selection

strategy. The duration of the attacks were a constant 2 hours.

(a) Pareto front of attacks generated against Decision
Tree

(b) Hypervolume of Decision Tree

(c) Parato front of attacks generated against Random
Forest

(d) Hypervolume of Random Forest

Figure 8.9: Generated attacks against Decision Tree and Random Forest (2-Objective opti-
misation)

Figure 8.9 shows the best run for the Decision Tree and Random Forest. Deci-

sion Tree was able to find a wide variety of attacks that caused damage, including

an attack that caused damage of $166 with a detection probability of 3%, as shown

in Figure 8.9a. Given the false positive rates of Decision Tree, one needs to select

a threshold for detection probability higher than the AdaBoost classifier. Assum-

ing a threshold of 60% is chosen for declaring an alarm, as shown in Figure 8.9a

we found some attacks that increase the operating cost by $255 that the intrusion

8.2. Results and Analysis 239

system will miss. The increasing hypervolume convergence curve shown in Fig-

ure 8.9b suggests that running the EMO for more generations could have produced

better attacks.

Random Forest had a better detection probability for DoS attacks than the De-

cision Tree classifier and One-Class SVM, thus, it is harder to generate attacks

against this classifier. Figure 8.9c shows the Pareto front of the best run we ob-

tained from experiments carried out with the Random Forest classifier. Pareto front

set has attacks that increased the operating cost between $5 and $67. As before, as-

suming a threshold of 60% is chosen for declaring an alarm, there are some attacks

that increase the operating cost by $41 that the intrusion system will miss, as shown

in Figure 8.9c. Figure 8.9d shows the convergence curve is steadily increasing, and

there is potential for generating attacks that cause more damage while evading de-

tection. As with the Decision Tree, these results also show that running the EMO

for more than 1000 generations could generate a better Pareto front and achieve a

asymptotic convergence.

We also carried out three sets of experiments with three objectives (maximise

damage cost, minimise detection probability, minimise effort) against the Decision

Tree and Random Forest classifiers using the genetic parameters in Table 8.1 in

combination with the NSGA-II selection method and µ+λ selection strategy, to

search for attacks that cost the least effort. Figure 8.10 shows the best results ob-

tained obtained over 1000 generations.

EMO was successful at finding a range of attacks that evade detection using a

range of efforts. These results are similar to those obtained against the 2-objectives

(Figure 8.9). As before, EMO was able to make better use of the weaknesses of the

Decision Tree classifier, and was able to find attacks that evade detection with prob-

ability of detection < 60%, while causing economic harm of≤ $350. As shown Fig-

ure 8.10a the effort required to carry out these attacks is often high. Although, EMO

was also able to also find some attacks that cause economic damage of $186−152

using a range of efforts 6−4, it failed to find attacks that cause a significant damage

using efforts < 4. The increasing hypervolume convergence curve shown in Figure

8.2. Results and Analysis 240

(a) Pareto front of attacks generated against Decision
Tree

(b) Hypervolume of single Decision Tree classifier

(c) Parato front of attacks generated against Random
Forest

(d) Hypervolume of Random Forest classifier

Figure 8.10: Generated attacks against Decision Tree and Random Forest (3-objective op-
timisation)

8.10b shows, once again, we need to run the EMO for more generations, and we

may evolve better attacks. For Random Forest most of the evolved attacks caused

a small increase in the operating cost of the plant, just under 30, and as shown

in Figure 8.10c, there are no significant changes after generation 650 indicating a

possibility of a premature convergence, as shown in Figure 8.10d.

To test if we could generate better attacks against the Random Forest classifier,

we carried out an experiment in which we added some good individuals that we

had obtained previously from the experiments carried out against the Decision Tree

classifier, to the initial random population. This is known as seeding the popula-

8.2. Results and Analysis 241

(a) Pareto front of attacks generated from a seeded popu-
lation

(b) Hypervolume of attacks generated from a seeded pop-
ulation

Figure 8.11: Generated attacks from a seeded population against Random Forest

tion and uses a few candidate individuals that have previously been determined to

be good (e.g. using expert knowledge) or that have been generated as a result of

some problem solving approach. Seeding is a common practice in single-objective

evolutionary algorithms; however, the benefits and disadvantages of seeding in evo-

lutionary multiobjective algorithms are not well studied for real-world problems.

In particular, the few of the existing studies show it can reduce the computational

cost especially when fitness function evaluation is expensive, and thus improve the

speed of the search, and quality of the solutions [308]. A comprehensive study of

this research gap is future work, however, we carried out an experiment where we

seeded the initial population with 10 individuals that the Decision Tree failed to de-

tect, and started the EMO from this modified population against the Random Forest

classifier. Figure 8.11a shows the result of our experiments after 300 generations.

Results shows the evolved attacks are not better than those against the Decision

Tree, and this was expected since Random Forest had a better detection performance

than Decision Tree, but, these attacks are also significantly better than those attacks

that started from a completely random population. The Pareto front includes at-

tacks that increase the operating cost by $170 with a detection probability less than

10%. Our experiment shows that individuals obtained from a weak classifier can be

used to seed a strong classifier and so to reduce the computational effort. However,

8.2. Results and Analysis 242

seeding can also cause the population to lose diversity rapidly, and decrease the

explorative ability of the EMO, causing the population to become trapped in local

optima. Figure 8.11b illustrates the possibility of this problem, as the hypervol-

ume begins from 0.40 and increases to 0.62, and there is no significant change after

generation 162. These results indicate that the seeded good individuals have taken

over the population, and evolved attacks are derived predominantly from those ini-

tial seeds. It is thus important to find a balance to ensure that randomly generated

individuals are effectively combined with the seeds produce attacks.

8.2.4 Generating Attacks against One-Class SVM

Using the EMO we evolved attacks against the unsupervised classifier, One-Class

SVM. The F1 scores for One-Class SVM were 57.01% for single DoS attacks and

47.61% for single replay attacks. The false positive rate for One-Class SVM was

0.44%, higher than the decision tree based classifiers.

Figure 8.12: Generated DoS and replay attacks against One-Class SVM (3-Objective opti-
misation)

Using the same genetic operators and parameters as in the previous experi-

ments, and limiting the number of attacks for each chromosome in the initial popu-

lation to fewer than 4, we carried out replay and DoS attacks against the One-Class

SVM: the duration of the attacks was again a constant 2 hours using the EMO with

the NSGA-II selection method. Figure 8.12 shows the results obtained from one of

8.2. Results and Analysis 243

(a) Pareto front of DoS and replay attacks generated us-
ing a seeded population (2-Objective optimisation)

(b) Hypervolume of DoS and replay attacks generated
using a seeded population

(c) Pareto front of replay attacks (3-Objective optimi-
sation)

(d) Hypervolume of replay attacks

Figure 8.13: Generated attacks against One-Class SVM using seeding and evolving only
replay attacks

these experiments. One-Class SVM was able to detect these attacks; the maximum

damage that can be inflicted on the plant without getting detected was just $12, with

a detection probability of 40% and a need to attack 5 sensors and actuators. Other

runs showed similar performance and failed to find any attacks causing significant

damage.

We used seeding to see if we can generate better attacks against One-Class

SVM by including some of the best individuals that were obtained from the De-

cision Tree classifier to the initial population, and evolved attacks against the 2-

objective (maximise damage, minimise detection probability. Figure 8.13a illus-

8.3. Application of the EMO Approach against other Industrial Control Systems244

trates the obtained Pareto front. Seeding the initial population helped to evolve

attacks faster than the random population and found more attacks against the SVM,

but, the damage inflicted was not significantly better: it increased the operating cost

by $13.5 with a detection probability less than 60%. Figure 8.13b illustrates the

hypervolume is increasingly slowly, and there might be some space for generating

better attacks, however it is unlikely to find attacks that increase the operating cost

significantly while evading detection.

To give EMO some space to work, we carried out some experiments in which

we: increased the attack detection window size to 300 instead of 100 as used in the

previous experiments; reduced the duration of the attacks to between 30 minutes and

1 hour; and used only replay attacks, as DoS attacks were easier to detect. Initial

population was generated randomly. The start time of the attack was any hour from

2-70. This range was used to define the type of gene. As before, the experiments

were carried out using utilising the selection method of NSGA-II for the 3-objective

(maximise damage, minimise detection probability, minimise effort) case. Figure

8.13c illustrates Pareto front of onen of the best runs. Compared to decision tree

classifiers, the performance of the One-Class SVM is slower, and, therefore, we are

limited to a smaller generations. The 3-objective EMO found a variety of attacks

that evade detection, but the damage these attacks caused was under $10. Figure

8.13d, the evolution converged and there is apparently little space for further im-

provement. Overall, these results indicates that One-Class SVM is able to detect

attacks better than the decision tree classifiers, but at a higher cost of false posi-

tive rate. Thus, the EMO had a very little space to evolve attacks that could cause

significant damage using the designed attacks.

8.3 Application of the EMO Approach against other

Industrial Control Systems
The evolutionary multiobjective optimisation approach developed in Chapter 6 and

this chapter can be employed to test the vulnerabilities of systems with a broad

attack surface including ICS domains such as: electricity, oil and gas production

8.4. Summary 245

and distribution; water and waste treatment systems; space; and manufacturing (e.g.

metal-alloy manufacture, pharmaceuticals). Attacks in such domains target sensor

measurements that are sent to the controllers and manipulated values that are sent

from controllers to the actuators, as these values can impact the process directly;

and achieve the intended damage.

The approach described in this thesis is agnostic to the application domain: it

can be applied to other process control networks with a high number of sensors and

actuators. To successfully apply it to other systems, one needs to define the objec-

tives and the search parameters. Search parameters include defining the potential

targets (sensors and actuators), and attack parameters including start time, duration

and attack pattern (e.g. periodic and interval). For man-in-the middle attacks, it is

necessary to establish the lower and upper range of process variables and manipu-

lated variables. In this thesis, we employed a small range of values for start time and

attack duration as we were limited by the evaluation speed of the fitness function;

however, given sufficient resources a large range can be used. Expert knowledge

can be used to tune the search parameters to save time. For example, those pro-

cesses that exhibit faster dynamics, as opposed to low dynamic processes like the

TE process, will cope better with attacks that are shorter in duration. In generating

attacks, we treated detection as a black-box; the only information EMO requires

from the detection is the detection probability. After this, EMO can be left to search

for attacks.

8.4 Summary

In this chapter, we investigated Research Question 4: Can one evolve new attacks

against the Intrusion Detection System? We evolved attacks against the detection

methods implemented in Chapter 7: AdaBoost, Decision Tree and Random Forest

and One-Class SVM.

We were able to generate a large number of attacks that were not detected by

all detection systems. However, generating attacks that evade detection, and at the

same time cause some significant economic damage on a system like TE process is

8.4. Summary 246

a challenging task, since it requires attacks to be long in duration. Our results show

that carrying out a successful attack requires knowledge of the system to ensure that

the correct combination of sensors and actuators are attacked, and to avoid detection

or the triggering of the safety system. The significant attacks generated against the

AdaBoost, Decision Tree and Random Forest classifiers involved attacking multi-

ple components in the system to evade detection while causing economic damage.

A naive attacker that randomly attacks multiple targets is unlikely to achieve sim-

ilar damage, and is highly likely to be detected. The focus of our future work

will involve investigating and designing more complex attacks that could learn the

behaviour of the plant and the detection system, and generate attacks using this

knowledge. Despite this, the results obtained show that evolutionary multiobjective

optimisation can be used successfully as an effective tool to model the behaviour

of the adversary against a defence mechanism, and illustrate the conflicts and asso-

ciated trade-offs among common security objectives: attack impact, detection and

effort required. Using the results obtained from such an analysis, security engineers

can take measures to understand and eliminate system vulnerabilities before they

are exploited by malicious actors.

Next we summarise some issues related to the implementation of our approach.

Formulating the problem using multiple objectives increases its complexity. It is

often possible that the optimisation methods that work well for 2 objective prob-

lems may not perform equally well for a higher dimensional objective space as

the number of non-dominated individuals increases. Utilising the weakness of the

AdaBoost classifier, we were able to carry out experiments using a large space to

utilise and compare selection methods of two well-known evolutionary optimisation

algorithms. Using the (µ+λ) strategy, both NSGA-II and SPEA2 show promising

performance; however the results indicate that NSGA-II appears to search the space

better when using 3 objectives, maximising the spread of the solutions. Generat-

ing attacks against a strong classifier can be a very time consuming task; this is

especially true for cases like our model, for which the evaluation of individuals (i.e.

the fitness function) is slow. The slowness of our fitness function also influenced

8.4. Summary 247

the way we encoded our individuals, the size of the population, and the number of

generations.

Incorporating some knowledge into the EMO, as we have done with Random

Forest by seeding the population with some individuals obtained from a weaker

classifier (single Decision Tree), shows that it can significantly reduce the duration

of experiments and more rapidly identify those attacks that are likely to evade de-

tection. However, a comprehensive study is required to understand the full benefits

and weaknesses of the variety of strategies for this approach (e.g. such as the num-

ber of seeds used), as seeding can reduce the diversity of the population and, so fail

to explore other feasible region in the attack space. In future work, we plan to in-

vestigate effects of seeding and possible seeding strategies as there is little work in

this area applied to real-world multiobjective combinatorial optimisation problems.

Chapter 9

Conclusions and Future work

To conclude, in this chapter we summarise our findings, key contributions and po-

tential directions for future work.

9.1 Summary
Although the security of industrial control systems is attracting more research, the

nature of vulnerabilities and the attacks that can be carried out as a consequence of

exploiting these vulnerabilities are not well understood at present. Studying this can

help to identify weaknesses in the process design of these systems, and weaknesses

of any existing detection systems in place to protect these systems. These systems

are composed of a large number of sensors, actuators and controllers. Carrying out

attacks against these systems is a complex task due to size of the possible set of

targets and attack types. Efficient and effective tools that can automate this process

can help to examine these systems against attacks from a wide variety of adversaries

with different motivations. In this thesis, we investigated an approach to achieve

precisely this.

In our approach, we studied and used a well-known benchmark chemical pro-

cess, the Tennessee Eastman process control problem, and extended an implemen-

tation to study the attacks that could be carried out by potential adversaries. We first

studied the impact of single attack instances on sensors and actuators using DoS,

integrity and replay attacks where the effect of the attack was measured in terms of

safety and economic loss. We assumed that adversaries might have a goal to attack

9.1. Summary 249

the safety of the system by forcing the process into an unsafe state, causing it to vi-

olate the shutdown limits and therefore shutting it down. Alternatively, we assumed

that some adversaries that may wish to cause damage by increasing the operating

cost of the process.

To study more complex attacks involving combinations of attack instances, we

designed experiments to compare random search, genetic algorithms with a single

objective, and genetic algorithms with multiobjective optimisation. To study the

effectiveness of genetic algorithms, we carried out a set of experiments to compare

the performance of a simple genetic algorithm with random search when evolving

DoS attacks. The genetic algorithm outperformed random search by generating at-

tacks that were much better in fitness and distribution. This single objective genetic

algorithm was successful at finding combinations of attacks that caused more dam-

age than single attacks; however, it demonstrated one of the key weaknesses of the

approach. The attacks were not necessarily minimal, because it was not possible to

know if the same attack could have been carried out by attacking a smaller target

(i.e. fewer sensors and actuators).

As a result, the problem was reformulated as an evolutionary multiobjective

optimisation problem using the selection method of two respected optimisation al-

gorithms, NSGA-II and SPEA2. The performance of these algorithms was evalu-

ated using the hypervolume metric to measure the quality of the Pareto set. The

performance of both algorithms was similar for this task: they found overlapping

sets of attack strategies. However, SPEA2 had a slightly better performance, and it

found the Pareto set faster than NSGA-II. Although, in some cases, premature con-

vergence can occur, overall our experiments showed that genetic algorithms with

multiobjective optimisation can be used effectively to determine vulnerabilities in

the process, by analysing the consequences of the attacks generated. We categorised

some of the most vulnerable combinations of sensors and networks, and recommend

these combinations should be considered carefully when designing process control

strategies and cost-effective network security hardening.

To detect these attacks, a set of classic machine learning algorithms and deep

9.1. Summary 250

learning algorithms were used to implement intrusion detection mechanisms. Su-

pervised learning methods for attack identification require attack examples, and the

process of labelling this data accurately may not be easy as one needs to determine

when the process returns to normal. This is not a task that can be reliably carried

out by a human. We adopted an approach that relies on a modified Z-score to esti-

mate when the process returns back to normal. It is highly possible that we might

have misclassified some of the data points, although this is likely unimportant in

a classifier used to noisy input data. Although some more work could have been

done to improve the performance of these classifiers by searching a large number

of parameters to ensure the optimal hyperparameters were used, the performance is

unlikely to have changed significantly. The results show that, as is often the case

with supervised learning, their performance reduces significantly on unseen cases.

The supervised methods did well on detecting integrity attacks but performed less

well on DoS and replay attacks. On the other hand, unsupervised learning meth-

ods did better overall, but the detection was noisy, yielding a higher false positive

rate. To handle the false positives, a sliding window was used for all detection

methods; the size of the sliding window depends on the patterns of the false posi-

tives. Two forms of recurrent neural network, LSTM and GRU, had a higher false

positive rate than One-Class SVM but the windows of consecutive false positive

data points were much smaller. This was beneficial both for accuracy declaring in

attacks and for early detection. Overall, the autoencoder outperformed all unsuper-

vised approaches. However, in general, deep learning methods are harder to train in

comparison to more conventional algorithms like One-Class SVM since they have

large number of hyperparameters and are sensitive to the choice of these parameters.

After defining a set of methods for detection, the final part of this PhD was to

evolve attacks against the improved defence, again searching for attacks that could

cause economic loss and, at the same time, evade detection. Attacks were evolved

against a weak algorithm, AdaBoost, and the more powerful ones, Decision Tree,

Random Forest and One-Class SVM. The evolutionary multiobjective optimisation

approach developed earlier was adopted and improved for this problem using mul-

9.1. Summary 251

tiple objectives: maximise damage; minimise detection rate, minimise effort. We

were able to find a range of attacks against all attacks; however, evading SVM

while causing significant damage proved to be hard, demonstrating the value of this

approach. On the other hand, when tested against AdaBoost, Decision Tree and

Random Forest, we were capable of generating a range of attacks that could evade

detection while causing significant damage.

The attacks generated show that if an adversary without detailed knowledge

of the plant manages to compromise the process signals, they are not very likely to

cause damage and evade detection as they will not easily be able to establish what

signal(s) to attack, how to perform the attack, and when to carry out the attack.

However, the results also show that a targeted attacker with access to some process

level information will be able to generate attacks that do have an effect and that are

hard to detect.

9.1.1 Main Contributions

This thesis has proposed and evaluated an effective and efficient methodology that

can be used to identify vulnerabilities in industrial processes and intrusion detection

mechanisms. Using this, security engineers can design better security mechanisms,

both ab inito, and during system operation . The main contributions of our work

are:

• We extended the implementation of a complex nonlinear chemical bench-

mark, the TE model, with attacks that facilitate the study of plant security.

We studied the performance of the TE process on single attacks in terms of

potential consequences.

• We have developed an approach based on evolutionary algorithms, evolution-

ary strategies, and multiobjective optimisation that permits security engineers

proactively to identify the vulnerabilities of the process and we compared it

to random search and single objective genetic algorithms. Because it is a par-

ticularly promising approach a wide range of experiments were carried out to

evaluate the performance of the developed evolutionary multiobjective opti-

9.2. Future work 252

misation utilising the selection methods of two of widely used multiobjective

evolutionary algorithms. As a result, we identified the most vulnerable com-

binations of sensors and actuators in the TE model.

• We investigated existing detection models, and identified weakness in these

studies. However we subsequently developed a range of novel IDS methods

that could improve the detection of attacks. As part of this, we developed

datasets that could be used to train, validate and test detection.

• Finally, we adapted and applied our approach to develop attacks against IDS

methods to identify remaining vulnerabilities in the plant and in the detection

method.

9.2 Future work
In this section, we discuss some future directions for research.

The existing implementation of the TE model in MATLAB is too slow to be

ideal for stochastic population-based optimisation algorithms like evolutionary al-

gorithms and, therefore, our experiments were limited by this. This was particularly

problematic when generating attacks against a system with IDS as the algorithms

required more time converge properly. The results obtained show our evolutionary

multiobjective optimisation is able to search the space efficiently, and give estimates

of potential damage; however, future work is necessary to test how generalisable the

results are. Migrating the code to another language, for example C++ or Python,

may improve the performance, as well as providing greater flexibility in terms of

implementing new attacks and integrating the model into a Hardware-in-the-loop

(HIL) simulation with network communication protocols.

One of the most common problems of evolutionary algorithms is premature

convergence, and we experienced this problem in some of our experiments. In re-

spect of this problem, our approach might be further improved by analysing some

of the more advanced techniques in the evolutionary computation literature aimed

at improving the diversity of the population. Future work is also needed to inves-

tigate the benefit of seeding the initial population. We observed we were able to

9.2. Future work 253

find attacks against Random Forest when we seed the initial population using some

of the best individuals obtained from a weaker classifier, the single Decision Tree.

However, validation of the benefits of seeding requires a more comprehensive study,

which we plan to address in future work. We will also investigate how other evo-

lutionary multiobjective optimisation techniques based on aggregation-based and

indicator-based algorithms will perform against the Pareto-based algorithms devel-

oped in this thesis.

The unavailability of benchmark models is a major obstacle for ICS security

research. Testing our approach on other benchmark problems would help to verify

and validate our approach but, unfortunately, there are few benchmark models that

are available. One possible alternative would be the Vinyl Acetate Monomer plant

[309]. We will investigate this further, but this is similar in structure to TE, and it is

also a chemical batch process. We are currently working on building a physical mi-

crogrid testbed, and we hope to verify and validate the performance of our approach

on a different type of process with physical and network components.

Unsupervised anomaly-based intrusion detection systems based on deep learn-

ing can be more effective than conventional methods. The success of these ap-

proaches depends on the design of the architecture and the choice of hyperparame-

ters for the optimisation algorithm. A possible future approach is to use evolution-

ary algorithms to automatically tune the best hyperparameters for a given dataset.

A more advanced method, based on genetic algorithms, was also recommended by

deep learning researchers; this relies on population-based training of neural net-

works [310].

The TE model has six modes of operation with different G/H mass ratios de-

signed to produce different production outputs to meet market demands. The ex-

periments in this thesis were carried using a mode 1; future work should study the

impact of changing modes on the detection methods. An additional area of future

research is to design common metrics that can be used by industry to quantify ra-

pidity of detection.

Future work will investigate if it is possible for an adversary with little prior

9.2. Future work 254

knowledge to design targetted attacks against the process using some of the new

learning techniques in deep learning, in particular the application of the generative

adversarial networks in learning the behaviour of the IDS.

Bibliography

[1] D. Evans, “The Internet of Things: How the Next Evolution of the Internet Is

Changing Everything,” Technical Report, CISCO Internet Business Solutions

Group (IBSG), 2011.

[2] D. Peterson, “Unsolicited Response Podcast Number 2 Bob Radvanovsky on

Project Shine,” Technical Report, Digital Bond Inc, 2012.

[3] L. O. M. Nicolas Falliere and E. Chien, “W32.Stuxnet Dossier (Version 1.4),”

White Paper, Symantec Security Response, 2011.

[4] K. Zetter, “Meet ‘Flame’, The Massive Spy Malware Infiltrating Ira-

nian Computers.” Available: http://www.wired.com/2012/05/

flame/, May 2012. Last Accessed: 15/04/2019.

[5] Kaspersky Lab, “Gauss: Abnormal Distribution,” White Paper, 2012.

[6] E. Chien and G. O’Gorman, “The Nitro Attacks,” White Paper, Symantec

Security Response, 2011.

[7] Symantec, “W32.Duqu: The Precursor to the Next Stuxnet (Version 1.4),”

White Paper, Symantec Security Response, 2011.

[8] R. Dorf C. and R. Bishop H., Modern Control Systems, Twelfth Edition. Pear-

son, 2011.

[9] K. Stouffer, S. Lightman, V. Pillitteri, M. Abrams, and A. Hahn, “Guide

to Industrial Control Systems (ICS) Security,” Technical Report, National

Institute of Standards and Technology, AGaithersburg, MD, USA, 2014.

http://www.wired.com/2012/05/flame/
http://www.wired.com/2012/05/flame/

Bibliography 256

[10] T.-C. Yang, “Networked control system: a brief survey,” Control Theory and

Applications, IEE Proceedings, vol. 153, pp. 403–412, July 2006.

[11] G. Schickhuber and O. McCarthy, “Distributed fieldbus and control network

systems,” Computing Control Engineering Journal, vol. 8, pp. 21–32, Feb

1997.

[12] N. Tuptuk and S. Hailes, “Security of smart manufacturing systems,” Journal

of Manufacturing Systems, vol. 47, pp. 93 – 106, 2018.

[13] N. Tuptuk and S. Hailes, “The cyberattack on Ukraine’s power grid is a

warning of what’s to come.” Available: https://theconversation.

com/the-cyberattack-on-ukraines-power-grid-is-a-

warning-of-whats-to-come-52832, Jan 2016. Last Accessed:

15/04/2019.

[14] Bundesamt für Sicherheit in der Informationstechnik (BSI), “Die Lage der

IT-Sicherheit in Deutschland 2014,” Technical Report, 2014.

[15] F-Secure, “Havex Hunts For ICS/SCADA Systems.” Available: https:

//www.f-secure.com/weblog/archives/00002718.html,

Jun 2014. Last Accessed: 04/04/2017.

[16] Gartner Inc, “Gartner Press Release: Gartner Says 4.9 Billion Connected

Things Will Be in Use in 2015,” Press Releases, 2014.

[17] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”

Computer Networks, vol. 54, no. 15, pp. 2787 – 2805, 2010.

[18] M. Krotofil and J. Larsen, “Rocking the pocket book: Hacking chemical

plants for competition and extortion,” White Paper, DefCon 23, 2015.

[19] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can ma-

chine learning be secure?,” in Proceedings of the 2006 ACM Symposium on

Information, Computer and Communications Security, ASIACCS ’06, (New

York, NY, USA), pp. 16–25, ACM, 2006.

https://theconversation.com/the-cyberattack-on-ukraines-power-grid-is-a-warning-of-whats-to-come-52832
https://theconversation.com/the-cyberattack-on-ukraines-power-grid-is-a-warning-of-whats-to-come-52832
https://theconversation.com/the-cyberattack-on-ukraines-power-grid-is-a-warning-of-whats-to-come-52832
https://www.f-secure.com/weblog/archives/00002718.html
https://www.f-secure.com/weblog/archives/00002718.html

Bibliography 257

[20] J. Downs and E. Vogel, “A plant-wide industrial process control problem,”

Computers Chemical Engineering, vol. 17, no. 3, pp. 245 – 255, 1993.

[21] Symantec, “Symantec Intelligence Report: May 2015,” Intelligence Report,

2015.

[22] Oxford University Press, “Attack.” Available: https://en.

oxforddictionaries.com/definition/attack. Last Ac-

cessed: 10/04/2019.

[23] National Institute of Standards and Technology, “Minimum security require-

ments for federal information and information systems.” Available: https:

//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf,

March 2006. Last Accessed: 10/04/2019.

[24] “Security and Privacy Controls for Federal Information Systems and

institutions.” Available: https://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-53r4.pdf, April 2013.

Last Accessed: 10/04/2019.

[25] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” Security Privacy,

IEEE, vol. 9, pp. 49–51, May 2011.

[26] D. Beresford, “Exploiting Siemens Simatic S7 PLCs,” White Paper, NSS

Labs, 2011.

[27] B. Kerbs, “Cyber incident blamed for nuclear power plant shut-

down.” Available: http://www.washingtonpost.com/wp-dyn/

content/article/2008/06/05/AR2008060501958.html, Jun

2008. Last Accessed: 23/03/2015.

[28] The Register, “Data storm blamed for nuclear plant shutdown.” Available:

http://www.theregister.co.uk/2007/05/21/alabama_

nuclear_plant_shutdown/, May 2007. Last Accessed: 10/02/2018.

https://en.oxforddictionaries.com/definition/attack
https://en.oxforddictionaries.com/definition/attack
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.200.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://www.washingtonpost.com/wp-dyn/content/article/2008/06/05/AR2008060501958.html
http://www.washingtonpost.com/wp-dyn/content/article/2008/06/05/AR2008060501958.html
http://www.theregister.co.uk/2007/05/21/alabama_nuclear_plant_shutdown/
http://www.theregister.co.uk/2007/05/21/alabama_nuclear_plant_shutdown/

Bibliography 258

[29] M. Giles, “Triton is the world’s most murderous malware, and it’s

spreading.” Available: https://www.technologyreview.com/

s/613054/cybersecurity-critical-infrastructure-

triton-malware, March 2019. Last Accessed: 14/05/2019.

[30] Dragos Inc, “TRISIS Malware Analysis of Safety System Targeted Mal-

ware, Version 1.20171213.” Available: https://dragos.com/wp-

content/uploads/TRISIS-01.pdf, December 2017. Last Ac-

cessed: 04/06/2018.

[31] R. Thomas, “Triton malware spearheads latest generation of attacks

on industrial systems.” Available: https://securingtomorrow.

mcafee.com/other-blogs/mcafee-labs/triton-malware-

spearheads, December 2018. Last Accessed: 14/05/2019.

[32] P. Paganini, “Researcher found Wind turbines and solar systems vul-

nerable worldwide.” Available: https://securityaffairs.co/

wordpress/37792/hacking/wind-turbines-hacking.html,

June 2015. Last Accessed: 15/04/2018.

[33] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-

15-076-01): XZERES 442SR Wind Turbine Vulnerability.” Avail-

able: https://ics-cert.us-cert.gov/advisories/ICSA-

15-076-01, Mar 2015. Last Accessed: 10/01/2019.

[34] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-15-

160-02): Sinapsi eSolar Light Plaintext Passwords Vulnerability.” Avail-

able: https://ics-cert.us-cert.gov/advisories/ICSA-

15-160-02, Jun 2015. Last Accessed: 10/01/2019.

[35] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-

15-132-02) Rockwell Automation RSView32 Weak Encryption Algo-

rithm on Passwords.” Available: https://ics-cert.us-cert.

https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware
https://www.technologyreview.com/s/613054/cybersecurity-critical-infrastructure-triton-malware
https://dragos.com/wp-content/uploads/TRISIS-01.pdf
https://dragos.com/wp-content/uploads/TRISIS-01.pdf
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/triton-malware-spearheads
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/triton-malware-spearheads
https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/triton-malware-spearheads
https://securityaffairs.co/wordpress/37792/hacking/wind-turbines-hacking.html
https://securityaffairs.co/wordpress/37792/hacking/wind-turbines-hacking.html
https://ics-cert.us-cert.gov/advisories/ICSA-15-076-01
https://ics-cert.us-cert.gov/advisories/ICSA-15-076-01
https://ics-cert.us-cert.gov/advisories/ICSA-15-160-02
https://ics-cert.us-cert.gov/advisories/ICSA-15-160-02
https://ics-cert.us-cert.gov/advisories/ICSA-15-132-02

Bibliography 259

gov/advisories/ICSA-15-132-02, May 2015. Last Accessed:

10/01/2019.

[36] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-

15-167-01) GarrettCom Magnum Series Devices Vulnerabilities.” Avail-

able: https://ics-cert.us-cert.gov/advisories/ICSA-

15-167-01, Jun 2015. Last Accessed: 10/01/2019.

[37] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-15-

013-01) Siemens SIMATIC WinCC Sm@rtClient iOS Application Authen-

tication Vulnerabilities.” Available: https://ics-cert.us-cert.

gov/advisories/ICSA-15-013-01, Jan 2015. Last Accessed:

10/01/2019.

[38] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-

15-013-03) Phoenix Contact Software ProConOs and MultiProg Au-

thentication Vulnerability.” Available: https://ics-cert.us-cert.

gov/advisories/ICSA-15-013-03, Jan 2015. Last Accessed:

10/01/2019.

[39] Symantec, “Dragonfly: Cyberespinoage Attacks Against Energy Suppliers,”

Symantec Security Response, Jul 2014.

[40] L. of Cryptography and S. S. (CrySyS), “Duqu: A Stuxnet-like malware

found in the wild v0.93,” Technical Report, 2011.

[41] P. F. Roberts, “Zotob, PnP Worms Slam 13 DaimlerChrysler Plants.”

Available: http://www.eweek.com/c/a/Security/Zotob-

PnP-Worms-Slam-13-DaimlerChrysler-Plants, Aug 2005.

Last Accessed: 13/01/2019.

[42] Symantec, “W32.Zotob.E.” Available http://www.symantec.com/

security_response/writeup.jsp?docid=2005-081615-

4443-99, Feb 2007. Last Accessed: 13/04/2019.

https://ics-cert.us-cert.gov/advisories/ICSA-15-132-02
https://ics-cert.us-cert.gov/advisories/ICSA-15-132-02
https://ics-cert.us-cert.gov/advisories/ICSA-15-167-01
https://ics-cert.us-cert.gov/advisories/ICSA-15-167-01
https://ics-cert.us-cert.gov/advisories/ICSA-15-013-01
https://ics-cert.us-cert.gov/advisories/ICSA-15-013-01
https://ics-cert.us-cert.gov/advisories/ICSA-15-013-03
https://ics-cert.us-cert.gov/advisories/ICSA-15-013-03
http://www.eweek.com/c/a/Security/Zotob-PnP-Worms-Slam-13-DaimlerChrysler-Plants
http://www.eweek.com/c/a/Security/Zotob-PnP-Worms-Slam-13-DaimlerChrysler-Plants
http://www.symantec.com/security_response/writeup.jsp?docid=2005-081615-4443-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-081615-4443-99
http://www.symantec.com/security_response/writeup.jsp?docid=2005-081615-4443-99

Bibliography 260

[43] BBC, “Zotob virus writers face prison.” Available: http://news.bbc.

co.uk/1/hi/technology/5345404.stm, Sep 2006. Last Accessed:

13/04/2019.

[44] BBC, “Two detained for US computer worm.” Available: http://news.

bbc.co.uk/1/hi/technology/4189996.stm, Aug 2005. Last Ac-

cessed: 14/04/2019.

[45] The Wire, “Hackers Shut Down a Tunnel Road in Israel.” Avail-

able: http://www.thewire.com/global/2013/10/hackers-

shut-down-tunnel-road-israel/70983, Oct 2013. Last Ac-

cessed: 14/04/2019.

[46] Cryptome Org, “Hackers Shut Down a Tunnel Road in Israel.” Avail-

able: http://cryptome.org/2013/05/sea-haifa-hack.htm,

May 2013. Last Accessed: 14/04/2019.

[47] The Register, “Disgruntled techie attempts californian power black-

out.” Available: http://www.theregister.co.uk/2007/04/20/

terrorists_among_us_flee_flee, Nov 2007. Last Accessed:

14/04/2019.

[48] ComputerWeekly, “Cyber attack on US shipping exploited known security

hole: teenager accused.” Available: https://www.computerweekly.

com/news/2240052986/Cyber-attack-on-US-shipping-

exploited-known-security-hole-teenager-accused, Oct

2003. Last Accessed: 16/04/2019.

[49] SANS ICS, Industrial Control Systems and Electricity Information Shar-

ing and Analysis Center, “TLP: WhiteAnalysis of the Cyber Attack on the

Ukrainian Power Grid Defense Use Case,” Technical Report, 2016.

[50] R. Khan, P. Maynard, K. McLaughlin, D. Laverty, and S. Sezer, “Threat anal-

ysis of blackenergy malware for synchrophasor based real-time control and

http://news.bbc.co.uk/1/hi/technology/5345404.stm
http://news.bbc.co.uk/1/hi/technology/5345404.stm
http://news.bbc.co.uk/1/hi/technology/4189996.stm
http://news.bbc.co.uk/1/hi/technology/4189996.stm
http://www.thewire.com/global/2013/10/hackers-shut-down-tunnel-road-israel/70983
http://www.thewire.com/global/2013/10/hackers-shut-down-tunnel-road-israel/70983
http://cryptome.org/2013/05/sea-haifa-hack.htm
http://www.theregister.co.uk/2007/04/20/terrorists_among_us_flee_flee
http://www.theregister.co.uk/2007/04/20/terrorists_among_us_flee_flee
https://www.computerweekly.com/news/2240052986/Cyber-attack-on-US-shipping-exploited-known-security-hole-teenager-accused
https://www.computerweekly.com/news/2240052986/Cyber-attack-on-US-shipping-exploited-known-security-hole-teenager-accused
https://www.computerweekly.com/news/2240052986/Cyber-attack-on-US-shipping-exploited-known-security-hole-teenager-accused

Bibliography 261

monitoring in smart grid,” in Proceedings of the 4th International Symposium

for ICS & SCADA Cyber Security Research 2016, ICS-CSR ’16, (Swindon,

UK), pp. 1–11, BCS Learning & Development Ltd., 2016.

[51] Dragos Inc, “CRASHOVERRIDE Analyzing the Threat to Electric Grid Op-

erations Version 2.20170613.” Available: https://dragos.com/wp-

content/uploads/CrashOverride-01.pdf, June 2017. Last Ac-

cessed: 04/06/2018.

[52] The Telegraph, “CIA plot led to huge blast in Siberian gas pipeline.”

Available: https://www.telegraph.co.uk/news/worldnews/

northamerica/usa/1455559/CIA-plot-led-to-huge-

blast-in-Siberian-gas-pipeline.html, Feb 2004. Last

Accessed: 04/06/2018.

[53] Symantec, “Flamer: Highly Sophisticated and Discreet Threat Targets the

Middle East.” Available: http://www.symantec.com/connect/

blogs/flamer-highly-sophisticated-and-discreet-

threat-targets-middle-east, May 2012. Last Accessed:

13/05/2018.

[54] Symantec, “The Shamoon Attacks.” Available: https://www.

symantec.com/connect/blogs/shamoon-attacks, Aug

2012. Last Accessed: 13/05/2018.

[55] B. Krebs, “Chinese Hackers Blamed for Intrusion at Energy Industry

Giant Telvent.” Available: https://krebsonsecurity.com/2012/

09/chinese-hackers-blamed-for-intrusion-at-energy-

industry-giant-telvent/, Sep 2012. Last Accessed: 10/03/2019.

[56] Schneider Electric USA Inc., “Oasys product family overview,” 2012.

[57] The Registry, “Russia welcomes hack attacks.” Available:

http://www.theregister.co.uk/2000/04/27/russia_

welcomes_hack_attacks/, Apr 2000. Last Accessed: 10/04/2019.

https://dragos.com/wp-content/uploads/CrashOverride-01.pdf
https://dragos.com/wp-content/uploads/CrashOverride-01.pdf
https://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
https://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
https://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.symantec.com/connect/blogs/flamer-highly-sophisticated-and-discreet-threat-targets-middle-east
http://www.symantec.com/connect/blogs/flamer-highly-sophisticated-and-discreet-threat-targets-middle-east
http://www.symantec.com/connect/blogs/flamer-highly-sophisticated-and-discreet-threat-targets-middle-east
https://www.symantec.com/connect/blogs/shamoon-attacks
https://www.symantec.com/connect/blogs/shamoon-attacks
https://krebsonsecurity.com/2012/09/chinese-hackers-blamed-for-intrusion-at-energy-industry-giant-telvent/
https://krebsonsecurity.com/2012/09/chinese-hackers-blamed-for-intrusion-at-energy-industry-giant-telvent/
https://krebsonsecurity.com/2012/09/chinese-hackers-blamed-for-intrusion-at-energy-industry-giant-telvent/
http://www.theregister.co.uk/2000/04/27/russia_welcomes_hack_attacks/
http://www.theregister.co.uk/2000/04/27/russia_welcomes_hack_attacks/

Bibliography 262

[58] ControlGlobal, “Illinois Water Hack Causes Confusion.” Available:

http://www.controlglobal.com/industrynews/2011/

illinois-water-hack-causes-confusion/, Dec 2011. Last

Accessed: 08/03/2018.

[59] ThreatPost, “Hacker says texas town used three character pass-

word to secure internet facing scada system.” Available: https:

//threatpost.com/hacker-says-texas-town-used-

three-character-password-secure-internet-facing-

scada-system-11201/75914, Nov 2011.

[60] M. Abrams and J. Weiss, “Malicious Control System Cyber Secu-

rity Attack Case Study–Maroochy Water Services, Australia.” Avail-

able: https://www.mitre.org/sites/default/files/pdf/

08_1145.pdf, Jul 2008. Last Accessed: 13/04/2019.

[61] The Registry, “Electrical supe charged with damaging California canal

system.” Available: http://www.theregister.co.uk/2007/11/

30/canal_system_hack/, Nov 2007. Last Accessed: 14/04/2019.

[62] BBC, “Japan defence firm Mitsubishi Heavy in cyber attack.” Avail-

able: http://www.bbc.co.uk/news/world-asia-pacific-

14982906, Sep 2011. Last Accessed: 08/03/2018.

[63] S. Ishimaru, “New activity of the Blue Termite APT.” Available:

https://securelist.com/blog/research/71876/new-

activity-of-the-blue-termite-apt/, Aug 2015.

[64] BBC, “Fines fraud hits Italian drivers.” Available: http://news.bbc.

co.uk/1/hi/world/europe/7862893.stm, Jan 2019. Last Ac-

cessed: 14/04/2019.

[65] The Telegraph, “’Zombies ahead’, warns electronic road sign.” Avail-

able:http://www.telegraph.co.uk/news/newstopics/

http://www.controlglobal.com/industrynews/2011/illinois-water-hack-causes-confusion/
http://www.controlglobal.com/industrynews/2011/illinois-water-hack-causes-confusion/
https://threatpost.com/hacker-says-texas-town-used-three-character-password-secure-internet-facing-scada-system-11201/75914
https://threatpost.com/hacker-says-texas-town-used-three-character-password-secure-internet-facing-scada-system-11201/75914
https://threatpost.com/hacker-says-texas-town-used-three-character-password-secure-internet-facing-scada-system-11201/75914
https://threatpost.com/hacker-says-texas-town-used-three-character-password-secure-internet-facing-scada-system-11201/75914
https://www.mitre.org/sites/default/files/pdf/08_1145.pdf
https://www.mitre.org/sites/default/files/pdf/08_1145.pdf
http://www.theregister.co.uk/2007/11/30/canal_system_hack/
http://www.theregister.co.uk/2007/11/30/canal_system_hack/
http://www.bbc.co.uk/news/world-asia-pacific-14982906
http://www.bbc.co.uk/news/world-asia-pacific-14982906
https://securelist.com/blog/research/71876/new-activity-of-the-blue-termite-apt/
https://securelist.com/blog/research/71876/new-activity-of-the-blue-termite-apt/
http://news.bbc.co.uk/1/hi/world/europe/7862893.stm
http://news.bbc.co.uk/1/hi/world/europe/7862893.stm
http://www.telegraph.co.uk/news/newstopics/howaboutthat/4518092/Zombies-ahead-warns-electronic-road-sign.html

Bibliography 263

howaboutthat/4518092/Zombies-ahead-warns-

electronic-road-sign.html, Feb 2009. Last Accessed:

18/04/2019.

[66] Los Angeles Times, “Key signals targeted, officials say.” Avail-

able: http://articles.latimes.com/2007/jan/09/local/

me-trafficlights9, Jan 2007. Last Accessed: 14/04/2019.

[67] GeekCom, “LA traffic engineers plead guilty to hacking traffic sig-

nals.” Available: http://www.geek.com/news/la-traffic-

engineers-plead-guilty-to-hacking-traffic-signals-

621672/, Nov 2008. Last Accessed: 14/04/2019.

[68] The Computer World, “Hackers break into water system network.”

Available: http://www.computerworld.com/article/

2547938/security0/hackers-break-into-water-system-

network.html, Oct 2006. Last Accessed: 10/02/2018.

[69] T. Telegraph, “Schoolboy hacks into city’s tram system.” Available:

http://www.telegraph.co.uk/news/worldnews/1575293/

Schoolboy-hacks-into-citys-tram-system.html, Jan 2008.

Last Accessed: 14/04/2019.

[70] Information Week, “Computer virus brings down train signals.” Avail-

able: http://www.informationweek.com/computer-virus-

brings-down-train-signals/d/d-id/1020446, Aug 2003.

Last Accessed: 11/02/2018.

[71] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver,

“Inside the slammer worm,” Security Privacy, IEEE, vol. 1, pp. 33–39, July

2003.

[72] SecurityFocus, “Slammer worm crashed ohio nuke plant network.” Avail-

able: http://www.securityfocus.com/news/6767, Aug 2003.

Last Accessed: 15/02/2019.

http://www.telegraph.co.uk/news/newstopics/howaboutthat/4518092/Zombies-ahead-warns-electronic-road-sign.html
http://www.telegraph.co.uk/news/newstopics/howaboutthat/4518092/Zombies-ahead-warns-electronic-road-sign.html
http://www.telegraph.co.uk/news/newstopics/howaboutthat/4518092/Zombies-ahead-warns-electronic-road-sign.html
http://articles.latimes.com/2007/jan/09/local/me-trafficlights9
http://articles.latimes.com/2007/jan/09/local/me-trafficlights9
http://www.geek.com/news/la-traffic-engineers-plead-guilty-to-hacking-traffic-signals-621672/
http://www.geek.com/news/la-traffic-engineers-plead-guilty-to-hacking-traffic-signals-621672/
http://www.geek.com/news/la-traffic-engineers-plead-guilty-to-hacking-traffic-signals-621672/
http://www.computerworld.com/article/2547938/security0/hackers-break-into-water-system-network.html
http://www.computerworld.com/article/2547938/security0/hackers-break-into-water-system-network.html
http://www.computerworld.com/article/2547938/security0/hackers-break-into-water-system-network.html
http://www.telegraph.co.uk/news/worldnews/1575293/Schoolboy-hacks-into-citys-tram-system.html
http://www.telegraph.co.uk/news/worldnews/1575293/Schoolboy-hacks-into-citys-tram-system.html
http://www.informationweek.com/computer-virus-brings-down-train-signals/d/d-id/1020446
http://www.informationweek.com/computer-virus-brings-down-train-signals/d/d-id/1020446
http://www.securityfocus.com/news/6767

Bibliography 264

[73] BBC, “Police warning after drug traffickers’ cyber-attack.” Available:

http://www.bbc.co.uk/news/world-europe-24539417, Oct

2013. Last Accessed: 14/04/2019.

[74] INTERPOL, “Against Organized Crime: INTERPOL Trafficking and Coun-

terfeiting Casebook 2014,” 2014.

[75] SecurityWeek, “Simulation Shows Threat of Ransomware Attacks on ICS.”

Available: https://www.securityweek.com/simulation-

shows-threat-ransomware-attacks-ics, Feb 2017. Last

Accessed: 15/04/2018.

[76] BBC, “Scrap metal regulations urged to combat theft.” Available: http:

//www.bbc.co.uk/news/uk-15704549, Nov. 2011. Last Accessed:

15/04/2018.

[77] BBC, “Substation copper thieves ’putting lives at risk’.” Available: http:

//news.bbc.co.uk/1/hi/england/8696724.stm, Mar. 2010.

Last Accessed: 15/04/2018.

[78] S. Lipscombe and O. Bennett, “House of Commons Briefing papers: Metal

theft (SN/HA/6150),” Research Briefings, Jul 2012.

[79] M. Joyce, Digital Activism Decoded: The New Mechanics of Change. Idebate

Press, 2010.

[80] The Times, “‘Anonymous’ hackers join Iran protests.” Available:

https://www.thetimes.co.uk/article/anonymous-

hackers-join-iran-protests-6qwvhw2j5h0, Feb 2011.

Last Accessed: 12/04/2018.

[81] The Sydney Morning Herald, “Operation Titstorm: hackers bring

down government websites.” Available:https://www.smh.com.

au/technology/operation-titstorm-hackers-bring-

http://www.bbc.co.uk/news/world-europe-24539417
https://www.securityweek.com/simulation-shows-threat-ransomware-attacks-ics
https://www.securityweek.com/simulation-shows-threat-ransomware-attacks-ics
http://www.bbc.co.uk/news/uk-15704549
http://www.bbc.co.uk/news/uk-15704549
http://news.bbc.co.uk/1/hi/england/8696724.stm
http://news.bbc.co.uk/1/hi/england/8696724.stm
https://www.thetimes.co.uk/article/anonymous-hackers-join-iran-protests-6qwvhw2j5h0
https://www.thetimes.co.uk/article/anonymous-hackers-join-iran-protests-6qwvhw2j5h0
https://www.smh.com.au/technology/operation-titstorm-hackers-bring-down-government-websites-20100210-nqku.html
https://www.smh.com.au/technology/operation-titstorm-hackers-bring-down-government-websites-20100210-nqku.html

Bibliography 265

down-government-websites-20100210-nqku.html, Feb 2010.

Last Accessed: 12/04/2018.

[82] Redmond, “UPDATED: Anonymous/LulzSec Hack Timeline.” Avail-

able: https://redmondmag.com/articles/2011/06/27/

timeline-of-anonymous-lulzsec-hacks.aspx, Aug 2011.

Last Accessed: 12/04/2018.

[83] BBC, “Hackers hit Italian cyber-police.” Available:

HackershitItaliancyber-police, July 2011. Last Accessed:

12/04/2018.

[84] C. P. Pfleeger, Reflections on the Insider Threat, pp. 5–16. Boston, MA:

Springer US, 2008.

[85] M. Collins, M. Theis, R. Trzeciak, J. Strozer, J. Clark, D. Costa, T. Cassidy,

M. Albrethsen, and A. Moore, “Common Sense Guide to Mitigating Insider

Threats, Fifth Edition,” 12 2016.

[86] U.S. Secret Service, Software Engineering Institute CERT Program at

Carnegie Mellon University and Price Waterhouse Cooper, “2014 US State

of Cybercrime Survey, CSO Magazine,” Apr 2014.

[87] M. Keeney, E. Kowalski, D. Cappelli, A. Moore, T. Shimeall, and S. Rogers,

“Insider threat study: Computer system sabotage in critical infrastructure

sectors,” tech. rep., Cornegie Mellon, Software Engineering Institute, 2005.

[88] HotforSecurity, “One in Three Employees Would Sell All Company Secrets

for the Right Price.” Available:http://www.hotforsecurity.

com/blog/one-in-three-employees-would-sell-all-

company-secrets-for-the-right-price-12392.html, Aug

2015. Last Accessed: 10/04/2019.

https://www.smh.com.au/technology/operation-titstorm-hackers-bring-down-government-websites-20100210-nqku.html
https://www.smh.com.au/technology/operation-titstorm-hackers-bring-down-government-websites-20100210-nqku.html
https://redmondmag.com/articles/2011/06/27/timeline-of-anonymous-lulzsec-hacks.aspx
https://redmondmag.com/articles/2011/06/27/timeline-of-anonymous-lulzsec-hacks.aspx
Hackers hit Italian cyber-police
http://www.hotforsecurity.com/blog/one-in-three-employees-would-sell-all-company-secrets-for-the-right-price-12392.html
http://www.hotforsecurity.com/blog/one-in-three-employees-would-sell-all-company-secrets-for-the-right-price-12392.html
http://www.hotforsecurity.com/blog/one-in-three-employees-would-sell-all-company-secrets-for-the-right-price-12392.html

Bibliography 266

[89] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic Classi-

fication of Side-Channel Attacks: A Case Study for Mobile Devices,” IEEE

Communications Surveys Tutorials, vol. 20, pp. 465–488, Firstquarter 2018.

[90] N. Tuptuk and S. Hailes, “Covert channel attacks in pervasive computing,”

in 2015 IEEE International Conference on Pervasive Computing and Com-

munications (PerCom), pp. 236–242, 2015.

[91] L. Bilge and T. Dumitraundefined, “Before We Knew It: An Empirical Study

of Zero-Day Attacks in the Real World,” in Proceedings of the 2012 ACM

Conference on Computer and Communications Security, CCS ’12, (New

York, NY, USA), p. 833–844, Association for Computing Machinery, 2012.

[92] “Scikit-learn Machine Learning in Python: User Guide (version 0.24.0).”

Available: https://scikit-learn.org/stable/user_guide.

html, 2019. Last Accessed: 14/05/2019.

[93] R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques for

cyber-physical systems,” ACM Comput. Surv., vol. 46, pp. 55:1–55:29, Mar.

2014.

[94] P. Oman and M. Phillips, “Intrusion Detection and Event Monitoring in

SCADA Networks,” in Critical Infrastructure Protection (E. Goetz and

S. Shenoi, eds.), vol. 253 of IFIP International Federation for Information

Processing, pp. 161–173, Springer US, 2008.

[95] U. Premaratne, J. Samarabandu, T. Sidhu, R. Beresh, and J.-C. Tan, “An

Intrusion Detection System for IEC61850 Automated Substations,” Power

Delivery, IEEE Transactions on, vol. 25, pp. 2376–2383, Oct 2010.

[96] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes,

“Using model-based intrusion detection for scada networks,” in Proceedings

of the SCADA Security Scientific Symposium, (Miami Beach, Florida), Jan.

2007.

https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html

Bibliography 267

[97] A. Valdes and S. Cheung, “Intrusion Monitoring in Process Control Sys-

tems,” in 2009 42nd Hawaii International Conference on System Sciences,

pp. 1–7, Jan 2009.

[98] N. Goldenberg and A. Wool, “Accurate modeling of Modbus/TCP for intru-

sion detection in SCADA systems,” International Journal of Critical Infras-

tructure Protection, vol. 6, no. 2, pp. 63 – 75, 2013.

[99] M. Caselli, E. Zambon, and F. Kargl, “Sequence-aware intrusion detection

in industrial control systems,” in Proceedings of the 1st ACM Workshop on

Cyber-Physical System Security, CPSS ’15, (New York, NY, USA), pp. 13–

24, ACM, 2015.

[100] O. Linda, T. Vollmer, and M. Manic, “Neural network based intrusion de-

tection system for critical infrastructures,” in Neural Networks, 2009. IJCNN

2009. International Joint Conference on, pp. 1827–1834, June 2009.

[101] P. Dussel, C. Gehl, P. Laskov, J.-U. Buber, C. Stormann, and J. Kast-

ner, “Cyber-critical infrastructure protection using real-time payload-

based anomaly detection,” in Critical Information Infrastructures Security

(E. Rome and R. Bloomfield, eds.), vol. 6027 of Lecture Notes in Computer

Science, pp. 85–97, Springer Berlin Heidelberg, 2010.

[102] H. Hadeli, R. Schierholz, M. Braendle, and C. Tuduce, “Leveraging deter-

minism in industrial control systems for advanced anomaly detection and

reliable security configuration,” in Emerging Technologies Factory Automa-

tion, 2009. ETFA 2009. IEEE Conference on, pp. 1–8, Sept 2009.

[103] A. Paul, F. Schuster, and H. König, “Towards the Protection of Industrial

Control Systems: Conclusions of a Vulnerability Analysis of Profinet IO,” in

Proceedings of the 10th International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, DIMVA’13, (Berlin, Heidel-

berg), pp. 160–176, Springer-Verlag, 2013.

Bibliography 268

[104] D. Hadziosmanovic, L. Simionato, D. Bolzoni, E. Zambon, and S. Etalle,

N-Gram against the Machine: On the Feasibility of the N-Gram Network

Analysis for Binary Protocols, pp. 354–373. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2012.

[105] S. Shin, T. Kwon, G. Y. Jo, Y. Park, and H. Rhy, “An Experimental Study of

Hierarchical Intrusion Detection for Wireless Industrial Sensor Networks,”

IEEE Transactions on Industrial Informatics, vol. 6, pp. 744–757, Nov 2010.

[106] Y. Zhang, L. Wang, W. Sun, R. Green, and M. Alam, “Artificial immune

system based intrusion detection in a distributed hierarchical network archi-

tecture of smart grid,” in Power and Energy Society General Meeting, 2011

IEEE, pp. 1–8, July 2011.

[107] Y. Zhang, L. Wang, W. Sun, R. Green, and M. Alam, “Distributed Intrusion

Detection System in a Multi-Layer Network Architecture of Smart Grids,”

Smart Grid, IEEE Transactions on, vol. 2, pp. 796–808, Dec 2011.

[108] S. Pan, T. Morris, and U. Adhikari, “Developing a hybrid intrusion detection

system using data mining for power systems,” IEEE Transactions on Smart

Grid, vol. 6, pp. 3104–3113, Nov 2015.

[109] W. Gao, T. Morris, B. Reaves, and D. Richey, “On scada control system com-

mand and response injection and intrusion detection,” in eCrime Researchers

Summit (eCrime), 2010, pp. 1–9, Oct 2010.

[110] W. Jardine, S. Frey, B. Green, and A. Rashid, “SENAMI: Selective Non-

Invasive Active Monitoring for ICS Intrusion Detection,” in Proceedings of

the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy,

CPS-SPC ’16, (New York, NY, USA), pp. 23–34, ACM, 2016.

[111] H. R. Ghaeini and N. O. Tippenhauer, “HAMIDS: Hierarchical Monitoring

Intrusion Detection System for Industrial Control Systems,” in Proceedings

of the 2Nd ACM Workshop on Cyber-Physical Systems Security and Privacy,

CPS-SPC ’16, (New York, NY, USA), pp. 103–111, ACM, 2016.

Bibliography 269

[112] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A dataset to support re-

search in the design of secure water treatment systems,” in Critical Informa-

tion Infrastructures Security (G. Havarneanu, R. Setola, H. Nassopoulos, and

S. Wolthusen, eds.), (Cham), pp. 88–99, Springer International Publishing,

2017.

[113] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt, and J. Sun, “Anomaly de-

tection for a water treatment system using unsupervised machine learning,”

CoRR, vol. abs/1709.05342, 2017.

[114] M. Kravchik and A. Shabtai, “Detecting cyber attacks in industrial con-

trol systems using convolutional neural networks,” in Proceedings of the

2018 Workshop on Cyber-Physical Systems Security and PrivaCy, CPS-

SPC@CCS 2018, Toronto, ON, Canada, October 19, 2018, pp. 72–83, 2018.

[115] G. Sabaliauskaite, G. Ng, J. Ruths, and A. Mathur, “A comprehensive ap-

proach, and a case study, for conducting attack detection experiments in cy-

ber–physical systems,” Robotics and Autonomous Systems, vol. 98, pp. 174

– 191, 2017.

[116] T. R. McEvoy and S. D. Wolthusen, “Trouble brewing: Using observations

of invariant behavior to detect malicious agency in distributed control sys-

tems,” in Proceedings of the 4th International Conference on Critical Infor-

mation Infrastructures Security, CRITIS’09, (Berlin, Heidelberg), pp. 62–72,

Springer-Verlag, 2010.

[117] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel, “Through

the eye of the plc: Semantic security monitoring for industrial processes,” in

Proceedings of the 30th Annual Computer Security Applications Conference,

ACSAC ’14, (New York, NY, USA), pp. 126–135, ACM, 2014.

[118] P. Filonov, A. Lavrentyev, and A. Vorontsov, “Multivariate industrial time

series with cyber-attack simulation: Fault detection using an lstm-based pre-

dictive data model,” CoRR, vol. abs/1612.06676, 2016.

Bibliography 270

[119] A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry,

“Attacks Against Process Control Systems: Risk Assessment, Detection, and

Response,” in Proceedings of the 6th ACM Symposium on Information, Com-

puter and Communications Security, ASIACCS ’11, (New York, NY, USA),

pp. 355–366, ACM, 2011.

[120] A. Keliris, H. Salehghaffari, B. Cairl, P. Krishnamurthy, M. Maniatakos, and

F. Khorrami, “Machine learning-based defense against process-aware attacks

on industrial control systems,” in 2016 IEEE International Test Conference

(ITC), pp. 1–10, Nov 2016.

[121] J. Chen and C.-M. Liao, “Dynamic process fault monitoring based on neural

network and pca,” Journal of Process Control, vol. 12, no. 2, pp. 277 – 289,

2002.

[122] I. Kiss, B. Genge, and P. Haller, “A clustering-based approach to detect cyber

attacks in process control systems,” in 2015 IEEE 13th International Confer-

ence on Industrial Informatics (INDIN), pp. 142–148, July 2015.

[123] P. Filonov, F. Kitashov, and A. Lavrentyev, “RNN-based Early Cyber-Attack

Detection for the Tennessee Eastman Process,” CoRR, vol. abs/1709.02232,

2017.

[124] N. L. Ricker, “Tennessee Eastman Challenge Archive.” Available:

http://depts.washington.edu/control/LARRY/TE/

download.html#Multiloop, Dec 1998. Last Updated: Jan 2015.

[125] Braatzgroup, The MIT Process Systems Engineering Laboratory, “Tennessee

Eastman Problem Simulation Data.” Available: http://web.mit.edu/

braatzgroup/links.html. Last Accessed: 15/09/2018.

[126] A. Raich and A. Çinar, “Multivariate statistical methods for monitoring con-

tinuous processes: assessment of discrimination power of disturbance models

http://depts.washington.edu/control/LARRY/TE/download.html#Multiloop
http://depts.washington.edu/control/LARRY/TE/download.html#Multiloop
http://web.mit.edu/braatzgroup/links.html
http://web.mit.edu/braatzgroup/links.html

Bibliography 271

and diagnosis of multiple disturbances,” Chemometrics and Intelligent Labo-

ratory Systems, vol. 30, no. 1, pp. 37 – 48, 1995. InCINC ’94 Selected papers

from the First International Chemometrics Internet Conference.

[127] A. Raich and A. Çinar, “Diagnosis of process disturbances by statistical dis-

tance and angle measures,” Computers Chemical Engineering, vol. 21, no. 6,

pp. 661 – 673, 1997.

[128] M. Kano, K. Nagao, S. Hasebe, I. Hashimoto, H. Ohno, R. Strauss, and

B. Bakshi, “Comparison of statistical process monitoring methods: applica-

tion to the eastman challenge problem,” Computers Chemical Engineering,

vol. 24, no. 2, pp. 175 – 181, 2000.

[129] E. L. Russell, L. H. Chiang, and R. D. Braatz, “Fault detection in industrial

processes using canonical variate analysis and dynamic principal component

analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 51, no. 1,

pp. 81 – 93, 2000.

[130] W. Lin, Y. Qian, and X. Li, “Nonlinear dynamic principal component anal-

ysis for on-line process monitoring and diagnosis,” Computers Chemical

Engineering, vol. 24, no. 2, pp. 423 – 429, 2000.

[131] G. Chen and T. J. McAvoy, “Predictive on-line monitoring of continuous

processes,” Journal of Process Control, vol. 8, no. 5, pp. 409 – 420, 1998.

ADCHEM ’97 IFAC Symposium: Advanced Control of Chemical Processes.

[132] F. Akbaryan and P. Bishnoi, “Fault diagnosis of multivariate systems us-

ing pattern recognition and multisensor data analysis technique,” Computers

Chemical Engineering, vol. 25, no. 9, pp. 1313 – 1339, 2001.

[133] A. Bakdi and A. Kouadri, “A new adaptive pca based thresholding scheme

for fault detection in complex systems,” Chemometrics and Intelligent Labo-

ratory Systems, vol. 162, pp. 83 – 93, 2017.

Bibliography 272

[134] L. H. Chiang, E. L. Russell, and R. D. Braatz, “Fault diagnosis in chem-

ical processes using fisher discriminant analysis, discriminant partial least

squares, and principal component analysis,” Chemometrics and Intelligent

Laboratory Systems, vol. 50, no. 2, pp. 243 – 252, 2000.

[135] M. Misra, H. Yue, S. Qin, and C. Ling, “Multivariate process monitoring

and fault diagnosis by multi-scale pca,” Computers Chemical Engineering,

vol. 26, no. 9, pp. 1281 – 1293, 2002.

[136] L. H. Chiang, M. E. Kotanchek, and A. K. Kordon, “Fault diagnosis based

on fisher discriminant analysis and support vector machines,” Computers

Chemical Engineering, vol. 28, no. 8, pp. 1389 – 1401, 2004.

[137] Y. Zhang, “Enhanced statistical analysis of nonlinear processes using KPCA,

KICA and SVM,” Chemical Engineering Science, vol. 64, no. 5, pp. 801 –

811, 2009.

[138] A. Beghi, L. Cecchinato, C. Corazzol, M. Rampazzo, F. Simmini, and

G. Susto, “A one-class svm based tool for machine learning novelty detection

in hvac chiller systems,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 1953

– 1958, 2014. 19th IFAC World Congress.

[139] S. Mahadevan and S. L. Shah, “Fault detection and diagnosis in process

data using one-class support vector machines,” Journal of Process Control,

vol. 19, no. 10, pp. 1627 – 1639, 2009.

[140] X. Gao and J. Hou, “An improved svm integrated gs-pca fault diagnosis ap-

proach of tennessee eastman process,” Neurocomputing, vol. 174, pp. 906 –

911, 2016.

[141] H. Chen, P. Tiňo, and X. Yao, “Cognitive fault diagnosis in Tennessee East-

man Process using learning in the model space,” Computers Chemical Engi-

neering, vol. 67, pp. 33 – 42, 2014.

Bibliography 273

[142] H. Chen, P. Tiňo, A. Rodan, and X. Yao, “Learning in the model space

for cognitive fault diagnosis,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 25, pp. 124–136, Jan 2014.

[143] L. Martı́, N. S. Pi, J. M. M. López, and A. C. B. Garcia, “Anomaly detection

based on sensor data in petroleum industry applications,” in Sensors, 2015.

[144] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff,

“Lstm-based encoder-decoder for multi-sensor anomaly detection,” CoRR,

vol. abs/1607.00148, 2016.

[145] F. Lv, C. Wen, Z. Bao, and M. Liu, “Fault diagnosis based on deep learning,”

in 2016 American Control Conference (ACC), pp. 6851–6856, July 2016.

[146] H. Zhao, S. Sun, and B. Jin, “Sequential fault diagnosis based on lstm neural

network,” IEEE Access, vol. 6, pp. 12929–12939, 2018.

[147] iTrust (Centre for Research in Cyber Security), Signapore Univer-

sity of Technology and Design, “Secure Water Treatment (SWaT)

Dataset.” Available: https://itrust.sutd.edu.sg/research/

dataset/dataset_characteristics/#swat, 2018.

[148] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1st ed., 1989.

[149] F. Glover and M. Laguna, Tabu Search. Norwell, MA, USA: Kluwer Aca-

demic Publishers, 1997.

[150] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated

annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[151] M. A. Arostegui, J. N. Kadipasaoglu, and B. M.Khumawala, “An empiri-

cal comparison of tabu search, simulated annealing, and genetic algorithms

for facilities location problems,” International Journal of Production Eco-

nomics, vol. 103, no. 2, pp. 742 – 754, 2006.

https://itrust.sutd.edu.sg/research/dataset/dataset_characteristics/#swat
https://itrust.sutd.edu.sg/research/dataset/dataset_characteristics/#swat

Bibliography 274

[152] K. Mrugala, N. Tuptuk, and S. Hailes, “Evolving attackers against wire-

less sensor networks,” in GECCO 2016 Companion Volume, (Denver, USA),

p. pp306, ACM, 20-24 July 2016.

[153] K. Mrugala, N. Tuptuk, and S. Hailes, “Evolving attackers against wireless

sensor networks using genetic programming,” IET Wireless Sensor Systems,

vol. 7, no. 4, pp. 113–122, 2017.

[154] D. B. Fogel, “What is evolutionary computation?,” IEEE Spectrum, vol. 37,

pp. 26–32, Feb 2000.

[155] O. Flasch, M. Friese, K. Vladislavleva, T. Bartz-Beielstein, O. Mersmann,

B. Naujoks, J. Stork, and M. Zaefferer, Comparing Ensemble-Based Fore-

casting Methods for Smart-Metering Data. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013.

[156] K. Seo, B. Hyeon, S. Hyun, and Y. Lee, Genetic Programming-Based Model

Output Statistics for Short-Range Temperature Prediction. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2013.

[157] E. Riva Sanseverino, M. L. Di Silvestre, and R. Gallea, Pareto-optimal Glow-

worm Swarms Optimization for Smart Grids Management. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2013.

[158] M. J. Eppstein and C. B. Ogbunugafor, “Quantifying deception: A case study

in the evolution of antimicrobial resistance,” in Proceedings of the 2016 on

Genetic and Evolutionary Computation Conference, Denver, CO, USA, July

20 - 24, 2016, pp. 101–108, 2016.

[159] S. Perez-Carabaza, E. Besada-Portas, J. A. Lopez-Orozco, and J. M. de la

Cruz, “A Real World Multi-UAV Evolutionary Planner for Minimum Time

Target Detection,” in Proceedings of the Genetic and Evolutionary Compu-

tation Conference 2016, GECCO ’16, (New York, NY, USA), pp. 981–988,

ACM, 2016.

Bibliography 275

[160] M. Braun, T. Dengiz, I. Mauser, and H. Schmeck, Comparison of Multi-

objective Evolutionary Optimization in Smart Building Scenarios. Cham:

Springer International Publishing, 2016.

[161] J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo, eds., Proceedings

of the 1st Annual Conference on Genetic Programming, (Cambridge, MA,

USA), MIT Press, 1996.

[162] D. Wagner and P. Soto, “Mimicry Attacks on Host-based Intrusion Detec-

tion Systems,” in Proceedings of the 9th ACM Conference on Computer and

Communications Security, CCS ’02, (New York, NY, USA), pp. 255–264,

ACM, 2002.

[163] K. M. C. Tan, K. S. Killourhy, and R. A. Maxion, “Undermining an

Anomaly-based Intrusion Detection System Using Common Exploits,” in

Proceedings of the 5th International Conference on Recent Advances in

Intrusion Detection, RAID’02, (Berlin, Heidelberg), pp. 54–73, Springer-

Verlag, 2002.

[164] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-Nonself Dis-

crimination in a Computer,” in Proceedings of the 1994 IEEE Symposium

on Security and Privacy, SP ’94, (Washington, DC, USA), pp. 202–, IEEE

Computer Society, 1994.

[165] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of self

for unix processes,” in Proceedings of the 1996 IEEE Symposium on Security

and Privacy, SP ’96, (Washington, DC, USA), pp. 120–, IEEE Computer

Society, 1996.

[166] MIT Lincoln Laboratory, “DARPA Intrusion Detection Data Sets.” Avail-

able: http://www.ll.mit.edu/mission/communications/

ist/corpora/ideval/data/, 2000.

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/

Bibliography 276

[167] W. Li, “Using Genetic Algorithm for network intrusion detection,” in In Pro-

ceedings of the United States Department of Energy Cyber Security Group

2004 Training Conference, pp. 24–27, 2004.

[168] T. Xia, G. Qu, S. Hariri, and M. Yousif, “An efficient network intrusion detec-

tion method based on information theory and genetic algorithm,” in PCCC

2005. 24th IEEE International Performance, Computing, and Communica-

tions Conference, 2005., pp. 11–17, April 2005.

[169] Chittur, Adhitya, and A. Chittur, “Model generation for an intrusion detection

system using genetic algorithms,” Dissertation, 2001.

[170] T. Vollmer, J. Alves-Foss, and M. Manic, “Autonomous rule creation for in-

trusion detection,” in 2011 IEEE Symposium on Computational Intelligence

in Cyber Security (CICS), pp. 1–8, April 2011.

[171] A. Ojugo, A. Eboka, O. Okonta, R. Yoro, and F. Aghware, “Genetic algo-

rithm rule-based intrusion detection system (GAIDS),” Journal of Emerging

Trends in Computing and Information Sciences, 2012.

[172] M. S. Hoque, M. A. Mukit, and M. A. N. Bikas, “An Implementa-

tion of Intrusion Detection System Using Genetic Algorithm,” CoRR,

vol. abs/1204.1336, 2012.

[173] P. A. Diaz-gomez, I. D. Sistemas, and D. F. Hougen, “Improved off-line in-

trusion detection using a genetic algorithm,” in in Proceedings of the Seventh

International Conference on Enterprise Information Systems, 2005.

[174] A. Goyal and C. Kumar, “GA-NIDS: A Genetic Algorithm based Network

Intrusion Detection System,” in ElectricalEngineering Computer Science,

North West University, Technical Report, 2008.

[175] J. Budynek, E. Bonabeau, and B. Shargel, “Evolving computer intrusion

scripts for vulnerability assessment and log analysis,” in Proceedings of the

Bibliography 277

7th Annual Conference on Genetic and Evolutionary Computation, GECCO

’05, (New York, NY, USA), pp. 1905–1912, ACM, 2005.

[176] J. R. Koza, Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, 1993.

[177] W. Lu and I. Traore, “Detecting New Forms of Network Intrusion Using

Genetic Programming,” Computational Intelligence, vol. 20, no. 3, pp. 475–

494, 2004.

[178] S. Pastrana, A. Orfila, and A. Ribagorda, “A functional framework to evade

network ids,” in 2011 44th Hawaii International Conference on System Sci-

ences, pp. 1–10, Jan 2011.

[179] C. Wallenta, J. Kim, P. J. Bentley, and S. Hailes, “Detecting interest cache

poisoning in sensor networks using an artificial immune algorithm,” Applied

Intelligence, vol. 32, pp. 1–26, Feb 2010.

[180] H. G. Kayacik, M. Heywood, and N. Zincir-Heywood, “On evolving buffer

overflow attacks using genetic programming,” in Proceedings of the 8th An-

nual Conference on Genetic and Evolutionary Computation, GECCO ’06,

(New York, NY, USA), pp. 1667–1674, ACM, 2006.

[181] H. G. Kayacik, A. N. Zincir-Heywood, M. I. Heywood, and S. Burschka,

“Generating mimicry attacks using genetic programming: A benchmarking

study,” in 2009 IEEE Symposium on Computational Intelligence in Cyber

Security, pp. 136–143, March 2009.

[182] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “Evolutionary

computation as an artificial attacker: generating evasion attacks for detector

vulnerability testing,” Evolutionary Intelligence, vol. 4, no. 4, pp. 243–266,

2011.

[183] S. Noreen, S. Murtaza, M. Z. Shafiq, and M. Farooq, “Evolvable malware,”

in Proceedings of the 11th Annual Conference on Genetic and Evolutionary

Bibliography 278

Computation, GECCO ’09, (New York, NY, USA), pp. 1569–1576, ACM,

2009.

[184] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang, and

T. Chen, “Mystique: Evolving android malware for auditing anti-malware

tools,” in Proceedings of the 11th ACM on Asia Conference on Computer and

Communications Security, ASIA CCS ’16, (New York, NY, USA), pp. 365–

376, ACM, 2016.

[185] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective search,”

in Parallel Problem Solving from Nature - PPSN VIII (X. Yao, E. K. Burke,

J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. E. Rowe,

P. Tiňo, A. Kabán, and H.-P. Schwefel, eds.), (Berlin, Heidelberg), pp. 832–

842, Springer Berlin Heidelberg, 2004.

[186] A. Calleja, A. Martı́n, H. D. Menéndez, J. Tapiador, and D. Clark, “Picking

on the family: Disrupting android malware triage by forcing misclassifica-

tion,” Expert Systems with Applications, vol. 95, pp. 113 – 126, 2018.

[187] E. Aydogan and S. Sen, “Automatic generation of mobile malwares using

genetic programming,” in Applications of Evolutionary Computation (A. M.

Mora and G. Squillero, eds.), (Cham), pp. 745–756, Springer International

Publishing, 2015.

[188] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers: A case study

on pdf malware classifiers,” in NDSS, 2016.

[189] D. J. John, R. W. Smith, W. H. Turkett, D. A. Cañas, and E. W. Fulp, “Evolu-

tionary based moving target cyber defense,” in Proceedings of the Compan-

ion Publication of the 2014 Annual Conference on Genetic and Evolutionary

Computation, GECCO Comp ’14, (New York, NY, USA), pp. 1261–1268,

ACM, 2014.

[190] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley, “Optimal security harden-

ing using multi-objective optimization on attack tree models of networks,” in

Bibliography 279

Proceedings of the 14th ACM Conference on Computer and Communications

Security, CCS ’07, (New York, NY, USA), pp. 204–213, ACM, 2007.

[191] M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An architecture

for evolving coadapted subcomponents,” Evolutionary Computation, vol. 8,

no. 1, pp. 1–29, 2000.

[192] J. D. Lohn, W. F. Kraus, and G. L. Haith, “Comparing a coevolutionary

genetic algorithm for multiobjective optimization,” in Proceedings of the

2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600),

vol. 2, pp. 1157–1162 vol.2, May 2002.

[193] L. Bull, “On coevolutionary genetic algorithms,” Soft Computing, vol. 5,

pp. 201–207, Jun 2001.

[194] G. Rush, D. R. Tauritz, and A. D. Kent, “Coevolutionary Agent-based Net-

work Defense Lightweight Event System (CANDLES),” in Proceedings of

the Companion Publication of the 2015 Annual Conference on Genetic and

Evolutionary Computation, GECCO Companion ’15, (New York, NY, USA),

pp. 859–866, ACM, 2015.

[195] D. Garcia, A. E. Lugo, E. Hemberg, and U.-M. O’Reilly, “Investigating co-

evolutionary archive based genetic algorithms on cyber defense networks,” in

Proceedings of the Genetic and Evolutionary Computation Conference Com-

panion, GECCO ’17, (New York, NY, USA), pp. 1455–1462, ACM, 2017.

[196] E. D. de Jong, “The incremental pareto-coevolution archive,” in Genetic and

Evolutionary Computation – GECCO 2004 (K. Deb, ed.), (Berlin, Heidel-

berg), pp. 525–536, Springer Berlin Heidelberg, 2004.

[197] T. Service, D. Tauritz, and W. Siever, “Infrastructure hardening: A compet-

itive coevolutionary methodology inspired by neo-darwinian arms races,” in

Computer Software and Applications Conference, 2007. COMPSAC 2007.

31st Annual International, vol. 1, pp. 101–104, July 2007.

Bibliography 280

[198] T. Service and D. Tauritz, “Increasing infrastructure resilience through com-

petitive coevolution,” New Mathematics and Natural Computation, vol. 05,

no. 02, pp. 441–457, 2009.

[199] J. Decraene, M. Chandramohan, M. Y. H. Low, and C. S. Choo, “Evolvable

simulations applied to automated red teaming: A preliminary study,” in Sim-

ulation Conference (WSC), Proceedings of the 2010 Winter, pp. 1444–1455,

Dec 2010.

[200] R. Bronfman-Nadas, N. Zincir-Heywood, and J. T. Jacobs, “An artificial arms

race: Could it improve mobile malware detectors?,” in 2018 Network Traffic

Measurement and Analysis Conference (TMA), pp. 1–8, June 2018.

[201] H. Holm, M. Karresand, A. Vidström, and E. Westring, “A survey of in-

dustrial control system testbeds,” in Secure IT Systems (S. Buchegger and

M. Dam, eds.), (Cham), pp. 11–26, Springer International Publishing, 2015.

[202] D. A. Richard Candell, Keith A. Stouffer, “A Cybersecurity Testbed for In-

dustrial Control Systems,” in Proceedings of the 2014 Process Control and

Safety Symposium, 2014.

[203] T. McAvoy and N. Ye, “Base control for the Tennessee Eastman problem,”

Computers Chemical Engineering, vol. 18, no. 5, pp. 383 – 413, 1994.

[204] N. L. Ricker, “Decentralized control of the Tennessee Eastman Challenge

Process,” Journal of Process Control, vol. 6, no. 4, pp. 205 – 221, 1996.

[205] P. Lyman and C. Georgakis, “Plant-wide control of the Tennessee Eastman

problem,” Computers Chemical Engineering, vol. 19, no. 3, pp. 321 – 331,

1995.

[206] S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study

of basic data-driven fault diagnosis and process monitoring methods on the

benchmark Tennessee Eastman process,” Journal of Process Control, vol. 22,

no. 9, pp. 1567 – 1581, 2012.

Bibliography 281

[207] T. McEvoy and S. Wolthusen, A Plant-Wide Industrial Process Control Se-

curity Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

[208] M. Krotofil and A. A. Cárdenas, Resilience of Process Control Systems to

Cyber-Physical Attacks. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013.

[209] B. Genge, C. Siaterlis, I. N. Fovino, and M. Masera, “A cyber-physical ex-

perimentation environment for the security analysis of networked industrial

control systems,” Computers Electrical Engineering, vol. 38, no. 5, pp. 1146

– 1161, 2012. Special issue on Recent Advances in Security and Privacy in

Distributed Communications and Image processing.

[210] T. Larsson, K. Hestetun, E. Hovland, and S. Skogestad, “Self-Optimizing

Control of a Large-Scale Plant: The Tennessee Eastman Process,” Industrial

& Engineering Chemistry Research, vol. 40, no. 22, pp. 4889–4901, 2001.

[211] A. Isakov and M. Krotofil, “GitHub Repository: Damn Vulnerable Chem-

ical Process - Tennessee Eastman.” Available: https://github.com/

satejnik/DVCP-TE, 2015. Last Accessed: 03/20/2016.

[212] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack models and

scenarios for networked control systems,” in Proceedings of the 1st Inter-

national Conference on High Confidence Networked Systems, HiCoNS ’12,

(New York, NY, USA), pp. 55–64, ACM, 2012.

[213] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-14-

079-02) Siemens SIMATIC S7-1200 Vulnerabilities,” tech. rep., Mar 2014.

Last Accessed: 10/01/2019.

[214] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-16-

161-01) Siemens SIMATIC S7-300 Denial-of-Service Vulnerability,” tech.

rep., Jun 2016. Last Accessed: 10/01/2019.

https://github.com/satejnik/DVCP-TE
https://github.com/satejnik/DVCP-TE

Bibliography 282

[215] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-

15-146-01): Mitsubishi Electric MELSEC FX-Series Controllers De-

nial of Service.” Available: https://ics-cert.us-cert.gov/

advisories/ICSA-15-146-01, 2015. Last Accessed: 19/12/2018.

[216] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-13-

036-02) Ecava IntegraXor ActiveX Buffer Overflow,” tech. rep., Feb. 2013.

Last Accessed: 19/12/2018.

[217] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-16-

103-02) Siemens SCALANCE S613 Denial-of-Service Vulnerability,” tech.

rep., Apr 2016. Last Accessed: 10/01/2019.

[218] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-11-

335-01): 7-Technologies Data Server Denial of Service,” tech. rep., 2011.

Last Accessed: 19/12/2018.

[219] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-13-

289-01) Cisco ASA and FWSM Security Advisories,” tech. rep., Oct. 2013.

Last Accessed: 19/12/2018.

[220] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-13-

338-01) Siemens SINAMICS S/G Authentication Bypass Vulnerability,”

tech. rep., Dec. 2013. Last Accessed: 19/12/2018.

[221] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-16-

049-01) B+B SmartWorx VESP211 Authentication Bypass Vulnerability,”

tech. rep., Feb. 2016. Last Accessed: 19/12/2018.

[222] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-11-

356-01) Siemens Simatic HMI Authentication Vulnerabilities,” Technical

Report, 2011. Last Accessed: 19/12/2018.

https://ics-cert.us-cert.gov/advisories/ICSA-15-146-01
https://ics-cert.us-cert.gov/advisories/ICSA-15-146-01

Bibliography 283

[223] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-11-

173-01) ClearSCADA Remote Authentication Bypass,” tech. rep., Aug.

2011. Last Accessed: 19/12/2018.

[224] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-15-

160-01A) N-Tron 702W Hard-Coded SSH and HTTPS Encryption Keys

(Update A),” tech. rep., June 2015. Last Accessed: 19/12/2018.

[225] ICS-CERT, The Department of Homeland Security, “Advisory (ICSA-16-

063-01) Moxa ioLogik E2200 Series Weak Authentication Practices,” tech.

rep., June 2016. Last Accessed: 19/12/2018.

[226] Y.-L. Huang, A. A. Cárdenas, S. Amin, Z.-S. Lin, H.-Y. Tsai, and S. Sas-

try, “Understanding the physical and economic consequences of attacks on

control systems,” International Journal of Critical Infrastructure Protection,

vol. 2, no. 3, pp. 73 – 83, 2009.

[227] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A Fast Elitist Non-

dominated Sorting Genetic Algorithm for Multi-objective Optimization:

NSGA-II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

[228] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength

Pareto Evolutionary Algorithm,” Technical Report: TIK-Report 103, 2001.

[229] J. Oesterle and L. Amodeo, “Efficient Multi-objective Optimization Method

for the Mixed-model-line Assembly Line Design Problem,” Procedia CIRP,

vol. 17, pp. 82 – 87, 2014. Variety Management in Manufacturing.

[230] D. E. Goldberg and K. Deb, “A comparative analysis of selection schemes

used in genetic algorithms,” in Foundations of Genetic Algorithms, pp. 69–

93, Morgan Kaufmann, 1991.

[231] N. Riquelme, C. V. Lücken, and B. Baran, “Performance metrics in multi-

objective optimization,” in 2015 Latin American Computing Conference

(CLEI), pp. 1–11, Oct 2015.

Bibliography 284

[232] A. Fielder, E. Panaousis, P. Malacaria, C. Hankin, and F. Smeraldi, “De-

cision support approaches for cyber security investment,” Decision Support

Systems, vol. 86, pp. 13 – 23, 2016.

[233] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolution-

ary algorithms: Empirical results,” Evol. Comput., vol. 8, pp. 173–195, June

2000.

[234] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining conver-

gence and diversity in evolutionary multiobjective optimization,” Evolution-

ary Computation, vol. 10, no. 3, pp. 263–282, 2002.

[235] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary Al-

gorithms for Solving Multi-Objective Problems (Genetic and Evolutionary

Computation). Berlin, Heidelberg: Springer-Verlag, 2006.

[236] A. Toffolo and E. Benini, “Genetic diversity as an objective in multi-objective

evolutionary algorithms,” Evol. Comput., vol. 11, pp. 151–167, May 2003.

[237] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-, and indicator-

based methods in many-objective optimization,” in Evolutionary Multi-

Criterion Optimization (S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and

T. Murata, eds.), (Berlin, Heidelberg), pp. 742–756, Springer Berlin Heidel-

berg, 2007.

[238] J. Knowles and D. Corne, “The pareto archived evolution strategy: a

new baseline algorithm for pareto multiobjective optimisation,” in Proceed-

ings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.

99TH8406), vol. 1, pp. 98–105 Vol. 1, July 1999.

[239] D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, “Pesa-ii: Region-

based selection in evolutionary multiobjective optimization,” in Proceedings

of the 3rd Annual Conference on Genetic and Evolutionary Computation,

GECCO’01, (San Francisco, CA, USA), pp. 283–290, Morgan Kaufmann

Publishers Inc., 2001.

Bibliography 285

[240] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic al-

gorithm for multiobjective optimization,” in Proceedings of the First IEEE

Conference on Evolutionary Computation. IEEE World Congress on Com-

putational Intelligence, pp. 82–87 vol.1, June 1994.

[241] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm

based on decomposition,” IEEE Transactions on Evolutionary Computation,

vol. 11, pp. 712–731, Dec 2007.

[242] B. Naujoks, N. Beume, and M. Emmerich, “Multi-objective optimisation us-

ing s-metric selection: application to three-dimensional solution spaces,” in

2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1282–1289

Vol. 2, Sep. 2005.

[243] J. Bader and E. Zitzler, “Hype: An algorithm for fast hypervolume-based

many-objective optimization,” Evolutionary Computation, vol. 19, no. 1,

pp. 45–76, 2011.

[244] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan, “A fast and elitist multi-

objective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary

Computation, vol. 6, pp. 182–197, April 2002.

[245] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated

sorting in genetic algorithms,” Evol. Comput., vol. 2, pp. 221–248, Sept.

1994.

[246] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-

parative case study and the strength pareto approach,” IEEE Transactions on

Evolutionary Computation, vol. 3, pp. 257–271, Nov 1999.

[247] B. W. Silverman, Density Estimation for Statistics and Data Analysis. Lon-

don: Chapman & Hall, 1986.

[248] C. M. Bishop, Pattern Recognition and Machine Learning (Information Sci-

ence and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

Bibliography 286

[249] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill, Inc.,

1 ed., 1997.

[250] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

Networks, vol. 61, pp. 85 – 117, 2015.

[251] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:

A survey,” 1996.

[252] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,

G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of

go without human knowledge,” Nature, vol. 550, pp. 354–, Oct. 2017.

[253] S. Mahadevan, N. Marchalleck, T. K. Das, and A. Gosavi, “Self-improving

factory simulation using continuous-time average-reward reinforcement

learning,” in Proceedings of the 14th International Conference on Machine

Learning, pp. 202–210, Morgan Kaufmann, 1997.

[254] J. Kober, J. A. D. Bagnell, and J. Peters, “Reinforcement learning in robotics:

A survey,” International Journal of Robotics Research, July 2013.

[255] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intrusion detec-

tion: Supervised or unsupervised?,” in Image Analysis and Processing –

ICIAP 2005 (F. Roli and S. Vitulano, eds.), (Berlin, Heidelberg), pp. 50–57,

Springer Berlin Heidelberg, 2005.

[256] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone, Classification and

Regression Trees. Belmont, California: Wadsworth, 1984.

[257] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press,

2016.

[258] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

Bibliography 287

[259] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

pp. 81–106, Mar 1986.

[260] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1993.

[261] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,”

Journal of Artificial Intelligence Research, vol. 11, p. 169–198, Aug 1999.

[262] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, p. 123–140, Aug.

1996.

[263] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learn-

ing. Springer Series in Statistics, New York, NY, USA: Springer New York

Inc., 2001.

[264] A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Me-

dia, Inc., 1st ed., 2017.

[265] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” Journal of Computer and System

Sciences, vol. 55, no. 1, pp. 119 – 139, 1997.

[266] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal

margin classifiers,” in Proceedings of the Fifth Annual Workshop on Compu-

tational Learning Theory, COLT ’92, (New York, NY, USA), pp. 144–152,

ACM, 1992.

[267] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,

vol. 20, pp. 273–297, Sep 1995.

[268] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support

vector machines,” IEEE Transactions on Neural Networks, vol. 13, pp. 415–

425, March 2002.

Bibliography 288

[269] N. Cristianini, An introduction to Support Vector Machines : and other

kernel-based learning methods / Nello Cristianini and John Shawe-Taylor.

Cambridge: Cambridge University Press, 2000.

[270] D. Barber, Bayesian Reasoning and Machine Learning. New York, NY,

USA: Cambridge University Press, 2012.

[271] R. C. Berwick, “MIT Lecture Notes: An Idiot’s guide to Support vector ma-

chines (SVMs).” Available: http://web.mit.edu/6.034/wwwbob/

svm-notes-long-08.pdf, 2003. Last Accessed: 14/05/2019.

[272] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C.

Williamson, “Estimating the support of a high-dimensional distribution,”

Neural Comput., vol. 13, pp. 1443–1471, July 2001.

[273] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural Comput., vol. 18, pp. 1527–1554, July 2006.

[274] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–

133, Dec 1943.

[275] BrainFactsOrg, “The Neuron.” Available: https://www.brainfacts.

org/brain-anatomy-and-function/anatomy/2012/the-

neuron, April 2012. Last Accessed: 13/04/2019.

[276] V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of feedfor-

ward neural networks: A review of two decades of research,” Engineering

Applications of Artificial Intelligence, vol. 60, pp. 97 – 116, 2017.

[277] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing: Foun-

dations of Research,” ch. Learning Representations by Back-propagating Er-

rors, pp. 696–699, Cambridge, MA, USA: MIT Press, 1988.

http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf
https://www.brainfacts.org/brain-anatomy-and-function/anatomy/2012/the-neuron
https://www.brainfacts.org/brain-anatomy-and-function/anatomy/2012/the-neuron
https://www.brainfacts.org/brain-anatomy-and-function/anatomy/2012/the-neuron

Bibliography 289

[278] A. Ng, “Machine Learning: Gradient Descent Intuition Lecture,” online

machine learning coursera module, 2017. Available: https://www.

coursera.org/.

[279] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR,

vol. abs/1609.04747, 2016.

[280] L. N. Smith, “No More Pesky Learning Rate Guessing Games,” CoRR,

vol. abs/1506.01186, 2015.

[281] F. Chollet et al., “Keras.” https://keras.io, 2015.

[282] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding gradi-

ent problem,” CoRR, vol. abs/1211.5063, 2012.

[283] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[284] C. Olah, “Understanding LSTM Networks.” Available: http://colah.

github.io/posts/2015-08-Understanding-LSTMs/, 2015.

[285] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and

Y. Bengio, “Learning phrase representations using RNN encoder-decoder for

statistical machine translation,” CoRR, vol. abs/1406.1078, 2014.

[286] A. Ng, “Sparse Autoencoder,” Lecture Notes, 2011. Available: http:

//web.stanford.edu/class/cs294a/sparseAutoencoder.

pdf.

[287] D. P. Kingma and M. Welling, “Auto-encoding variational bayes.” arXiv,

2013.

[288] N. Ricker, “Optimal steady-state operation of the Tennessee Eastman chal-

lenge process,” Computers Chemical Engineering, vol. 19, no. 9, pp. 949 –

959, 1995.

https://www.coursera.org/
https://www.coursera.org/
https://keras.io
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

Bibliography 290

[289] C. Perone, “Pyevolve: A python open-source framework for genetic algo-

rithms,” SIGEVOlution, vol. 4, pp. 12–20, 11 2009.

[290] K. Mrugala, N. Tuptuk, and S. Hailes, “Evolving attackers against wireless

sensor networks using genetic programming,” IET Wireless Sensor Systems,

vol. 7, no. 4, pp. 113–122, 2017.

[291] S. Luke, “Ecj then and now,” in Proceedings of the Genetic and Evolutionary

Computation Conference Companion, GECCO ’17, (New York, NY, USA),

pp. 1223–1230, ACM, 2017.

[292] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and

C. Gagné, “Deap: Evolutionary algorithms made easy,” J. Mach. Learn. Res.,

vol. 13, pp. 2171–2175, July 2012.

[293] B. L. Miller and D. E. Goldberg, “Genetic algorithms, selection schemes,

and the varying effects of noise,” Evol. Comput., vol. 4, pp. 113–131, June

1996.

[294] J. Byron and W. Iba, “Population diversity as a selection factor: Improving

fitness by increasing diversity,” in Proceedings of the 2016 on Genetic and

Evolutionary Computation Conference Companion, GECCO ’16 Compan-

ion, (New York, NY, USA), pp. 953–959, ACM, 2016.

[295] D. Gupta and S. Ghafir, “An overview of methods maintaining diversity in

genetic algorithms,” International Journal of Emerging Technology and Ad-

vanced Engineering, vol. 2, pp. 56–60, 2012.

[296] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization us-

ing genetic algorithms: A tutorial,” Reliability Engineering System Safety,

vol. 91, no. 9, pp. 992 – 1007, 2006. Special Issue - Genetic Algorithms and

ReliabilitySpecial Issue - Genetic Algorithms and Reliability.

[297] K. Deb, Multi-objective Optimisation Using Evolutionary Algorithms: An

Introduction, pp. 3–34. London: Springer London, 2011.

Bibliography 291

[298] E. Zitzler, M. Laumanns, L. Thiele, C. M. Fonseca, and V. G. da Fonseca,

“Why quality assessment of multiobjective optimizers is difficult,” in Pro-

ceedings of the 4th Annual Conference on Genetic and Evolutionary Compu-

tation, GECCO’02, (San Francisco, CA, USA), pp. 666–674, Morgan Kauf-

mann Publishers Inc., 2002.

[299] G. G. Yen and Z. He, “Performance metric ensemble for multiobjective

evolutionary algorithms,” IEEE Transactions on Evolutionary Computation,

vol. 18, pp. 131–144, Feb 2014.

[300] S. Wessing, “Implementations: Hypervolume.” https://ls11-www.

cs.tu-dortmund.de/rudolph/hypervolume/start. Last Ac-

cessed: 22/10/2018.

[301] M. Fleischer, “The measure of pareto optima applications to multi-objective

metaheuristics,” in Evolutionary Multi-Criterion Optimization (C. M. Fon-

seca, P. J. Fleming, E. Zitzler, L. Thiele, and K. Deb, eds.), (Berlin, Heidel-

berg), pp. 519–533, Springer Berlin Heidelberg, 2003.

[302] C. M. Fonseca, L. Paquete, and M. Lopez-Ibanez, “An improved dimension-

sweep algorithm for the hypervolume indicator,” in 2006 IEEE International

Conference on Evolutionary Computation, pp. 1157–1163, July 2006.

[303] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – a comprehensive

introduction,” Natural Computing, vol. 1, pp. 3–52, Mar 2002.

[304] E. Byres, “Revealing network threats, fears: How to use ANSI/ISA-99

standards to improve control system security.” Available: https://www.

isa.org/link/networkthreats/, 2011.

[305] B. Iglewicz and D. C. Hoaglin, How to detect and handle outliers. ASQC

Quality Press, 1993.

[306] T. G. Dietterich, “Machine learning for sequential data: A review,” in Struc-

tural, Syntactic, and Statistical Pattern Recognition (T. Caelli, A. Amin,

https://ls11-www.cs.tu-dortmund.de/rudolph/hypervolume/start
https://ls11-www.cs.tu-dortmund.de/rudolph/hypervolume/start
https://www.isa.org/link/networkthreats/
https://www.isa.org/link/networkthreats/

Bibliography 292

R. P. W. Duin, D. de Ridder, and M. Kamel, eds.), (Berlin, Heidelberg),

pp. 15–30, Springer Berlin Heidelberg, 2002.

[307] W. Hu, W. Hu, and S. Maybank, “AdaBoost-Based Algorithm for Network

Intrusion Detection,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol. 38, pp. 577–583, April 2008.

[308] T. Friedrich and M. Wagner, “Seeding the initial population of multi-

objective evolutionary algorithms: A computational study,” Applied Soft

Computing, vol. 33, pp. 223 – 230, 2015.

[309] Y. Machida, S. Ootakara, H. Seki, et al., “Vinyl Acetate Monomer (VAM)

Plant Model: A New Benchmark Problem for Control and Operation Study,”

IFAC-PapersOnLine, vol. 49, no. 7, pp. 533 – 538, 2016. 11th IFAC Sym-

posium on Dynamics and Control of Process SystemsIncluding Biosystems

DYCOPS-CAB 2016.

[310] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,

A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando,

and K. Kavukcuoglu, “Population based training of neural networks,” CoRR,

vol. abs/1711.09846, 2017.

	Introduction
	Motivation
	Attacks against Industrial Control Systems
	Security of Industrial Control Systems

	Research Questions
	Thesis Structure and Key Contributions
	List of Publications

	Background
	Terminology
	History of Attacks
	Nuclear Power Plants
	Petrochemical Plants
	Wind Turbines and Solar Systems
	Factories
	Tunnels
	Electricity Industry
	Oil and Gas Industry
	Water Treatment Systems and Canals
	Defence Industry
	Traffic Lights
	Transportation Systems
	Ports

	ICS Attack Taxonomy
	Threat Origin
	Threats
	Attack Vectors
	Vulnerabilities
	Initial Infection
	Attack Impact
	Countermeasures

	Summary

	Literature Review
	Detecting Attacks on Industrial Control Systems
	Performance Metrics for Intrusion Detection Systems
	Intrusion Detection for ICS Network and Hosts
	Anomaly Detection in Process Control

	Evolutionary Computation
	Evasion and Adversarial Learning
	Coevolution Approaches

	Summary

	Case Study, Threat Model and Methods
	Case Study: Tennessee Eastman Process Control Problem
	Disturbances

	Threat Model
	Denial of Service Attacks
	Integrity Attacks
	Replay Attacks
	Attack Model

	Evolutionary Algorithms and Multiobjective Optimisation
	Multiobjective Optimisation
	Evolutionary Multiobjective Optimisation Algorithms

	Machine Learning Methods
	Decision Trees
	Ensemble Learning using Decision Trees
	Support Vector Machines
	Deep Learning and Deep Neural Network
	Recurrent Neural Networks
	Autoencoder Neural Networks

	Summary

	Developing Attacks and Investigating their Potential Impacts
	Normal Operating Ranges
	Normal Process Operating Cost

	Single Random Attacks
	Impact of Attacking Process Variable Measurements
	Impact of Attacking Manipulated Variables

	Summary

	Searching for an Effective and Efficient Attack Generation Approach
	Comparison of Random Search and Genetic Algorithm
	Practical Challenges
	Generating Attacks using a Single Objective Genetic Algorithm
	Generating Attacks using Random Search
	Results of Random Search and Genetic Algorithm
	Evolving Multiple Attacks using Genetic Algorithm

	Searching Attacks using Evolutionary Multiobjective Optimisation
	Evolutionary Multiobjective Optimisation Approach
	Using Evolutionary Multiobjective Optimisation for Shutdown Attacks
	Using Evolutionary Multiobjective Optimisation for Economic Damage Attacks
	Discussion

	Summary

	Attack Detection using Supervised and Unsupervised Learning
	Supervised and Unsupervised Learning Methods
	Dataset Generation and Description
	Dataset for Supervised Learning
	Dataset for Unsupervised Learning
	Preprocessing Data

	Evaluation Metrics
	Declaring Attack

	Hyperparameter Optimisation
	Hyperparameter Tuning for Supervised Learning
	Hyperparameter Tuning for One-Class SVM
	Hyperparameter Tuning for Deep Neural Network

	Results and Analysis
	Supervised Learning
	Unsupervised Learning
	Dealing with False Positive Rates and Detecting Attacks

	Summary

	Evolving Attacks Against the Intrusion Detection System
	Evading Detection using Evolutionary Multiobjective Optimisation Approach
	Evolutionary Multiobjective Optimisation Algorithm

	Results and Analysis
	Generating 2-Objective Attacks against AdaBoost
	Generating 3-Objective Attacks against AdaBoost
	Generating Attacks against Decision Tree and Random Forest
	Generating Attacks against One-Class SVM

	Application of the EMO Approach against other Industrial Control Systems
	Summary

	Conclusions and Future work
	Summary
	Main Contributions

	Future work

	Bibliography

