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ABSTRACT: Covalent probes can display unmatched potency,
selectivity, and duration of action; however, their discovery is
challenging. In principle, fragments that can irreversibly bind their
target can overcome the low affinity that limits reversible fragment
screening, but such electrophilic fragments were considered
nonselective and were rarely screened. We hypothesized that mild
electrophiles might overcome the selectivity challenge and
constructed a library of 993 mildly electrophilic fragments. We
characterized this library by a new high-throughput thiol-reactivity
assay and screened them against 10 cysteine-containing proteins.
Highly reactive and promiscuous fragments were rare and could be
easily eliminated. In contrast, we found hits for most targets. Combining our approach with high-throughput crystallography
allowed rapid progression to potent and selective probes for two enzymes, the deubiquitinase OTUB2 and the pyrophosphatase
NUDT7. No inhibitors were previously known for either. This study highlights the potential of electrophile-fragment screening
as a practical and efficient tool for covalent-ligand discovery.

■ INTRODUCTION
Targeted covalent inhibitors have many advantages as chemical
probes and drug candidates:1,2 in particular, prolonged duration
of action,3 improved potency, and exquisite selectivity when
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nonconserved protein nucleophiles are targeted.4 There has,
therefore, been increasing interest in covalently acting
compounds, in both academia5 and the pharmaceutical
industry.5−8 This trend is underlined by the recent FDA
approval of the rationally designed covalent drugs ibrutinib,
afatinib, osimertinib, and neratinib.
Discovering new covalent inhibitors, however, remains

challenging. Historically, the most widespread approach to
designing such inhibitors has relied on the incorporation of an
electrophile into an already optimized reversible recognition
element,4,9−11 most notably in kinase inhibitors.4,12−16 More
recently, large-scale covalent virtual screens have emerged as a
method for the discovery of covalent binders.17−23 While
successful, in silico docking still has its limitations: it is limited to
targets for which a crystal structure (or a high-quality model) is
available, it cannot efficiently address protein flexibility, and it
cannot predict the intrinsic reactivity of electrophiles and thus
may result in highly reactive compounds. Empirical high-
throughput screening (HTS) for covalent binders is typically
avoided,24 owing to concerns about promiscuous activity.25−27

A major risk in screening large covalent libraries is that hits will
be dominated by overly reactive compounds rather than by
specific recognition.28

Fragment-based screening, which focuses on very low
molecular weight compounds, is a successful hit discovery
approach for reversible inhibitors29,30 that has led to several
drugs and chemical probes.30,31 In comparison to traditional
HTS, fragment-based screening offers better coverage of
chemical space and higher probability of binding due to lower
molecular complexity.32,33 The major limitation in fragment-
based screening is the weak binding affinity of fragment hits,
which not only necessitates very sensitive biophysical detection
methods, coupled with elaborate validation cascades, to
eliminate attendant artifacts but also makes progressing hits to
potency difficult and expensive. In particular, it requires a large
compound series with typically ambiguous structure−activity
relationships, because no method to date can reliably rationalize
which are the dominant interactions of the original fragment.
Screening covalent fragments addresses these limitations. This is
because covalent binders are easy to detect by mass
spectrometry, because the dominant interaction is unambiguous

(namely, the covalent bond), which simplifies the design of
follow-up series, and because the primary hits are already potent.
A prominent covalent-fragment screening approach is

disulfide tethering,34,35 which entails incubating a library of
disulfide-containing fragments with the target. Disulfide
exchange with the target cysteine selects for fragments that are
reversibly stabilized in its vicinity. Disulfide tethering was
successfully applied to a variety of targets containing both native
and introduced cysteine residues.36 Recently, it led to the
discovery of a promising K-RasG12C inhibitor.37 Disulfides are
not, however, suitable as cellular probes, and replacing them
with a suitable electrophile is, in general, no less challenging than
starting from a reversible ligand.
A potential solution is to directly screen mild electrophile

fragments. Electrophile fragment screens were recently
performed on a small scale, with libraries of up to ∼100
compounds in vitro against a recombinant target38−43 or in a
cellular phenotypic context.44−46 Small-scale screens were also
performed with reversible covalent fragments.47,48 We hypothe-
sized that significantly increasing the library size and screening it
against a diverse panel of targets will allow robust discovery of
covalent ligands. An additional advantage of irreversible binding
fragments is the relative ease of cocrystal determination in
comparison to reversible fragments with low residence time in
the binding site.40,49,50

Here, we report a holistic covalent fragment screening
approach. We have screened approximately 1000 electrophiles
against 10 different proteins. In combination with a newly
reported high-throughput thiol-reactivity assay, our approach
circumvents problems ascribed to irreversible binding: by
robustly evaluating reactivity and screening several proteins,
we could detect, and thus avoid, promiscuous hitters. We could
exploit the advantages of covalent screening: namely, sensitive
detection of binding at relatively low concentrations, which
yielded potent and unique primary hits in the majority (7 out of
10) of cases. Moreover, we demonstrate that, by combining the
approach with high-throughput crystallography, quality leads
can be rapidly developed, as shown for OTUB2 and NUDT7,
two targets that have thus far lacked probes.

Figure 1. Electrophile-fragment library adheres to the “rule-of-three”. Distribution of (A) chloroacetamides and acrylamides in the library (B)
molecular weights of the fragments, including the electrophile moiety, (C) number of heavy atoms, (D) c log P values, (E) number of rotatable bonds,
(F) number of hydrogen-bond acceptors, and (G) number of hydrogen-bond donors. The library largely adheres to the “rule of three” for fragment
libraries.
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■ RESULTS
Assembling an Electrophile-Fragment Library. We

constructed our electrophile-fragment library by focusing on
two mild electrophilic “warheads”: acrylamides and chloroace-
tamides. Acrylamides are represented in many rationally
designed covalent drugs, such as ibrutinib and osimertinib.
Although chloroacetamides are more reactive,51 they still show
selectivity in chemical-proteomic screens.44 Not many frag-
ments containing these electrophiles were available for purchase
from commercial vendors, likely due to the longstanding bias
against covalent modifiers.25,26 Nevertheless, we limited our
screen to commercially available compounds to enable the
broadest future use of the library. Additional considerations
were to ensure an overall lowmolecular weight and to enrich the
library with related analogues in order to allow preliminary

structure−activity relationships to be deduced directly from a
primary screen. The final library (Figure 1) contains 993
compounds, 76% of which are chloroacetamides (n = 752) and
24% of which are acrylamides (n = 241), with 92% exhibiting a
molecular weight below 300 Da, including, in the case of
chloroacetamides, the chlorine leaving group (36 Da). Thus, the
molecular-weight distribution of the reversible recognition
elements is shifted to even lower masses (see Figure S1 in the
Supporting Information for the molecular-weight distribution of
the adducts). If the electrophilic moiety is included, 95% of the
compounds have fewer than 20 heavy atoms. The library also
adheres to the so-called “rule of three”,52 with almost all
compounds containing fewer than three hydrogen-bond donors,
acceptors, rotatable bonds, and c log P < 3 (in the unreacted
form; Figure 1). A substructure analysis of the library (Figure S2

Figure 2. High-throughput thiol-reactivity measurements across electrophile fragments. (A) Schematic description of the high-throughput thiol-
reactivity assay. In the presence of TCEP, DTNB is reduced to TNB2−, which has a strong absorbance at 412 nm and is yellow under natural light.
Alkylation of TNB2− by an electrophile fragment reduces the observed absorbance. (B) Example of the reactivity measurement for PCM-0102854. (C)
Example of a second-order kinetic rate calculation. The data are fitted to a second-order reaction. [A] is the concentration of the electrophile, and [B] is
the concentration of TNB2−. The rate is determined by a linear regression of the data across 4 h of measurement. (D) Distribution of the rates of all the
electrophile fragments in the library. (E) Thiol-reactivity-rate distributions for the fragments containing prevalent substructures. (F) Chemical
structures of chloroacetamide substructures in the library that are represented by at least 10 fragments (see Figure S2 in the Supporting Information for
the same analysis for acrylamides).
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in the Supporting Information) shows that there are relatively
few electrophile-containing substructures that are represented
by more than 10 fragments in the library. Similarly, clustering
identified only 10 clusters with more than 10 members,
indicating a high degree of diversity in the library (Figure S2E
in the Supporting Information).
Only a Few Fragments Are Highly Reactive. To address

a major concern in covalent-molecule screening, namely, that
high reactivity could lead to a high proportion of irrelevant hits,
we developed a high-throughput thiol-reactivity assay that assess
the reactivity of all the fragments in our library. This entails
incubating fragments with reduced DTNB (Ellman’s reagent;
5,5-dithio-bis-2-nitrobenzoic acid) and following the absorb-
ance of TNB2− at the 412 nm wavelength for up to 7 h. By fitting
the data to a second-order reaction rate equation, we were able
to extrapolate the kinetic constant for the alkylation (see

example in Figure 2 and see Data set 1 and Figure S3 in the
Supporting Information). Since no specific recognition is
expected between TNB2− and the electrophile, this rate constant
reflects the intrinsic reactivity of the electrophile toward thiols.
The majority of the compounds showed an excellent fit to the
kinetic model (63.5% had R2 > 0.9; 71% had R2 > 0.8; Figure
S4A in the Supporting Information). The poorest-fitting data
were obtained for the least reactive compounds (Figure S4B in
the Supporting Information), for which the reaction rate was
below the dynamic range of the assay. We verified that the
reduction of DTNB with TCEP does not influence the
measured rates (Figure S3 in the Supporting Information).
For a subset of compounds, we showed that the rates agree well
with GSH consumption t1/2 (Table S1 in the Supporting
Information).

Table 1. Panel of Protein Targets for Screening

proteina MWb hitsc nonpromiscuous hitsd catalytic Cyse Cys residuesf possible therapeutic indicationsg

QSOX1 58084 0/993 0 noh 12 cancer53,54

PCAF 19452 0/993 0 no 3 HIV,55 cancer56,57

PBPR504C 57903 2/983 2 no 1 antibiotic resistance58

K-RasG12C 19245 10/968 7 no 3 cancer37,59

USP8 44429 20/923 7 yes 12 cancer,60 Cushing’s disease61

NNMT 31248 30/299 22 no 8 cancer,62 diet-induced obesity63

OTUB2 27312 47/938 42 yes 4 viral infection,64 diabetes,65 ALS66

NUDT7 26672 36/973 24 yes 4 diabetes67

NV3CP 19284 10/824 9 yes 5 viral infection68

BSA 66464 0/981 0 no 23 negative control
aAcronyms are as follows: quiescin sulfhydryl oxidase 1 (QSOX1); penicillin-binding protein 3 (PBP); ubiquitin-specific peptidase 8 (USP8);
nicotinamide N-methyltransferase (NNMT); norovirus 3C protease (NV3CP); bovine serum albumin (BSA). bMolecular weight of construct in
Da. cNumber of fragments with >50% labeling/compounds for which labeling could be evaluated. dNumber of hits that did not label any other
protein to >50%. eIndicates whether a catalytic cysteine is present in the protein. fNumber of cysteine residues in protein. gIndicates possible
therapeutic rationale to inhibit this target. hQSOX1 contains a catalytic disulfide.

Figure 3. Intact protein LC/MS screen identifies hits for most targets (A) (top) Outline of our screening pipeline. Compounds are pooled, five in each
well, incubated with a target protein for 24 h and read via LC/MS. (bottom) Example of the MS deconvoluted spectrum for NUDT7 with no
compound (blue) and after 24 h incubation with five compounds (green). Note that the shift in themass of the protein corresponds to 100% labeling of
PCM-0102951. (B) Summary of the quantified labeling of 10 proteins by the electrophile library. Blue represents 100% binding and white no labeling
or data not available (see labeling assignment in Methods).
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Several results arise from the analysis of the kinetic data from
the entire library. First, the most reactive fragments were labeled
only ∼100-fold faster than the least reactive fragments; the
majority of library fragments (78%) falls within only a 30-fold
difference. Second, the chloroacetamides are clearly more
reactive (show faster kinetics) than the acrylamides (p = 4.6 ×
10−38; two-sided t test), in accordance with previous experi-
ments for a handful of fragments.51 Finally, for reference, we
measured the reactivity of iodoacetamide, a generally used,
nonselective thiol alkylator, and found it to be 21-fold more
reactive than the average chloroacetamide and 26-fold more
reactive than the median choloroacetamide (Data set 1 in the
Supporting Information).
A comparison of the reactivities of various common

substructures (i.e., at least 10 instances) adjacent to the
electrophile reveals additional trends (Figure 2E). For instance,
the four most reactive substructures are piperazine-based
chloroacetamides. Two of the least reactive substructures are
2-chloro-N-cyclohexylacetamides and chloroacethydrazides. In
general, chloroacetamides that are based on primary amines/
anilines are significantly (p < 0.0001) less reactive than those
that are based on secondary amines/anilines (Figure S5A in the
Supporting Information). We found 29 matched pairs of
fragments in the library, which differ by a single methyl on the
chloroacetamide. N-Methylated chloroacetamides are signifi-
cantly more reactive than their nonmethylated counterparts (p =
0.0002; Figure S5B in the Supporting Information). Themedian
increase in the reactivity by such N-methylation is 1.7-fold. We
should note that the variability in reactivities of acrylamides as a
function of the substructure near the electrophile is much lower
(Figure S2C in the Supporting Information).
Overall, while there is variability in the intrinsic reactivity of

the fragments toward thiols, it is sufficiently small to allow the
identification of quality hits in a screening campaign. Moreover,
these data indicate that the two selected electrophiles are indeed
sufficiently mild to ensure that the main driver of protein
labeling is recognition rather than reactivity.
Intact-Protein Mass Spectrometry Identifies Hits

against a Diverse Panel of Proteins. We screened our
library against a diverse panel of 10 cysteine-containing proteins
(Table 1). The targets were selected on the basis of their
therapeutic potential, and most of them lacked any validated
covalent inhibitor or probe, or indeed any known chemical
probe. A screen of bovine serum albumin (BSA) served as
control. Four of the proteins in the panel contained a solvent-
exposed catalytic cysteine, while the other six did not.
Each protein was incubated with the electrophilic library in

pools of five compounds per well. The pool’s composition
maximized the difference inmass between fragments in the same
well. Incubations were performedwith each fragment at 200 μM,
for 24 h at 4 °C, to allow the screening of proteins that are not
stable for long time periods at higher temperatures. Following
incubation, we used intact protein liquid chromatography/mass
spectrometry (LC/MS) to identify the fragments and quantify
their labeling (Figure 3A). We confirmed that screening the
compounds in pools of five does not significantly affect hit
identification. There was good agreement between the percent
of labeling of NUDT7 by 100 random individual compounds
and that obtained in pools of five (R2=0.78; Figure S6 and Data
set 2 in the Supporting Information).
Overall, while the hit rate varied greatly between different

proteins (Figure 3B), we were able to find hits for almost all of
the screened proteins, except for PCAF, QSOX1, and the

negative control BSA (see Data set 3 in the Supporting
Information for the labeling quantification and Figure S7 in the
Supporting Information for the structures of nonpromiscuous
hits).

Promiscuity Does Not Correlate with Reactivity. We
define promiscuous compounds to be those that label two or
more proteins by more than 50% or three or more proteins by
more than 30%. Despite this stringent definition, only 27 of the
electrophilic fragments are promiscuous (Figure S8 and Data set
3 in the Supporting Information). Under an even stricter
definition, i.e., more than 30% labeling of any two proteins, only
an additional 36 compounds become promiscuous. We should
note here that by promiscuity we only refer to nonspecific
irreversible binding and not to the inherent reversible binding
promiscuity of low-molecular-weight fragments, which is a
favorable property in screening for protein binders. Some
compounds labeled the protein twice in the primary screen
(Data set 4 in the Supporting Information). Our comparison of
the reactivity distribution of these compounds with that of the
rest of the set shows that such “double labeling” compounds are
not significantly more reactive on average (Figure S9 in the
Supporting Information; p = 0.09).
Unexpectedly, promiscuous labeling does not correlate well

with thiol-reactivity (Figure S10 in the Supporting Information;
R2 = 0.09). For instance, compound PCM-0102496 (Figure S8
in the Supporting Information) labeled NNMT, USP8, and
NUDT7 by more than 50%, although its alkylation rate is in the
lowest quartile of reactivity (1.09 × 10−8 M−1 s−1). On the other
hand, some of the most reactive compounds, such as PCM-
0102140, PCM-0102859, and PCM-0102150 (Figure S10A,C
in the Supporting Information), did not significantly label any of
the proteins assayed.
We evaluated the possibility that promiscuous compounds

label amino acids other than cysteines. We incubated five
promiscuous compounds with NUDT7 and USP8, followed by
trypsin digestion and LC/MS/MS analysis, to identify
modification sites. Despite rare lysine and histidine modifica-
tions, the compounds preferably reacted with cysteines (Data set
5 and Figure S11 in the Supporting Information), thus largely
ruling out this hypothesis.
The degradation of compounds between protein screening

and reactivity measurement can also explain the discrepancy
between promiscuity and reactivity. To control for this, we
resourced 14 compounds10 promiscuous compounds and 4
random compounds that did not label any protein. We
reevaluated the reactivity of these fresh compounds and
found, with one exception (PCM-0102982), that the rates
agreed well with the previous measurements (Table S1 in the
Supporting Information). These results suggest that degradation
is not the source of the discrepancy.
Many of the promiscuous binders contain similar chemical

motifs. For instance, a large family of aminothiazole
chloroacetamides (Figures S10B and S12 in the Supporting
Information) are frequent hitters in our screens. Of note, these
compounds are not significantly more reactive than other
chloroacetamides in our thiol-reactivity assays (p = 0.183 in a
one-sided t test).

Fragment Growing Identifies Novel OTUB2 Inhibitors.
OTUB2 is a deubiquitinase (DUB) from the ovarian tumor
domain (OTU) DUB superfamily.69 OTUB2, initially identified
in HeLa cells,70 preferentially cleaves Lys63-linked polyUb
chains and can also cleave Lys11- and Lys48-linked chains.71

OTUB2 is important for the choice between the homologous-
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recombination and the nonhomologous-end-joining DNA
repair pathways.72 OTUB2 has also been found to function as
a negative regulator of virus-triggered type I IFN induction64

and has been linked to the inhibition of NF-κB signaling and the
regulation of beta cell survival in human pancreatic islets.65

Finally, OTUB2 has been identified as a potential biomarker for
sporadic amyotrophic lateral sclerosis (ALS).66 Thus, OTUB2
plays an important role in several biological pathways,
suggesting that the development of OTUB2-specific inhibitors
can have therapeutic potential.

Figure 4. Discovery of a selective OTUB2 inhibitor by fragment growing. (A) Cocrystal structures of OTUB2 in complex with (from top left) PCM-
0102998, PCM-0103080, PCM-0102660, PCM-0103011, PCM-0103007, PCM-0102954, PCM-0103050, PCM-0102153, PCM-0102305, PCM-
0102821, and PCM-0102500 (see Figure S13 in the Supporting Information). Structures with compounds containing the chloroacethydrazide motif
are boxed. (B) Percent covalent labeling of OTUB2 with compounds containing the identified motif, PCM-0102300, PCM-0103009, PCM-0102142,
PCM-0102998, PCM-0102954, and PCM-0102355 (Figure S13 in the Supporting Information), at 200 μM (blue) and 100 μM (green). Compounds
boxed in (A) are marked with asterisks. (C) Percent covalent labeling of OTUB2 with selected next-generation compounds at 100 μM(see Figure S16
in the Supporting Information for all analogues and Table S4 in the Supporting Information for percent labeling). (D)Dose−responsemeasurement of
percent labeling by next-generation OTUB2 binders. All labeling in (B)−(D) was measured via LC/MS after 24 h incubation at 4 °C. (E) Inhibition of
OTUB2 in an enzymatic assay (2.5 h preincubation in the presence of 2 mM free cysteine). (F) Gel-based ABPP selectivity assessment using a
fluorescent activity-based DUB probe73 in HEK293 cells overexpressing OTUB2 (see Figure S21 in the Supporting Information for the full gel and
additional controls). Cells were incubated with DMSO or increasing concentrations of OTUB2-COV-1 and then lysed, and the DUBs were
fluorescently labeled with an alkyne ABPP probe: the higher the level of labeling by an inhibitor, the lower the level of labeling by the ABPP probe. The
only bands that are reduced by OTUB2-COV-1 up to 30 μM correspond to OTUB2-GFP (at 65 kDa) and a degradation product (∼55 kDa). This
demonstrates both OUTB2’s cellular engagement with OTUB2-COV-1 in cells and its high selectivity over other DUBs (see Figure S20 in the
Supporting Information for the corresponding experiment in lysates). (G) Chemical structures of selected next-generation OTUB2 binders. The
chloroacethydrazide motif is highlighted in red.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b02822
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

F

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b02822/suppl_file/ja9b02822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b02822/suppl_file/ja9b02822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b02822/suppl_file/ja9b02822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b02822/suppl_file/ja9b02822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b02822/suppl_file/ja9b02822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b02822/suppl_file/ja9b02822_si_001.pdf
http://dx.doi.org/10.1021/jacs.9b02822


The primary screening against OTUB2 produced 47
fragments with >50% labeling, of which 42 were non-
promiscuous and 37 strictly nonpromiscuous (Figure S13 in
the Supporting Information). We evaluated the protein labeling
of 26 of these compounds at 200 and 100 μM(24 h; 4 °C; Table
2 in the Supporting Information); 9 compounds showed >50%
labeling even at the lower concentration. In order to prioritize
fragments for optimization, we turned to high-throughput
crystallography.
We were able to determine the cocrystal structures of 15

OTUB2/fragment complexes by streamlined parallel cocrystal-
lization involving 24 h of preincubating a protein with a fragment
and seeding with apo-protein crystals. In 11 of these complexes,
the fragments formed a covalent bond with the catalytic cysteine
51, located in the enzyme’s active site (Figure 4A and Table S3
in the Supporting Information).
The carbonyls of all chloroacetamides occupied the oxyanion

hole formed by the amide backbones of D48, G49, N50, and
C51. To progress selected fragments, the analysis of labeling
results and crystal structures led us to focus on a series of
fragments that share a common chloroacethydrazide motif
(Figure 4B), two of which were seen in crystal structures. In both
cases, the shared moiety participates in an extensive hydrogen-
bonding network with the protein active site (Figure S14 in the
Supporting Information). The side chain of E174 switched its
rotamer (in comparison to all other apo and fragment-bound
cocrystal structures) in order to mediate one such hydrogen
bond to the hydrazide motif (Figure S15 in the Supporting
Information). In both structures, the hydrophobic moiety
connected to the hydrazide is pointing toward the solvent,
making few, obviously productive, contacts with the protein. We
concluded that we might be able to optimize compound binding
by changing this moiety.
We purchased 21 analogues, all containing the chloroacethy-

drazide motif (Figure S16 in the Supporting Information). On
incubation with OTUB2 at 100 μM (24 h; 4 °C), six showed
>50% labeling, representing the reversible recognition stemming
from the shared motif (Figure 4C and Table S4 in the
Supporting Information). Two particularly promising ana-
logues, OTUB2-COV-1 and OTUB2-COV-17, showed 100%
labeling (Figure 4C). We sourced additional analogues of
OTUB2-COV-1 with various para substitutions of the phenyl
ring and assessed their labeling efficiency at various concen-
trations. Compounds OTUB2-COV-1, OTUB2-COV-22, and
OTUB2-COV-23 showed 46%, 55%, and 49% labeling,
respectively, at 5 μM (24 h; 4 °C; Figure 4D).
We next assessed their inhibition of the enzymatic activity of

OTUB2 (Figure 4E). The best inhibitor, OTUB2-COV-1,
showed an IC50 value of 31.5 μM at a relatively short incubation
time of 30 min in the presence of 2 mM cysteine. The IC50
improved to 15.4 μM with a longer incubation period of 2.5 h,
supporting the irreversible binding mechanism. A jump dilution
experiment (Figure S17 in the Supporting Information) further
validated irreversible binding. There was a very good correlation
between the labeling efficiency of these compounds and their
inhibitory effect. We attempted to determine the cocrystal
structure of OTUB2 labeled with the lead compound, OTUB2-
COV-1. While the chloroacethydrazide motif adopted the same
conformation as the original library hits, we could not detect
density for the cyclopropyl-phenyl moiety (Figure S18 in the
Supporting Information).
The improvement in the analogues appears to stem from

better recognition rather than reactivity: the primary chlor-

oacethydrazide hits gave little labeling of other proteins in the
panel (Data set 3 in the Supporting Information), and their mild
reactivity in the thiol-reactivity assay (average rate k = 3.9× 10−8

M−1 s−1) was comparable to that of some of the new analogues in
the same assay (OTUB2-COV-23, k = 2.74 × 10−8 M−1 s−1;
OTUB2-COV-22, k = 3.69 × 10−8 M−1 s−1; Data set 1 in the
Supporting Information). We determined the kinact/KI value of
OTUB2-COV-1 to be 3.75 M−1 s−1 (Figure S19 in the
Supporting Information), which is similar to that of recently
reported covalent binders.49,50

To assert the compounds’ selectivity against other DUBs, we
used cell and lysate gel-based activity based protein profiling
(ABPP). We used our previously developed alkyne activity-
based DUB probe73 to fluorescently label all cysteine DUBs.
OTUB2 is endogenously expressed at very low levels and so is
not visible in comparison to other highly expressed DUBs
(Figures S20 and S21 in the Supporting Information). To
overcome this impediment, we have used either HEK293 cells
overexpressing an OTUB2-GFP construct (Figure 4F and
Figure S21 in the Supporting Information) or native HEK293
lysates spiked with recombinant OTUB2 (Figure S20 in the
Supporting Information).
The experiment in cells proved the cellular engagement of

OTUB2-COV-1 with OTUB2 with a dose-dependent reduction
of DUB probe labeling (Figure 4F). Strikingly, even at
concentrations as high as 30 μM, OTUB2 appears to be the
only DUB target of OTUB2-COV-1, with no detectable
differences between the compound-treated cells/lysate and the
DMSO control (Figure 4F and Figure S20A,C in the Supporting
Information; compare lanes 1 and 16). These results indicate
exquisite selectivity across all DUBs detected by the probe.
Finally, we performed a competitive isoTOP-ABPP experi-

ment74 in order to profile the proteomic targets of OTUB2-
COV-1 in HEK293T cells (10 μM compound; 2 h incubation;
Data set 6 and Figure S22A in the Supporting Information). We
were unable to detect OTUB2 itself in this experiment, likely
due to low endogenous expression (see Figures S20 and S21 in
the Supporting Information). OTUB2-COV-1 significantly
labeled (Heavy/Light ratio >4) only 26 of the 2998 cysteines
detected by the experiment (<1%). Moreover, none of the
cysteines with a Heavy/Light ratio >2 belonged to a DUB. This
both asserts the proteomic selectivity of the probe and confirms
its selectivity within the DUB family.

Fragment Merging Leads to Potent NUDT7 Inhibitors.
NUDT7, a peroxisomal CoA pyrophosphohydrolase, belongs to
a protein family characterized by a 23-amino-acid motif referred
to as the “NUDIX box”. These proteins have been reported to
hydrolyze a diverse range of substrates, including (d)NTPs,
nucleotide sugars, diadenosine polyphosphates, and capped
RNA.75 The NUDT7 gene contains a CoA-binding motif and a
C-terminal peroxisomal targeting signal (PTS).76,77 Expression
of NUDT7 is highest in liver, with NUDT19 likely acting as the
complementary CoA and CoA ester hydrolase in kidney.78

Leptin double-knockout mice, which display alterations in CoA
homeostasis and exhibit a diabetic phenotype, have been
reported to express reduced levels of NUDT7 with a
concomitant increase in pantothenate kinase activity.67 To the
best of our knowledge, no small-molecule inhibitors or probes
have been reported for NUDT7 so far.
The primary screening against NUDT7 produced 36

fragments with >50% labeling, of which 24 were non-
promiscuous and 20 strictly nonpromiscuous (Figure S23 in
the Supporting Information). A series of similar fragments
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sharing a common 2-phenylpyrrolidine motif stood out, with
four compounds labeling 100% (Figure 5). We validated
compound binding via differential scanning fluorimetry
(DSF), in which 26 of the 30 compounds that showed covalent
labeling also stabilized NUDT7 by 4.5−13.4 °C (Figure S24 in
the Supporting Information). Specifically, compounds PCM-
0102298, PCM-0102938, PCM-0102558, PCM-0102951,
PCM-0102716, and PCM-0102512 stabilized NUDT7 by
4.5−8 °C (Figure 5A,B).
In order to optimize this series, we determined the cocrystal

structures of compounds PCM-0102951, PCM-0102558, and
PCM-0102716 bound to NUDT7 (Table S5 in the Supporting

Information) using a cocrystallization protocol similar to that for
OTUB2. The structures show that all compounds form a
covalent bond with the catalytic cysteine 73. Surprisingly,
however, despite their chemical similarity, the three compounds
adopt different binding poses (Figure 5D). An evaluation by
dose−response labeling of the six compounds sharing the 2-
phenylpyrrolidine motif showed that, after incubation (4 °C, 24
h), all six compounds label 100% up to 25 μM. At 5 μM
concentration, the compounds label less (60−80%), except for
PCM-0102558, which still shows 100% labeling (Figure 5C).
We have previously completed a crystallographic fragment

screen with noncovalent fragments at the XChem facility at

Figure 5.Discovery of a potent NUDT7 inhibitor by fragment merging. (A) Chemical structures of similar hit compounds that exhibited 68% (PCM-
0102716), 88% (PCM-0102512), and 100% (PCM-0102558, PCM-0102298, PCM-0102951, and PCM-0102938) labeling of NUDT7 in the primary
screen. CompoundNUDT7-REV-1 is a noncovalent fragment (purple) that was identified as a NUDT7 binder in a crystallography soaking screen (see
(E)). NUDT7-COV-1 (blue) is a merged compound based on PCM-0102716 (magenta) and NUDT7-REV-1. (B) The six hits identified in the
primary screen stabilize NUDT7 by 4.5−8.1 °C in a Tm shift assay. (C) Labeling percentage of compounds PCM-0102558, PCM-0102951, PCM-
0102298, PCM-0102716, PCM-0102512, and PCM-0102938 at 5−200 μM, 24 h, 4 °C. (D) Cocrystal structures of NUDT7 with compounds PCM-
0102951, PCM-0102558, and PCM-0102716. (E) Overlay of the crystal structures of NUDT7 with compound PCM-0102716 (pink) and with the
noncovalent fragmentNUDT7-REV-1 (purple). (F) The cocrystal structure of NUDT7with themerged compoundNUDT7-COV-1 adopts the exact
same binding mode as the two separate fragments. (G) Enzymatic inhibition of NUDT7 by NUDT7-COV-1 and NUDT7-REV-1. The data shown
include results with and without a 30 min protein preincubation in the presence of the compounds. (H) Intracellular target engagement is
demonstrated by thermal stabilization of FLAG-NUDT7 by NUDT7-COV-1 in intact HEK293 cells. After transfection, cells were treated with 20 μM
NUDT7-COV-1 or DMSO for 30 min before being heated to the indicated temperatures.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b02822
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

H

http://pubs.acs.org/doi/suppl/10.1021/jacs.9b02822/suppl_file/ja9b02822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.9b02822/suppl_file/ja9b02822_si_001.pdf
http://dx.doi.org/10.1021/jacs.9b02822


Diamond Light Source and have identified 18 fragments bound
to the putative substrate binding region of NUDT7 (https://
doi.org/10.5281/zenodo.1244111). We have synthesized, on
the basis of one of the initial hits, a series of diphenylacetamide
analogues and have soaked them into NUDT7 crystals, which
yielded a structure in complex with compound NUDT7-REV-1
(Figure 5A), A comparison of this structure with the covalent
NUDT7/PCM-0102716 structure reveals an almost perfect
overlap of one of the phenyl rings (Figure 5E), suggesting a clear
strategy for fragment merging.
The merged compound, NUDT7-COV-1 (see chemical

synthesis in File S1 in the Supporting Information), combines
the key features of both fragments and has much improved
properties. In the cocrystal structure, the merged compound
adopts exactly the predicted pose (root-mean-square deviation
of 0.4 Å over the shared atoms; Figure 5F), and at 5 μM,
NUDT7-COV-1 labels NUDT7 to 95% in 15 min (2 μM
protein). This improvement is likely due to enhanced
recognition, since NUDT7-COV-1 is less than 3-fold more
reactive than its parent compound, PCM-0102716 (k = 4.22 ×
10−7 M−1 s−1 vs. k = 1.63 × 10−7 M−1 s−1, respectively). We
should note that both the parent PCM-0102716 and NUDT7-
COV-1 contain a pyrrolidine stereocenter and are racemic
mixtures. Their cocrystal structures reveal that in both the S
enantiomer is the active species.
In a NUDT7 enzymatic activity assay, without preincubation,

the merged compound has an IC50 value of 2.7 μM. After a 30
min preincubation with the compound, the IC50 value improves
to 1.1 μM. Notably, none of the noncovalent hits from
crystallographic fragment screening show detectable activity in
the enzymatic assay, including the parent noncovalent fragment
we used for merging (Figure 5G and Figures S25 and S26 in the
Supporting Information). We determined the kinact/KI value of
NUDT7-COV-1 to be 757 M−1 s−1 (kinact = 0.01 s−1, KI = 13.21
μM; Figure S27 in the Supporting Information), in comparison
to kinact/KI = 233.1 M−1 s−1 for the best primary hit from the
screen, PCM-0102558, for which we were not able to determine
the kinact and KI values separately.
We evaluated NUDT7 cellular target engagement by

NUDT7-COV-1 via a cellular thermal shift assay (CETSA) in
intact HEK293 cells. Indeed, NUDT7-COV-1 showed signifi-
cant stabilization of FLAG-tagged NUDT7 in comparison to
DMSO, confirming that the compound binds the target in living
cells (Figure 5H). Finally, we performed an isoTOP-ABPP
experiment, in which we profiled the cellular targets of NUDT7-
COV-1 (10 μM; 2 h incubation; HEK293T cells; Data set 7 and
Figure S22B in the Supporting Information). NUDT7 itself
could not be detected, similarly to OTUB2, likely due to low
endogenous expression levels. Only 37 of the 2025 detected
cysteines were labeled by NUDT7-COV-1 with a Heavy/Light
ratio >4. None of the cysteines with a ratio of Heavy/Light >2
belonged to a NUDIX-hydrolase domain family member.
Electrophile Fragments Can Be Suitable for Cellular

Screens. Many previous studies established a correlation
between intrinsic reactivity and cellular toxicity for a range of
electrophiles.79 To see if such a correlation exists for our
electrophilic fragments, we performed a cellular viability assay
for each of our compounds with three different model cell lines,
HEK293, HB2, and CCD841 (Data set 8 in the Supporting
Information).
At a concentration of 10 μMand after 48 h of incubation, 47%,

58%, and 60% of the compounds negligibly effect the viability of
HEK293, HB2, and CCD841 cells, respectively (>75% viable;

Figure S28A−C in the Supporting Information). There is good
correlation between the toxicity of the compounds across the
three cell lines (Figure S28D−F in the Supporting Information).
We observed a switch-like toxicity effect, in which compounds
with reaction rates of k = 1 × 10−7 M−1 s−1 or less hardly affect
viability; only 30%, 19%, and 18% of these compounds affect by
more than 25% the viability of HEK293, HB2, and CCD841
cells, respectively. Whereas compounds with rates higher than k
= 1× 10−7 M−1 s−1 show a sharp decline in viability as a function
of reactivity (Figure S28A−C in the Supporting Information),
89%, 80%, and 75% of these compounds reduce cellular viability
by more than 25%. These results indicate that this library can be
suitable for cellular phenotypic screening in addition to in vitro
screening against purified proteins.

■ DISCUSSION
Discovering selective covalent acting compounds is challenging.
We approach this problem by significantly increasing the
chemical space of recognition elements, through the use of mild
electrophiles, while carefully accounting for reactivity and
promiscuity. We describe the screening of 993 commercially
available electrophile fragments against 10 different proteins.
Previous electrophile screening campaigns were limited in
scope: Nonoo et al.39 assayed only 10 acrylamides against 3
proteins, Jost et al.41 tested 6 diverse electrophiles against 11
proteins, Kathman et al.38 and Johansson et al.49 screened 100
methyl acrylates against 4 proteins and 1 protein (HOIP),
respectively, and, recently, Craven et al.40 screened 138
electrophiles against the kinase CDK2. While most of these
studies were restricted to well-studied targets with known
inhibitors, they pioneered electrophilic fragment screening and
served as a proof of concept that the method is viable. By
significantly expanding the library and screening a diverse array
of targets, we demonstrate the broad applicability of this
approach by producing valuable hits for “orphan” targets.
We observe, moreover, that the combination of screening

carbon electrophiles alongside exploiting high-throughput
crystallography results in an effective method for progressing
hits to leads and designing probes: the covalent bond in the hit
provides a clear, dominant chemical rule for designing follow-
ups and provides sufficient potency such that only a few
analogues are necessary for a potent and selective probe to pass
the threshold. Thus, we needed to purchase or synthesize fewer
than 50 compounds in order to achieve selective chemical
probes against two targets.
Another key point of screening carbon electrophiles,

especially in comparison to the well-established disulfide
tethering approach, is that it directly optimizes both recognition
element binding and electrophile orientation toward the target
cysteine. Disulfide hits from a tethering screen typically cannot
be used as cellular probes due to the reducing environment, and
the transition from an active disulfide fragment to a similarly
active carbon electrophile can be demanding and require the
synthesis of many test compounds. For example, Ostrem et al.37

identified a tethering hit against K-RasG12C but had to synthesize
nearly 100 carbon electrophiles to reach suitable labeling
efficacy. Instead, our screen immediately identified compound
PCM-0102818 (Figure S7 in the Supporting Information),
which is highly similar to the previously optimized compounds,
and labeled 63% of K-RasG12C, highlighting the efficiency of
directly screening carbon electrophiles. The expanded library
size does, however, appear to be crucial to providing sufficient
coverage of the chemical space: our previous screen of K-
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RasG12C with a much smaller number of electrophiles18 (only 62
acrylamide fragments) failed to yield plausible hits.
A main novelty of our study is the development of a high-

throughput thiol-reactivity assay that allowed us to compre-
hensively characterize the intrinsic reactivity of the entire library.
There are a few reports of the use of TNB2− as an indicator of the
formation of the reactive species benzoquinones or chlor-
amines,80,81 but to the best of our knowledge, it has never been
used systematically to quantitate intrinsic reactivity toward
thiols. We show that there is good agreement between GSH-
based reactivity evaluation and our method (Table S1 in the
Supporting Information). However, since GSH binding
measurements cannot be parallelized, they take, on average, 5
h per compound, whereas our assay can measure hundereds of
compounds over the course of 4 h. Another advantage is that the
assay can be performed on a plate reader, which is typically more
accessible to users than the NMR or LC/MS required to assay
direct GSH binding. One caveat of this method is that it cannot
account for different kinetic rates in compounds that contain
more than one electrophilic center, but this limitation holds also
for other methods, such as GSH consumption, and only very few
compounds in our library contain more than one electrophile.
On the basis of this assay, a major result of this study is the

relatively narrow range of reactivity displayed by the wide
majority of the electrophilic fragments, an observation that is
robust due to the large number of compounds we could screen
with the new high-throughput reactivity assay. Previous studies
that have characterized the thiol reactivity of various electro-
philes which are commonly explored as warheads for chemical
probes38,51 were limited in terms of the number of evaluated
compounds, likely due to the low-throughput assays used to
determine thiol reactivity. For example, when they examined
acrylamides, Kathman et al.38 determined the pseudo-first-order
reaction rate for only three model compounds, and because one
showed a significantly higher reaction rate, it was suggested that
acrylamides as a class of electrophiles have too variable a
reactivity for screening. Instead, we could assess the reactivity of
close to 250 acrylamides. We, too, observed outliers with high
reactivity, but the vast majority displayed low reactivity and
narrow variability. Indeed, under the current conditions, the
rates of 90 acrylamides fall below the dynamic range of our assay,
showing rates similar to that of the background blank reaction.
Acrylamide hits were also rarer in the 10 protein screens, overall
suggesting that, as a class of electrophiles, they are suitable for
screening.
We compared the reactivity of fragments that were screened

in the same well with some of the validated OTUB2
chloroacethydrazide binders and found that we could detect
hits even in the presence of more reactive fragments: PCM-
0103009 labeled to 100% in the presence of PCM-0102797,
which is 4.3-fold more reactive. PCM-0102142 also labeled to
100% in the presence of PCM-0102715, which is 9.4-fold more
reactive. Finally, PCM-0102426 labeled 60% in the presence of
PCM-0102273, which is 14.1-fold more reactive but did not
label at all. A consequence of this result is that we could screen
the library in pools of 5saving considerable time and
proteinwithout compromising hit identification, as we
demonstrated for 100 random compounds (Figure S6 in the
Supporting Information). We should note here that fragments
that label at 100% may hinder another hit from the same well;
this can be circumvented by expanding such wells and retesting
only those fragments as single agents. Still, for future screens, it

will likely be beneficial to pool compounds on the basis of similar
intrinsic reactivity in addition to maximum mass difference.
A related observation is that promiscuity is, in fact, not a

function of reactivity, which has historically been the main
reason covalent compounds are assumed to be problematic.
While promiscuous compounds were observed (Data set 3 in the
Supporting Information) and will be removed from future
screens, the most promiscuous compounds did not necessarily
have high intrinsic reactivity. For instance, PCM-0102957
(Figure S8 in the Supporting Information), one of the most
promiscuous compounds in the library, has an intrinsic reactivity
similar to that of iodoacetamide (1.9 × 10−6 M−1 s−1). In
contrast, another promiscuous compound, PCM-0102496
(Figure S8 in the Supporting Information), displays very low
reactivity. A previous study that tried to correlate the intrinsic
reactivity of electrophiles to in vitro covalent binding found
similar discrepancies.82 We discounted two possible explan-
ations for this observation: that these unexpected compounds do
not label cysteine but rather other amino acids, such as lysine
(Data set 5 and Figure S11 in the Supporting Information), and
that the low reactivities are an artifact of compound degradation
(Table S1 in the Supporting Information). Other explanations,
such as photoreactivity, redox cycling, and other confounding
mechanisms, might still be at play. This remains an area of active
research, and future screens might shed more light on this
phenomenon.
Nevertheless, the data allow us to recommend a threshold

reactivity of k = 1 × 10−7 M−1 s−1, below which electrophiles are
likely to be useful starting points for generating hits suitable for
further optimization and progression to cell active probes. This
proposed threshold is based on the loose correlation between
reactivity and promiscuity (Figure S10 in the Supporting
Information) and the correlation between reactivity and cellular
toxicity (Figure S28A−C in the Supporting Information). An
exception to this rule of thumb would be structural motifs we
identify as promiscuous, such as the aminothiazole series
(Figure S12 in the Supporting Information), which showed up
as frequent hitters, even in noncovalent screening,83 and are
considered PAINS compounds.25 An important criterion for
selecting hits for follow-up optimization is the existence of
shared substructures among hits. The shared chloroacethy-
drazide motif for OTUB2 and the chemical similarity of the
NUDT7 hits increased their confidence as true positives for
follow-up. Additional sharedmotifs were found for other targets;
for instance, there were five NNMT hits that shared an N-
carbamoyl-2-chloroacetamide motif (Figure S7 in the Support-
ing Information) and three low-reactivity aminothiazoles hitting
USP8 (with the caveat mentioned above for aminothiazoles in
general).
The hit rates obtained with this library are similar to or slightly

higher than those observed in screens with noncovalent
fragments:84,85 2−4% for NNMT, OTUB2, and NUDT7 and
0.2−0.9% for other proteins. These would be attenuated by
screening at different concentrations. Here, all primary screens
were performed at 200 μM, but on the basis of our results, we
can now recommend a concentration of 100 μM when catalytic
cysteines are targeted, while at 200 μM should be used for less
nucleophilic target cysteines. Other factors that can affect the hit
rate are the incubation time and temperature. Our relatively long
incubation time of 24 h may help in the identification of weak
binders, while running the reaction at 4 °C may eliminate some
nonspecific, reactivity-driven binding.
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Amajor application of our screening approach is the ability to
evaluate the potential ligandability of target cysteine residues. It
is clear by looking at the overall labeling statistics (Figure 3B)
that different target cysteines show different potentials for
electrophilic labeling. Proteomic approaches for the identi-
fication of functional or reactive cysteines44,46,86−88 can identify
potential target cysteines on amuch larger scale than ever before.
However, the throughput of the proteomics pipeline does not
allow assessing the covalent ligandability. In a recent proteomic
screen of 50 electrophilic fragments, for example, Backus et al.44

identified several cysteine residues available for labeling in
NNMT but did not deem it to be a probe target since only a
single fragment was able to significantly label it. In contrast, in
our library we found 30 compounds that label NNMT by more
than 50%, and in an enzymatic assay with a much shorter
incubation time (2 h), 10 of these were able to inhibit it (>20%
inhibition; Data set 9 in the Supporting Information). Indeed, a
recently published report demonstrated that a selective probe
could be developed against NNMT in lysates but not in whole
cells.89

Our approach, of course, also has some limitations. First, the
requirement for purified protein means it will be difficult when
protein production itself is challenging. Second, the current
library targets only cysteine residues, which are relatively rare;
this limitationmight be overcome in future libraries by screening
different chemistries targeting alternative amino acids, which
would require additional developments and calibration. Finally,
the identity of the labeled cysteine cannot be determined
directly from the primary screen. This is a minor caveat, since
one can either counterscreen amutant lacking the target cysteine
and compare the results or, as we have done for two proteins in
this study, follow up with LC/MS/MS to verify the identity of
the target residue (Figure S11 in the Supporting Information).
Overall, we conclude that our approach can be widely

adopted: the screening does not require specialized equipment
or algorithms, the compounds of the library are commercially
available from a single vendor, and high-throughput crystallog-
raphy is now widely supported at synchrotrons worldwide. Our
method should, therefore, become a powerful tool for the fast
and robust development of covalent ligands against many
different proteins, as demonstrated by the development of two
new covalent probes for targets that have lacked inhibitors to
date.

■ METHODS
Library Acquisition and Handling. A total of 993 compounds

were acquired from Enamine (https://www.enamine.net/) as 20 mM
DMSO stocks in 96-deep-well plates. A working copy was formatted to
384-well plates and was kept at room temperature under nitrogen. The
rest of the library was aliquoted to 384-well plates and frozen in−20 °C.
Echo 550 liquid handler (Labcyte Inc.) was used to make screening
plates with appropriate volumes of compound. Chemical descriptors of
the library were calculated using Pipeline-Pilot (Biovia).
Thiol Reactivity Assay. A 50 μM sample of DTNB was incubated

with 200 μMTCEP in 20mM sodium phosphate buffer pH 7.4 and 150
mM NaCl for 5 min at room temperature, in order to obtain TNB2−.
Portions of the compounds (200 μM) were subsequently added to the
TNB2−, followed by immediate UV absorbance measurement at 412
nm at 37 °C. The absorbances were acquired every 15 min for 7 h. The
assay was performed in a 384-well plate using a Tecan Spark10 M plate
reader. The background absorbance of compounds was subtracted by
measuring the absorbance at 412 nm of each compound under the same
conditions without DTNB. Compounds were measured in triplicate.
The data were fitted to a second-order reaction equation such that

the rate constant k is the slope of ln([A][B0]/[B][A0]), where [A0] and

[B0] are the initial concentrations of the compound (200 μM) and
TNB2− (100 μM), respectively, and [A] and [B] are the remaining
concentrations as a function of time as deduced from the spectrometric
measurement. Linear regression using Prism was performed to fit the
rate against the first 4 h of measurements.

GSH Reactivity Assay. A 200 μM sample of the electrophile was
incubated with 1 mM GSH and 40 μM rhodamine B as internal
standard in 100 mM potassium phosphate buffer pH 7.4 and ACN at a
ratio of 9:1, respectively. All solvents were bubbled with argon. Reaction
mixtures were kept at 37 °Cwith shaking under argon. Every 1 h, for up
to 6 h, 20 μL from the reaction mixture was mixed with 80 μL of water
and immediately injected into the LC/MS. LC/MS runs were
performed on a Waters ACUITY UPLC BEH instrument in positive
ion mode using electrospray ionization. UPLC separation used a C18
column (2.1mm i.d., 50mm length). The columnwas held at 40 °C and
the autosampler at 10 °C. Mobile phase A was 0.1% formic acid in
water, and mobile phase B was 0.1% formic acid in acetonitrile. The run
flow was 0.4 mL/min. The gradient used was 100% A for 2 min,
increasing linearly to 90% B for 5 min, holding at 90% B for 1 min,
changing to 0% B in 0.1 min, and holding at 0% for 1.9 min. The
reaction was followed by the peak area of the electrophile normalized by
the area of the rhodamine B. Natural logarithms of the results were
fitted to a linear regression, and t1/2 was calculated as t1/2 = ln 2/−slope.

Electrophile Library Screen. Plates for electrophile library screens
were prepared by combining 0.5 μL of 20 mM stock solution of 4 or 5
compounds into 1 well in a 384-well plate. Compound pooling was
based on maximum difference in molecular weight. The whole library
was sorted by the molecular weight of the adduct and then split into five
groups. Each pool is composed of five fragments with the same
corresponding position in each of the groups.

Incubations were performed at 200 μM for each compound and 2
μMof protein (10 μM for BSA) for 24 h at 4 °Cwith moderate shaking.
Incubation buffers varied among proteins (PBS pH 7.4 for QSOX1 and
BSA; 10 mM HEPES pH 7.5, 0.3 M NaCl, 0.5 mM TCEP for PCAF,
UPS8, and NUDT7; 10 mMTris pH 8.2 500 mMNaCl for PBP3R504C;
10 mM Na2HPO4 pH 7.5 100 mM NaCl 5 mM β-mercaptoethanol for
NV3CP; 20 mM Na phosphate pH 7.5 for NNMT; 50 mM NaCl, 20
mM Tris pH 8.0 for K-RasG12C). The reaction was stopped by
quenching with formic acid, 0.4% final concentration.

The LC/MS runs were performed on aWaters ACUITYUPLC class
H instrument, in positive ion mode using electrospray ionization.
UPLC separation used a C4 column (300 Å, 1.7 μm, 21 mm × 100
mm). The column was held at 40 °C and the autosampler at 10 °C.
Mobile solution A was 0.1% formic acid in water, and mobile phase B
was 0.1% formic acid in acetonitrile. The run flow was 0.4 mL/min. The
gradient used for BSA was 20% B for 2 min, increasing linearly to 60% B
for 4 min, holding at 60% B for 2 min, changing to 0% B in 0.1 min, and
holding at 0% for 1.9 min. The gradient for the other proteins was 20%
B for 2 min, increasing linearly to 60% B for 3 min, holding at 60% B for
1.5 min, changing to 0% B in 0.1 min, and holding at 0% for 1.4 min.
The mass data were collected on a Waters SQD2 detector with an m/z
range of 2−3071.98 at a range of 750−1550 m/z for NV3CP, K-
RasG12C, and NUDT7, 700−1300 m/z for QSOX1, PBP3R504C, USP8,
and PCAF and 1000−2000 m/z for BSA. The desolvation temperature
was 500 °C with a flow rate of 1000 L/h. The voltages used were 0.69
kV for the capillary and 46 V for the cone. Raw data were processed
using openLYNX and deconvoluted using MaxEnt.

Labeling Assignment. For each measured well, processed peaks
were searched to match the unlabeled protein, common small adducts
of the unlabeled protein (that could not be the results of fragment
labeling and were seen in the control sample), or labeled protein. The
labeling percentage for a compound was determined as the labeling of a
specific compound (alone or together with other compounds) divided
by the overall detected protein species. Peaks whose mass could not be
assigned were discarded from the overall labeling calculation. Wells
were flagged if there was no peak of unlabeled protein, an undefined
peak of over 30%, or double labeling of a compound. Flagged wells were
manually inspected, and the labeling assignment was modified if
needed. Wells were regarded as “bad wells” if their LC and MS spectra
appeared to be of a degraded protein (low intensity and deformed peak
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shape) or if after deconvolution there were no clear peaks (high noise
levels). All of the compounds from bad wells were assigned as no
available data in Data set 3 in the Supporting Information.
Quantitative Processing of Mass Spectrometry Data. A

Python script for processing the MaxEnt deconvoluted spectra is
supplied as File 2 in the Supporting Information. Below we briefly
outline the logic of the processing.
We first identify the 10 highest peaks for each well and discard the

rest. The peaks are then normalized from ion counts to percentages,
where the highest peak is defined as 100%. The unlabeled protein mass
is deduced from a reference well that contains just the protein. Up to
four noncompound “adducts” are also assigned from that well (buffer
adducts, protein oxidations, etc.); these often keep their proportion
when a compound labels the protein.
We discard peaks lower than 10% of the maximum peak. For

compound labeling assignment (i.e., not the reference well) we also
discard peaks that are less than 100 Da heavier than the unlabeled
protein (could not be compound). We iterate the remaining peaks, first
assigning single modification, prioritizing “adducts”. In a second pass
we try to assign double labeling (adduct + compound or two
compounds). In identifying compound peaks, we allowed a “noise”
level of ±4 Da; we note that in rare cases we did identify peaks not
corresponding to any compound slightly above this noise level, but the
automatic processing disregards these. If there are more than 4 peaks
exceeding 45%, the well is flagged as a “Bad Well”.
For three of the proteins we identified a second major species: K-

RasG12C∼+48 Da in 25/200 wells, USP8∼+48 Da in 50/200 wells, and
NV3CP∼+78Da in 116/200 wells. In these wells wemanually assigned
compound identity, taking into account both main species of the
unmodified protein and compound labeling against other proteins in
the benchmark.
Substructure and Clustering Analysis.We defined the “electro-

philic” scaffold of each compound as the naked ring system of each
compound decorated only by the electrophile. For each such
electrophilic scaffold we ran a substructure search to identify class
members. For chloroacetamides with a free NH we forced the NH to
remain unsubstituted in the substructure search. Clustering (Figure
S2E in the Supporting Information) was performed in Pipeline-Pilot
(9.1.0.13) using ECFP_4 fingerprints and a 0.5 maximum Tanimoto
coefficient cutoff.
Protein Sources, Expression, and Purification. BSA was

purchased from MP biomedicals (cat. 160069). QSOX1 (mouse aa
36−550) was a generous gift from Prof. Deborah Fass (Weizmann
Institute) and was produced as described in Grossman et al.90 NV3CP
was produced following the procedure described in Hussey et al.68 K-
RasG12C (1−169) was expressed and purified as described in Nnadi et
al.18

PBP3R504C. The soluble 50−579 aa fragment lacking the N-terminal
transmembrane helix of the f tsi gene from Pseudomonas aeruginosa
PAO1 encoding for the penicillin-binding protein 3 (PaPBP3) was
amplified by PCR and subcloned into pET47b using restriction
enzymes BamHI and HindIII. The clinical mutation arginine 504 to
cysteine was introduced by the Qiaquick protocol. The R504C mutant
was expressed and purified as follows: transformed BL21 (DE3) cells
were grown in LB media and induced with 1 mM IPTG; protein
overexpression was carried out at 18 °C for 16 h; purification was
achieved by reversed Ni2+ affinity chromatography using the N-
terminal His6 tag followed by tag cleavage using recombinant HRV 3C
protease; the protein was then injected onto a 16/60 HiLoad Superdex
200 column (GE Healthcare) and eluted in 20 mM Tris-HCl (pH 8)
and 400 mM NaCl.
NUDT7. Human NUDT7 (residues 14−235) was cloned into

pNIC28-Bsa4 with a TEV-cleavable N-terminal hexahistidine tag. After
transformation into E. coli (BL21(DE3)-R3), expression was performed
in TB auto induction medium (FroMedium), supplemented with 20 g/
L glycerol, 50 μg/mL kanamycin, and 34 μg/mL chloramphenicol.
Cultures were grown for 4 h at 37 °C, and then the temperature was
decreased to 20 °C and the cultures were grown for another 20 h. Cells
were spun at 5000 rpm for 10 min and then resuspended in 0.5 mg/mL
lysozyme, 1 μg/mL benzonase, and 20mM imidazole and stirred for 2 h

at room temperature. Triton X-100 (1%) was added, and the cells were
frozen at −80 °C. On thawing, cells were centrifuged for 1 h at 4000g
and the supernatant applied to a His GraviTrap column (GE
Healthcare) equilibrated with binding buffer (10 mM HEPES, 5%
glycerol, 500 mM NaCl, 0.5 mM TCEP, pH 7.5). After washing with
binding buffer supplemented to 20 mM imidazole, NUDT7 was eluted
with buffer supplemented to 500mM imidazole. The eluted protein was
applied to a PD-10 desalting column (GE Healthcare) and eluted with
binding buffer supplemented to 20 mM imidazole. The N-terminal
affinity tag was removed by TEV cleavage overnight, and uncleaved
protein was removed by applying it again to a His GraviTrap column.
The flow-through was concentrated and purified further by size
exclusion chromatography using a YARRA SEC-2000 PREP column
(Phenomenex) equilibrated with binding buffer. Fractions containing
protein were pooled, concentrated, and stored at −80 °C.

PCAF (aa 23−190) and USP8 (aa 705−1081). These compounds
were produced using the same procedure as for NUDT7.

NNMT. Wild type hNNMT was cloned into pET-28-TEVH vector
harboring an N-terminal His 6-tag. The vector was transformed into E.
coli BL21(DE3) cells. Following induction with 1mM IPTG the culture
grew overnight at 25 °C. The cells were suspended in lysis buffer (50
mM Tris pH 8, 0.5 M NaCl, 5 mM imidazole, 2 mM DTT, 5% glycerol
supplemented with protease inhibitor cocktail (Calbiochem), 1 mM
PMSF, 0.2 mg/mL lysozyme, and 20 μgr/mL DNase). The cells were
lysed using a cooled cell disrupter. The clarified lysate was loaded onto a
HisTrap_FF_crude column (GE Healthcare) equilibrated with
binding buffer (50 mM Tris pH 8, 0.5 M NaCl, 25 mM Imidazole,
5% glycerol). The enzyme was eluted with the same buffer containing
0.25 M imidazole and injected immediately to a size exclusion column
(HiLoad_26/60_Superdex_75). hNNMT eluted in a single peak. The
protein was flash frozen using liquid nitrogen in aliquots and kept at
−80 °C.

OTUB2A. pET20b vector containing human OTUB2A (residues 1−
234) was transformed into the E. coli expression strain BL21(DE3)-R3.
Expression was performed in TB medium, supplemented with 0.4%
glucose, 50 μg/mL ampicillin, and 34 μg/mL chloramphenicol.
Cultures were grown at 37 °C until an absorbance at 600 nm of 1.2.
The temperature was then decreased to 18 °C, and the cultures were
grown for a further 90 min. Benzyl alcohol (10mM) was added, and the
cells were grown for a further 20 min before inducing with 0.5 mM
IPTG and grown overnight. The following day, cells were centrifuged at
6000 rpm for 30 min and the pellet was resuspended in the lysis buffer
(50 mM Tris pH 7.5, 500 mM NaCl, 5% glycerol).

Cells were lysed by sonication for 3 min (20 s on, 50 s off). The lysate
was centrifuged at 17000 rpm for 45 min. The supernatant was bound
toNi-NTA agarose beads that were pre-equilibrated with binding buffer
(50 mM Tris pH 8, 500 mM NaCl, 20 mM imidazole), for 1 h at 4 °C.
The beads were washed with binding buffer to pack the column.

Protein was eluted with elution buffer (50 mM Tris pH 8, 500 mM
NaCl, 200 mM imidazole) supplemented with 0.5 mM DTT. The His
tag was removed by TEV cleavage while OTUB2A was dialyzed
overnight in a buffer containing 50 mM Tris pH 8, 500 mM NaCl, 0.5
mM DTT. Dialyzed protein was incubated again with Ni-NTA agarose
beads for 1 h. The untagged protein was collected as the flow through,
concentrated, and purified further by size exclusion chromatography
using a HiLoad 26/600 Superdex 75 pg apparatus (GE Healthcare
Lifesciences) equilibrated with gel filtration buffer (20 mM Tris pH 8,
50 mM NaCl, 5 mM DTT). Fractions containing the protein were
pooled, concentrated to 25 mg/mL, and stored at −80 °C.

OTUB2A Crystallization. Microcrystals of OTUB2A were by
obtained by mixing 50 nL of OTUB2A (25 mg/mL) with 100 nL of
reservoir solution (16% PEG4K, 0.1 MHEPES pH 7.0, 8% 2-propanol,
5 mM DTT) in a sitting drop plate at 20 °C. These microcrystals were
used for making a seed stock.

In order to first attempt the soaking strategy, 20 nL of the seed stock
was used to grow large prism-shaped crystals in less than 24 h. An
ECHO 550 acoustic liquid handler (Labcyte) was used to transfer
individual fragments from the covalent fragment library to drops
containing crystals. Briefly, the compound solution was added to each
crystallization drop, resulting in a final compound concentration of 4
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mMwith 20%DMSO, calculated on the basis of the initial drop volume.
Crystals were incubated for 2 and 24 h at room temperature. All
structures except the compound PCM-0103080 were obtained by
cocrystallization.
For cocrystallization of OTUB2A with the compounds of the

covalent fragment library, 100 μL of the crystallization cocktail (16%
PEG4K, 0.1 M HEPES pH 7.0, 8% 2-propanol, 5 mM DTT) was
dispensed in the reservoir of a sitting drop plate. An ECHO 550
acoustic liquid handler was then used to dispense 75 nL of protein and
1−4 mM of the compound on top of the protein drop. The mix was
incubated at 20 °C overnight. The next day, 75 nL of the reservoir
solution was added on top of the drop along with 20 nL of the seed
stock. The plate was incubated at 20 °C, and crystals were obtained
within 24 h.
All crystals were harvested with 20% ethylene glycol as

cryoprotection and flash-cooled in liquid nitrogen. All X-ray diffraction
data were collected on the beamline I04-1 at the Diamond Light Source
(Harwell, U.K.) unless stated otherwise.
OTUB2 Structure Determination. Diffraction data were

automatically processed by software pipelines at the Diamond Light
Source.91 Initial refinement and map calculation was carried out with
DIMPLE.92 PanDDA93 was used for hit identification. Further
refinement and model building was performed with REFMAC94 and
COOT,95 respectively. Coordinates and structure factors for all data
sets are deposited in the RCSB Protein Data Bank under PDB IDs
5QIO, 5QIP, 5QIQ, 5QIR, 5QIS, 5QIT, 5QIU, 5QIV, 5QIW, 5QIX,
5QIY, and 5QIZ. Data collection and refinement statistics are available
from the PDB pages.
OTUB2 Inhibition Assays. The assays were performed in “non-

binding surface flat bottom low flange” black 384-well plates (Corning)
at room temperature in a buffer containing 50 mM Tris·HCl, 100 mM
NaCl, pH 7.6, 2.0 mM cysteine, 1 mg/mL 3-[(3-cholamidopropyl)-
dimethylammonio]propanesulfonic acid (CHAPS), and 0.5 mg/mL γ-
globulins from bovine blood (BGG). Each well had a final volume of
20.4 μL. The compounds were dissolved in 10 mM DMSO stocks, and
appropriate volumes were transferred to the empty plates using a
Labcyte Echo acoustic dispenser. A DMSO back-fill was performed to
obtain equal volumes of DMSO (400 μL) in each well. N-
Ethylmaleimide (NEM, 10 mM) was used a positive control (100%
inhibition) and DMSO as negative control (0% inhibition). A 10 μL
portion of buffer was added, and the plate was vigorously shaken for 20
s. Next, 5 μL of OTUB2 (full length) was added to a final concentration
of 25 nM followed by incubation for 30 or 150 min. A 5 μL portion of
the substrate (Ub-Rho) was added (final concentration 400 nM), and
the increase in fluorescence over time was recorded using a BMG
Labtech Clariostar plate reader (excitation 487 nm, emission 535 nm).
The initial enzyme velocities were calculated from the slopes,
normalized to the positive and negative controls, and plotted using
GraphPad Prism 7 to obtain the IC50 values.
DUBABPPAssays.All assays were performed in a buffer containing

50mMTris, pH 7.4, 5 mMMgCl2, 250 mM sucrose, 5 mMDTT, and 2
mM ATP. Purified recombinant OTUB2, HEK293T cell lysate (2.5
mg/mL), and HEK293T cell lysate spiked with purified recombinant
OTUB2 (0.05 and 0.1 μg/μL) were incubated with 50 μM of the
inhibitors for 3 h at 37 °C. Iodoacetamide (10 mM) was used as a
positive control. Next, a Rho-Ub-PRG probe (10 μM) was added and
the samples were incubated for another 30 min at 37 °C. Proteins were
resolved on a 4−12% NuPage Novex Bis-Tris gel using MOPS running
buffer. Rho-Ub-PRG bound DUBs were visualized by fluorescence
scanning of the gel on a GE Typhoon GoldSeal FLA9500 scanner
(excitation 473 nm), and protein loading was checked by Expedeon
InstantBlue staining.
DUB inhibition of NUDT7 inhibitor NUDT7-COV-1 was assessed

using a similar method. HEK293T cell lysate was incubated with a
concentration series of 0.1−100 μM of the compound, and N-
ethylmaleimide (15 mM) was used as positive control.
OTUB2Overexpression and In-Cell Inhibition Assay.HEK293

cells were transfected with plasmids overexpressing GFP, GFP-OTUB2
wild type (GFP-OTUB2 wt), and GFP-OTUB2 catalytic cysteine-to-
serine mutant (GFP-OTUB2 CS)73 separately in 6-well plates using

polyethylenimine (PEI, Polysciences, lnc.) according to the manu-
facturer’s instructions. At 24 h following transfection, cells were
incubated with COV-1 compound at the indicated final concentrations
at 37 °C for 4 h. Cells were harvested and resuspended in HR buffer (50
mM Tris, 5 mM MgCl2, 250 mM sucrose, 1 mM DTT, pH 7.4). Cell
lysis was achieved by sonication (Bioruptor, Diagenode, high intensity
for 10 min with an ON/OFF cycle of 30 s) at 4 °C. After a
centrifugation step (14000 rpm for 15 min) to remove cell debris, the
protein concentration of the supernatant was determined using a
NanoDrop spectrophotometer (Thermo Fisher Scientific) by measur-
ing the absorbance at 280 nm. A 40 μg portion of each protein sample
was treated with rhodamine−ubiquitin−propargylamide probe (final
concentration 1 μM) at 37 °C for 1 h. Reactions were stopped by the
addition of LDS (lithium dodecyl sulfate) sample buffer (Invitrogen
Life Technologies, Carlsbad, CA, USA) containing 2.5% β-
mercaptoethanol, followed by boiling for 7 min. A 20 μg portion of
each sample was resolved on 4−12% Bis-Tris NuPAGE Gels
(Invitrogen) using MOPS buffer (Invitrogen Life Technologies,
Carlsbad, CA, USA). Labeled enzymes were visualized by in-gel
fluorescence using a Typhoon FLA 9500 imaging system (GE
Healthcare Life Sciences) (rhodamine channel for probe, Cy5 channel
for protein marker). The gel was then transferred to nitrocellulose
membranes and immunoblotted using rabbit anti-GFP serum96 and
mouse anti-β-actin (Sigma-Aldrich). Immunoblots were visualized
using a LICOR Odyssey system. The following fluorescent secondary
antibodies purchased from LICOR were used: antimouse-680,
antirabbit-800.

Jump Dilution Assay. All assays were performed in triplicate. The
assay was performed in a buffer containing 50 mM Tris-HCl, 100 mM
NaCl, pH 7.6, 2.0 mM cysteine, 1 mg/mL 3-[(3-cholamidopropyl)-
dimethylammonio]propanesulfonic acid (CHAPS), and 0.5 mg/mL γ-
globulins from bovine blood (BGG). The final concentrations used
were 25 nM OTUB2, 400 nM Ub-Rho, 100 μM or 1 μM or a jump
dilution of 100 μM to 1 μM inhibitor. Samples containing 20 μL of a 5
μM OTUB2 solution were mixed with 20 μL of 200 μM inhibitor in
buffer (2% DMSO), 2% DMSO in buffer, or 20 mMN-ethylmaleimide
(NEM) in buffer (2%DMSO). These three samples were incubated for
150 min at room temperature. A 5 μL portion of each sample was then
diluted into a 500 μL solution containing 400 nMUb-Rho. After a brief
mixing 20 μL of each of these solutions was quickly transferred to a
“non-binding surface flat bottom low flange” black 384-well plate
(Corning) and the increase in fluorescence over time was recorded
using a BMG Labtech Clariostar plate reader (excitation 487 nm,
emission 535 nm). As a control, samples were taken along in which 40
μL of a 200 μM and 2 μM inhibitor solution in buffer (2% DMSO) or
2%DMSO in buffer were added to 20 μL of a 100 nMOTUB2 solution.
After 150 min incubation 20 μL of a 1.6 μM Ub-Rho solution was
added, after which 20 μL of each solution was transferred to the same
384-well plate mentioned above and the increase in fluorescent
intensity was measured concomitantly. Fluorescent intensities were
plotted against time using GraphPad Prism 7.

OTUB2-COV-1 kinact/KI Determination. The assay was performed
in duplicate in a “non-binding surface flat bottom low flange” black 384-
well plate (Corning) in a buffer containing 50 mM Tris-HCl, 100 mM
NaCl, pH 7.6, 2.0 mM cysteine, 1 mg/mL 3-[(3-cholamidopropyl)-
dimethylammonio]propanesulfonic acid (CHAPS), and 0.5 mg/mL γ-
globulins from bovine blood (BGG). A serial dilution of the inhibitor
(200−150−100−50−25−12.5−5−1.25−0 μM final concentration)
was made by transferring different amounts (400−0 nL) of a 10 mM
stock solution in DMSO into an empty plate using a Labcyte Echo550
acoustic dispenser. All volumes were equalized to 400 nL by means of a
DMSO back-fill. A 15 μL portion of a 533 nM Ub-Rho solution was
added to eachwell using a BiotekMultiflow FX liquid dispenser, and the
plate was shaken vigorously for 10 s and then centrifuged for 1 min at
1000 rpm. Next, 5 μL of a 100 nM OTUB2 solution was added to each
well, the plate was quickly loaded into a BMG Clariostar plate reader,
and the increase in fluorescence (excitation 487 nm, emission 535 nm)
over time was recorded immediately. All data fitting and calculations
were done using GraphPad Prism 7 software. The fluorescence
intensities were plotted against time (in seconds) after a baseline
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correction using the DMSO control for each inhibitor concentration.
The data were fitted to the equation

− [ − ]−vi
k

eFI 1 k t

obs

obs

NUDT7 Crystallization.NUDT7 crystals were obtained by mixing
100 nL of 30 mg/mL protein in 10 mM Na-HEPES pH 7.5, 500 mM
NaCl, 5% glycerol with 50 nL of reservoir solution containing 0.1 M
BisTris pH 5.5, 0.1 M ammonium acetate, and 6% (w/v) PEG 10000.
Compact, hexagon-shaped crystals with typical dimensions between 50
and 100 μm appeared within several days from sitting drop plates at 20
°C. Cocrystals of NUDT7 in complex with NUDT7-REV-1 and
NUDT7-COV-1 were obtained by soaking NUDT7 crystals with a
mixture containing 600 nL of 100 mM of the respective compound in
DMSO with 1200 nL of reservoir solution. Crystals were incubated
overnight at room temperature and then harvested (without further
cryoprotection) and flash-cooled in liquid nitrogen. Crystals of
NUDT7 with covalent fragments were grown by mixing 100 nL of 30
mg/mL protein in 10 mM Na-HEPES pH 7.5, 500 mM NaCl, and 5%
glycerol with 30 nL of 20 mM compound in DMSO in sitting-drop
crystallization plates containing 0.1 M BisTris pH 5.5, 0.1 M
ammonium acetate, and 4−16% (w/v) PEG 10000 in the reservoir at
20 °C. After overnight incubation of protein and compound, 100 nL of
reservoir solution and 30 nL of a crystal seed solution obtained from a
previous crystallization experiment were added to the drop. Hexagon-
shaped crystals appeared within several days. Prior to data collection, all
crystals were transferred to a solution consisting of the precipitation
buffer supplemented with 25% ethylene glycol and subsequently flash-
cooled in liquid nitrogen. All X-ray diffraction data were collected on
beamline I04-1 and beamline I03 at the Diamond Light Source
(Harwell, U.K.).
NUDT7 Structure Determination. Diffraction data were

automatically processed by software pipelines at the Diamond Light
Source.91 Initial refinement and map calculation was carried out with
DIMPLE.92 PanDDA93 was used for hit identification, and further
refinement and model building was performed with REFMAC94 and
COOT,95 respectively. All structure determination steps were
performed within the XChemExplorer97 data management and
workflow tool.
Coordinates and structure factors for all data sets are deposited in the

Protein Data Bank under group deposition ID G_1002045. Data
collection and refinement statistics are summarized in Table 5 in the
Supporting Information. The complete PanDDA analysis and all
processed data from the NUDT7 fragment campaign (including
information about soaked compounds) can be accessed via the
ZENODO data repository under DOI 10.5281/zenodo.1244111.
NUDT7 Activity Assay. Mass spectrometry assays monitoring

acetyl-CoA hydrolysis by NUDT7 were performed on a Agilent 6530
RapidFire QTOF mass spectrometer in a 384-well plate format using
polypropylene plates (Greiner, code 781280) and an assay buffer
containing 20 mM HEPES pH 7.5, 200 mM NaCl, and 5 mM MgCl2.
All bulk liquid handling steps were performed using a multidrop combi
reagent dispenser (Thermo Scientific, Code 5840300) equipped with a
small tube plastic tip dispensing cassette (Thermo Scientific, Code
24073290). For inhibitor IC50 determinations an 11-point and 2-fold
serial dilution was prepared from a 50 mM stock solution in DMSO,
which was transferred to give four replicates using an ECHO 550
acoustic dispenser (Labcyte). The transferred volume was 400 nL,
giving a final DMSO concentration of 0.4%. In addition, a DMSO
control (400 nL) was transferred into alternate wells in columns 12 and
24 and 50 mMEDTA (NUDT7 inhibitor) was dispensed into alternate
wells of column 24 as the background control. An 80 μL portion of assay
buffer was added to all wells, and NUDT7 was prepared to 500 nM
(10× final concentration in assay buffer), and acetyl-CoA was prepared
to 200 μM(10× final concentration in assay buffer). A 10 μL portion of
NUDT7 was dispensed into half of the assay plate (for two of the
compound replicates), and the plate was incubated at room
temperature for 30 min. A 10 μL portion of NUDT7 was then
dispensed into the remaining half of the assay plate (for the remaining

two compound replicates). A 10 μL portion of acetyl-CoA was
immediately dispensed into all wells of the assay plate to initiate the
reaction, and the enzyme reaction was allowed to proceed for 15 min.
The enzyme reaction was stopped by addition of 10 μL of 50 mM
EDTA, and the plate was transferred to a RapidFire RF360 high-
throughput sampling robot. Samples were aspirated under vacuum and
loaded onto a C4 solid-phase extraction (SPE) cartridge equilibrated
and washed for 5.5 s with 1 mM octylammonium acetate in LCMS
grade water to remove nonvolatile buffer components. After the
aqueous wash, analytes of interest were eluted from the C4 SPE onto an
Agilent 6530 accurate mass Q-TOF in an organic elution step (85%
acetonitrile in LC-MS grade water). Ion data for the acetyl-CoA and
hydrolyzed product were extracted and peak area data integrated using
RapidFire integrator software (Agilent). Percent conversion of
substrate to product was calculated in Excel, and IC50 curves were
generated using Graphpad prism version 7.0. The assay had a Z score of
0.79 with the 30 min preincubation and 0.75 without preincubation.
For kinact/KI determination, product conversion was followed as a
function of time in the presence of various concentrations of inhibitor.
The time window was restricted to the linear conversion domain for
DMSO and buffer. Kobs vs [inhibitor] plots were fitted either to Y =
kinactX/(KI + X) to separately determine kinact and KI or to a linear line
for which the slope is directly kinact/KI.

NUDT7 Thermal Shift Assay. A 5 μM portion of NUDT7 was
incubated prior to the measurements with 200 μM of compound in 10
mMHEPES pH 7.5, 0.3MNaCl, 0.5mMTCEP for 24 h at 4 °C. A 1 μL
portion of 5x SYPRO Orange (Sigma) was added to 19 μM of
incubated protein in a MicroAmp Fast Optical 96-Well Reaction Plate
sealed with MicroAmp Optical Adhesive Film. Measurements were
performed using StepOnePlus rtPCR from 25 to 95 °C with 0.3 °C
steps. Tm was determined using StepOne Software v2.3. The reported
Tm was calculated as the average of three triplicates for each compound.

NUDT7 Cellular Thermal Shift Assay. HEK293 cells were
cultured at 37 °C in a humidified 5% CO2 atmosphere in DMEM
supplemented with GlutaMAX and 10% FBS. Cells were grown in T175
flasks until around 70% confluence and transfected with Flag-NUDT7
using Lipofectamine2000 transfection reagent. Twenty-four hours
post-transfection, cells were detached, and 13× 106 cells were seeded in
T75 flasks for treatment and control samples, respectively. After 24 h
cells were treated with either DMSO or 20 μMNUDT7-COV-1 for 30
min at 37 °C. Cells were harvested, washed with PBS, and aliquoted
into PCR tubes. PBSwas removed by centrifugation (300g, 3 min, room
temperature). Cell pellets were heated to temperatures ranging from 37
to 73 °C with 4 °C increments for 3 min (UNO96, VWR), cooled to
room temperature for 3 min, and then transferred onto ice. Lysis was
performed in lysis buffer (50 mMTris pH 7.5, 0.8% v/v NP-40, 5% v/v
glycerol, 1.5 mMMgCl2, 100 mMNaCl, 25 mMNaF, 1 mMNa3VO4, 1
mM PMSF, 1 mM DTT, 10 μg/mL TLCK, 1 μg/mL leupeptin, 1 μg/
mL aprotinin, 1 μg/mL soy bean trypsin) by three freeze−thaw cycles
in liquid nitrogen. The resulting lysates were centrifuged at 21000g for
20 min at 4 °C to remove aggregated proteins. Protein concentration
was determined for the soluble fraction followed by by SDS-PAGE
analysis followed andWestern blotting. After transfer the nitrocellulose
membrane was blocked with blocking buffer (5% (m/v) BLOT-
QuickBlocker (Merck) in PBST (phosphate-buffered saline with 0.05%
(v/v) Tween 20)) and probed with primary antibody (mouse anti-
FLAG (Merck, F3165) 1:1500 in blocking buffer) overnight at 4 °C and
secondary antibody (goat antimouse Alexa Fluor 750 (Life
Technologies, A-21037) 1:10000 in blocking buffer) for 1 h at room
temperature. Blots were imaged on an Odyssey CLx imager (LI-COR).

Cell Viability Assay. HEK293, HB2, or CCD841 cells grew in
either RPMI or DMEMmediums supplemented with 10% FCS, 1% PS,
and 1% L-glutamine (all from Biological Industries). Exclusion of
Mycoplasma contamination was monitored and conducted by test with
a Mycoalert kit (LONZA). Cells were trypsnized and counted, and
1000 cells/well were plated in 50 μL of growth medium into 384-well
white TC plates (Greiner) using a MultiDrop 384 (Thermo Scientific)
Washer Dispenser II. The number of viable cells was monitored using a
CellTiter-Glo Luminescent kit (Promega) in accordance with the
manufacturer’s protocol. Luminescence was measured using the
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luminescence module of a PheraStar FS plate reader (BMG Labtech).
Data analysis was performed using GeneData 12 analytic software.
NNMT Activity Assay. Compounds were transferred into black

microplates (Greiner 784900) using Labcyte Echo acoustic dispensing.
Assay ready plates were then sealed with heat seals. If they were not
used immediately, plates were frozen at −20 °C and held in
polypropylene boxes with silica gel desiccant.
Reagents were obtained as follows: nicotinamide (Sigma 47865-U),

SAM (Sigma A7007), SAH-FITC (Axis Shield, RPBB350), Anti-SAH
(Axis Shield, RPBB278). All liquid handling was done with a GNF
Washer/dispenser II. All reagents were prepared in 20 mM phosphate
buffer, pH = 7.6. A 6 μL portion of 3X NNMT (120 nM) was added to
assay plates and incubated for 10 min at room temperature. A 6 μL
portion of 3X substrate mixture (120 mM Nicotinamide, 6 μM SAM)
was added and incubated for 1 h at 30 °C. A 6 μL portion of 3X
detection mixture (150 ng/mL SAH-FITC and 30 μg/mL anti-SAH
antibody) was prepared and incubated for 30 min at room temperature
before adding to reaction mixtures. Plates were further incubated for
another 2 h at 30 °C, protected from light. Fluorescence polarization
reactions were read with a BMG Pherastar FS instrument using a 485/
520/520 nm module. Data were normalized to DMSO (100%) and no
enzyme (0%) controls using Genedata Screener software.
Profiling of OTUB2 and NUDT7 Reactive Cysteines by

Competitive isoTOP-ABPP. The profiling was performed according
to a slightly modified competitive isoTOP-ABPP protocol.74 Briefly,
HEK-293T cells were cultured at 37 °C under 5% CO2 atmosphere in
DMEM culture medium supplemented with 10% FBS and 1% PS. Cells
were grown to 80% confluence and incubated with DMSO or 10 μM
compound (OTUB2 or NUDT7) for 2 h in serum-free media. Cells
were harvested, lysed by sonication in ice-cold PBS containing 0.1%
Triton X-100, and centrifuged at 20000g for 30 min to remove cell
debris. Protein concentrations were determined by a BCA protein
assay, and proteomes were normalized to 2 mg/mL in 1 mL for each
sample. Each of the DMSO- and compound-incubated proteomes was
treated with 100 μMIAyne for 1 h at room temperature. The proteomes
were then reacted with 1 mM CuSO4, 100 μM TBTA ligand, 100 μM
either light or heavy variants of the azido-TEV-biotin tags, and 1 mM
TCEP for 1 h. After the click reaction, the proteomes were centrifuged
at 8000g for 5 min and the precipitated proteins were washed two times
using cold methanol. The two samples were mixed, resuspended in
1.2% SDS/PBS, and diluted to 0.2% SDS/PBS for streptavidin
enrichment and subsequent trypsin and TEV digestion. The resulting
TEV digests were analyzed by LC-MS/MS on a Q-Exactive Orbitrap
instrument, and theMS data were searched and quantified by theOpen-
pfind algorithm.98
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