
Abstract 
MRI plays an important role in the clinical management of pancreatic disorders and interpretation is 
reliant on qualitative assessment of anatomy.  Conventional sequences capturing pancreatic 
structure can however be adapted to yield quantitative measures which provide more diagnostic 
information, with a view to increasing diagnostic accuracy, improving patient stratification, providing 
robust non-invasive outcome measures for therapeutic trials and ultimately personalising patient 
care. 
 In this review, we evaluate the use of established techniques such as secretin-enhanced 
MRCP, diffusion-weighted imaging, T1, T2* and fat fraction mapping, but also more experimental 
methods such as MR elastography and arterial spin labelling, and their application to the assessment 
of diffuse pancreatic disease (including chronic, acute and autoimmune pancreatitis/IgG4 disease, 
metabolic disease and iron deposition disorders) and cystic/solid focal pancreatic masses.  Finally, 
we explore some of the broader challenges to their implementation and future directions in this 
promising area.  



Introduction 
Pancreatic MR protocols employed in clinical practice are generally optimised for anatomical 
imaging1.  High native T1 signal of normal pancreatic parenchyma, high T2 signal of the main 
pancreatic duct, pancreatic secretions and cystic pancreatic lesions,  use of fat suppressed T2 
weighted imaging for the assessment of regional inflammation, avid pancreatic parenchymal 
contrast enhancement (compared to low T1/hypoenhancement of pancreatic adenocarcinoma) and 
increased conspicuity of many pancreatic lesions on diffusion-weighted imaging (DWI)2 have all 
rendered widespread use of pancreatic MRI in routine clinical pancreatico-biliary practice3. 

Many of the signal changes underpinning structural pancreatic MR are amenable to 
quantification (supplementary material, table 1).  MR sequences designed to quantify these signal 
changes can complement anatomical imaging, improve diagnostic accuracy and enable the 
development of new quantitative biomarkers, with the broader objective of better stratifying 
patients and developing more personalised treatment regimens.  In this review we define this 
potential, appraise current evidence and discuss how methods could be used to expand the utility of 
MR evaluation of (a) chronic pancreatitis, (b) acute pancreatitis and pancreatic/peripancreatic 
collections, (c) autoimmune pancreatitis and IgG4 disease, (d) non-alcoholic fatty pancreatic disease 
and metabolic disease, (e) iron deposition disorders involving the pancreas, and (f) cystic and solid 
focal pancreatic lesions.  As this review is pathology focussed, we have included a brief glossary of 
MR methods referenced in the text as supplementary material.  
 
DIFFUSE PANCREATIC DISEASE 
Chronic pancreatitis 
Chronic pancreatitis (CP) is driven by recurrent pancreatic inflammation causing irreversible 
pancreatic structural damage and progressive endocrine/exocrine dysfunction.  Proposed 
pathophysiological mechanisms include stagnant pancreatic juice forming protein plugs that 
undergo eventual calcification and cause ductal obstruction, ectasia, chronic inflammation, and 
periductal fibrosis/scarring.  Toxic metabolites and reactive oxygen species are also thought to 
induce cellular inflammation eventually leading to fibrosis4. 

MR assessment of CP typically involves assessment of pancreatic morphology, parenchymal 
T1 signal (as a marker of fibrosis) and where indicated, secretin-enhanced MR cholangio-
pancreatography (sMRCP).  Unfortunately, qualitative assessment is not particularly sensitive for 
early disease or assessment of disease severity5. 
 
Several quantitative MR studies have developed methods for quantification of post-secretin fluid 
release6,7, specifically measuring pancreatic flow rate (ml/minute), total excreted volume (mls) or 
time to peak fluid released (minutes).  Quantification has been shown to have good inter-observer 
agreement and measurements are robust to differing doses of secretin8–10.  Validation studies have 
typically been based on phantom studies, but correlations between faecal elastase and pancreatic 
flow rate (r=0.79)11 and total excreted volume at 10 minutes (r=0.573, p<0.001)12 have been 
encouraging.  Correlation with invasive endoscopic post-secretin maximal bicarbonate concentration 
has been less convincing13. 

In patients with severe CP, pancreatic flow rates (5.3±2.4 ml/min) are lower relative to those 
with moderate chronic pancreatitis (7.0±3.0 ml/min, p=0.03) or normal controls (7.4±2.9 ml/min, 
p=0.018)14 and time to peak fluid release increases with progressive disease severity (normal 
controls 5.8±1.7 mins vs mild CP 7.7±2.6 mins vs moderate CP 9.1±3.0 mins vs severe CP 12.3±1.6 
mins, p=0.0001)11.  Following endotherapy (sphincterotomy/stone extraction/stenting) in patients 
with CP, increases in pancreatic flow output and total excreted volume have been demonstrated10.   
 Applications to other conditions associated with pancreatic insufficiency such as cystic 
fibrosis have found limited value in the use of post-secretin main pancreatic duct diameter as a 
marker of disease severity15, but demonstrated qualitatively reduced post-secretin excreted volume 



in patients with more advanced disease16.  Quantitative MRCP studies in this cohort have not been 
reported. 

As an alternative, a carefully positioned spatially selective inversion-recovery slab followed 
by high temporal resolution single-shot MRCP imaging can be used to derive a ‘cine’ loop of signal 
refilling the distal pancreatic duct.  This has been used to develop a five point grading system that 
correlates with Cambridge CP scores (r=-0.698, P<0.001)17. 
 The use of secretin MRCP is unfortunately limited by supply shortages and its significant 
cost18.  While a number of quantitative metrics have been proposed, a consensus around 
methodology, metrics and cut off levels is lacking, and will need to be defined for multicentre formal 
evaluation studies and more widespread adoption. 
 
DWI signal reflects water movement within tissue, driven by random (thermal) motion but also 
water diffusion between tissue compartments across cell membranes (supplementary material, 
table 2).  Water diffusion between the intracellular, intravascular, interstitial and intraductal 
compartments present in normal pancreatic tissue are each likely to be influenced by ductal 
stagnation/obstruction, and fibrosis/scarring occurring in CP. 
 Reduced and delayed increases in pancreatic apparent diffusion coefficient (ADC) following 
secretin have been described with more severe CP19, although findings have not been reproduced20.  
Baseline ADC values have also been reported to be lower in CP and correlate strongly with 
endoscopic post-secretin maximal bicarbonate concentration (r=0.771, p<0.0001)20,21. 
 Intravoxel incoherent motion (IVIM), an extension of DWI (supplementary material, table 2) 
has been applied to CP to show that perfusion fractions tend to be higher in CP, relative to 
pancreatic adenocarcinoma23.  In a study including 165 patients, patients with moderate and severe 
pancreatic fibrosis tended to have lower parenchymal pseudodiffusion coefficient (D*) and perfusion 
fraction compared to those with mild or no fibrosis24.  Interestingly, intra-operative measurements 
of pancreatic hardness were not correlated with pancreatic ADC values25. 
 DWI and IVIM are promising approaches, but much like in other areas of the body the lack of 
consensus on which and how many b-values to use and the approach to modelling ADC/IVIM 
parameters continue to hamper the development of DWI-derived biomarkers. 
 
Reduction in pancreatic parenchymal T1 signal has been linked with pancreatic fibrosis24 (figure 1).  
T1 mapping refers to the formal quantification of T1 signal (supplementary material, table 3).  
Increasing T1 with progressive disease has been demonstrated using both multi-flip angle (normal 
controls 1099 ms vs mild CP 979 ms, p<0.0001)26 and modified Look-Locker inversion recovery 
methods (normal controls 865±220 ms vs mild CP 1075±221 ms vs severe CP 1350±139 ms, 
p<0.0001)27. 
 
<Figure 1> 
 

MR elastography (MRE, supplementary material table 4) has shown increasing pancreatic 
parenchymal stiffness with progressive disease, and was superior to T1 mapping in the diagnosis of 
moderate and severe CP27.  Pancreatic perfusion measured using Dynamic Contrast Enhanced (DCE) 
MRI (reliant on intravenous gadolinium-based contrast agent, supplementary material table 5) and 
arterial spin labelling (supplementary material, table 5) have both been used to measure increases in 
pancreatic perfusion post-secretin in normal volunteers, albeit both with poor repeatability28,29. 
 
Acute pancreatitis 
Although diagnosis is based on clinical parameters, CT in the subacute phase is used to exclude acute 
complications, provide alternative diagnoses and give an early assessment of classification into 
‘interstitial’ or ‘necrotising’ morphologies (as per the 2012 Revised Atlanta Classification)30.  Latent 
cross-sectional imaging in the early/late phase (before/after 4 weeks respectively) can subsequently 



be used to assess fluid collections, necrosis and formation of pseudocysts/walled-off necrosis.  For 
patients who are able to tolerate MR imaging, better characterisation of fluid/solid/haemorrhagic 
components of collections, identification of aetiology (such as gallstones) and the potential to derive 
prognostic information from quantitative imaging sequences justify its use over CT31. 
 Pancreatic parenchymal based phenomena such as acinar cell death, leucocytic infiltration, 
interstitial fibrin deposition and microvascular thrombosis each have the potential to affect the 
diffusion of water molecules.  DWI has comparable sensitivity to CT for the detection of acute 
pancreatic inflammation32, with significantly lower parenchymal ADC values and diffusion tensor 
imaging derived fractional anisotropic measures (supplementary material, table 2) relative to normal 
controls33,34, both of which have been correlated with MR severity index scores (r=-0.63 and r=-0.65, 
p<0.01)34.  Histogram analysis of pancreatic parenchymal ADC maps have linked reduced skewness 
and higher kurtosis (supplementary material, tables 1 and 2) with increased risk of future 
complications, although overall sensitivity was low (AUC=0.784)35.  Parenchymal T2* measurements 
can increase in acute pancreatitis (the cause of this is uncertain, but may be secondary to increased 
perfusion), although these reduce in the presence of superadded haemorrhage36.  Finally, DWI can 
also be useful in the evaluation of pancreatic/peripancreatic collections, as lower ADC values (as a 
result of cellular debris) can be indicative of superadded infection32,37. 

Quantification of T2 signal using T2 mapping (supplementary material, table 3) in acute 
pancreatitis has not been reported to date, but typically increased pancreatic/peri-pancreatic T2 
signal (figure 2) has the potential to yield useful quantitative markers. 
 
<Figure 2> 
 
Autoimmune pancreatitis and IgG4 disease 
Pathological phenomena in autoimmune pancreatitis (AIP) including acute inflammation, infiltration 
with IgG4 positive plasma cells, fibrosis and obliterative phlebitis all have the potential to influence 
quantitative MR parameters38.  Published data has focussed on DWI, where pancreatic parenchymal 
ADC values in AIP have been shown to be lower than in CP39,40, pancreatic adenocarcinoma or 
normal pancreatic tissue41,42.  Pancreatic ADC values have also been significantly correlated with 
serum IgG4 levels (r=-0.8, p<0.05)39, shown to be significantly lower in patients with symptoms43 and 
have been reported to increase following steroid treatment39.  Association of low pancreatic 
parenchymal T1 signal with AIP44 (figure 3) underscores the potential for T1 mapping, which to date 
has not been reported. 
 
<Figure 3> 
 
Non-Alcoholic Fatty Pancreas Disease and Metabolic Disease 
Non-alcoholic fatty pancreas disease (NAFPD) refers to pancreatic steatosis in association with 
obesity and the metabolic syndrome.  Eventual sequelae of intracellular lipid accumulation and 
proliferation of pancreatic adipocytes include inflammation, pancreatitis, malignancy and the 
development of type 2 diabetes mellitus45.  Fatty infiltration and pancreatic atrophy are common 
morphological findings, but changes in intralobular, interlobular and extralobular fat and their 
significance are poorly understood46. 
 MR spectroscopy (MRS, supplementary material table 4) is the gold standard approach to fat 
quantification but is technically challenging in the pancreas because of organ size and respiratory 
motion artefact.  Increased pancreatic fat in obesity, diabetes47 and impaired glucose tolerance have 
been reported but correlation with measures of beta-cell function have been less clear48,49. 
 Anatomical imaging methods such as the multipoint Dixon sequences have limitations, but 
have reported increased pancreatic fat in type 2 diabetes mellitus50,51 and associations with age52, 
obesity, hypertriglyceridaemia and insulin resistance53,54, with reported reductions in pancreatic fat 
following low calorie diet regimes in diabetic patients55.  Proton density fat fraction (PDFF, 



supplementary material table 4) mapping methods are currently the most robust method for 
pancreatic fat quantification but have to date been optimised for the liver and not the 
pancreas56(figure 4).  There is conflicting data on the association between pancreatic PDFF fat and 
diabetes, with some reporting pancreatic fat increases57,58 or no relationship59,60 . Association with 
insulin resistance has been suggested61. 
 MRE has been shown to be repeatable in the pancreas, with increasing stiffness with age62 
Reductions in pancreatic stiffness have also been reported in obese patients following glycaemic 
stress63.  Post-glycaemic load changes in pancreatic blood-oxygen level dependent (BOLD, 
supplementary material table 5) MRI based T2* measurements have also been shown in normal 
volunteers64. 
 
<Figure 4 > 
 
Iron deposition disorders involving the Pancreas 
Iron deposition in the pancreas remains poorly understood but occurs alongside atrophy and fibrosis 
and is associated with impaired exocrine/endocrine function.  It is thought to account for the high 
rates of diabetes seen in patients with thalassaemia major65. 
 T2*/R2* mapping (supplementary material, table 3) is sensitive to parenchymal iron 
content, although formal invasive validation studies have not been published.  Quantitative studies 
have focussed on thalassaemia major, but reports of correlations between cardiac, liver and 
pancreatic T2*/R2* have been conflicting66–68.  Correlations between logarithmic pancreatic T2* 
values and  beta-cell function69 , together with differences in pancreatic T2* between those with 
normal and abnormal (impaired glucose tolerance/diabetes) glucose metabolism are promising70.  
Pancreatic R2* cut-off values for HFE gene positivity in hereditary haemochromatosis also raise the 
possibility of applications in other iron deposition disorders71. 
 Segmentation, particularly in the presence of fatty infiltration/parenchymal atrophy and 
errors introduced by multi-echo measurements in the presence of low iron concentrations72 pose 
important challenges. 
 
FOCAL PANCREATIC MASSES 
Cystic pancreatic lesions 
T2-weighted tissue contrast from fluid content within pancreatic cystic lesions enables 
differentiation from solid lesions using standard MRI.  Improvements in MR and CT image quality, 
increasing obesity, diabetes and an aging population have resulted in a 19.6% rise in the prevalence 
of incidental indeterminate non-pseudocyst pancreatic cystic lesions on cross-sectional imaging73.  
Cystic pathology can range from non-neoplastic cysts to pancreatic ductal adenocarcinomas, 
therefore there is a genuine need for imaging methods that can distinguish between malignant and 
benign pathology (figure 5).   

The most common potentially malignant cystic pancreatic lesions - intraductal mucinous 
neoplasms (IPMNs) – can range from slow-growing indolent to aggressive forms, committing 
patients to extended follow-up regimes with significant resource implications74.  Several DWI studies 
have demonstrated that aggressive IPMNs tend to have lower ADC values than more benign lesions, 
supporting the use of DWI as a predictor malignant risk75–77.  Malignant IPMNs have also been 
associated with lower IVIM Dslow and higher Dfast values relative to more benign IPMNs78. 

Current prognostication guidelines are based entirely on anatomical features – distinction 
between mucinous content and serous content (and therefore differentiation between mucinous 
cystic neoplasms and benign serous cystadenomas) would significantly aid diagnosis and 
prognostication. 

Simple cysts tend to have higher ADC values due to T2 shine through79, while the presence 
of mucin tends to lower ADC values80.  Small scale studies have also demonstrated that ADC values 
of abscess tend to be lower than neoplastic cysts81. 



Finally, genetic characterisation of excised pancreatic cystic lesions have suggested 
hyperpolarised 13C-pyruvate MRS maybe useful in the distinction between malignant and benign 
cysts82. 
 
<Figure 5 > 
 
Solid pancreatic lesions 
Unlike their cystic counterparts, solid pancreatic lesions are more commonly malignant (i.e. 
pancreatic ductal adenocarcinoma or neuroendocrine tumours, NETs; figure 6).  Important benign 
differentials include solid inflammatory masses such as focal/mass-forming pancreatitis, which can 
be difficult to exclude without extended follow-up, often at the expense of a worsened prognosis if 
malignancy is eventually diagnosed.  Improved diagnostic sensitivity, better characterisation, early 
exclusion of benign differentials and prognostic/therapeutic stratification are therefore important 
areas where quantitative MRI has the potential to improve patient outcomes. 
 Limited differences between lesion and pancreatic parenchymal T1/T2 signal intensity, gland 
atrophy and fatty infiltration can make the detection of small solid pancreatic lesions difficult.  B-
value optimised DWI can be used to increase lesion conspicuity83 and sensitivity for small NETs84. 
 Pancreatic malignancy is associated with reduced ADC85–88 and reduced fractional 
anisotropy85 relative to adjacent normal pancreatic tissue (supplementary material, table 2).  Studies 
using DWI to distinguish inflammatory and malignant solid pancreatic lesions, have been less 
conclusive with some demonstrating lower ADC in malignancy89–93 and others showing no 
difference79,94–96.  IVIM studies (supplementary material, table 2) have shown lower perfusion 
fractions and Dfast in adenocarcinoma97, and that differences in Dslow could be used to separate 
pancreatic ductal adenocarcinoma and NETs78. 
 Evaluation of NETs has been more promising with tumour differentiation linked to ADC 
values, although correlations with mitotic counts and Ki-67 have been poor98.  Whole lesion 
segmentation and measures of ADC entropy and kurtosis (supplementary material, table 1) are 
associated with more advanced NETs99.  ADC values of normal pancreatic tissue upstream to 
infiltrated tissue are also an independent prognostic factor in overall patient survival100. 
 Quantitative DCE MRI (supplementary material, table 5), using Tofts pharmacokinetic 
modelling to T1-corrected enhancement data has demonstrated lower Ktrans and higher extracellular 
volume in pancreatic ductal adenocarcinoma compared with normal pancreas101,102, with 
enhancement patterns differing between inflammatory and malignant masses93.  Combining DCE 
and ADC data, sensitivity and specificity levels of 97% and 94% have been reported93, but lesion DCE 
parameter variability is high and repeatability is poor103. 
 Finally, a small study has demonstrated altered pancreatic adenocarcinoma T2* relative to 
normal pancreas, potentially explained by altered oxygenation (and vascularity) within the lesion103. 
 
<Figure 6 > 
 
Challenges and future directions 
Adoption of quantitative pancreatic MR methods within the wider clinical community requires 
validation against robust gold-standards, which are currently lacking.  Percutaneous biopsy, with the 
attendant risks of haemorrhage and visceral damage is seldom justified, and histological 
characterisation of diffuse pancreatic disease or solid pancreatic masses is only likely if endoscopic 
ultrasound (EUS) guided or intraoperative aspiration/biopsy/excision takes place104.  Assessment of 
secretory function requires endoscopy and the method is prone to inaccuracies, particularly in early 
disease105.  Markers such as faecal elastase can be useful for validation but represent a competing 
biomarker – justifying the use of MRI given cost and patient convenience in this setting can be 
difficult. 



 Many of the quantitative MRI methods that have been applied in the pancreas have been 
developed and optimised for other organs (e.g. fat quantification using PDFF, T2*/R2* mapping for 
iron quantification).  This is challenging because signal changes in the pancreas though measurable 
are small46.  Dedicated studies optimising methods such as DWI may have utility, but a lack of 
consensus in standardising acquisition parameters (e.g. number of b-values and modelling methods 
for ADC/IVIM106) remain a major barrier to deriving diagnostic quantitative cut-off values that can be 
applied across different sites and scanners107.  The lack of standardised protocols is a common 
barrier for methods such as T1 mapping (where different methods can yield small but significant 
differences in quantification) and DCE MRI.  Finally, quantitative MR sequences must be time-
efficient to enable them to be included within normal anatomical imaging protocols. 
 Delivery of quantitative imaging to the end-user radiologist is also a challenge.  Automated 
generation of parametric maps that are amenable to simple region-of-interest analysis on standard 
PACS systems is essential to the acceptance of quantitative techniques within the wider radiological 
community.  Creative methods of displaying quantitative data, such as overlay of colour-rendered 
DWI on anatomical images have the potential to improve diagnostic utility84.  Improvements in 
image registration methods can address motion and misregistration artefacts particularly where co-
registered acquisitions are needed108.  Additionally, extraction of quantitative data relies on image 
segmentation which remains cumbersome and controversial.  For example, in the presence of 
diffuse disease, the pancreas becomes atrophic and irregular – little is known about the differing 
pathological implications of intralobular, interlobular and extralobular portions of the pancreas46.  
The application of new machine-learning based segmentation methods promises to help address 
some of these challenges109. 
 This review has also highlighted methods which have theoretical potential but as yet have 
not been investigated – the role of T1 mapping in autoimmune pancreatitis or T2 mapping in acute 
pancreatitis are ripe for well-designed imaging-outcome based studies. 
 Finally, the advent of new quantitative MRI methods in the pancreas has delivered a number 
of measures for which the pathological implications are either undefined or better defined in other 
organs.   In combination with validation studies, development of hypotheses for mechanistic studies 
will help define a clear role for pancreatic quantitative MR and ultimately deliver robust non-invasive 
biomarkers that can be used as primary outcome measures in much-needed therapeutic trials. 
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Figure legends: 
Figure 1: 
Axial T1 weighted images of the pancreas (white dashed line) in a normal volunteer (a) and patient 
with chronic pancreatitis (b).  Chronic inflammation and fibrosis are thought to account for low 
parenchymal T1 and reduced volume in (b).  Also note the presence of high T1 signal dependent 
pigment gallstones (solid white arrow) in (b). 
 
 
Figure 2: 
Axial T2 fat saturated image through the pancreas in a patient with acute pancreatitis.  Note the 
presence of high peripancreatic T2 signal (solid white arrows) indicative of peripancreatic free fluid 
and the presence of patchy areas of increased pancreatic parenchymal T2 signal (clear white arrow) 
indicative of acute interstitial oedema.  Perihepatic and perisplenic high T2 signal free fluid is also 
noted. 
 
Figure 3: 
Axial T1 weighted image through the pancreas of a patient with a flare of autoimmune pancreatitis.  
The pancreas is bulky, with a rind of low T1 signal (solid white arrows) and there is diffusely reduced 
pancreatic parenchymal signal with patchy areas of further reductions in T1 signal (clear white 
arrow) likely secondary to acute inflammation. 
 
 
Figure 4: 
Axial proton-density fat fraction image of the pancreas (black dashed line).  Preserved pancreatic 
parenchyma is low signal but the gland is irregular and there is interlobular fatty infiltration 
suggestive of pancreatic steatosis. 
 
Figure 5: 
Axial T2 weighted image through the pancreas.  The lobulated cystic lesion in the pancreatic tail 
(solid white arrow), demonstrated some concerning features (e.g. 2.7 cm size, thickened internal 
septations) but also some reassuring features (such as no associated main pancreatic ductal 
dilatation or enhancing components).  Endoscopic US guided fine needle aspiration confirmed an 
intraductal papillary mucinous neoplasm. 
 
Figure 6: 
Coronal (a) and axial (b) T1 weighted fat saturated post-contrast images of the pancreas in two 
different patients.  The hypervascular lesion in the superior head of pancreas (a), is associated with 
two large ill-defined right-sided hepatic metastases (solid white arrows) and was later confirmed as a 
neuroendocrine tumour.  The irregular hypovascular mass in the head of the pancreas (b), was later 
confirmed to be a pancreatic ductal adenocarcinoma. 


