Accepted Manuscript

Assessment of future renewable energy scenarios in South Korea based on costs, emissions and weather-driven hourly simulation

Minsun Park, Mark Barrett, Tiziano Gallo Cassarino

PII: S0960-1481(19)30767-0

DOI: 10.1016/j.renene.2019.05.094

Reference: RENE 11686

To appear in: Renewable Energy

- Received Date: 22 November 2018
- Accepted Date: 22 May 2019

Please cite this article as: Minsun Park, Mark Barrett, Tiziano Gallo Cassarino, Assessment of future renewable energy scenarios in South Korea based on costs, emissions and weather-driven hourly simulation, *Renewable Energy* (2019), doi: 10.1016/j.renene.2019.05.094

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- Assessment of future renewable energy scenarios in South Korea based
 on costs, emissions and weather-driven hourly simulation
- 3

4 Minsun Park¹, Mark Barrett² and Tiziano Gallo Cassarino^{2,*}

- ⁵ ¹ Institute for Environmental Design and Engineering, Bartlett School of Environment, Energy and
- 6 Resources, University College London, London, UK
- 7 ² Energy Institute, University College London, London, UK
- 8 * Corresponding author: <u>t.cassarino@ucl.ac.uk</u>
- 9

10 Abstract

The energy policy released by the South Korean government in 2017 aims to gradually increase 11 12 renewable energy to 20% while reducing the number of nuclear and coal power plants by 2030. The 13 constant controversy over the feasibility of this policy – which arose soon after its release – led to a number of studies focussed on the environmental, economic, political and social issues related to the 14 15 current policy. However, none of these investigated the hourly dynamics of renewable energy supply, 16 which is crucial to provide an accurate assessment of an energy policy and a technical evaluation of its 17 feasibility. In this study, we analyse four potential renewable energy scenarios for 2030: Business as 18 Usual, Strengthened Solar (i.e. the new energy policy), Strengthened Wind, and our Suggested Scenario. 19 Using a bottom-up energy system modelling approach, we simulated solar and wind power generation 20 at the hourly level, integrating weather data provided by the NASA MERRA-2 reanalysis database. In 21 addition to the feasibility of each scenario, evaluated using annual generation and capacity factors, we 22 also examined the environmental and cost impacts through a number of different measures. Our results 23 show that both the Strengthened Solar and Strengthened Wind scenarios fail to meet the CO₂ emission 24 target proposed by the government. From the economic point of view, our cost analysis demonstrates 25 that renewable energy is sustainable for either Strengthened scenarios and cost-effective in both the 26 short term and long term, despite the high capital cost. Instead, our suggested scenario proves to be the 27 optimal solution by meeting the CO₂ emission target and minimising costs. Therefore, our hourly 28 simulation provides crucial evidence to assess the new energy policy and to evaluate alternative 29 solutions for the future energy system of South Korea.

30

31 Highlights

- Hourly solar and wind power generation in South Korea is simulated using MERRA-2.
- The South Korean government's scenario will not be able to meet the 2030 CO₂ emission target.
- Additional reduction of coal power plants, as in our suggested scenario, is essential.
- High share of renewables is cheaper on an annual basis and cost-effective in the long-term.

36

37 Keywords

Weather data, hourly simulation, solar and wind power scenarios, CO₂ emissions, economic costs, South
 Korea

40

41 1. Introduction

42 The South Korean government established its CO₂ emission reduction target as 37% of the Business as 43 Usual (BaU) scenario by 2030 [1], as part of South Korea's emission trading scheme (KETS) [2], after its 44 adoption of the Paris Agreement [3]. In 2017, the government established a policy aiming to transition 45 from the current energy supply to a low-carbon energy mix, in line with what the majority of developed 46 countries have implemented since the adoption of the Kyoto Protocol. In addition, fine dusts (PM2.5, 47 PM10) have plagued South Korea since 2013, and public concern about fossil fuels – with coal being one 48 of the main sources of fine dust [4,5] – has consequently become stronger [6]. Therefore, the 49 government set the aim of reducing fine dust to at least 30% by 2022. Its mitigation action includes 50 closing down coal power plants that are 30 or more years old, as well as cancelling both new and less-51 than-10%-complete construction projects of coal power plants [7]. Moreover, growing public awareness 52 of the danger of nuclear power plants since the 2011 Fukushima Daiichi nuclear disaster and the recent 53 earthquake near Wolsong nuclear power plant, led the government to launch a policy for phasing out all

54 nuclear power plants by 2050.

- 55 The 8th Basic Energy Supply and Demand Plan (ESDP) was released in 2017 by the Ministry of Trade,
- 56 Industry and Energy (MOTIE) to mitigate the above-mentioned social and environmental issues facing
- 57 South Korea. The plan aim is to gradually expand renewable energy to 20% by 2030 while reducing coal
- and nuclear energy by 9.4% and 6.4%, respectively [8]. The largest reduction target has been set for the
- 59 power sector, i.e. 64.5 Mt less than the emissions in the BaU scenario (333 Mt) [9]. As a mitigation
- action to meet the CO_2 target, the MOTIE announced the "Renewable Energy 3020" plan (RE3020) in
- 61 December 2017 [1]. This plan involves a 20% increase in power generation from renewable energy

sources by adding 30.8 GW of solar power and 16.5 GW of wind-generating capacity by 2030. This is,

- respectively, six and ten times higher than current capacity. As of 2017, the installed capacity of solar
- and wind power was 5.03 GW and 1.17 GW, respectively.
- 65 Recently, several studies raised concerns over different aspects of the new energy policy. Some of these
- adopted an evidence-based perspective on the details of the transition from the environmental and
- 67 economic points of view [10]. The new energy policy has also been criticised in terms of greenhouse gas
- 68 emissions reduction and energy security through South Korean power market simulations [11]. Other
- 69 studies assessed the social and political aspects of the new energy policy, finding that the majority of the
- public is favourable to it, despite having concerns about high electricity bills [12], and that political as
- 71 well as environmental preferences have a stronger influence on people judgement than scientific or
- 72 economic considerations [13].
- 73 Energy system modelling is widely used [14] to give guidance towards feasible or suggested energy
- systems under different assumptions [15]. CO₂ emissions and financial impacts of potential renewable
- 75 energy scenarios for South Korea in either 2030 or 2050 have been assessed to provide insights to
- policymakers on the current energy policy [11,12,16,17]. However, these studies analysed annual data,
- while solar and wind power generation requires spatial as well as temporal high-resolution data to be

- 78 accurately simulated [18]. The Modern Era Retrospective-Analysis for Research and Applications
- 79 (MERRA) reanalysis database [19] has recently become widely used to simulate solar and wind power
- 80 generation. In particular, MERRA data has been used to analyse the variability of renewable power
- 81 supply across Europe [20], to enhance the planning of renewable energy sources [21], and to assess
- 82 cost, emissions reductions, and energy security of a wide range of energy scenarios [15].

83 With this study we investigate the potential power supply mix of South Korea for 2030 with an hourly

- 84 simulation of the power generation driven by weather data. To provide novel insights to policymakers,
- 85 emissions and economic costs are assessed for four different scenarios: Business as Usual (BaU),
- 86 Strengthened Solar (SS), Strengthened Wind (SW), and our Suggested Scenario (SU). SS represents the
- 87 8th ESDP, SW switches the share of solar and wind power of SS, whereas a new SU scenario is proposed
- 88 to meet the CO₂ emission reduction target and minimise the power generation costs.
- 89

90 2. Material and Methods

91 2.1. Simulation

- The hourly power demand in 2030 was simulated by scaling up the national load curve of 2017, taken from the Korean Power Exchange [22], to meet the projected annual sum described in the 8th ESDP. The
- 94 time series of solar power generation was calculated with the Global Solar Energy Estimator (GSEE)
- 95 library [23] using the latest (2015) MERRA-2 [19] top-of-atmosphere, ground-level global irradiance,
- 96 temperature at 2m, and solar time at inland grid points. Wind power generation was simulated using in-
- 97 house software (Ed Sharp's unpublished results, 2016), in which wind-speed (2m, 10m, and 50m height)
- 98 at grid points nearest to the actual wind farm locations, is extrapolated linearly at a turbine hub height
- 99 of 80m. Then, the power output is found by using an aggregated power curve of the turbine model
- 100 Nordex N80 2.5 MW [24]. Since wind and solar power were calculated for a single MW of installed
- 101 capacity, these values were multiplied by the future installed capacities to estimate the actual hourly
- 102 generation in each scenario. In the simulation, hourly demand is met by subtracting generation in the
- 103 following order: solar, wind, coal, nuclear, liquefied natural gas (LNG), oil, hydro, biomass and waste,
- 104 without any generation surplus. The simulated curves were used to: (i) assess the reliability of solar and
- 105 wind power generation, (ii) estimate the CO₂ emissions, and (iii) calculate the short-term (CAPEX, annual
- 106 cost) and long-term costs.
- 107

108 2.2. Scenarios

- 109 The scenarios for the power supply mix simulated in this study are four: Business as Usual (BaU),
- 110 Strengthened Solar (SS), Strengthened Wind (SW), and our Suggested Scenario (SU). To create the BaU
- scenario shown in Figure 1, the fraction of power generation mix of 2017 was scaled by the power
- demand projection of 2030, in which coal dominates with 45%, while solar and wind reach only 1.4% of
- 113 the total supply. This scenario was used as reference for the emission and economic analysis, as
- previously done in [25]. The SS scenario was taken from the 8th ESPD, and therefore represents the
- government's new policy, in which coal still provides most of the supply (36%), but solar and wind
- power are increased to 17%. We created the SW scenario to investigate wind power potential by taking
- the share of solar and wind from SS and simply swapping them. Finally, the SU scenario was created in a
- second stage in response to the failure of the other scenarios to meet the emission reduction target.

119 This scenario was found by changing iteratively, with steps of 10%, the fractions of coal, solar, and wind

power taken from the SS scenario. The iteration stopped at a ratio of 7.35:2.65 between solar and wind,

achieving the exact CO₂ emission target with the following shares: coal 32.5%, nuclear 23.9%, LNG

122 18.8%, solar 15.2% and wind 5.5%.

Figure 1. Supply mix for scenario Business as Usual (BaU), Strengthened Solar (SS), and Strengthened Wind (SW)

123

129

124 2.3. Assessment

125 The simulated power output under the RE3020 plan is compared with the solar and wind power

126 generation amount in each scenario. In addition, the annual capacity factor for solar and wind power

127 was calculated as the fraction of the simulated power output, divided by the maximum generation (or

128 nameplate capacity) along one year:

$$CF = \frac{\sum_{h=0}^{8760} P_h}{ci * 8760}$$
[1]

130 where P_h is the power generation in each hour h and ci is the installed capacity, which is multiplied by

131 the number of hours in a year.

132 The CO₂ emission of each simulated power source are calculated using the CO₂ emission factor (Solar 48,

133 Wind 11, Coal 820, Nuclear 490, LNG 12, and Oil 782 in g/kWh) from the Intergovernmental Panel on

134 Climate Change (IPCC) [26]. The emission reductions in each scenario are then calculated against the

135 emission in the BaU scenario.

136 CAPEX is calculated by multiplying its unit price (GBP/kW) in Table 1 to the additional capacity required

- in each scenario, as in Table 2, on top of the installed capacity in 2017.
- 138

	Solar	Wind	Coal	Nuclear	LNG
CAPEX (GBP/kW) [27]	1560	1820	5017	7150	1300
Fixed O&M (GBP/kW) [28]	10.1	58.5	40.3	132.6	13
Variable O&M (GBP/MWh) [16]	2.210	0	5.382	0	4.323

	Fuel cost (GBP/I	MWh) [29]		0	0	61.78	4.75	86.49	
	Life cycle (years) [30]		25	25	30	40	30	
	Construction pe	riod (year	s) [27]	1	1	4	10	3	
139									
140	Table 1. Ass	umed cost	and tim	ie param	neters fo	or each p	ower sou	rce	
141								$\hat{\mathbf{A}}$	
		(GW)	BaU	SS	SW	SU		\sim	
		Coal	6.94	0	0	0			>
		LNG	0	0	0	0			
		Nuclear	4.73	0	0	0			
		Solar	0	45.36	19.72	61.94			
		Wind	0.47	24.44	50.97	23.81			
		Total	12.14	69.8	70.69	85.75			
142									
143	Tab	le 2. New	GW of ii	nstalled	capacity	by scer	nario		

144

Operation and maintenance (O&M) costs and fuel costs are annual expenditures. The capital cost is
 converted to the equivalent "annual CAPEX" by using the Capital Recovery Factor (CRF) and a discount

147 rate *d* of 5.5% [31]:

148
$$Annual CAPEX = CAPEX * CRF = CAPEX * \left(\frac{(1+d)^n}{(1+d)^{n-1}} \right)$$
[2]

where *n* is the lifecycle. Costs in Korean Won (KRW) were converted to GBP using an exchange rate of
1156.05 KRW/USD and then of 1.2975 USD/GBP. In addition to annualized CAPEX, OPEX and fuel cost,
this study considered a fixed emission trading cost of 14.67 GBP/ton CO₂e [2], even though this cost
changes hourly depending on the demand and supply.

153

154 2.4. Long-term costs

155 A stock model was built for finding the long term cost of each scenario, as well as the year in which their cumulative costs are surpassed by the BaU scenario. The period taken into account was 25 years after 156 157 2030, i.e. the life cycle of a solar or wind farm. The required new installed capacity, without 158 replacement, of wind and solar power for 2030 was gradually added from 2019 until 2029 using a constant rate of 10%. Replacement of the existing coal plants is 30% [32] of the scenario requirement, 159 160 and 10% for nuclear power plant [33]. The construction period was set to 1 year for wind and solar 161 farms, 4 years for the coal power plants, and 10 years for nuclear power plants [27]. To compare the 162 capital cost with the operating expenses, the former is converted to the annuitized CAPEX as:

163
$$AC = \frac{(PV * d)}{1 - (1 + d)^{-n}}$$
[3]

- 164 where *PV* is the present value of CAPEX, *d* is the discount rate and *n* is the payback time. The annual
- decrease rate for CAPEX and O&M costs is applied at 5% and 2%, respectively, due to the learning rate
- 166 of technologies. The annual increase rate for fuel cost is assumed to be 3% according to the forecast
- that the LNG price will rise [34]. The emission trading cost is assumed to rise 1% annually, reflecting the
- 168 current trend [35].
- 169
- 170 3. Results and discussions
- 171 3.1. Solar and wind power generation simulation
- 172 For solar power, the normalised hourly average along the simulated year was 7.7 MW, with a standard
- deviation of 10.7 MW, and the maximum peak was 39.8 MW. The highest seasonal average was 9 MW
- in spring, and the lowest was 6.3 MW in winter. Summer did not show the highest values because the
- rainy season reduces solar irradiance. For wind power, the hourly average was 20.5 MW, with a
- 176 standard deviation of 22 MW, and the maximum peak was 118 MW. Winter showed the highest average
- 177 of 36.2 MW, while autumn the minimum with 13 MW (Figure 2).

Figure 2. Simulated hourly solar (top) and wind power (bottom) output using weather data from 2017

178

179 3.2. Solar and wind power variability

180 The solar and wind normalised power outputs were multiplied for the installed capacity in each scenario 181 in order to quantify expected costs and CO_2 emissions. We selected a week in May as a representative 182 period of low power demand and high solar and wind supply (Figure 3), and a week in December with 183 the opposite situation (Figure 4). The "low demand" week shows demand values ranging between 58 184 and 83 GW, with an average of 73 GW. In BaU, the supply of solar and wind power ranges from 2.5 GW 185 to 4.9 GW (average 1.5 GW), which is around 2.5–5% of the power demand. Thus, both base and 186 intermittent load power plants must operate at full capacity to meet demand. In SS, solar and wind 187 supplied an average of 19 GW, with a peak of 59 GW. SW and SU reached a similar higher average

188 production of 23 GW and 22 GW, respectively; however, only SU was able to fully meet demand (on the

- 189 14th of May). The "high demand" week shows demand values ranging between 70 and 107 GW, with an
- average of 90 GW. In BaU, the average wind and solar supply is 553 MW, with a peak of 3 GW, while in
 SS the average is 7 GW with a peak of 35 GW. In contrast to Figure 3, SW shows a lower value than SS.
- 192 The average of solar and wind power is 6 GW and the peak is 24 GW. The suggested scenario still shows
- 193 the highest solar and wind output, with an average of 8 GW and a peak of 46 GW. The base load unit is
- 194 in full-load operation, while the intermediate load supply decreases slightly only during the peak of solar
- and wind supply at noon. Other periods show the same trend of the intermediate and base load supply
- as the BaU. Unlike the "low demand" week, solar and wind power could not meet demand alone,
- therefore all energy sources must be in operation at all time. Overall, the highest non-dispatchable
- 198 supply is achieved during the day, and therefore an effective utilization of solar power can be useful to
- 199 meet peak demand. Being only focussed on one weather year, our analysis has a limited assessment on
- 200 the demand and, in particular, on wind and solar supply inter-annual fluctuations. Future improvements
- 201 can either include more historical weather years to take into account climate variability, or forecasts to
- assess the impact of future heat waves or cold spells.

Figure 3. Week with low demand and high solar and wind supply in each scenario

203

Figure 4. Week with high demand and low solar and wind supply in each scenario

205 3.3. Reliability of solar and wind power generation

- According to the 8th ESDP, represented in our analysis by SS, the power generation from solar and wind
- 207 farms is expected to reach 118 TWh annually. However, the simulated power generation in SS achieved
- 208 only 79 TWh, with solar and wind reaching about 66% and 69%, respectively, of the expected
- 209 generation. Similarly, SW reached 78 TWh, in which solar power is around 71% and wind 64%. The
- 210 difference between the expected and the calculated power generation is due to the capacity factors (CF)
- calculated from our simulation (solar 18%, wind 17%), which were lower than those described in the 8th
- ESDP (solar 27%, wind 25%). However, the simulated CF for solar is much more similar to the one
- provided by NREL (18.7%) [30] than to the South Korean government's value. Wind CF, instead, is lower than the one provided by NREL (25%) because our simulation included only existing wind farm positions,
- the large majority of which are on-shore, where the average wind speed is around 5 m/s, that is, 2 m/s
- 216 less than the average speed on off-shore areas [36]. In order to meet the generation target for SS and
- 217 SW, the former requires to install further 8.06 GW of capacity for wind power and 17.04 GW for solar
- 218 power, whereas the latter needs 18.79 GW of capacity for wind power and 7.2 GW for solar power. This
- difference implies that there is a discrepancy between the installed capacity predicted in the RE3020
- 220 plan and the power generation expected in the 8th ESDP.
- 221

222 3.4. CO₂ emission reduction

223 The CO₂ emissions calculated from our simulation for the BaU scenario is 332.34 Mt, very close to the

- quantity estimated by the South Korean government (333 Mt). SS and SW have almost the same
- emissions, that is, 278 and 276 Mt respectively (Table 3), and in both about 74% of the carbon dioxide is
- emitted from coal power generation; the second source is LNG, with about 23%, while the remaining
- sources account for just 3% (Figure 5). In all scenarios, coal power generation must be reduced to
- effectively limit CO_2 emissions. SS is projected to emit 1.5 million tonnes (1%) of CO_2 more than SW
- 229 because the CO₂ emission factor of solar power is four times higher than that of wind power. Although
- 230 the direct emission from solar power is zero, indirect emissions during the construction and supply chain
- 231 are 48g/kWh [26].

2	3	2
~	-	~

(Mt)	BaU	SS	SW	SU
Coal	258.63	205.65	205.65	185.08
LNG	57.54	64	64	64
Nuclear	2.53	1.99	1.99	1.99
Solar	0.35	3.8	1.87	5.05
Wind	0.03	0.43	0.87	0.42
Oil	3.26	1.63	1.63	1.63
Total (A)	322.34	277.49	276	258.17
RE3020 Target (B)	258.17	258.17	258.17	258.17
Further reduction (A) - (B)	64.16	19.32	17.83	0

²³³

234

Table 3. CO₂ emissions (Mt) for each power source and scenario

235

- Both SS and SW fail to satisfy the target set by the government in 2030, as SS would require an
- additional reduction of 19.32 Mt, slightly higher than for SW (17.83 Mt). These gaps are taken into
- account in the emission trading costs.

Figure 5. Annual CO₂ emissions (Mt) for each energy source and scenario

- 241 On the other hand, the suggested scenario achieves the CO₂ emission reduction target by reducing coal
- capacity by 10%, more than the other scenarios. Such difference reduces CO_2 emissions from 205.65 (as
- 243 for SS and SW) to 185.08 Mt.

244

245 3.5. Economic costs

246 The total cost until 2030 for BaU is 41.18 billion GBP, split almost evenly between coal and nuclear

247 power plants, while only 0.5% is allocated for wind power farms. SS is estimated to cost 68.34 billion

248 GBP (60% solar, 40% wind), SW 73.24 billion GBP (20% solar, 80% wind), and SU 82.98 billion GBP (75%

solar, 25% wind). Regarding the annual expenses, BaU is predicted to cost 11.34 billion GBP/a, with fuel

- cost rising from 19% to 51% of the total annual cost. SS is estimated to cost 10.4 billion GBP/a, whereas
- 251 SW would cost about 11.5 billion GBP/a; SU, instead, is estimated to cost 9.7 billion GBP/a, saving 6.8%
- of the annual expenditure of SS. In all three scenarios, the annual CAPEX is the largest fraction, followed

by fuel cost. In addition, BaU is estimated to incur in the highest emission trading cost, at 0.94 billion

- 254 GBP/a. SS and SW are expected to cost around 27% of the BaU cost, as opposed to SU, which has no
- emission trading costs (Table 4).

	BaU	SS	SW	SU
Annual CAPEX	2.7	5.09	5.46	6.18
Fixed O&M	0.55	1.12	1.89	1.2
Variable O&M	0.29	0.22	0.16	0.17
Fuel cost	6.86	3.71	3.71	2.16
Emission trading cost	0.94	0.28	0.26	0
Total	11.34	10.42	11.48	9.71

257	Table 4. Annual costs (billion GBP/a) by scenario
258	
259	The greatest cost-savings in SS, SW, and SU occur for fuel (in absolute numbers) and for emission trading
260	(in percentage), however they are balanced by an increased annual CAPEX. SU has the greatest
261	additional installation of solar and wind farms, thus the highest annual CAPEX and the lowest fuel cost,
262	and does not incur in the emission trading cost. These results, combined with CO ₂ emissions, indicate
263	that decline of fuel consumption is essential for both environmental and economic gains. The higher fuel
264	consumption, the more CO ₂ emissions, and the higher the expenditure on fuel cost and emission trading
265	cost.

- 266 In addition, costs for thermal power generation could be higher by taking into account intermittent
- 267 operation. However, in our simulations coal-fired power generation is zero very rarely: only 0.6% of the
- hours in the simulated year for SS, 0.4% for SW, and 1% for SU. Therefore, as the impact of losses due to
- 269 intermittent operation is very marginal, neither losses nor additional costs in coal-fired power
- 270 generation are considered in this analysis. Differently from coal, LNG power generation is zero only
- during 14.5% of the simulation time for SS, 10.2% for SW, and 20% for SU. LNG power plants can be
- operated for peak load generation either through shutdown, or by keeping a minimum load. The latter
- 273 method has some advantages over the former, as turning off and on again the plant can take from 30
 274 minutes to one hour[37] and requires more fuel as well. In addition, restarting the power plant degrades
- 275 the gas/steam turbines and, therefore, increases the OPEX. As the LNG power plants in South Korea are
- 276 meant to be used intermittently[38], the impact from shutdowns is already considered at the design

Figure 6. Annual cumulated cost projections after 2030 for each scenario.

- 277 stage and in the project costs. Therefore, assuming minimum load when LNG power generation is zero
- does not increase CAPEX and OPEX, but only fuel costs. In order to calculate the additional fuel
- consumption, we can assume that the output during minimum load is 8% of total power generation,
- 280 because during this operation only the gas turbine is used, at around 20% of total capacity, and it
- contributes to 40% of the power generation in a LNG combined cycle power plant[39]. We found that
- the increase of annual power generation due to minimum load operation is only 3.7% for SS, 2.6% for
- 283 SW, and 5.3% for SU (calculated as the number of hours at minimum load multiplied by the minimum
- load). As the fuel cost accounts for 35% of the total costs, the impact of the minimum load on the total
- generation costs would be 1.3% for SS, 0.9 for SW, and 1.85% for SU. For this reason, we conclude that
 the impact of intermittent operation for LNG is negligible and can therefore be omitted from our
- analysis.
- 288 Regarding long-term cumulative costs from 2030 to 2055 (Figure 6), BaU initial cost in 2017 starts at
- 289 5.98 Billion GPB, SS and SW at 10.2 and 11.47 billion GBP, respectively, while SU has the highest
- 290 expenditure of 13 billion GBP. Based on these cumulated annuitized CAPEX during the construction
- 291 period, the remaining annuitized CAPEX and the annual cost is added annually. The BaU cost rapidly
- 292 increases compared to the other scenarios because of the higher portion of fuel cost, which has the

- highest increase rate. As a result, the total cost of BaU exceeds SS in 2046 at 337 billion GBP, SU in 2046
- at 350 billion GBP, and SW in 2051 at 443 billion GBP. Moreover, the total cost of SU becomes lower
- than that of SS after 2048. Therefore, SS and SU are more economical than BaU after 16 years operation,
- and SU is the cheapest after 18, thus reversing the order compared to the starting year. BaU reaches the
- highest outgoing with 531.61 billion GBP, followed by SW with 486.91 billion GBP, then SS at 435.35
- billion GBP, and finally SU with 413.63 billion GBP.
- 299
- 300 This analysis indicates that a high share of renewable energy, as represented by the SU scenario, is the
- 301 most cost-effective in the long term, while conventional energy sources seem economical only for the
- initial investment in the short term. When considered as annual expenses, solar and wind energy
- 303 sources are cheaper than conventional energy because they do not consume fuel. Therefore,
- 304 considering CO₂ emissions as well, renewable energy is cost-effective and sustainable in both the short
- term and long term.
- 306

307 4. Conclusion

- 308 This study simulates hourly solar and wind power supply using weather data provided by MERRA-2, with
- the aim to investigate the solar and wind power generation potential of South Korea. The results were
- 310 used to assess the environmental and economic cost of four scenarios: Business as Usual, Strengthened
- 311 Solar (from the 8th ESDP), Strengthened Wind, and our Suggested Scenario, which meets the CO₂
- 312 emission target and achieves the minimum costs in the long term.
- 313 Our simulation indicates that solar power shows the highest output in spring, not summer, because the 314 latter is affected by heavy rain periods, while wind power generates the highest output in winter. During 315 one day of the "low demand" week in May, renewable supply was able to fully meet the power demand. 316 December is the season with the highest demand and the lowest renewable power supply; therefore, 317 the other sources need to be in full-load operation to meet demand. In order to maximize the utilization 318 of solar and wind power, the design of the power mix should consider the influence of weather 319 conditions on non-dispatchable energy sources. Hence, hourly simulations driven by climate data are 320 essential. From our results, power generation in SS did not achieve the target generation in the 8th ESDP, 321 therefore, additional installation of solar and wind farms should be required. The advance of technology 322 could improve the efficiency of solar and wind power generation in 2030. However, the capacity factor 323 of both sources depends on weather conditions. In addition, the installed capacity for on-shore wind 324 power is limited by geographical constraints and social acceptability issues. Being characterised by a 325 larger share of renewable energy and low fuel costs, SU is more capital intensive, but cheaper in the 326 long term, than the other scenarios. Given the current trend of increasing fuel prices, this analysis 327 should be considered conservative, thus our suggested renewable energy scenario could eventually 328 become cheaper than SS and SW earlier than expected. Moreover, considering the additional emission 329 trading cost, investing in sustainable resources, such as solar and wind, is economically beneficial both in 330 the short and in the long term. From the environmental point of view, SW is less polluting than SS, as 331 the CO₂ emission factor of solar power is around four times higher than wind power. However, it is more 332 expensive than SS due to the high CAPEX and OPEX of wind power. Since the difference in CO₂ emissions 333 between SS and SW is only 1%, SS seems to be a better solution for South Korea. Nevertheless, neither

- 334 SS nor SW could meet the CO₂ emission target in 2030. This analysis indicates that the 8th ESDP could
- 335 not meet the CO₂ reduction target without an additional reduction of coal power generation, since coal
- is the biggest supply source. Therefore, only our suggested scenario SU achieved the national target
- reduction for 2030, without causing additional costs due to the emission trading scheme launched in
- 338 2015.
- 339 The current analysis has some limitations that could be improved in future work. Weather data spans
- only one year, thus excluding inter-annual variability. Considering climate change, which has manifested
- 341 especially in a hot summer and cold winter in 2017, we can expect different solar and wind power
- 342 generation, as well as a change in seasonal power demand. Wind power simulation considered only the
- 343 location of existing on-shore wind farms. However, since there is high potential for off-shore farms,
- 344 these could be included to improve the simulation. A possible extension of this work could include an
- analysis of heat demand and supply to increase the comprehensiveness of the results. Finally, different
- cost parameters could be applied to assess the range of expenses of each scenario. In particular, as
- renewable energy technologies develop and mature rapidly, the CAPEX and O&M costs will drop.
- 348 Energy system modelling plays a crucial role in providing insights to policymakers to build effective
- energy policies. A hourly simulation of wind and solar power dynamics, as the one presented in our
- 350 study, is essential to assess the potential role of renewable energy in future scenarios and, therefore, to
- 351 lead towards a transition to low-carbon and sustainable future energy system for South Korea.
- 352

353 Funding

- 354 This research did not receive any specific grant from funding agencies in the public, commercial, or not-
- 355 for-profit sectors.
- 356

357 References

- Ministry of Trade Industry and Energy (MOTIE), 3020 Renewable Energy Plan, (2017).
 http://www.motie.go.kr/motiee/presse/press2/bbs/bbsView.do?bbs_seq_n=159996&bbs_cd_n
 accessed July 16, 2018).
- International Carbon Action Partnership (ICAP), Korea Emissions Trading Scheme, (2016) 1–5.
 https://icapcarbonaction.com/en/?option=com_etsmap&task=export&format=pdf&layout=list&
 systems%5B%5D=47.
- 364 [3] United Nations, Adoption of the Paris agreement, 2015. doi:FCCC/CP/2015/L.9.
- 365 [4]D. Kang, J.-E. Kim, Fine, ultrafine, and yellow dust: emerging health problems in Korea., J. Korean366Med. Sci. 29 (2014) 621–2. doi:10.3346/jkms.2014.29.5.621.
- 367 [5] Greenpeace, Silent Killer: Fine Particulate Matter, 2016.
- 368 [6] Yonhap News, "Fine dust" most searched keyword by S. Korean users in H1: Google, (2018).
 369 https://en.yna.co.kr/view/AEN20180702005700320 (accessed July 22, 2018).
- 370 [7] Ministry of Environment (South Korea), Comprehensive measures for fine dust control, (2017).
 371 http://www.motie.go.kr/common/download.do?fid=bbs&bbs_cd_n=81&bbs_seq_n=159674&fil

372		e_seq_n=1 (accessed July 16, 2018).
373 374	[8]	Ministry of Trade Industry and Energy (MOTIE), The 8th the Electricity Supply and Demand Plan (ESPD), (2017). https://www.kpx.or.kr/www/contents.do?key=92 (accessed July 16, 2018).
375 376	[9]	Kansai Research Center/Institute for Global Environmental Strategies POSCO Research Institute, Domestic Carbon pricing in Korea and Companies' Response, 2017.
377 378	[10]	S. Hong, B.W. Brook, A nuclear- to-gas transition in South Korea: Is it environmentally friendly or economically viable?, Energy Policy. 112 (2018) 67–73. doi:10.1016/J.ENPOL.2017.10.012.
379 380 381	[11]	Y.H. Song, H.J. Kim, S.W. Kim, Y.G. Jin, Y.T. Yoon, How to find a reasonable energy transition strategy in Korea?: Quantitative analysis based on power market simulation, Energy Policy. 119 (2018) 396–409. doi:10.1016/J.ENPOL.2018.05.002.
382 383 384	[12]	J. Kim, S.Y. Park, J. Lee, Do people really want renewable energy? Who wants renewable energy?: Discrete choice model of reference-dependent preference in South Korea, Energy Policy. 120 (2018) 761–770. doi:10.1016/J.ENPOL.2018.04.062.
385 386 387	[13]	JB. Chung, ES. Kim, Public perception of energy transition in Korea: Nuclear power, climate change, and party preference, Energy Policy. 116 (2018) 137–144. doi:10.1016/J.ENPOL.2018.02.007.
388 389	[14]	S. Pfenninger, A. Hawkes, J. Keirstead, Energy systems modeling for twenty-first century energy challenges, Renew. Sustain. Energy Rev. (2014). doi:10.1016/j.rser.2014.02.003.
390 391 392	[15]	S. Pfenninger, J. Keirstead, Renewables, nuclear, or fossil fuels? Scenarios for Great Britain's power system considering costs, emissions and energy security, Appl. Energy. (2015). doi:10.1016/j.apenergy.2015.04.102.
393 394	[16]	N.B. Park, S.J. Yun, E.C. Jeon, An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector, Energy Policy. (2013). doi:10.1016/j.enpol.2012.09.021.
395 396	[17]	C.Y. Lee, S.Y. Huh, Forecasting new and renewable energy supply through a bottom-up approach: The case of South Korea, Renew. Sustain. Energy Rev. (2017). doi:10.1016/j.rser.2016.11.173.
397 398	[18]	J.P. Deane, A. Chiodi, M. Gargiulo, B.P. Ó Gallachóir, Soft-linking of a power systems model to an energy systems model, Energy. 42 (2012) 303–312. doi:10.1016/J.ENERGY.2012.03.052.
399 400 401 402 403	[19]	M.M. Rienecker, M.J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M.G. Bosilovich, S.D. Schubert, L. Takacs, G.K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, A. Da Silva, W. Gu, J. Joiner, R.D. Koster, R. Lucchesi, A. Molod, T. Owens, S. Pawson, P. Pegion, C.R. Redder, R. Reichle, F.R. Robertson, A.G. Ruddick, M. Sienkiewicz, J. Woollen, MERRA: NASA's modern-era retrospective analysis for research and applications, J. Clim. (2011). doi:10.1175/JCLI-D-11-00015.1.
404 405	[20]	M. Huber, D. Dimkova, T. Hamacher, Integration of wind and solar power in Europe: Assessment of flexibility requirements, Energy. (2014). doi:10.1016/j.energy.2014.02.109.
406 407 408	[21]	H. Zhang, Y. Cao, Y. Zhang, V. Terzija, Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data, Appl. Energy. (2018). doi:10.1016/j.apenergy.2018.02.094.
409 410	[22]	Korea Power Exchange, Power supply and demand status, (2018). http://www.kpx.or.kr/www/contents.do?key=223 (accessed April 23, 2018).

411 412	[23]	S. Pfenninger, I. Staffell, Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data, Energy. (2016). doi:10.1016/j.energy.2016.08.060.
413 414 415	[24]	E. Sharp, P. Dodds, M. Barrett, C. Spataru, Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information, Renew. Energy. (2015). doi:10.1016/j.renene.2014.12.025.
416 417	[25]	V. Krey, Global energy-climate scenarios and models: a review, Wiley Interdiscip. Rev. Energy Environ. 3 (2014) 363–383. doi:10.1002/wene.98.
418 419 420	[26]	B. Thomas, F. Lew, H. Edgar, M. Alan, P. Daniel, R. Joyashree, S. Roberto, S. Steffen, S. Ralph, S. Pete, W. Ryan, H. Gesine, J. David, de, N. Maarten, Annex III: Technology-specific cost and performance parameters, 2014.
421 422 423	[27]	U.S. Energy Information Administration (EIA), Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants, (2016). https://www.eia.gov/analysis/studies/powerplants/capitalcost/ (accessed July 7, 2018).
424 425 426 427	[28]	R. Lacal Arantegui, A. Jaeger-Waldau, M. Vellei, B. Sigfusson, D. Magagna, M. Jakubcionis, M. del M. Perez Fortes, S. Lazarou, J. Giuntoli, E. Weidner Ronnefeld, G. De Marco, A. Spisto, C. Gutierrez Moles, ETRI 2014 - Energy Technology Reference Indicator projections for 2010-2050, 2014. doi:10.2790/057687.
428 429 430	[29]	Korea Power Exchange, Electric Power statistics Information System - Fuel price, (2018). http://epsis.kpx.or.kr/epsisnew/selectEkmaFucUpfGrid.do?menuId=050101 (accessed July 5, 2018).
431 432	[30]	National Renewable Energy Laboratory (NREL), 2017 Annual Technology Baseline, (2017). https://atb.nrel.gov/electricity/2017/index.html?t=in (accessed July 6, 2018).
433 434	[31]	Korea Development Institute (KDI) - Public and Private Infrastructure Investment Management Center (PIMAC), A Study on General Guidelines for Pre-feasibility Study (5th Edition), 2008.
435 436	[32]	E2 News, Older coal fired power plants, extended life by major operations, (2016). http://www.e2news.com/news/articleView.html?idxno=91465 (accessed November 17, 2018).
437 438 439	[33]	World Nuclear Association, Nuclear Power in South Korea, (2018) 1. http://www.world- nuclear.org/information-library/country-profiles/countries-o-s/south-korea.aspx (accessed November 19, 2018).
440	[34]	World Bank Group, Commodity Markets Outlook, 2018.
441 442	[35]	Korea Exchange (KRX), Emission trading cost, Mark. Data. (2018). http://marketdata.krx.co.kr/mdi# (accessed July 20, 2018).
443 444 445	[36]	National Institute of Meteorological Sciences (NIMS), Rate of wind speed over 5m/s, Weather Resour. Map. (2016). http://www.greenmap.go.kr/02_data/data01_5_1.do#2%231%235 (accessed July 17, 2018).
446	[37]	Siemens, Flexibility Solutions, 2016.
447	[38]	J. Wook, Korean LNG power plants in slump amid low unit price, high production cost, (2017).
448	[39]	L. Balling, Flexible future for combined cycle, Erlangen, 2010.