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INTRODUCTION 

Whereas guidelines are available and decision trees have been developed to describe the 

requirements for the generation and extrapolation of efficacy and safety of medicines in the 

paediatric population,
1, 2

 there are many cases in which efficacy and safety data cannot be easily 

generated. Equally, there are cases where requirements cannot be readily applied to children. 

Irrespective of similarities or differences in efficacy, safety or in the underlying exposure-response 

(PKPD) relationships between adults and children, it should be clear that the characterisation of 

pharmacokinetics (PK) is critical to ensure the appropriate dose rationale and dosing regimens in 

paediatric diseases.
3
 Such an assessment is full of challenges, especially in the context of rare 

diseases, for which  the dose rationale for novel interventions is primarily determined by empirical 

evidence and the relevance of clinical pharmacology principles is often overlooked. Moreover, 

practical and ethical constraints further limit the opportunities to collect information on the overall 

benefit-risk ratio of a medicine, as individual data is sparse both in terms of sampling frequency and 

sampling intervals.
4,5

 These constraints can have clinical implications (e.g. dosing 

recommendations) if the quality and accuracy of the data cannot be warranted.  

Historically, paediatric doses have been derived by dividing the adult dose linearly by body weight, 

i.e., doses are expressed in mg/kg. Across different therapeutic indications, paediatric doses for 

many products on the market have been obtained by empirical formulas based on age or other 

demographic characteristics.
6 

This approach ignores the nonlinear processes which take place due to 

maturation (e.g., ontogeny, metabolic activity) and developmental growth (e.g., renal function and 

size) and are known to occur particularly within the first years of life. 
6-9 

Currently, however, 

different extrapolation approaches can be considered depending on the degree of similarity between 

adult and paediatric disease progression and response to intervention, including complete, partial or 

no extrapolation. In fact, evidence arising from pharmacokinetic and safety data may be deemed 

sufficient only when it is reasonable to assume that the aforementioned requirements can be met. 
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In spite of the increasing use of PK modelling in paediatric drug development, little attention has 

been paid to more extreme cases such as rare diseases, where extrapolation techniques along with 

the use of historical data become critical to ensure accuracy, precision and reduce the risk of bias 

and/or misspecification.
10,11

 In fact, previous publications have highlighted the limitations of 

extrapolations based on allometric principles when using adult or a different population as reference 

group for the dose rationale in another subgroup, without considering data collection in the target 

population or group of interest.
12,13

 This is partly explained by inaccurate estimation of covariate-

parameter correlations and in some cases because of missing or misspecified covariates on key 

parameters such as clearance and volume of distribution.
14,15

 Consequently, it is rather surprising 

that despite the availability of different methods to integrate prior knowledge for the analysis of 

such sparse and unbalanced data,
16,17

 and for the optimisation of the study design,
18-20

 their uptake 

in clinical research, and, particularly, in case of rare diseases, remains very low.  

Using a case study in which deferasirox is given to paediatric patients affected by beta thalassaemia 

and other transfusion-dependent haemoglobinopathies, we expand on the principles introduced by 

Cella et al.
2
 and evaluate the feasibility of applying Bayesian concepts and prior historical data in 

conjunction with extrapolation principles to improve parameter estimation. We focus on rare 

diseases, for which evidence synthesis is essential to overcome the difficulties in data generation. 

Conceptually, we evaluate whether model parameter estimates in adults along with prior 

distributions can be treated as informative and consequently exchangeable across distinct groups of 

the patient population or across treatments, after correction for putative covariate effects. In 

addition, we explore the advantages of the combined use of priors and optimisation techniques (ED-

optimality) to support data generation itself, allowing a more robust experimental protocol 

design.
21,22

   

 

METHODS 
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Case study: prospective evaluation of the pharmacokinetics of deferasirox in patients aged >1 to 18 

years 

The DEferiprone Evaluation in Paediatrics (DEEP) consortium was set up under the auspices of the 

FP7 program, to evaluate the efficacy and safety of chelation therapy in paediatric patients affected 

by transfusion-dependent haemoglobinopathies. In this context, the DEEP-2 study was proposed to 

o assess the non-inferiority of deferiprone relative to deferasirox in the paediatric population.
23-25

 

PK data collection was included as an objective to ensure further characterisation of the 

concentration-effect relationship of the chelating agents in children and adolescents from >1 to 18 

years of age. Due to feasibility reasons, only one blood sample per patient could be collected at the 

end of treatment (i.e., at steady state) in a subgroup of patients (n = 19). The sampling schedule was 

based on a sampling window of up to four hours after the last dose. Each subject was randomly 

assigned to one of ten different sampling times: 15 min pre-dose, and 15, 30, 45, 60, 75, 90, 105, 

120, 240 min post-dose. A deviation of +/- 10 min was allowed around each sampling time. 

Given the availability of a single blood sample per patient, we evaluated the implications of the 

proposed study design and explored opportunities to deal with data sparseness, uncertainty and 

(poor) precision in the estimation of parameters describing drug disposition. The possibility of 

estimating individual primary and secondary pharmacokinetic parameters with sufficient precision, 

using only one sample per child represents, therefore, a key aspect of the methodology proposed in 

the subsequent paragraphs.  

In addition, a simulation-estimation workflow was adopted to explore the possible limitations of the 

DEEP-2 protocol design and assess the precision of parameters estimates from this specific trial 

(Figure 1, panel A). First, a population PK model was developed from historical data appropriately 

scaled, using an allometric approach based on body weight (Step 1, panel A). Then, deferasirox 

concentration vs. time data were simulated for a virtual population of paediatric patients using the 

aforementioned model, taking into account the DEEP-2 study protocol design (Steps 2-3, panel A). 
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Finally, primary and secondary PK parameters, including area under the concentration-time curve 

(AUC) and the maximum (or peak) concentration (Cmax), were estimated to assess the expected 

precision and accuracy of the estimates from the proposed study protocol design (Step 4, panel A). 

Prior knowledge  

A model-based meta-analysis was performed using data extracted from five published PK studies 

with deferasirox. 
24,26-29

 Studies were included in the analysis if the following criteria were met: (i) 

single or multiple oral doses of deferasirox were administered within the study period; (ii) study 

population consisted of healthy adult subjects and adult or paediatric patients with transfusion-

dependent haemoglobinopathies; (iii) the reported data included mean or individual time-

concentration data. An overview of the clinical protocols and patient population demographics (age, 

sex, weight, race, disease) is shown in Table 1. Deferasirox concentration vs. time profiles can be 

found in Figure S1 (supplementary material). All studies were conducted in adult patients except 

for the study reported in Chirnomas et al.
24

, where also few paediatric patients aged between 3 and 

18 years old were enrolled.  

To ensure appropriate data aggregation and subsequent pooling, data from the various sources had 

to be normalised based on the assumption of linear pharmacokinetics across the range of doses 

included in the studies. First, all doses were converted into micromole (µmol) using a molecular 

weight of deferasirox of 373.362 g/mol.
32

 While accurate information about the dose (amount) is 

critical for the characterisation of PK parameters, assumptions had to be made when individual 

patient-level data were not reported. Since the dose is often expressed in mg/kg, when reported 

mean body weight was used to calculate the actual dose in mg. If body weight was missing, mean or 

individual body weight was imputed from reported demographic details such as age, sex, and race. 

Missing body weight for Japanese patients for the study published by Myazawa et al.
26

 was 

assumed to be 57.7 kg based on the mean weight for Asians, as reported by Walpole et al.
30

 A mean 

body weight of 70 kg for adult subjects was used for the studies published by Galanello et al.
29 

and 
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Chirnomas et al.
24

. By contrast, individual body weight for each patient aged ≤ 18 years old was 

calculated using the growth charts provided by the Disabled World website
31

, taking into account 

age, sex, and race. All assumptions along with an explanation for eventual data exclusion are listed 

in Table 1.   

Pharmacokinetic modelling 

A population PK model was developed for deferasirox using the available historical data (Step 1 in 

Figure 1, panel A). Further details on the model evaluation procedures along with the main 

diagnostic criteria can be found in the supplementary material. 

Simulation of the pharmacokinetics of deferasirox in a virtual paediatric population 

The population PK model was then used as reference for the evaluation of the impact of prior 

knowledge on the precision and accuracy of PK parameters obtained from the analysis of very 

sparse data in children. Since the PK model of deferasirox includes the effect of body weight as a 

covariate on clearance and volume of distribution, a virtual patient population with a representative 

covariate distribution was simulated (Step 2 in Figure 1, panel A). In this step, > 10,000 patients 

were generated (aged from > 1 to >18 years old with a 1:1 sex ratio in line with the study protocol 

inclusion criteria) to ensure appropriate covariate distribution across the population. Corresponding 

weights were simulated using an appropriate demographic model,
39

 including correlations between 

postmenstrual age (PMA), sex, and body weight. To simulate body weight, PMA was extracted 

from a uniform distribution based on age ranging between >1 year and >18 years (plus a gestational 

time of 40 weeks). Two scenarios (Scenario 1 and 2) were subsequently evaluated to explore the 

most suitable method for the analysis of clinical trial data (Step 2 in Figure 1, panel A). Details of 

each scenario are summarised in Table 2. More specifically, in Scenario 2, five different situations 

were considered (a-e). In Scenario 2.a, 2.b and 2.c, we accounted for the possibility that allometric 

scaling might not be adequate to fully explain the PK differences between adults and children, 
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whereas in Scenario 2.d and 2.e we considered the impact of different allometric exponents on 

clearance. Consequently, the deferasirox concentration vs. time profiles of were simulated using 

population parameters values, which were significantly lower than the ones estimated in adults or 

with the same values but scaled with a different allometric exponent (only the allometric exponent 

on clearance was changed). It should be noted that as normalised renal function and liver metabolic 

activity in children are usually lower compared to adults, only scenarios in which population PK 

parameters are reduced relatively to the adult estimates were summarized. Scenarios in which the 

population PK parameters in the paediatric population are higher than those computed from adult 

studies were also tested but were not included here. The conditions mentioned above were 

identified among a range of possible perturbations, which were deemed sufficiently robust to assess 

the sensitivity of different methods for the analysis of very sparse pharmacokinetic data. Finally, six 

different simulated data sets were created, i.e., one for each of the aforementioned scenarios, 

including simulated deferasirox concentrations and corresponding demographic characteristics of 

the virtual patients (Step 2 in Figure 1, panel A). 

Analysis of sparse pharmacokinetic data 

For each of the aforementioned scenario, PK data from 19 subjects (i.e., the same number of 

patients available for pharmacokinetic assessment in the DEEP-2 study) were then randomly 

extracted from the simulated dataset, with only one sample per patient randomly selected across 10 

sampling intervals (with a possible deviation of +/- 10 minutes), as defined in the DEEP-2 protocol 

(Step 3 in Figure 1, panel A).  

The extracted samples were used as data input for the estimation of structural parameters for CL, 

V2, V3, ka, and Q, and interindividual variability for CL, V2, V3, and ka (Step 4 in Figure 1, panel 

A). This step was performed using the conditional estimation with interaction (FOCE-I).  

Differently from the model building phase with adult data where different model structures have 

been tested, the analysis with simulated paediatric data was performed under the assumption that 
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model structure, as defined by drug disposition in adults, can be used as starting point for the 

analysis of PK data in the paediatric population. Three conditions were investigated, namely 

estimation without priors, with highly informative priors or weakly informative priors. Both highly 

and weakly informative priors were implemented using the $PRIOR option in NONMEM. Details 

of the implementation can be found in the Supplementary material. 

Optimisation of the pharmacokinetic sub-study design 

A secondary objective of the present investigation was to identify opportunities for best practice in 

the evaluation of PK data in rare diseases. Of interest was the need to demonstrate to what extent 

feasibility considerations can lead to biased estimates of the parameters of interest, and most 

importantly, how efficient a PK sub-study protocol can be if optimal design principles are applied at 

the design stage. Currently, these principles remain overlooked and are undervalued by the clinical 

research community. A graphical representation of the workflow steps adopted for this second 

objective is represented in Figure 1 (panel B). First, optimal sampling time windows have been 

identified by means of an ED-optimisation procedure (Step 1, panel B). Primary and secondary PK 

parameters were derived using the simulated pharmacokinetic data in Scenario 1 (Steps 2-3, panel 

B) to assess the possible benefits of different study designs, including more samples per subject 

within the optimal sampling time windows identified in Step 1. Additional details of the 

optimisation procedures can be found in the supplementary material.  

Comparing original and optimised protocols 

All scenarios were compared in terms of the probability of successful convergence of the NLME 

algorithm. Results were calculated based on the ratio between 100 and the number of runs necessary 

to obtain 100 successful runs. In addition, the precision of the estimates was assessed by the 

probability distributions of the ratios of each individual parameter relative to its ‘true’ value (i.e., 

the one used for simulating the concentration vs. time data), calculating for each of them the 
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proportion of the area under the probability distribution between 0.8 (1/1.25) and 1.25. This range 

was used under the assumption that a variation of 25% from the nominal value falls within the 

expected biological variability .
41

 The probability distribution of the ratio of estimated individual 

parameter values relative to their true values is expected to be centred around 1 if individual 

estimates are accurate (see Figure S3, panel A in the supplemental material). A deviation from 1 

indicates the presence of bias. By contrast, the more the probability distribution is centred around 1, 

the higher the precision of the parameter estimates (see Figure S3, panel B, in the supplemental 

material).  Four different comparisons have been performed, which are listed in Table 3. 

 

RESULTS 

Pharmacokinetic modelling 

The pharmacokinetics of deferasirox in adults was best described by a two-compartmental model 

with first-order absorption and elimination. An overview of the model diagnostics and final 

estimates of the pharmacokinetic parameters used in the evaluation of priors are presented in Table 

4 and Figure 2. Further details are summarized in the supplementary material.  

Evaluation of the advantages of using priors for the analysis of sparse PK data (Comparison I-II) 

The first two comparisons have been performed to demonstrate in a quantitative manner the 

advantages of using priors for the analysis of sparse data (see Comparison I and II in Table 3).   

Comparison I: The convergence of the algorithm was chosen as main criteria to compare the 

performance in three different conditions: no priors, with weakly or highly informative priors 

(Table 4). Only results relative to the analysis of simulated data of Scenario 1 are shown. As 

reported in Table 5, the use of priors increases dramatically the probability to obtain a successful 

convergence of the NLME algorithm in case of sparse sampling from only 12% with no priors up to 
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56% and 75% for weakly and highly informative priors, respectively. These results indicate that the 

use of priors derived from adult appears to address some of the limitations due to the sparseness of 

data. 

Comparison II: From the results in comparison I, it becomes clear that when historical data reflect 

the characteristics of the paediatric population correctly, highly informative priors should be 

considered for the evaluation of sparse data in children. However, this might not always be the case. 

To take into account cases where differences may exist, in Comparison II, PK parameter estimates 

obtained from the analysis of sparse data were compared to the corresponding ‘true’ values used in 

the simulation. All six scenarios were considered: from the most straightforward Scenario 1, in 

which the same population parameters and allometric scaling function obtained with historical data 

were used, to the more challenging Scenarios 2.a to 2.e, where parameter distributions describing 

drug disposition were assumed to deviate significantly from adults. In Scenarios 2.d and 2.e, the 

concentration-time profiles of the paediatric population were simulated only with a different 

allometric exponent compared to the one found from historical data. In Scenarios from 2.a to 2.c, 

more extreme situations were considered: the paediatric population was simulated assuming 

clearance and/or volume values that are half of the adult population estimates. For the first two 

scenarios, the use of weakly and highly informative priors gave comparable results in terms of 

ratios of posterior individual estimates. For scenarios from 2.a to 2.c, highly informative priors led 

to more imprecise estimates of AUC and Cmax compared to weakly informative priors (Figure 3 

and Figure 4, upper panels, and Table S1 in supplementary material). As it can be seen in Table 

S1, the percentages of AUC estimates deviating < 25% relative to their ‘true’ values are 26, 23, and 

23% for scenarios 2.a, 2.b, and 2.c, respectively, when using weakly informative priors. By 

contrast, highly informative priors introduced a larger bias (i.e., 43, 37, and 36% for scenarios 2.a, 

2.b, and 2.c, respectively). A graphical comparison between the ‘true’ PK profile for a specific 

subject and its corresponding PK profiles estimated using weakly, highly or no priors reveals that 
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weakly informative priors perform better in terms of closeness to the ‘true’ PK profile in most 

scenarios or conditions (Figure S8 in supplementary material, Panel A). On the other hand, no 

substantial improvement in the estimation is observed when using weakly informative priors for a 

subject whose PK parameters belong to the ties of their distributions (Figure S8 in supplementary 

material, Panel B).  Consequently, the use of weakly informative priors should be the preferred 

option relatively to highly-informative priors. Weakly-informative priors can increase the 

probability of successful convergence and, simultaneously, are less likely to introduce bias in the 

paediatric PK parameters estimates.  

Evaluation of the impact of optimised protocol designs on the precision of parameter estimates for 

extrapolation of data in children (Comparison III-IV) 

The last two comparisons reported in Table 4, namely Comparison III and IV, focus on how 

historical information can be used together with optimisation techniques to guide the design of more 

informative trials in the paediatric population, especially in case of rare diseases. 

ED-optimality showed that four blood samples, collected at optimised sampling times, were 

sufficient to ensure the precision of the parameters of interest. In contrast to common practice in 

pharmacokinetic studies, more frequent sampling did not yield further increase in parameter 

precision. Four optimal sampling windows were identified for deferasirox: -30 to 0 min pre-dose, 

15 to 30 min, 90 to 150 min, and 225 to 240 min post-dose (Figure S9). 

Comparison III: In Comparison III, the original study design (1 sample/subject within the 

sampling times defined in the study protocol) was compared to an ‘optimised’ design (1 

sample/subject within the selected optimal sampling windows). Both the probability of successful 

minimisation and ratio between the estimated and ‘true’ parameter values were used to quantify the 

differences between the two designs.  
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The result of this comparison (Figure 3 and Figure 4, left lower panel) shows that optimising the 

sampling protocol when only one sample per subject is collected does not significantly improve the 

precision or accuracy of the estimates or the probability of having a successful minimisation (Table 

5). The use of priors gives the necessary support to parameter estimation irrespective of 

optimisation procedures. 

Comparison IV: In Comparison IV, several ‘optimised’ study designs have been compared to the 

original one. Notably, four optimised designs including 1, 2, 3, and 4 samples/subject, respectively, 

all selected within the optimal sampling windows. Both the probability of successful minimisation 

and ratio between the estimated and ‘true’ parameter values were used as metrics for his 

comparison. The emerging results show to what extent the precision of the parameter estimates 

increases when more samples are taken, suggesting what should be the minimum number of 

samples to balance feasibility and validity of the study (Figure 3 and Figure 4, lower right panel). 

With two samples the probability of successful minimisation dramatically increases to about 90% 

(Table 5), but the probability of overestimating or underestimating Cmax and AUC of more than 

25% remains less than desirable (still around 60%, Table S1 in supplementary material).  

This last comparison shows that increasing the number of samples to three or four results in 

significant reduction of the probability of having exposure-related parameter estimates outside the 

boundary of acceptability, namely < 20% with three samples and < 10% with four samples. Given 

other practical constraints, our analysis suggests that when optimal sampling windows are 

identified, the use of three samples per subject is sufficient to ensure accurate and precise estimates 

for most PK parameter and their variabilities. 

 

DISCUSSION 
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Historically, limited attention has been given to pharmacokinetics and PKPD relationships as the 

basis for the dose rationale in children. The change in the legislation, which now requires drug 

developers to provide evidence of efficacy and safety of novel treatments for paediatric diseases, 

has not eliminated some important challenges associated with data generation, in particular in rare 

diseases.   

To date, limitations in data generation are being addressed by increased acceptance of extrapolation 

methodologies,
42,43

 in which pharmacokinetics, pharmacodynamics and efficacy are inferred from a 

reference patient population, and eventually from animals, another compound or disease.
44-46

 

Whereas inferential methods are extremely important, and formal extrapolation approaches 

provides transparency for empirical dose selection, which is often observed during off-label use of a 

medicinal product, a key issue remains, in that any data oncoming from the target population is 

likely to be sparse and need to be integrated with existing knowledge, whether or not previously 

framed under an extrapolation exercise. It is therefore essential to maximise the usefulness of the 

data obtained with the minimum number of subjects enrolled. It is equally important to understand 

the potential bias in parameter estimation from sparse data, especially for compounds which show 

complex disposition, or which are affected multiple covariate factors. In fact, it should be clear that 

evidence of efficacy and safety does not imply optimal dosing. This represents an often-overlooked 

aspect of paediatric development in that many treatments are associated with chronic conditions. 

Consequently, dose optimisation can have major implications for the long-term efficacy and safety 

profile of the product.   

Here we used a case study for which the assumption of comparable disease and PKPD relationships 

across populations appears to be valid and biologically plausible. Chelation treatment of 

transfusion-dependent iron overload is determined primarily by the total iron intake from blood 

transfusions. Hence, it has been assumed that the dose rationale for children correlates or 

corresponds to the efficacious levels of deferasirox in the source population (adults). However, even 
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when relevant data are available and can be used as prior information, the contribution of covariate 

factors, such as age, body weight, or other clinical parameters that are determinants of differences in 

drug disposition in children may not have been identified in the adult population. These covariates 

need to be considered when defining dosing recommendations. 

Another important feature of historical data, beyond extrapolations, are its role and relevance for 

trial design optimisation. Despite the availability of different techniques, protocol designs in rare 

diseases continue to be developed and implemented without careful consideration of these 

instruments.
47-49

 Recently, several cases of failed completed trials have been reported,
50-51

 where a 

poor dose selection contributed to a trial failure. In Benjamin et al.
50

 fixed doses across a wide 

range of body weights have been used; in Momper et al.
51

 no dose response was seen in the study, 

and it was stated that, if higher doses had been evaluated, efficacy might have been demonstrated. 

This reinforces the importance of PK assessments in age groups where drug disposition cannot be 

reliably predicted. These failures also highlight the need to collect pharmacokinetic and biomarker 

data in efficacy studies to assess PKPD relationships when efficacy may not be determined 

empirically in a controlled clinical trial. 

From a methodological perspective, we have shown how the use of priors may have an ‘anchoring’ 

effect, supporting the minimisation procedures, improving convergence and precision of the 

parameter estimates of interest. However, adding priors could be a concern for clinicians and drug 

regulators. For this reason, a sensitivity analysis in which different prior distributions are tested 

should be done to ensure that the conclusions are not heavily weighted on prior beliefs, as 

illustrated by the evaluation of both weakly and highly informative priors. In addition, the 

simulation-estimation modelling exercise supported the views that, in the presence of limited data, 

the use of priors always has an advantage compared to those situations where no prior information 

is used. In this regard, there is increasing evidences in the literature on the impact of priors on  

parameter estimation, especially when (i) model complexity causes identifiability problems, (ii) 
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data are very noisy, and (iii) data are too scarce or the experiment design is far from optimal.
52,53

 In 

support of these concepts, we refer the reader to a range of  examples  in other therapeutic areas.
54-56

 

Despite its application in Bayesian statistics, the integration of a priori information has not been  

evaluated systematically in the context of paediatric drug development where situations (ii) and (iii) 

are still commonplace. This investigation does not intend to provide the readers with a final solution 

for known issues related to data sparseness in paediatric trials. We hope that our findings are 

sufficient to highlight the advantages and disadvantages of applying Bayesian concepts in 

conjunction with optimal sampling. In fact, in comparisons I and II, we demonstrated in a 

quantitative manner to what extent weakly informative priors increase the robustness of the 

estimates, allowing integration of prior knowledge from historical data without dominating the 

parameter space during the estimation procedures. On the other hand, the use of highly informative 

priors led to slightly better performances in terms of convergence but resulted in a bias when drug 

disposition in children differs significantly from adults (Scenarios 2.a-2.c). Such a situation may be 

illustrated by cases in which maturation of enzymes involved in drug metabolism (i.e., ontogeny) or 

when other physiological processes (e.g. immune competence in neonates) are unique to the 

paediatric population as compared to adults. Nevertheless, even if weakly informative priors are 

used, the availability of only one single sample per patient prevents the distinction between intra- 

and inter-individual variability. At best, with such kind of data, sufficiently accurate population 

estimates of CL/F and its IIV can be obtained, and therefore, individual AUC estimates can be 

derived. Conscious that the number of samples and time of sampling are also determined by 

practical constraints, our results also highlight the limitations of common protocol designs, and in 

particular the possible drawbacks of collecting only one sample per patient, leading to a probability 

of more than 60% of over/underestimating the exposure by > 25% (Table S1).  

The advantages of using optimisation techniques based on priors have been shown in comparisons 

III and IV. Whereas it is known that PK parameter estimates and corresponding interindividual 
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variability are strongly dependent on the number of samples collected per subject, our analysis 

reveals that with at least three samples per individual, it is possible to obtain accurate and precise 

estimates for most PK parameter and their variabilities. In this regard, the DEEP-2 study has been 

designed and conducted with only one PK sample per patient. Even though a different sampling 

scheme could not be implemented due to the nature of the intervention (out-patients) and other 

practical limitations, the data collected in the study will be analysed based on the use of the priors 

defined in in this work.  

Limitations 

Although several methods are available in the literature for the integration of prior knowledge and 

trial design optimisation, in this work only $PRIOR in NONMEM have been explored. This choice 

was based on the fact that estimation methods based on the maximum likelihood represent the most 

widely used approach in nonlinear mixed effects modelling. It is also the most straightforward 

procedure to integrate prior knowledge into a model. Fully Bayesian hierarchical modelling is 

another way to integrate prior knowledge into the parameter estimation process.
53

 Several software 

tools, such as $BAYES in NONMEM, WinBUGS,
57

 Stan,
58

 can be used to encode Bayesian models 

and to carry out parameter estimation via Markov Chain Monte Carlo (MCMC) algorithms. 

However, it was not our objective to compare the performance of different estimation methods.  

Regardless the limitations, we have shown that the use of adult data should not be restricted to 

extrapolation exercises. Priors from adults can be used in conjunction with ED-optimal design to 

ensure sampling schemes are truly informative. This concept can be readily generalised to other 

drugs for which data generation in children is a potential issue. One should also keep in mind that, 

our findings may not be generalised to situations where the assumption of comparable exposure-

response relationship, efficacy and safety between reference and target population is not 

biologically or clinically plausible.  
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CONCLUSIONS 

The use of priors increases the probability of successful convergence and higher precision of the 

estimates as compared to the no-priors case when dealing with very sparse data. Here, priors were 

derived from PK parameter estimates in adults, taking into account their uncertainties. We have 

shown that the choice of highly informative priors should be based on evidence supporting the 

comparability of the drug disposition processes across populations (e.g., children and adults) to 

prevent biased estimates. Our analysis also highlighted the limitations of collecting only a single 

sample per subject, which may result in over/underestimation of the exposure in a fraction of 

patients. This bias can be overcome by more frequent sampling with three samples per subject.   
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TABLES 

 Table 1: Overview of the clinical studies available in the published literature in which 

pharmacokinetic data has been reported for deferasirox. 

 

Table 2: Simulation scenarios implemented for the evaluation of the impact of historical data 

(priors) on model parameter estimation for paediatric rare diseases.  

 

Table 3:  Overview of the comparisons included in this analysis. 

 

 

Table 4: Population pharmacokinetic parameter estimates for deferasirox in adult subjects. 

 

 Table 5: Probability of successful run for Comparison I, III, and IV. 
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FIGURES 

Figure 1: Simulation-estimation workflow. 

Figure 2: In panel (a): goodness-of-fit plots (GOF) for the estimation procedures in step (2) with 

individual data where population parameters were fixed to values obtained in step (1) and inter-

individual variabilities were estimated. Plot of observed concentrations vs. individual (top-right 

panel) and population predicted (top-left panel). Identity and regression lines are shown in red and 

blue, respectively. Plot of conditional weighted residuals (CWRES) vs. time (bottom-right panel) 

and individual predicted (bottom-left panel). Zero and regression lines are shown in red and blue.  

 

In panel (b): histogram of probability density (red line) of the normalised predictive distribution 

error (NPDE) with the normal distribution (black line) superimposed  (top-left panel), scatter plot of 

NPDE vs. time after dose (top-right panel) and scatter plot of NPDE vs. individual predicted 

concentration (bottom panel) for the estimation in step (2). Horizontal dashed lines in the scatter 

plots represent zero line, 90% and 95% confidence intervals. 

In panel (c): Population predicted (red), individual predicted values (black), and observed data 

(solid circles) vs. time after dose (2). 

In panel (d): visual predicted check (VPC) plots for the estimation procedures in step (2). The 

observed data (black circles) were overlaid with predicted median (dashed black line), and 95% 

prediction interval (PI) (shaded grey area). 

Figure 3: Probability distributions of the ratio between the estimated area under the concentration-

time curve (AUC) and the “true” AUC (i.e., from the simulated data). Upper panels refer to 

Comparison II, lower left panel to Comparison III and lower right panel to Comparison IV. 

Figure 4: Probability distributions of ratios of the estimated maximum concentration (Cmax) to the 

true Cmax (i.e., from the simulated data). Upper panels refer to Comparison II, lower left panel to 

Comparison III and lower right panel to Comparison IV.   
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Referenc

e 

Daily 

dose 

Samplin

g times 

N° of 

patient

s 

Age 

(years

) 

Weight  

(kg) 

Sex 

(male:femal

e) 

 

Race Diseas

e 

Exclusion

s 

Additional 

Comments 

[26] 5 

mg/kg 

10 

mg/kg 

20 

mg/kg 

30 

mg/kg 

Samples 

on Day 1 

and Day 

14 

6 

7 

6 

7 

71.5 

68.0 

66.0 

75.0 

Not 

reported. 

The 

mean 

weight 

for Asian 

countries 

was 

assumed 

to be 

57.7 kg, 

as 

reported 

in 

Walpole 

et al., 

2012 [30] 

1:5 

3:4 

1:5 

3:4 

Japanese 3 

MDS, 

3 AA,  

5 

MDS, 

1 AA, 

1 other 

4 

MDS, 

1 AA, 

1 other 

4 

MDS, 

1 AA, 

2 other 

Data 

relative to 

30 mg/kg 

(day 14) 

were 

excluded 

Data 

excluded 

because of 

high noise 

in the data 

[27] 375 

mg 

 

Samples 

on Day 1 

at pre-

dose (0), 

15, 30, 

45 min, 

and at 1, 

1.5, 2, 

2.5, 3, 

3.5, 4, 6, 

8, 12, 

24, 36, 

and 48 h 

post-

dose 

17 30.5 79.05 17:0 22.2% 

Caucasia

n, 

16.7% 

Black, 

61.1% 

other 

race. 

Health

y 

subject

s 

- - 

[28] 1000 

mg 

(~20 

mg/kg

) 

Samples 

on Day 7 

at pre-

dose (0), 

0.5, 1, 

1.5, 2, 3, 

4, 6, 8, 

12, 24, 

48, 72, 

96, 120, 

144, 168 

h post-

dose 

5 20-38 50-81 3:2 Not 

reported 

5 THA Study 

data were 

excluded 

Data 

excluded 

because 

discrepanci

es between 

the dose 

reported in 

mg/kg, the 

mean body 

weight of 

the study 

population 

and the 

actual dose 

administere

d in mg 

[29] 20 

mg/kg 

Samples 

on Day1 

at pre-

dose (0), 

0.5, 1, 

1.5, 2, 

2.5, 3, 

3.5, 4, 6, 

8, 12, 

24, 36, 

48 h 

post-

dose 

28 18-45 A mean 

weight of 

70 kg 

was 

assumed 

for this 

populatio

n 

28:0 Not 

reported 

Health

y 

subject

s 

Data 

relative to 

arm C 

were 

excluded 

Difficulties 

in 

extracting 

data due to 

overlap of 

the data 

with other 

treatment 

arms  

[24] 34.7 

mg/kg 

Samples 

on Day1 

at pre-

15 9-38 

 

3-36 

For 

patients < 

18 years, 

3:2 

 

7:3 

1 Asian, 

1 Black, 

3 White 

1 SCD, 

4 THA 

1 SCD, 

- - 
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Referenc

e 

Daily 

dose 

Samplin

g times 

N° of 

patient

s 

Age 

(years

) 

Weight  

(kg) 

Sex 

(male:femal

e) 

 

Race Diseas

e 

Exclusion

s 

Additional 

Comments 

dose (0), 

1, 2, 4, 

6, 12, 24 

h post-

dose 

the 

weight 

was 

calculate

d from 

individua

l age, 

sex, and 

race 

using the 

growth 

charts in 

[31].  A 

mean 

weight of 

70 kg 

was 

assumed 

for 

patients > 

18 years 

old. 

4 Asian, 

1 Black, 

5 White 

9 THA 

Table 1: Overview of the clinical studies available in the published literature in which 

pharmacokinetic data has been reported for deferasirox. 

AA: aplastic anaemia; MDS: myelodysplastic syndromes; SCD: sickle-cell disease; THA: 

thalassaemia 
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Table 2: Simulation scenarios implemented for the evaluation of the impact of historical data 

(priors) on model parameter estimation for paediatric rare diseases.  

Scenario 

 

Assumption Parameters 

Scenario 1 The pharmacokinetics of 

deferasirox in the paediatric 

population was assumed to be 

accurately described by 

allometric principles, as 

described by the proposed 

reference PK model; 

 

Deferasirox concentration vs. time 

profiles of the virtual paediatric 

patients were simulated using the 

population parameter distributions 

summarised in Table 3 

Scenario 2 The pharmacokinetics of 

deferasirox in the paediatric 

population was assumed to 

vary significantly from the 

proposed reference PK model.  

For this scenario, five different 

conditions were considered. 

a. CL was significantly lower than that 

computed from adult studies (i.e., 

50% of the predicted value); 

 

b. Both CL and V2 were significantly 

lower than those computed from adult 

studies (i.e., 50% of the predicted 

value); 

 

c. All disposition parameters (CL, V2, 

Q, and V3) were significantly lower 

than those computed from adult 

studies (i.e., 50% of the predicted 

value); 

 

d. The exponent of CL and Q was set 

to 0.85 (rather than 0.75) in the 

allometric equation; 

 

e. The exponent of CL and Q was set 

to 2/3 (rather than 0.75) in the 

allometric equation.  
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Table 3:  Overview of the comparisons included in this analysis. 

 

 

* In Comparison I, the results obtained with and without the use of priors from the sparse data 

generated using the original protocol were compared. With this comparison, we aimed to 

demonstrate the added value of the use of priors when no other approaches for protocol 

optimisation are feasible. In Comparison II, the results obtained with the use of highly and weakly 

informative priors from the sparse data generated using the original protocol were compared 

assuming differences in the disposition of deferasirox in the paediatric population, as compared to 

adults. The aim of this comparison was to assess situations in which highly informative priors can 

lead to biased conclusions and, in such cases, quantify it. In Comparison III, an optimised 

pharmacokinetic sampling protocol with the same number of samples/patient was compared to the 

original clinical trial design including weakly informative priors for the pharmacokinetic analysis. 

The goal here was to demonstrate to what extent optimised PK sampling times can contribute to 

improved parameter precision, even though the total number of samples is the same and cannot be 

modified. In Comparison IV, different optimised protocols with an increasing number of 

samples/patient have been compared. The aim of this comparison was to demonstrate the 

informative value of additional, but yet sparse samples per patient, i.e. from 1 to 2, or from 1 to 3 or 

from 1 to 4 samples. 

  

Type of sampling N° of samples Scenario Notes Priors 

Comparison I* 

Empirical sampling 1 1 
Parameters  

allometrically scaled 

Weakly informative 

Highly informative 

No priors 

Comparison II* 

Empirical sampling 1 

1 Parameters allometrically scaled 

Weakly informative 

 

Highly informative 

2.a CL=CLadult/2 

2.b 
CL=CLadult/2, 

V2=V2adult/2 

2.c 

CL=CLadult/2, 

V2=V2adult/2, 

Q=Qadult/2, 

V3=V3adult/2 

2.d 
Allometric exponent of 

CL and Q=0.85 

2.e 
Allometric exponent of 

CL and Q=2/3 

Comparison III* 

Empirical sampling 
1 1 

Parameters  

allometrically scaled 
Weakly informative 

Optimised sampling 

Comparison IV* 

Optimised sampling 

1 

 

1 

 

Parameters  

allometrically scaled 

 

 

Weakly informative 

2 

3 

4 
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Table 4: Population pharmacokinetic parameter estimates for deferasirox in adult subjects. 

 

Parameter Description Unit 

Population 

estimate 

(%RSE) 

Bootstrap median 

(90% CI) 

IIVa 

(%RSE) 

Bootstrap 

median 

(90% CI) 

ka Rate of absorption h-1 
0.956 

(27.1%) 

1.02 

(0.51-1.40) 

1.63 

(33%) 

1.62 

(0.53-2.72) 

CL Clearance L/h 
1.81 

(8.1%) 

1.77 

(1.59-2.04) 

0.45 

(65%) 

0.45 

(0.15-0.76) 

Q 
Intercompartmental 

clearance 
L/h 

1.85 

(31.3%) 

1.73 

(0.86-2.84) 
- - 

V2 
Central volume of 

distribution 
L 

20.80 

(14.6%) 

21.38 

(15.83-25.70) 

0.412 

(38%) 

0.43 

(0.17-0.66) 

V3 
Peripheral volume 

of distribution 
L 

15.10 

(19%) 

14.79 

(10.03-20.21) 

2.32 

(>100%) 

2.44 

(89.97-94.2) 

F Bioavailability - 
0.70 

(FIXED) 

0.70 

(FIXED) 
- - 

σPROP
b 

Residual error 

(proportional) 
- 

0.018 

(18.9%) 
- - - 

 

RSE: relative standard error; IIV: inter-individual variability; CI: confidence interval.  

a
Reported as OMEGA that is the NONMEM output for IIV.   

b
Reported as SIGMA that is the NONMEM output for the variance of the residual error. 

 

Table 5: Probability of successful run for Comparisons I, III, and IV. 

 

Type of 

sampling 

N° of 

samples 
Scenario Notes Priors 

Median of probability 

of successful run 

(90% CI) 

Comparison I 

Empirical 

sampling 
1 1 

Parameters  

allometrically scaled 

Weakly 

informative 

56.50 

(50.28-62.71) 

Highly 

informative 

75.19 

(69.17-81.20) 

No priors 
12.22 

(10.51-14.18) 

Comparison III 

Empirical 

sampling 
1 1 

Parameters  

allometrically scaled 

Weakly 

informative 

56.50 

(50.28-62.71) 

Optimised 

sampling 

51.28 

(45.64-57.43) 

Comparison IV 

 

Optimised 

sampling 

1 

 

1 

 

Parameters  

allometrically scaled 

 

 

Weakly 

informative 

51.28 

(45.64-57.43) 

2 
89.96 

(81.74-92.17) 

3 
92.59 

(88.89-93.30) 

4 
94.34 

(90.57-98.11) 

CI: confidence interval. 
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a
Bootstrap median and 90% CI were calculated sampling N-times with replacement from the pool 

of N runs necessary to have reached 100 successful runs. 
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