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Abstract

Zero-knowledge proofs have become an important tool for addressing privacy and

scalability concerns in cryptographic protocols. For zero-knowledge proofs used in

blockchain applications, it is desirable to have small proof sizes and fast verification.

Yet by design, existing constructions with these properties such as zk-SNARKs also

have a secret trapdoor embedded in a relation dependent structured reference string

(SRS). Knowledge of this trapdoor suffices to break the security of these proofs.

The SRSs required by zero-knowledge proofs are usually constructed with

multiparty computation protocols, but the resulting parameters are specific to each

individual circuit. In this thesis, we propose a model for constructing zero-knowledge

arguments (i.e. zero-knowledge proofs with computational soundness) in which the

generation of the SRS is directly considered in the security analysis. In our model the

same SRS can be used across multiple applications. Further, the model is updatable

i.e. users can update the universal SRS and the SRS is considered secure provided at

least one of these users is honest.

We propose two zero-knowledge arguments with updatable and universal SRSs,

as well as a third which is neither updatable nor universal, but which through similar

techniques achieves simulation extractability. The proposed arguments are practical,

with proof sizes never more than a constant number of group elements. Verification

for two of our constructions consist of a small number of pairing operations. For our

other construction, which has the desirable property of a linear sized updatable and

universal SRS, we describe efficient batching techniques so that verification is fast in

the amortised setting.



Impact Statement

The results presented in this dissertation are likely to facilitate the de-

velopment of privacy preserving technologies in distributed systems.

Research and industry will have more choice in the features they acquire

from the zero-knowledge arguments that they use in their designs. More

specifically, this dissertation introduces novel techniques for handling

trust and integrity issues around zero-knowledge arguments that are used

in decentralised protocols. We have designed and developed a technique

for generating a set of semi-trustless parameters for zero-knowledge

arguments that can be used for any (bounded) system; we have also

shown how efficient zero-knowledge arguments can be built under these

parameters. Further, we show how to prevent malicious parties from

using previously seen data to their advantage.

When designing one of our constructions, we collaborated with develop-

ers from Zcash (a privacy focussed cryptocurrency) who implemented

and improved upon the design. Our protocol is suitable for systems like

Zcash, where data is stored indefinitely and thus needs to be small, and

verification is run by all members of the system and thus needs to be

fast in the amortised setting.

Our work on preventing adversarial attacks that utilise previously seen

zero-knowledge protocols has been implemented by both the SCIPR

labs in C++ and by O(1) labs in ocaml. O(1) labs are currently at-

tempting to build a constant sized blockchain by utilising simulation-

extractable SNARKs. Their construction is recursive: the provers prove
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that they know a valid proof for the verifiers equations. With simulation

extractable SNARKs like the one in this thesis, they do not run into

complications from the provers potentially knowing multiple solutions

to the verifiers equations.

Finally, the content in this thesis has been published not only in con-

ference proceedings but also in open access repositories; thus, it can

facilitate impact from other researchers that are looking into using and

improving zero-knowledge.
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Chapter 1

Introduction

This thesis looks into the design of zero-knowledge arguments of knowledge. Zero-

knowledge arguments of knowledge are a tool that cryptographers use to build

privacy enhancing applications, which are themselves used to secure our digital

communications. They allow us to prove that we are who we say we are, while never

meeting in person, and while giving away nothing that could be used to impersonate

us in future. Combined with the internet, even simple forms of zero-knowledge

already provide a means to send credit card details safely and securely to a trusted

retail brand. As more versatile forms of zero-knowledge become ever more practical,

previously unrealisable applications are beginning to emerge.

Introduced three decades ago by Goldwasser, Micali, and Rackoff [1], the

purpose of a zero-knowledge proof is to prove the truth of a statement while reveal-

ing nothing except its truth. For example, one could prove that an encrypted vote

contains either yes or no, thus proving integrity, without decrypting or otherwise

compromising the privacy of the vote’s contents. For the sole purpose of convinc-

ing the reader of the power of zero-knowledge, we list the following applications:

verifiable outsourced computation, anonymous credentials, blacklists, range proofs,

trusted platform modules, ring signatures, group signatures, online auctions, public

key infrastructures, mix-nets, multi-party computation and many memorable oth-

ers [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In recent years, cryptocurrerencies

have been one increasingly popular real-world application [15, 16, 17, 18], with

zero-knowledge arguments now deployed in both Zcash and Ethereum.
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The particular type of zero-knowledge arguments deployed in these cryptocur-

rencies is a (pre-processing) succinct non-interactive argument of knowledge, or

zk-SNARK for short, which guarantees constant-size proofs and constant-time verifi-

cation costs even for arbitrarily large arithmetic circuits. In comparison to other types

of zero-knowledge arguments, these guarantees make zk-SNARKs a natural fit for

the cryptocurrency setting, in which proofs are put, kept, and verified on a globally

visible blockchain. While the efficiency guarantees of zk-SNARKs are crucial in

this setting, they have two major downsides: (1) they require a trusted set of entities

to generate the structured reference string (SRS), and (2) once generated, the SRS

is not universal, meaning it can be used to prove only a single relation. While this

second issue might not seem so bad, deployed protocols regularly undergo upgrades

(to add features, fix bugs, etc.), which may result in changes to their underlying

relation. If this results in the need to generate a new SRS, then it opens up a new

opportunity for an adversary to subvert the trusted setup, which compounds any

threat presented by the first issue. Indeed, both of these issues have been observed

already in Zcash, which recently had to run a second trusted setup (the Powers of

Tau ceremony [19]) due to the Sapling upgrade in their protocol, which changed the

relation they use. If the parameters they use were compromised by an adversary (or

set of adversaries) during the setup process, then that adversary could create counter-

feit units of currency without detection. Other techniques such as Bulletproofs [20],

which are forthcoming in Monero, do not require a trusted setup and have a universal

reference string. Less desirably, they have linear-time verification costs.

This thesis is arranged as follows. In Section 1.1 we discuss the authors

published works. In Chapter 2 we discuss related work and in Chapter 3 we introduce

relevant background material and definitions.

Our first construction, in Chapter 4, addresses the issue of adversaries that

have access to proofs that they did not themselves create [21]. Knowledge-sound

NIZKs only ensure that the prover knows a witness if the prover cannot see previous

proofs. In the case of cryptocurrencies, where all proofs are visibly available on the

blockchain and where miners might see proofs before other users, this is not a realistic
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threat model. Our zk-SNARK construction addresses these concerns because it is

simulation-extractable (an SE-SNARK): even a prover that can see old proofs cannot

create new proofs without knowledge of the witness. Our construction is competitive

with the state-of-the-art, requiring only 3 proof elements and 2 verification equations.

Even within this thesis we see the benefit of simulation-extractable proofs. When

designing our update proofs, the updater has access to previous update proofs; if

the update proofs are simulation extractable then we can ensure the updater cannot

utilise the previous proofs to find an attack simply by checking uniqueness. On the

other hand, it does rely on a trusted setup.

In Chapter 5 we introduce the concept of updatability, meaning an open set of

participants can contribute secret randomness to the SRS. While this is not a fully

trustless setup, it means that confidence in the security of the parameters can be

increased as more and more participants contribute, as only one previous contributor

must have destroyed their randomness in order for the SRS to be secure. In the

updatable SRS model, any user can at any point choose to update the reference

string, provided that they also prove they have done the update correctly. If the

proof of correctness verifies, then the new SRS resulting from the update can be

considered trustworthy (i.e., uncorrupted) as long as either the old SRS or the updater

was honest. If multiple users participate in this process, then it is possible to get a

sequence of updates by different people over a period of time. If any one update is

honest at any point in the sequence, then the scheme is sound.

We then in Chapter 6 go on to construct an updatable QAP-based zk-SNARK

that uses a quadratic-sized universal SRS, but allows for the derivation of linear-

sized relation-dependent SRSs (and thus linear prover complexity) [22]. In terms

of efficiency, however, while the construction does have constant-size proofs and

constant-time verification, it requires an SRS that is quadratic with respect to the

number of multiplication gates in the supported arithmetic circuits. Moreover, up-

dating the SRS requires a quadratic number of group exponentiations, and verifying

the updates requires a linear number of pairings. Finally, while the prover and

verifier in any concrete usage need only a linear-size circuit-specific string (rather
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than the whole SRS), deriving this from the SRS still requires an expensive gaussian

elimination process. In a concrete usage such as in Zcash, which has a circuit with

217 multiplication gates, the SRS would be on the order of terabytes and is thus

prohibitively expensive.

To address these joint concerns of efficiency, trustlessness, and universality, we

present in Chapter 7 a zero-knowledge argument, Sonic, with a linear-size updatable

and universal structured reference string [23]. Our proofs are of constant size

regardless of the circuit, but our construction is not a true SNARK as the verifier

must perform a linear number of field operations (which is still preferable to the linear

number of group exponentations required by Bulletproofs). We describe, however,

ways to batch verification, so that the verifier need only perform a linear number of

field operations for an entire batch (and a constant number of group operations per

proof). Our batching is done via the use of a helper, who combines multiple proofs

together in order to help the verifier. The helper is not trusted because the verifier

checks for themselves that they have done the batching correctly, but the addition

of this extra party does raise the natural question of who would be expected to play

this role in a given application. In a blockchain setting, however, there is an equally

natural answer: miners, who are responsible for sealing individual transactions into

blocks, already have access to multiple proofs before they are given to the verifiers

and already expend significant computational energy in order to produce blocks (at

least in cryptocurrencies using proof-of-work as their consensus protocol).

1.1 Publications

This section discusses the author’s published works, including those that are not

included in this thesis. Publications are ordered chronologically. All papers are joint

work unless otherwise stated.
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[24] Melissa Chase, Mary Maller, and Sarah Meiklejohn. Déjà Q all over again:

Tighter and broader reductions of q-type assumptions. In Advances in Cryp-

tology - ASIACRYPT 2016 - 22nd International Conference on the Theory and

Application of Cryptology and Information Security, Hanoi, Vietnam, December

4-8, 2016, Proceedings, Part II, pages 655–681, 2016

This paper looks into assumptions in composite order groups. Specifically, it builds

upon the déja-q framework of Chase and Meiklejohn [25] in order to expand on

the range of q-type assumptions that can be implied by subgroup hiding. Chase

and Meiklejohn showed how to cover certain decisional target group assumptions

using the framework. The proof techniques involve hybrid jumping between games

using parameter hiding and subgroup hiding, until one arrives at a game which is

statistically impossible. The argument that the final game is statistically impossible

was designed by Chase, and utilises the invertibility of the Vandermonde matrix. All

authors showed how to get tighter bounds at the expense of an extra subgroup. The

author applied a framework by Abe et. al. [26] to show that a number of schemes in

symmetric groups can be converted into asymmmetric groups and thus covered by

our framework.

[21] Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of

knowledge from simulation-extractable SNARKs. In Advances in Cryptology

- CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa

Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, pages 581–612,

2017

This paper introduces a pairing based simulation-extractable SNARK which it proves

to have optimal proof sizes and number of verification equations. This paper is

discussed in detail in Chapter 4. All sections of this paper are joint work, except the

section discussing Square Arithmetic Programs, which is due to Groth.
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[27] Sarah Azouvi, Mary Maller, and Sarah Meiklejohn. Egalitarian society

or benevolent dictatorship: The state of cryptocurrency governance. In 22nd

International Conference on Financial Cryptography and Data Security, 2018

This paper considers concrete methods for measuring the level of decentralisation in

cryptocurrencies. The primary author is Sarah Azouvi who scraped GitHub reposi-

tories to find the number of code contributers and commenters, plotted the graphs,

and calculated their statistical significance. All authors contributed in choosing the

decentrality metrics, in discussing their implications, and in the experiment writeup.

[28] George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An

empirical analysis of anonymity in Zcash. In 27th USENIX Security Symposium,

USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018., pages 463–

477, 2018

This paper looks into the anonymity guarantees in Zcash: it finds that although it

is possible to use Zcash in an anonymous manner, many users have habits that can

be used to deanonymise them. Meiklejohn noticed that non-trivial information was

being leaked through Zcash’s “shielded pool”. Yousaf processed the blockchain data

so that we could run our analysis. All authors helped develop the heuristics. Yousaf

and Meiklejohn calculated the general blockchain statistics and applied clustering

techniques. The author interacted with the exchanges so that we could tag the larger

clusters. Kappos analysed the interations with the shielded pool and spotted a number

of deanonymising patterns, including a method of categorising transactions from the

company’s founders. Yousaf and the author worked on a case study for transactions

related to a hacker collective and the author identified a user that made 3 suspicious

transactions within 3 months.
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[22] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian

Miers. Updatable and universal common reference strings with applications

to zk-SNARKs. In Advances in Cryptology - CRYPTO 2018 - 38th Annual

International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,

2018, Proceedings, Part III, pages 698–728, 2018

This paper introduces the updatability framework and an updatable and universal

zk-SNARK. This paper is discussed in detail in Chapter 6. Kohlweiss proposed

the concept of updatability, which was formalised by Groth, Kohlweiss and Meikle-

john. Kohlweiss and the author considered how the updates would run in practice:

Kohlweiss showed that an adversary that runs all the updates except the setup is

equivalent to an adversary that can run many updates; the author showed that an

adversary that runs updates can extract a trapdoor. Groth spent one (apparently long)

weekend thinking on the problem, and came back with a null-space argument that

was efficient enough for us to compete with non-updatable SNARKs. Groth and

the author formalised this idea and proved it secure in the Knowledge-of-Exponent

model. Miers and Meiklejohn discussed the implications of these results. The author

found a (non-trivial) impossibility result, namely that any updatable scheme cannot

contain hidden polynomials in the structured reference string, and was aided in

formalising it by Kohlweiss and Meiklejohn.

[29] Jonathan Bootle, Andrea Cerulli, Jens Groth, Sune K. Jakobsen, and Mary

Maller. Arya: Nearly linear-time zero-knowledge proofs for correct program

execution. In Advances in Cryptology - ASIACRYPT 2018 - 24th International

Conference on the Theory and Application of Cryptology and Information Secu-

rity, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part I, pages

595–626, 2018

This paper allows for verifiable computation in zero-knowledge without overly large

prover costs. To do this it processes TinyRAM programs into arithmetic circuits
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so that prover efficient techniques by Bootle et al. [30] could be applied. The

primary author was Andrea Cerulli who formalised the types of constraints that need

checking including both memory constraints and instruction constraints defined by

the program. Jakobsen designed a permutation argument for the memory constraints.

Bootle designed and proved secure the protocols that use techniques from [30]. Groth

found a hidden bits argument that could be used to batch the (expensive) boolean

operation checks. Cerulli and the author linked the TinyRAM checks to the relavent

proofs by Bootle by discussing how to commit to the transcript and then how to

apply the subproofs.

[23] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:

Zero-knowledge snarks from linear-size universal and updateable structured

reference strings. IACR Cryptology ePrint Archive, 2019:99, 2019

This paper constructs a zero-knowledge argument with a linear sized structured

reference string, short proofs, and efficient verifier times for batched proofs. This

work is discussed in more detail in Chapter 7. The author was the primary investigator

of this work and was responsible for designing the scheme. Bowe implementated

the scheme, helped debug earlier constructions, and found non-trivial efficiency

improvements such as a way to upload the instance in time that depends only on

the size of the instance. Kohlweiss and the author worked on the security proofs.

Meiklejohn looked into the security definitions and worked jointly with the author in

designing an actor that we call the “helper”.

This work has been significantly improved since the writing of this thesis. Bowe

found substantial improvements to the protocol, including a method to avoid having

proof elements in the second source group, and the author proved that the improved

protocol is secure in the algebraic group model. The author also found a method to

get a fully succinct protocol in the unhelped setting, albeit at the cost of concrete

efficiency. The fully succinct protocol was written up and proven by Bowe and the

author. The improved version of this protocol is accepted at ACM Conference on

Computer and Communications Security 2019.



Chapter 2

Literature Review

In the past decade, there has been an unexplained explosion of practical zero-

knowledge protocols applicable to NP statements. It is difficult to explain the

cause of progress because many of the techniques the community are using have

been around for a considerable time. Nonetheless, we now have a multitude of

practical schemes applicable to a wide selection of languages. In this section we

begin by giving credit to the forefathers and foremothers of zero-knowledge with

a brief historic section. After, we endeaver to explain the trade-offs between some

popular zero-knowledge protocols, and to give an overview of the techniques. We

shall then discuss subversion resistance, i.e. the level of security that can be achieved

when adversaries corrupt the public parameters, due to its importance in this thesis.

We finish by discussing simulation-extractability, again included due to its relevance.

2.1 Historic
The initial concept of zero-knowledge was introduced by Goldwasser, Micali, and

Rackoff in the 1980s [1]. Their original idea considered an interactive proof between

a computationally unbounded prover that has to convince a probabilistic verifier that

an instance is in a language. Brassard et al. [31] suggested a weakening of soundness

and their definition is termed as zero-knowledge arguments [32]; in zero-knowledge

arguments a computationally bounded prover has negligible probability of cheating

a probabilistic verifier. The question then arose as to which NP languages have

zero-knowledge proof systems, to which the satisfying answer is that all of them
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do provided that one way functions exist [31, 33]. A strengthening of the zero-

knowledge concept, called zero-knowledge proofs/arguments of knowledge, was

suggested in [34, 35, 36, 37, 38, 39]. The idea for a proof of knowledge is that the

pure existence of witnesses does not suffice, and the successful prover should know

at least one witness.

Blum, Feldman and Micali introduced non-interactive zero-knowledge (NIZK)

protocols in the common reference string model [40]. This assumes that there are a

set of parameters generated by an honest party that are known to all parties. In 2018

the Zero Knowledge Standards workshop recommended using the terms common

random string (CRS) and structured reference string (SRS) to distinguish between

common reference strings that have structure and ones that do not [41]1. Groth et

al. [42] designed a NIZK for NP in the CRS model from bilinear groups. Groth and

Sahai [43] additionally designed a NIZK for pairing based languages that avoids NP

reductions.

Without a CRS/SRS, Goldreich et al. showed that zero-knowledge arguments

require at least 3 rounds [44]. There are constructions with four rounds such as

[37, 45]. For interactive protocols, Fiat and Shamir [46] demonstrated that the

interaction could be removed in the random oracle model [47]. Their transform

replaces the verifier’s randomness with a hash of the prover’s first message. Using

this transform Schnorr introduced a proof of knowledge of discrete logarithms widely

used in identification protocols today [48]. Fischlin extended their methods to handle

online extractors [49].

2.2 The State of the Art
We shall now compare our work with the state-of-the-art for zero-knowledge proofs.

An efficiency comparison of all the schemes we discuss in this section is provided in

Table 2.1. In Table 2.1 n is the number of gates, d is the depth of the circuit, h is the

width of the subcircuits, c is the number of copies of the subcircuits, ` is the size of

the instance, and w is the size of the witness. For our work we have given the verifier

1In the past sometimes papers make a distinction between URS (uniform random string) and CRS
(common reference string, which may be structured).
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Scheme Runtime Size PQ? Universal? Untrusted setup? Assumptions

Prover Verifier CRS Proof

Hyrax d(hc+ c logc)+w `+d(h+ log(hc))
√

w d log(hc)+
√

w #   DL, ROM
Bulletproofs n log(n) n log(n) n log(n) #   DL, ROM
Ligero n log(n) c log(c)+h log(h) 0

√
n G#   CRHF, ROM

STARKs n polylog(n) polylog(n) 0 log2(n) G#   CRHF, ROM
Bootle et al. [30] n n 0

√
n G#   CRHF, ROM

Baum et. al. [50] n log(n) n
√

n
√

n log(n) G#   SIS, ROM
ZK vSQL n log(c) `+d polylog(n) log(n) d log(c) #  G# q-type, KOE, ROM
SNARKs n log(n) ` n 1 # # # q-type, KOE
Chapter 6 n log(n) ` n2 1 #  G# q-type, KOE
Chapter 7 n log(n) n∗ n 1 #  G# q-type, KOE, ROM

Table 2.1: Asymptotic efficiency comparison of state-of-the-art zero-knowledge arguments.

computation as n∗ to represent that the verifier’s costs can be efficiently batched. We

refer to the works in this thesis by the chapters they appear in: Chapter 6 refers to the

updatable and universal zk-SNARK and Chapter 7 refers to Sonic. Our other work

in Chapter 4 for an SE-SNARK has the same asymtotic efficiency as other SNARKs

in the literature, and is therefore grouped together with SNARKs. An empty circle

denotes that the scheme does not have this property and a full circle denotes that

the scheme does have this property. A half circle for post-quantum security denotes

that the security depends on assumptions which have no known quantum attack, but

that there is no formal proof that a quantum adversary cannot attack the scheme with

other methods. A half circle for untrusted setup denotes that the scheme is updatable.

DL stands for discrete log, CRHF stands for collision-resistant hash functions, ROM

stands for random oracle model, and KOE stands for knowledge-of-exponent.

2.2.1 Quantum Resistant Protocols

Symmetric primitives such as Reed-Solomon codes have recently been gaining

attention for their post-quantum potential, as there are no known quantum attacks

on error-correcting codes and protocols that use them do not require expensive

and trusted pre-processing phases. Schemes that use these techniques [51, 30, 52]

are typically made non-interactive in the random oracle model, as opposed to the

quantum random oracle model, and designing efficient zero-knowledge protocols

in the quantum random oracle model [53] remains an open problem. The codes are

typically cheap to compute for the prover. The downside to this style of proof is that

they require very large circuits before the asymptotics can take effect, because the

constants are relatively large.
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Ligero [51] uses collision resistant hash functions. This work stems from the

“MPC-in-the-head” paradigm [54, 55, 56]. The idea is to model the computation as

being carried out by a multiparty computation, but then have the prover and verifier

simulate multiple parties. A large part of its overhead comes from compiling the

addition gates, and the authors observed that when there are many repetitions of the

same addition gates in the same layer, it is possible to batch the compilation.

Bootle et al. [30] introduce a model that they call the ideal linear commitment

(ILC) model in which a prover can commit to vectors by sending them to a channel,

and a verifier can query the channel on linear combinations of the committed vectors.

They then compile the ILC programs into proofs using an error-correcting code by

Ishai et al. [57] which can be computed in linear time. As a result, they prove the

possibility of zk-proofs that have linear prover overhead.

STARKs [52] look to simultaneously minimise proof size and verifier compu-

tation and they show, with an implementation, that protocols based on interactive

oracle proofs [58] can be practical. Interactive oracle proofs optimise a technique in-

troduced by Kilian [59] which format probabilistically checkable proofs into Merkle

trees. A STARK prover, when applied to a circuit with 227 gates, takes roughly 1

minute to run. However, proof sizes are still over 100KB, even for relatively small

circuits.

Also renowned for its post-quantum potential, lattice based cryptography is a

major research topic, and zero-knowledge protocols from lattice based assumptions

are no exception. These schemes are built from assumptions such as the shortest

integer solution and the closest vector problem. Baum et al. [50] introduced the first

lattice based protocol with sublinear communication costs. They achieve this by

designing a proof of knowledge for committed values using techniques by Cramer et

al. [60]. The proof of knowledge is efficient in the amortised setting. They apply this

proof of knowledge to circuits processed using Bulletproof [61] techniques. As a

result, their verifier time is high. It would be interesting to see whether their verifier

could also be batched if there were a helper available.
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2.2.2 Discrete Logarithm Protocols

Bulletproofs [61, 20] are based on the discrete logarithm problem and have no

trusted setup. The idea is to send a constant sized commitment to a larger vector and

prove (not in zero-knowledge) that the committed vector satisfies verifier’s equation.

They call this construct an inner product argument - it inductively shows that, at

each stage, a new committed vector of half the length satisfies a new equation if

and only if the old committed vector satisfied the old equation. The inner product

argument is logarithmically sized. On the downside the verification computation is

high. Although Bulletproofs lend themselves well to batching, even batched proofs

require a computation per proof that depends on the size of the circuit. For very

small circuits, such as for range proofs, Bulletproofs have the advantage of having

relatively low concrete overhead.

Hyrax [62] is a zero-knowledge protocol that processes circuits using a sum-

check protocol originally introduced from the verifiable computation scheme by

Goldwasser et al [63] and improved by Cormode et al. [64]. It is especially well-

suited to circuits with a high level of parallelisation, such as showing that a committed

value is included in a Merkle tree. Additionally, the protocol is ideal for circuits

with small witnesses. This is because the protocol applies different variants of

the sum-check protocol for instance wires and witness wires. It directly uses a

parallelised sum-check protocol on the instance wires, and thus does not require

the use of (expensive) public key cryptography. For the witness wires, it applies a

zero-knowledge variant of the sum-check protocol. Their sum-check protocol uses an

adaptation of the inner-product argument from Bulletproofs to check multiplication

constraints.

2.2.3 Protocols using Verifiable Polynomial Delegation

Zhang et al.’s [65] zero-knowledge variant of vSQL was originally designed for

handling SQL queries. They also process circuits using techniques by Cormode

et al. [64]. This means that their techniques also have better efficiency for highly

parallelised circuits. Like Sonic, they rely on an adapted polynomial commitment

scheme, which they call a verifiable polynomial delegation scheme. However, rather
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than use our technique of using Kate et al.’s [66] single variant scheme as a base,

they use Papamanthou et al.’s multivariate scheme [67]. The reason this is available

to them is because they can use multivariate polynomials where each variable has

degree 1; for each round of their sum-check protocol, they include one extra variable

in their polynomial equation. For our scheme, there are two variables of degree

O(n), thus Papamanthou et al.’s scheme would result in a quadratic-sized reference

string and quadratic prover computation.

2.2.4 SNARKs

Using knowledge assumptions, it is possible to build zk-SNARKs [68, 2, 69, 70,

71, 72]. These have constant-size proofs and verifier times that depend solely on

the instance. However, they typically use circuit-specific quadratic span programs

or quadratic arithmetic programs [73]. As such the structured reference strings are

neither updatable nor universal [74]. The prover costs for zk-SNARKs are typically

high due to the need for expensive cryptographic operations, although a recent work

has looked into methods to distribute these costs [75].

We give a performance comparison of pairing-based zk-SNARKs (as well as

Sonic) in Table 2.2, comparing the relative size of the SRS, the proof, and the

computation required for the prover and verifier. In this table, there are ` known

circuit inputs, m wires, and n gates; G means group elements in either source

group, F means field elements, Ex means group exponentiations, MG means group

multiplications, MF means field multiplications, and P means pairings. For [76] and

Sonic, d relates to the maximum sized circuit that can be committed to. We compare

Groth’s original zk-SNARK [76], Pinocchio [2], Groth’s 2016 zk-SNARK [76], our

SE-SNARK (Chapter 4), our updatable and universal zk-SNARK (Chapter 6), and

Sonic (Chapter 7). For the QAP-based SNARKs one could use Valiant’s universal

circuit construction [77, 78] to achieve universality but this would introduce a logn

multiplicative overhead to the size of the circuit.



2.3. Subversion Resistance 26

Scheme Runtime Size

Prover Verifier Universal SRS Circuit SRS Proof

Groth [76] (F2) O(n2) Ex 36P+O(n) MG O(n2) G — 42 G
Pinocchio (Fq) n+7m− ` Ex 12P+ ` Ex — n+7m− ` G 8 G
Groth [72] (Fq) 4n+m− ` Ex 3P+ ` Ex — 3n+m G 3 G
Chapter 4 (Fq) m+6n− ` Ex 5P+ ` Ex — m+6n G 3 G
Chapter 6 (Fq) 20n+3m− ` Ex 5P+ ` Ex 42n2 +32n G 23n+3m− ` G 3 G
Chapter 7 (Fq) 24n Ex 24P+ ` Ex +n MF 4d G 6n G 17 G +1 Fq

Table 2.2: Comparison for pairing-based zk-SNARKs for boolean and arithmetic circuit
satisfiability.

2.2.5 Designated Verifier

In the designated verifier setting, i.e. when the verifier holds a secret key unknown to

the prover, one can often achieve results not possible in the publicly verifiable setting

discussed above. Subversion resistance ceases to be a concern because the public

parameters can be output by the verifier. While totally unsuitable for distributed

systems, they are sometimes preferable for applications such as verifiable compu-

tation. Chaidos and Couteau [79] designed a designated verifier NIZK proof of

knowledge in the standard model which covers a wide class of algebraic assumptions,

and which they claim is competitive with NIZKs in the random oracle model. Gen-

naro et al. designed a lattice based zk-SNARK using circuit-specific quadratic span

programs [80] (in fact they use a variant called square span programs introduced

by Danezis et al. [71]). Designing a publically verifiable NIZK in the standard

model from quantum resistant assumptions is to this day an open problem, although

considering this thesis strays so far from both quantum resistant assumptions and the

standard model, it is not one that we shall consider.

2.3 Subversion Resistance
Here we consider works that discuss subversion resistance i.e. works that consider

the consequences of adversaries that can corrupt the generation of the SRS.

Bellare, Fuchsbauer and Scafuro [81] ask what security can be maintained for

NIZK proofs when the SRS is subverted. They formalise the different notions of

subversion resistance and then investigate their possibility. Using similar techniques

to Goldreich et al. [82], they show that soundness in this setting cannot be achieved
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at the same time as (standard) zero-knowledge. Building on the notions of Bellare et

al., two recent papers [83, 84] discuss how to achieve subversion zero-knowledge

for zk-SNARKs. None of these schemes, however, can avoid the impossibility

result and they do not simultaneously preserve soundness and zero-knowledge under

subversion.

The multi-string model by Groth and Ostrovsky [85] addresses the problem of

subversion by designing protocols that require only the majority of the parties con-

tributing multiple reference strings to be honest. Their construction gives statistically

sound proofs but they are of linear size in both the number of reference strings and

the size of the instance.

Two early zk-SNARKs by Groth [76] and Lipmaa [86] do use only monomials

in the reference string, and therefore are updatable and universal. The main drawback

of [76] is that it has a quadratic-sized SRS and quadratic prover computation, but it

has a SRS that consists solely of monomials, and thus is updatable. Lipmaa still has

quadratic prover computation, however he suggests the use of progression-free sets

to construct NIZK arguments with an SRS consisting of nO(1) group elements.

In concurrent work, Bowe et al. [19] propose a two-phase protocol for the

generation of a zk-SNARK reference string that is player-replaceable [87]. Like

our protocol, the first phase of their protocol also computes monomials with parties

operating in a similar one-shot fashion. However, there are important differences.

To create a full SRS which does not have quadratic prover time, Bowe et al. require

a second phase. As one party in each phase must be honest and the second phase

depends on the first, the final SRS is not updatable. There is no way to increase the

number of parties in the first phase after the second phase has started and restarting

the first phase means discarding the participants in the second phase. As a result,

the protocol is a multi-party computation to produce a fixed SRS with a fixed set of

participants, albeit with the set of participants fixed midway through the protocol

instead of at the start.

To discuss the efficiency of generating structured reference strings using either

MPC techniques or our updating techniques we shall considier two security factors:
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the well-formedness of the final reference string; and the inclusion of each of the

players randomness contributions in the final parameters. Ben-Sasson et al. [74]

and subsequently Bowe et al. [88] examined the use of a four round multi-party

computation to generate an SRS, where only one of the participating parties needs

to be honest but the participants must be selected in advance. Their final reference

string contains a linear number of group elements and thus costs linear work to

verify its well-formedness. However, they require that all the players remain online

until the completion of the MPC, which severely limits the number of players that

can be included. Also their proofs that the players randomness was included uses

the Forking Lemma [89] and thus their security proofs only hold when there are a

logarithmic number of players. Bowe et al. [19] improved on these works with a two-

phase protocol that is player replaceable in the sense that the players participating in

the first and second rounds may be different. They can thus support more players.

They require a linear number of proofs of knowledge in the number of players. Our

updating process also contains a linear number of proofs of knowledge in the number

of updaters. The final reference string for Sonic in Chapter 7 contains a linear number

of group elements and thus costs linear work to verify its well-formedness. However,

our zk-SNARK in Chapter 6 requires a quadratic sized global reference string thus

will have quadratic work to verify its well-formeness. Additionally, we require a

derivation process to obtain the circuit specific parameters that depends on Gaussian

elimination.

2.4 Simulation Extractability

Sahai [90] introduced simulation-soundness of NIZK proofs as a notion to capture

that even after seeing simulated proofs it is not possible to create a fake proof for

a false instance unless copying a previous simulated proof. He showed that it is

possible to construct simulation-sound NIZKs from an ordinary NIZKs and one

way functions. Further, he showed that CCA2 encryption can be constructed from

simulation-sound NIZKs.

Combining the notions of simulation soundness and proofs of knowledge,
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Groth [91] defined the stronger security notion that we should be able to extract a

witness from an adversary that creates a valid new proof, even if this adversary has

seen many simulated proofs for arbitrary instances. He then showed how to adapt

Groth-Sahai proofs to be simulation-extractable in the standard model. Groth-Sahai

proofs are built over pairing based languages, therefore the witnesses extracted are

group elements. In the quasi-adaptive setting (i.e. when there is a relation dependent

SRS) where the pairing based languages have no quadratic component, Libert et

al. [92] provided a constant sized simulation-sound NIZK that is secure in the quasi-

adaptive setting and Abe et al. provided a simulation-sound NIZK with an (almost)

tight reduction to SXDH [93].

Faust, Kohlweiss, Marson, and Venturi discuss how to achieve simulation

soundness in the random oracle model [94]. It would be interesting to see whether

their techniques could be adapted to prove the simulation-extractability of Sonic in

Chapter 7. Bowe et al. [95] published a follow up paper to our SE-SNARK which

demonstrates how to adapt Groth’s zk-SNARK [72] to be simulation-extractable

in the random oracle model. They require 5 proof elements (2 more than us),

however they claim that their prover is more efficient because it requires a smaller

multi-exponentiation for the proof element in the second source group2.

2Asymmetric bilinear groups have two source groups, and current implementations have more
efficient operations in the first source group than the second.



Chapter 3

Background and Definitions

In this Chapter, we introduce definitions which are relevant to this thesis, such

as subversion zero-knowledge, updatable knowledge soundness, and simulation

extractability. We discuss the notation for linear non-interactive proofs which is

used in Chapter 5 when proving constraints on the format of updatable SRSs. Once

our definitions have been specified, we discuss the assumptions that are used in this

thesis. These are all either knowledge-of-exponent assumptions or computational

q-type assumptions. Our simulation extractable zk-SNARK in Chapter 4 requires

the strongest assumptions, and our Sonic construction in Chapter 7 requires the

weakest assumptions (albeit Sonic is in the random oracle model). The final part

of this chapter aims to provide some indication about how computational problems

are specified in this thesis. All protocols are built on top of arithmetic circuits with

fan-in 2 gates. We provide an example of such an arithmetic circuit, namely one for

proving that given y,s,a,b ∈ F, the prover possesses knowledge of a fourth value v

such that y = asbv.

3.0.1 Notation

If x is a binary string then |x| denotes its bit length. If S is a finite set then |S| denotes

its size and x $←− S denotes sampling a member uniformly from S and assigning it

to x. We use λ ∈ N to denote the security parameter and 1λ to denote its unary

representation. We use ε to denote the empty string.

Algorithms are randomized unless explicitly noted otherwise. “PPT” stands

for “probabilistic polynomial time” and “DPT” stands for “deterministic polynomial
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time.” We use y←A (x;r) to denote running algorithm A on inputs x and random

coins r and assigning its output to y. We write y $←− A (x) or y r←− A (x) (when

we want to refer to r later on). To specify that a randomised algorithm runs with

randomness r we write y←A (·;r).

We use code-based games in security definitions and proofs [96]. A game

SecA (λ ), played with respect to a security notion Sec and adversary A , has a main

procedure whose output is the output of the game. The notation Pr[SecA (λ )] is used

to denote the probability that this output is 1.

Matrix Notation: We denote matrices by capital letters M̂ and column vectors by xxx.

We use the typical notation M̂xxx for matrix multiplication, xxx◦ yyy for an element-wise

vector product, and xxx · yyy for a dot product. We use M̂i, j to denote the entry in the

i-th row and j-th column of M̂. When indexing matrices in a list, we denote the jth

matrix by M̂ j.

3.0.2 Bilinear Groups

All constructions in this thesis are built on top of bilinear groups. Let BGen(1λ ) be

a bilinear group generator1 that given the security parameter 1λ produces bilinear

parameters bp = (p,G1,G2,GT ,e,g,h): G1, G2 and GT are groups whose order

is divisible by p with generators g ∈ G1, h ∈ G2; e : G1×G2 → GT is a non-

degenerative bilinear map. That is, e(ga,hb) = e(g,h)ab for all field elements a,b

and e(g,h) generates GT .

We further require our bilinear group generator to produce what Galbraith,

Paterson and Smart [97] classify as Type III bilinear groups, such that no efficiently

computable homomorphism exists between G1 and G2. These are currently the most

efficient bilinear groups.

3.1 Definitions
In this section, we give the definitions relevant to updatable SRS schemes, in terms

of defining properties of zero-knowledge proofs in the case in which the adversary

1Often the cryptographic literature allows for probabilistic bilinear group generation, but for
our purpose it is useful to have deterministic parameter generation that cannot be influenced by the
adversary.
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may subvert or participate in the generation of the reference string. We also provide

definitions of simulation extractability, which is a stronger notion of soundness for

when adversaries can see proofs that they did not generate themselves. Given that

our protocol in Chapter 7 is interactive (but made non-interactive in the random

oracle model), we also present definitions for interactive protocols that take into

account these alternative methods of SRS generation. The definitions of updatability

and subversion zero-knowledge are not the authors own, but a joint effort between

Groth, Kohlweiss and Meiklejohn. The definition of subversion zero-knowledge is

motivated by Bellare et al. [81]. They are included for completeness.

3.1.1 SRS Correctness

Intuitively, the subvertible SRS model [81] allows the adversary to fully generate

the reference string itself, and the updatable SRS model [22] allows the adversary

to partially contribute to its generation by performing some update. Formally, an

updatable SRS scheme is defined by two PPT algorithms Setup and Update, and a

DPT algorithm VerifySRS. These behave as follows:

• (srs,ρ)
$←− Setup(1λ ) takes as input the security parameter and returns an

SRS and a proof of its correctness.

• (srs′,ρ ′)
$←− Update(1λ ,srs,(ρi)

n
i=1) takes as input the security parameter,

an SRS, and a list of update proofs. It outputs an updated SRS and a proof of

the correctness of the update.

• b← VerifySRS(1λ ,srs,(ρi)
n
i=1) takes as input the security parameter, an SRS,

and a list of proofs. It outputs a bit indicating acceptance (b = 1), or rejection

(b = 0).

Definition 3.1.1 (Correctness). An updatable SRS scheme is perfectly correct if

Pr
[
(srs,ρ)

$←− Setup(1λ ) : VerifySRS(1λ ,srs,ρ) = 1
]
= 1,
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and for all (λ ,srs,(ρi)
n
i=1) such that VerifySRS(1λ ,srs,(ρ)n

i=1) = 1, we have that

Pr

 (srs′,ρn+1)
$←− Update(1λ ,srs,(ρi)

n
i=1) :

VerifySRS(1λ ,srs′,(ρ)n+1
i=1 ) = 1

= 1.

3.1.2 NIZK Arguments

A non-interactive zero-knowledge (NIZK) argument for a relation R is defined by

PPT algorithms Setup, Prove, and a DPT algorithm Verify. These behave as follows:

• srs
$←− Setup(R) takes as input a relation R and outputs an SRS.

• π
$←− Prove(srs,φ ,w) takes as input an SRS, and an instance and witness

included in the relation (φ ,w) ∈ R. It outputs a proof.

• b←Verify(srs,φ ,π) takes as input an SRS, an instance and a proof. It outputs

a bit indicating acceptance (b = 1), or rejection (b = 0).

An updatable non-interactive zero-knowledge (NIZK) argument for a relation R a

NIZK scheme together with an updatable SRS scheme, so that both schemes have

the same setup algorithm.

3.1.3 Subversion Zero-Knowledge

In terms of the usage of these SRSs in NIZK arguments, it is known that a proto-

col cannot satisfy both zero-knowledge and subvertible soundness [81]. That is,

assuming the adversary knows all the randomness used to generate the SRS, then

they can either break zero-knowledge or they can break soundness. We thus recall

here the two strongest properties we can hope to satisfy, which are subvertible zero-

knowledge and updatable knowledge soundness. The definitions of these properties

are simplified versions of the ones given by Groth et al. [22], with the addition of

a random oracle H (which behaves as expected if the scheme is in the ROM and

returns ⊥ to any query if the scheme is not in the ROM).

Definition 3.1.2 (Subversion Zero-Knowledge). An updatable NIZK argument for

the relation R is subversion zero-knowledge if for all probabilistic polynomial time
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(PPT) algorithms A , there exists a PPT simulator SimProve such that the advantage

|2Pr[S-ZKA (1λ ) = 1]−1| is negligible in λ , where this game is defined as follows:

main S-ZKA (λ )

b $←− {0,1}

(srs,(ρi)
n
i=1)

r←−A H(1λ )

if VerifySRS(1λ ,srs,(ρi)
n
i=1) = 0 :

b′ $←− {0,1}

else b′←A H,Opf (r)

return b′ = b

Opf(φ ,w)

if (φ ,w) 6∈ R return ⊥

if b = 0 :

return SimProve(srs,r,φ)

if b = 1 :

return Prove(srs,φ ,w)

3.1.4 Updatable Knowledge Soundness

We model updatable knowledge soundness as a game in which the adversary attempts

to find a verifying proof, and they win if the extractor cannot use their transcript

to output a valid witness. The adversay can influence the generation of the SRS,

however at least one party that the adversary does not control must also influence

the generation of the SRS. The final SRS can only be assigned through the call to an

oracle. This oracle can perform three tasks: it can setup a local SRS, it can update

a local SRS, and it can assign the final SRS. It will only assign the final SRS if the

adversary can also provide a verifying string of update proofs such that at least one

of the proofs is one of the oracles responses.

Definition 3.1.3 (Updatable Knowledge Soundness). A NIZK argument for the

relation R is updatable knowledge sound if for all PPT algorithms A there exists a

PPT extractor XA such that the probability Pr[U-KSNDA ,X (1λ ) is negligible in λ ,

where this game is defined as follows:
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main U-KSNDA ,X (λ )

srs←⊥, Q← /0

(φ ,π)
r←−A U-Os(1λ )

w $←−X (srs,r)

return Verify(srs,φ ,π) ∧ (φ ,w) 6∈ R

U-Os(intent,srsn,(ρi)
n
i=1)

if srs 6=⊥ return ⊥

if intent = setup

(srs′,ρ ′)
$←− Setup(1λ )

Q← Q∪{ρ ′}

return (srs′,ρ ′)

if intent = update

b← VerifySRS(1λ ,srsn,(ρi)
n
i=1)

if b = 0 return ⊥

(srs′,ρ ′)
$←− Update(1λ ,srsn,(ρi)

n
i=1)

Q← Q∪{ρ ′}

return (srs′,ρ ′)

if intent = final

b← VerifySRS(1λ ,srsn,(ρi)
n
i=1)

if b = 0 or Q∩{ρi}n
i=1 = /0 return ⊥

srs← srsn

return srs

else return ⊥

3.1.5 Updatable Witness-Extended Emulation

For soundness, we require interactive security definitions. In the arguments we

consider a prover P and a verifier V, both of which are PPT interactive arguments.

The view of the transcript produced by P and V when interacting on inputs s and t is

denoted by view← 〈P∗(s),V(t)〉.

For zero knowledge, we do not need an interactive variant of the security

definitions, as we can argue for the non-interactive definition directly. This is because

the simulator does not program the random oracle, it instead uses the trapdoor in the

SRS. For soundness, the extractor uses only a weak form of programmability, namely

it assumes that if it calls the oracle on the same input, it will receive a different

output (with high probability). To obtain a non-interactive protocol, we apply the

Fiat-Shamir heuristic i.e. the verifiers messages are obtained as a hash the provers

messages and we assume that the hash outputs are indistinguishable from random.

We do not use the standard definition of special soundness because our verifier
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provides two challenges, but rather the generalized notion of witness-extended

emulation [39]. In particular, we adapt the definition given by Bootle et al. [61] as

follows:

Definition 3.1.4 (Updatable Witness-Extended Emulation). An argument for the

relation R satisfies updatable witness-extended emulation if for all DPT P∗ and for

all PPT algorithms A there exists an expected PPT emulator E such that:

Pr


(srs1,ρ1)

$←− Setup(1λ ); (srs,(ρi)
n
i=2,φ ,w)

$←−A (srs1,ρ1);

view← 〈P∗(srs,φ ,w),V(srs,φ)〉 :

VerifySRS(1λ ,srs,(ρi)
n
i=1) ∧ A (view) = 1

≈

Pr


(srs1,ρ1)

$←− Setup(1λ ); (srs,(ρi)
n
i=2,φ ,w)

$←−A (srs1,ρ1)

(view,w)← E 〈P
∗(srs,φ ,w),V(srs,φ)〉 :

VerifySRS(1λ ,srs,(ρi)
n
i=1) ∧ A (view) = 1

∧ if view is accepting then (φ ,w) ∈ R


where the oracle called by E 〈P

∗(srs,φ ,w),V(srs,φ)〉 permits rewinding to a specific

point and resuming with fresh randomness for the verifier from this point onwards.

This definition uses a slightly different setup from the one in [22]: rather than

interact arbitrarily with an update oracle to set the SRS, the adversary is instead given

an initial one and is then allowed to update that in a one-shot fashion. Kohlweiss

showed in [22, Lemma 6] that these two definitions are equivalent for the setup for

Sonic, so we opt for the simpler one.

3.1.6 Simulation Extractability

Zero-knowledge and soundness are core security properties of NIZK arguments.

However, it is conceivable that an adversary that sees a simulated proof might modify

the proof into another proof whether or not they know a witness. This scenario is

actually very common in security proofs for cryptographic schemes, so it is often

desirable to have some form of non-malleability that prevents cheating in the presence

of simulated proofs. Traditionally, simulation extractability is defined with respect to

an extraction key associated with the reference string that allows the extraction of a
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witness from a valid proof. However, in succinct NIZK arguments the proofs are too

small to encode the full witness. We therefore instead define simulation extractable

NIZK arguments using a non-black-box extractor that can deduce the witness from

the internal data of the adversary.

Definition 3.1.5 (Simulation Extractability). A NIZK argument for the relation R

satisfies simulation extractability if for all PPT algorithms A , there exists a PPT

extractor X such that the probability Pr[SE-KSNDA ,X (1λ )] is negligible in λ ,

where this game is defined as follows:

main SE-KSNDA ,X (λ )

srs
τ←− Setup(R)

Q← /0

(φ ,π)
r←−A OSimProve(1λ )

w $←−X (srs,r)

return Verify(srs,φ ,π) ∧ (φ ,π) 6∈ Q ∧ (φ ,w) 6∈ R

OSimProve(φ)

π ← SimProve(srs,τ,φ)

Q← Q∪{φ ,π}

return π

We observe that simulation extractability implies knowledge soundness, since

knowledge soundness corresponds to simulation extractability where the adversary

is not allowed to use the simulation oracle.

3.1.7 Linear Interative Proofs

We use Bitansky et al.’s [69] framework for Linear Interactive Proofs (LIP’s) with

Groth’s [72] extension to Non-Interactive Linear Proofs (NILP’s) in arguing our

results about the format of updatable SRSs. LIPs and NILPs work over finite fields

and the prover’s and verifier’s messages consist of vectors of field elements. The

prover’s messages are computed using only linear operations. Our NILP models the

updater as an algorithm that can only compute messages using linear operations and

is defined as follows:

• (σσσ ,ρ)
τττ←− Setup(1λ ): The setup generates a random vector τττ in Fq and returns

σσσ ← f (τττ) for a fixed polynomial f (X1, . . . ,Xq) ∈ F[X1, . . . ,Xq]. It returns the

SRS σσσ and a proof of correctness ρ .
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• (σσσ ′,ρ ′)
$←− Update(1λ ,σσσ ,(ρi)

n
i=1): The updater begins by running Û T̂←−

UpdateMatrix(1λ ), where UpdateMatrix is a probabilistic algorithm that out-

puts a matrix. We require that Setup(1λ ; T̂ τττ) = (σσσ ′, ·). Then it computes

the update as σσσ ′ = Ûσσσ . It outputs an updated SRS σσσ ′ and a proof of the

correctness ρ ′ of the update.

• πππ
$←− Prove(R,σσσ ,φ ,w): The prover runs P̂ $←− ProveMatrix(R,φ ,w) where

ProveMatrix is a probabilistic algorithm that outputs a matrix. Then it outputs

πππ ← P̂σσσ . It returns πππ .

• 0/1 $←−Verify(R,σσσ ,φ ,πππ): The verifier runs a DPT algorithm ttt(X1, . . . ,Xq+`)←

Test(R,φ) to get a vector of multi-variate polynomials. It returns 1 if

ttt(σσσ ,πππ) = 000 and 0 otherwise.

We consider a NILP to be pairing based when the verifier’s testing polynomial

outputs a vector with maximum degree 2.

3.1.8 Disclosure Freeness

We require that the prover learns no useful information from the reference strings.

Like Groth [72] we argue that this scenario is achieved by a disclosure free reference

string, i.e. if an adversary outputs a polynomial and afterwards the setup outputs two

reference strings, then the probability that the polynomial evaluates to zero on one

string but not the other is negligible.

Definition 3.1.6 (Disclosure Free). A NILP is disclosure free if for all adversariers

A we have that

Pr

 fff (X1, . . . ,Xq)
$←−A (1λ ); (σσσ1,ρ1),(σσσ2,ρ2)

$←− Setup(1λ ) :

fff (σσσ1) = 000 if and only if fff (σσσ2) = 000

≈ 1

3.2 Assumptions
Like all other constant-sized NIZK schemes in the literature, we use so-called

“knowledge-of-exponent” assumptions. These are non-falsifiable in the sense that

proving them false would require proving the non-existence of an extractor. It remains
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an interesting open question as to whether it is possible to build constant-sized NIZKs

from more standard assumptions in the random oracle model, and indeed Bitansky et

al. [98] demonstrated that this problem is equivalent to the construction of extractable

collision-resistant hash functions.

3.2.1 Knowledge of Exponent Assumptions

The knowledge of exponent assumption (KEA) introduced by Damgård [99] assumes

that given group elements g1,g2 = gα
1 it is infeasible to create A,B such that B = Aα

without knowing an exponent c such that A = gc
1 and B = gc

2. Bellare and Pala-

cio [100] extended this to the KEA3 assumption, which says that given g,gα ,gs,gαs

it is infeasible to create A,Aα without knowing c0,c1 such that A = gc0(gs)c1 . This

assumption has also been used in symmetric bilinear groups by Abe and Fehr [101],

who called it the extended knowledge-of-exponent assumption. The bilinear knowl-

edge of exponent assumption (B-KEA), which Abdolmaleki et al. [83] refer to as

the BDH-KE assumption, generalizes further to asymmetric groups. It states that

it is infeasible to compute A,B such that e(A,h) = e(g,B) without knowing s such

that (A,B) = (gs,hs). It corresponds to the special case of q = 0 of the q-power

knowledge of exponent (q-PKE) assumption which we specify later.

Our strongest knowledge assumption is the extended power knowledge of

exponent (XPKE) assumption, which we use to prove our SE-SNARK secure in

Chapter 4. We consider an adversary with access to source group elements whose

discrete logarithms are polynomials evaluated on secret random variables. The

assumption says that the only way the adversary can produce group elements in the

two source groups with matching discrete logarithms, i.e., ga ∈G1 and ha ∈G2, is

if it knows a linear combination of polynomials that evaluates to a. We assume that

g,h are generators of G1 and G2 respectively (the assumption still holds if G1 =G2,

provided the generators are sampled independently).

Assumption 3.2.1 ((d,q)-XPKE). Let A be an adversary and let X be an extractor.

Define the advantage AdvXPKEBGen,d(λ ),q(λ ),A ,XA
(λ ) = Pr[XPKEBGen,d(λ ),q(λ ),A ,X (λ )]

where XPKEBGen,d(λ ),q(λ ),A ,X is defined as below.
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main XPKEBGen,d(λ ),q(λ ),A ,X (λ )

bp← BGen(1λ );

xxx← Zq
p; Q← /0

(ga,hb)
r←−A O1, O2

(bp)

ηηη ∈ Z|Q|p
$←−X (bp;r);

return 1 if a = b and b 6= ∑b j∈Q η jb j(xxx)

else return 0

O1(ai(X1, . . . ,Xq)) O2(b j(X1, . . . ,Xq))

assert deg(ai)≤ d assert deg(b j)≤ d

return gai(xxx) Q = Q∪{b j}

return hb j(xxx)

The (d(λ ),q(λ ))-XPKE assumption holds relative to BGen if for all non-uniform

PPT adversaries A , there exists a non-uniform PPT algorithm X such that

AdvXPKEBGen,d(λ ),q(λ ),A ,X is negligible in λ .

In proving our updatable zk-SNARK secure in Chapter 6, we can weaken

this assumption slightly in the sense that the adversary gets access to source group

elements that have discrete logarithms that are monomials, as opposed to polynomials,

evaluated on secret random variables.

Assumption 3.2.2 ((d,q)-MKE). Let A be an adversary and let X be an ex-

tractor. Define AdvMKE
BGen,d(λ ),q(λ ),A ,XA

(λ ) = Pr[MKEBGen,d(λ ),q(λ ),A ,X (λ )] where

MKEBGen,d(λ ),q(λ ),A ,X is defined as below.
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main MKEBGen,d(λ ),q(λ ),A ,X (λ )

bp← BGen(1λ );

xxx← Zq
p; Q← /0

(ga,hb)
r←−A O1, O2

(bp)

ηηη ∈ Z|Q|p
$←−X (bp,r);

return 1 if a = b and b 6= ∑b j∈Q2 η jb j(xxx)

else return 0

O1(ai(X1, . . . ,Xq)) O2(b j(X1, . . . ,Xq))

assert ai is a monomial assert bi is a monomial

assert deg(ai)≤ d assert deg(b j)≤ d

return gai(xxx) Q = Q∪{b j}

return hb j(xxx)

The (d(λ ),q(λ ))-MKE assumption holds relative to BGen if for all non-uniform

PPT adversaries A , there exists a non-uniform PPT algorithm X such that

AdvMKE
BGen,d(λ ),q(λ ),A ,X is negligible in λ .

Our Sonic construction in Chapter 7 uses our weakest extractor assumption; we

require the q-power knowledge of exponent assumption introduced by Groth [102].

Assumption 3.2.3 (q-PKE assumption). Let A be an adversary and let X

be an extractor. Define AdvPKEBGen,q(λ ),A ,X (λ ) = Pr[PKEBGen,q(λ ),A ,X (λ )] where

PKEBGen,q(λ ),A ,X is defined as below.

main PKEBGen,q(λ ),A ,X (λ )

bp← BGen(1λ );

α,x $←− Zp;

(ga,hb)
r←−A (bp,{gxi

,gαxi
,hxi

,hαxi}q
i=−q)

(aaa,bbb)←X (bp,{gxi
,gαxi

,hxi
,hαxi}q

i=−q,r)

return 1 if a = b and b 6= ∑
q
i=−q aixi +biαxi

else return 0
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The q(λ )-PKE assumption holds relative to BGen if for all non-uniform PPT adver-

saries A , there exists a non-uniform PPT extractor X such that AdvPKEBGen,q(λ ),A ,X

is negligible in λ .

Plausibility of the assumptions: To be plausible an assumption should not be trivial

to break using generic group operations. There are various ways to formalize generic

group models that restrict the adversary to such operations [103, 104, 105]. Using the

framework from [106] it is easy to show that each of these knowledge assumptions

hold in the generic group model. Our assumptions are proven in asymmetric bilinear

groups only.

3.2.2 Computational Assumptions

In addition to the knowledge of exponent assumptions, our security depends on a

number of computational q-type assumptions that are secure in the generic group

model.

Our strongest computational assumption is the computational polynomial as-

sumption (Poly) used to prove our SE-SNARK secure. The Poly assumption is related

to the d-linear assumption of Escala, Herold, Kiltz, Ràfols and Villar [107]. In the

univariate case, the Poly assumption says that for any g ∈G∗1, given ga1(x), . . . ,gam(x),

an adversary cannot compute ga(x) for a polynomial g that is linearly independent

from a1, . . . ,am - even if it knows ha(x) for h ∈G∗2.

Assumption 3.2.4 ((d,q)-Poly). Let A be a PPT algorithm, and define

the advantage AdvPolyBGen,d(λ ),q(λ ),A (λ ) = Pr[MonoBGen,d(λ ),q(λ ),A (λ )] where

PolyBGen,d(λ ),q(λ ),A is defined below.
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main PolyBGen,d(λ ),q(λ ),A (λ )

bp← BGen(1λ );

xxx← Zq
p; Q← /0

(ga,a(X1, . . . ,Xq))
$←−A O1, O2

(bp)

return 1 if a = a(xxx) and a(X1, . . . ,Xq) /∈ span{Q}

else return 0

O1(ai(X1, . . . ,Xq)) O2(b j(X1, . . . ,Xq))

assert deg(ai)≤ d assert deg(b j)≤ d

Q← Q∪{ai} return hb j(xxx)

return gai(xxx)

The (d(λ ),q(λ ))-Poly assumption holds relative to BGen if for all non-uniform PPT

adversaries A we have AdvPolyBGen,d(λ ),q(λ ),A is negligible in λ .

In proving our updatable zk-SNARK secure in Chapter 6, we can weaken

this assumption slightly in the sense that the adversary gets access to source group

elements that have discrete logarithms that are monomials, as opposed to polynomials,

evaluated on secret random variables. The following multivariate computational

assumption is closely related to the univariate q-bilinear gap assumption of Ghadafi

and Groth [108].

Assumption 3.2.5 ((d,q)-Mono). Let A be a PPT algorithm, and define

the advantage AdvMono
BGen,d(λ ),q(λ ),A (λ ) = Pr[MonoBGen,d(λ ),q(λ ),A (λ )] where

MonoBGen,d(λ ),q(λ ),A is defined below.
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main MonoBGen,d(λ ),q(λ ),A (λ )

bp← BGen(1λ );

xxx← Zq
p; Q← /0

(ga,a(X1, . . . ,Xq))
$←−A O1, O2

(bp)

return 1 if a = a(xxx) and a(X1, . . . ,Xq) /∈ span{Q}

else return 0

O1(ai(X1, . . . ,Xq)) O2(b j(X1, . . . ,Xq))

assert ai is a monomial assert b j is a monomial

assert deg(ai)≤ d assert deg(b j)≤ d

Q← Q∪{ai} return hb j(xxx)

return gai(xxx)

The (d(λ ),q(λ ))-Mono assumption holds relative to BGen if for all non-uniform

PPT adversaries A we have AdvMono
BGen,d(λ ),q(λ ),A is negligible in λ .

Our Sonic construction in Chapter 7 also depends on a weakening of the Mono

assumption. This assumption states that the adversary cannot compute f (x)
α

in the

target group. We call it the q-Bilinear Target Polynomial Fraction assumption

(q-BTPF).

Assumption 3.2.6 (q-BTPF). Let A be a PPT algorithm, and define the advantage

AdvBTPFBGen,q(λ ),A (λ ) = Pr[BTPFBGen,q(λ ),A (λ )] where BTPFBGen,q(λ ),A is defined

below.

main BTPFBGen,q(λ ),A (λ )

bp← BGen(1λ )

x $←− Zp;Q← /0

(T, f (X))←A
(

bp,{gxi
,gαxi

,hxi
,hαxi}q

i=−q

)
return 1 if T = e(g,h)

f (x)
α ∧ f (X) 6= 0∧deg( f (X))≤ q

else return 0

The (q(λ ))-BTPF assumption holds relative to BGen if for all non-uniform PPT

adversaries A we have AdvBTPFBGen,q(λ ),A is negligible in λ .
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The remaining assumptions provided in this section are all weaker computa-

tional assumptions that are used to prove our Sonic construction secure.

Ghadafi and Groth [108] showed that a large class of computation assumptions

in bilinear groups are implied by the q-bilinear generalised Diffie-Hellman Exponent

(q-BGDHE) assumption. We use their results to base the security of our scheme on

their assumption. The assumption we provide is a slight strengthening: we give all

powers of x in both groups, but we do not give αxq in the first group, and this is the

component that the adversary is required to compute.

Assumption 3.2.7 (q-BGDHE). Let A be a PPT algorithm, and define the advan-

tage AdvBGDHEBGen,q(λ ),A (λ ) = Pr[BGDHEBGen,q(λ ),A (λ )] where BGDHEBGen,q(λ ),A is

defined below.

main BGDHEBGen,q(λ ),A (λ )

bp← BGen(1λ )

x $←− Zp; Q← /0

A←A (bp,{gxi
,hxi}2q

i=0,{gαxi
,hαxi}2q

i=0,i 6=q)

return 1 if A = gαxq

else return 0

The (q(λ ))-BGDHE assumption holds relative to BGen if for all non-uniform PPT

adversaries A we have AdvBGDHEBGen,q(λ ),A is negligible in λ .

Our next assumption is an adaptation of the q-SDH assumption due to Boneh

and Boyen [109] which we call the q Bilinear Generalised Strong Diffie-Hellman

(q-BGSDH) assumption. We require the assumption to hold in bilinear groups and we

additionally give the adversary the negative powers of x. We justify this assumption

in the generic group model.

Assumption 3.2.8 (q-BGSDH). Let A be a PPT algorithm, and define the advan-

tage AdvBGSDHBGen,q(λ ),A (λ ) = Pr[BGSDHBGen,q(λ ),A (λ )] where BGSDHBGen,q(λ ),A is

defined below.
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main BGSDHBGen,q(λ ),A (λ )

bp← BGen(1λ )

x $←− Zp; Q← /0

(A,c)←A (bp,{gxi
,gαxi

,hxi
,hαxi}q

i=−q)

return 1 if A = g
α

x+c ∧ c 6= 0

else return 0

The (q(λ ))-BGSDH assumption holds relative to BGen if for all non-uniform PPT

adversaries A we have AdvBGSDHBGen,q(λ ),A is negligible in λ .

Since it does not trivially hold, we prove the q-BGSDH assumption in the

generic group model.

Lemma 3.2.9. The q-BGSDH assumption holds in the generic group model.

Proof. Suppose that an adversary outputs g
α

x+c ,c. Then there exists an extractor that

outputs a−q . . .aq such that

a−qX−q + . . .+aqXq =
1

X + c

implying that

ca−qX−q +(a−q + ca−q+1)X−q+1 + . . .+(a−1 + ca0)

+ . . .+(aq−1 + caqXq)+aqXq+1 = 1.

Then aq = 0, which implies that aq−1 = 0, which implies that aq−2 = 0. Continuing

in this fashion we get that aq, . . . ,a0 = 0. Thus a−1 = 1. Also, ca−q = 0 and since

c 6= 0, a−q = 0. This implies that a−q+1 = 0, which implies that aq+2 = 0. Continuing

in this fashion we get that a−q, . . . ,a−1 = 0, contradicting our previous result that

a−1 = 1.

3.3 Arithmetic Circuits
Arithmetic circuits are a means to describe computations that consist solely of field

additions and multiplications. An arithmetic circuit is described over a field F and
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consists of gates connected together by wires. The gates specify an operation (either

addition or multiplication) and the wires contain values in F. We say that the gates

are fan-in 2, meaning that each gate has two wires leading into it. Each gate has a

left input wire and a right input wire leading into it, and an output wire leading from

it. The circuit can have split wires i.e. the same wire leads into multiple gates. The

circuit is satisfied if for every gate, the operation applied to the input wires is equal

to the output wire.

Any NP relation can be described with a family of arithmetic circuits that

decide which statement and witness pairs are included. In a relation described by an

arithmetic circuit, an instance is defined by a value assignment to ` fixed input/output

wires. The witness is the values of the remaining m−` wires such that the arithmetic

circuit is satisfied. For example, to encode a relation x2− y2 = 1, The circuit would

split the first wire a1. It would use a1 as both a left input and a right input into a

multiplication gate to get the output wire a2. The circuit would also split the third

wire a3. and would use it as both a left input and a right input into a multiplication

gate to get the output wire a4. Finally, the circuit would use a2 and a4 as inputs into

an addition gate to get the output wire a5. If a5 = 1 then the circuit is satisfied.

As an example, consider the arithmetic circuit in Figure 3.1. It checks that a

value is equal to asbv for known s and unknown v. This problem is used to prove

ownership of a coin in Zerocoin [110]. The blue values are known inputs/outputs

and the red values are unknown inputs/outputs. In this circuit, the instance is always

the same except for the last input wire as. The red values should not be revealed

from a zero-knowledge proof. First the value v is decomposed into its binary form

v = ∑
N−1
i=0 vi2i. The bits vi are used as input to the circuit. Arithmetic circuits accept

field elements as opposed to bits, thus we check that each of the bits vi are equal to 0

or 1 by checking that vi(vi−1) = 0. For each vi, we then find bvi2i
by calculating

vi(b2i−1)+1. Observe that this value is equal to 1 when vi = 0 and b2i
when vi = 1.

Further observe that b0×2i
= 1 and that b1×2i

= b2i
. By multiplying these values

together we get b∑
N−1
i=0 vi2i

which equals bv. Finally we multiply the result bv by as to

get our final output.
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Figure 3.1: Arithmetic circuit for calculating asbv where a,b,s are known and v is unknown.



Chapter 4

Snarky Signatures

This chapter presents a simulation-extractable SNARK published at Crypto 2017 [21]

together with Jens Groth. The security of the construction in [21] relies upon not

giving the generator of the first source group, which is implicitly possible because the

setup algorithm can scale the generators with hidden randomness. In this thesis the

generators are explicitly given and scaled, which should help avoid mistakes at the

implementation level. New to this thesis is an algorithm for verifying the structure

of the reference string output by the setup, which is used to prove subversion zero-

knowledge. The construction is not updatable, indeed it is demonstrated how the

monomial extractor from Chapter 5 could be used to break security if an update

algorithm existed.

4.1 Our Techniques
Our SE-SNARK takes inspitation from that of Groth [72], which itself optimises

standard techniques for building SE-SNARKs. First, there is a trusted party that

outputs a relation specific SRS. Then the prover outputs an instance and a proof

consisting of group elements. Then the verifier checks that the proof satisfies a

pairing equation determined by the instance; the prover can only find verifying group

elements if it knows a witness to the instance.

Let us provide some intuition as to why pairing-based zk-SNARKs are, typically

speaking, not simulation-extractable. The problem is that an adversary that sees a

proof is often able to modify it into a different proof for the same instance. Such
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modifications do not violate standard zk-SNARKs, however, for SE-SNARKs an

adversary may request a simulated proof for a false instance, and then modify it into

a different proof for the same false instance, which breaks simulation-extractability.

In the case of Groth’s zk-SNARK, suppose for an instance φ that (A,B,C)

are three group elements in a proof that satisfy the verification equations. The

verification equation is then given by

e(A,B) = e(gα ,hβ )e(g f (φ),h)e(C,hδ ) (4.1)

for a known polynomial f in φ and some secret α,β ,δ .

There are two methods to generically randomise a proof A,B,C that satisfy

(4.1). An adversary can either set

A′ = Ar; B′ = B
1
r ; C′ =C

or they can set

A′ = A; B′ = Bhrδ ; C′ = ArC

for any field element r.

To neutralise the first attack we add the verification equation

e(A,h) = e(g,B).

However this still leaves the case where r = −1. So we further take the elements

gαδ ,hβδ into the quadratic constraint i.e. rather than using e(A,B) in the verification

equation we use e(Agαδ ,Bhβδ ).

To neutralise the second attack our SRS is designed to contain hδ , gγδ and hγδ

but not gδ . That way, if the adversary sets B′ = Bhrδ , then the only possible value

for A′ is Agrδ (which the adversary cannot compute). This is a simplication of the

attack - in the full proof we are concerned about B′ = Bhψ(τ)δ for ψ a polynomial in

the trapdoor.
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4.1.1 Square Arithmetic Programs

Formally, we will be working with square arithmetic programs R that have the

following description

R = (bp, `,{ui(X),wi(X)}m
i=0, t(X)) ,

where the bilinear group defines the finite field Zp we will be working over, 1≤ `≤m,

ui(X),wi(X), t(X) ∈ Zp[X ] and ui(X),wi(X) have strictly lower degree than n, the

degree of t(X). Furthermore, we require that the set S = {ui(X) : 0 ≤ i ≤ `} is

linearly independent and that any ui(X) ∈ S is also linearly independent from the set

{u j(X) : ` < j ≤ m}. A square arithmetic program with such a description defines

the following binary relation, where we define a0 = 1,

R =


(φ ,w)

∣∣∣∣∣∣∣∣∣∣∣∣

φ = (a1, . . . ,a`) ∈ Z`
p

w = (a`+1, . . . ,am) ∈ Zm−`
p

∃ q(X) ∈ Zp[X ],deg(q)≤ n−2 :

(∑m
i=0 aiui(X))2 = ∑

m
i=0 aiwi(X)+q(X)t(X)


We say R is a bilinear group and square arithmetic program generator if it generates

relations of the form given above with prime p > 2λ−1.

Any arithmetic circuit can be converted into an SAP using techniques by Groth

which are explained in [21]. One downside is that these techniqes require that we

double the number of multiplicative constraints and this is taken into account in our

efficiency comparison in Chapter 2.

4.2 Derivation of a Relation Dependent SRS

We require a reference string that depends on an SAP (we denote the SAP by sap).

In Figure 4.2 we provide algorithm for generating the SRS and for verifying its

structure. The verification algorithm is new to this thesis and we use it to prove

subversion zero-knowledge. It is essential that the proof of knowledge algorithm

(POK) does not reveal gδ and we are implicitly assuming that the verifier checks
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Setup(1λ ,sap) 7→ (srssap,ρ):

α,β ,γ,δ ,x $←− Zp such that t(x) 6= 0

srssap←


gα ,gγ ,gx,gαδ ,gγδ t(x),gγ2δ t2(x),g(α+β )γδ t(x),

hβ ,hδ ,hβδ ,hγδ t(x),hδ 2{
gγδxi

,hγδxi
,gγ2δ t(x)xi

}n−1

i=0
,
{

gγδwi(x)+δ (α+β )ui(x)
}`

i=0
,{

gγ2δwi(x)+γδ (α+β )ui(x))
}m

i=`+1
,


ρ

$←− POK
{

gα ,hβ ,gγ ,hδ ,gx : α,β ,γ,δ ,x
}

return (srs,ρ)

VerifySRS(1λ ,sap,srssap,ρ) 7→ 0/1
check POKVerify(ρ)

Aα ,Aγ ,Ax,Aαδ ,Aγδ t(x),Aγ2δ t2(x),A(α+β )γδ t(x),

Bβ ,Bδ ,Bβδ ,Bγδ t(x),Bδ 2{
Aγδxi,Bγδxi,Aγ2δ t(x)xi

}n−1

i=0
,
{

Aγδwi(x)+δ (α+β )ui(x)
}`

i=0 ,{
Aγ2δwi(x)+γδ (α+β )ui(x))

}m

i=`+1
,

← parse(srsqap)

check that the following hold:

e(Aαδ ,h) = e(Aα ,Bδ ) e(Aγδ ,Bβ ) = e(Aγ ,Bβδ )
e(Aγδ ,h) = e(Aγ ,Bδ ) e(Aγδ ,Bδ ) = e(Aγ ,Bδ 2)

f (X) = t(X)−t0
X

e(Aγδ t(x),Bγδ ) = e(∏n−1
i=1 A fi

γδxi,Bγδx)e(A
−t0
γδ

,Bγδ ) e(Aγδ t(x),Bγδ ) = e(Aγδ ,Bγδ t(x))

e(Aγ2δ t(x)2,Bδ ) = e(Aγδ t(x),Bγδ t(x)) e(A(α+β )γδ t(x),Bδ ) = e(Aαδ ,Bγδ t(x))e(Aγδ t(x),Bβδ )

e(Aγ ,Bδ ) = e(g,Bγδ )

for 0≤ i≤ n−2 :
e(Ax,Bγxi) = e(g,Bγxi+1) and e(Aγδxi,Bγδx) = e(Aγδxi+1,Bγδ )

for 1≤ i≤ n−1 :
e(Aγ2δ t(x)xi,Bγδ ) = e(Aγδ t(x),Bγδxi)

for 0≤ i≤ ` :
e(Aγδwi(x)+δ (α+β )ui(x),Bγδ ) = e(Aγδ ,∏

n−1
j=0 Bwi, j

γδx j)e(Aαδ ,∏
n−1
j=0 Bui, j

γδx j)e(∏
n−1
j=0 Aui, j

γδx j ,Bβδ )

for `+1≤ i≤ m :
e(Aγ2δwi(x)+γδ (α+β )ui(x),Bδ ) = e(Aγδ ,∏

n−1
j=0 Bwi, j

γδx j)e(Aαδ ,∏
n−1
j=0 Bui, j

γδx j)e(∏
n−1
j=0 Aui, j

γδx j ,Bβδ )

return 1 if all checks pass, else return 0

Figure 4.1: Algorithm for verifying the structure of the SRS in our SE-SNARK construction

that the elements in the proof of knowledge are consistent with the SRS.

4.3 Our SE-SNARK Construction

Our construction of a simulation-extractable SNARK is given in Figure 4.2. The

prover parses the wires of the circuit as (1,a1, . . . ,am), and then embeds the SAP

polynomials aiui(X) evaluated at the unknown point x into one proof element in the

first source group and one proof element in the second source group. They provide a



4.3. Our SE-SNARK Construction 53

Common Input: info = bp,sap,srssap,e(gαδ ,hβδ )

Prove(info,φ ,w) 7→ π:
(a0,a1, . . . ,am)← parse(1,φ ,w)

q(X)← (∑
m
i=0 aiui(X))

2−∑
m
i=0 aiwi(X)

t(X)

r $←− Zp

A← gγδ(rt(x)+∑
m
i=0 aiui(x))

B← hγδ(rt(x)+∑
m
i=0 aiui(x))

C← gγδ(∑
m
i=l+1 ai(γwi(x)+(α+β )ui(x))+r(α+β )t(x)+γt(x)[r2t(x)+q(x)+2r ∑

m
i=0 aiui(x)])

return (A,B,C)

Verify(info,φ ,π) 7→ 0/1:
(a0,a1, . . . ,a`) ∈ Z`

p← parse(1,φ)
(A,B,C) ∈G1×G2×G1← parse(π)

check e(Agαδ ,Bhβδ ) = e(gαδ ,hβδ )e(g∑
`
i=0 aiδ (γwi(x)+(α+β )ui(x)),hγδ )e(C,hδ )

check e(A,h) = e(g,B)
return 1 if both checks pass, else return 0.

Figure 4.2: Our construction of a Simulation-Extractable SNARK.

third proof element whose exponent is the product of the exponents of the first two

proof elements. The verifier checks with a pairing that the first and second proof

elements share common exponents. They then check, also with a pairing, that the

third proof element’s exponent is indeed the product of the exponents of the first two

proof elements.

4.3.1 Security Proof

Theorem 4.3.1. The construction in Figure 4.2 has subversion zero-knowledge.

Proof. To prove subversion zero-knowledge, we need to both show the existence of a

an extractor XA that can compute a trapdoor from the reference string, and describe

a SimProve algorithm that produced indistinguishable proofs when provided with the

extracted trapdoor. It can be seen that an adversary that outputs a verifying reference

string must know α,β ,γ,δ ,x in the exponents of gα ,hβ ,gγ ,hδ ,gx because the proof

of knowledge verifies. Furthermore, if each of the verifier’s pairing checks verify

then the adversary’s outputted reference string has the same structure as one output
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by the setup algorithm. So the (α,β ,γ,δ ,x) that the extractor computes from the

proof of knowledge is a valid trapdoor for the reference string.

A simulator is given a trapdoor τ = (α,β ,γ,δ ,x) and behaves as follows.

SimProve(bp,sap,srssap,τ,φ) 7→ π

(a0,a1, . . . ,a`)← parse(1,φ)

µ
$←− Zp

A,B← gµδ ,hµδ

C← g(µ2δ+(α+β )µδ−γδ ∑
`
i=0 ai(γwi(x)+(α+β )ui(x)))

return (A,B,C)

To see that the simulated proofs are indistinguishable from the real proofs, first ob-

serve that the simulation procedure always produces verifying proofs. Next, observe

that for a given instance and proof π = (A,B,C) the element A uniquely determines

B through the second verification equation, and the elements A, B uniquely determine

C through the first verification equation. In a real proof the random choice of r makes

A uniformly random, and in a simulated proof the random choice of µ makes A

uniformly random. So in both cases, we get the same probability distribution over

proofs with uniformly random A and the unique matching B,C.

Theorem 4.3.2. The protocol in Figure 4.2 is simulation-extractable (implying it

is knowledge sound) provided that the (n,q+5)-XPKE(λ ) and (n,q+5)-Poly(λ )

assumptions hold, where n is the number of squaring constraints and q the number

of simulation queries the adversary asks.

Proof. Suppose that an adversary A is given an srs. It accesses its simulation oracle

on the instances (φ1, . . . ,φq) to obtain the responses (π1, . . . ,πq). We show that if A

outputs verifying (φ ,π) then either (φ ,π) is one of the oracle queries and responses

(φ j,π j) or there exists an extractor XA that outputs w such that (φ ,w) ∈ R.

From the second verification equation we have that e(A,h) = e(g,B). From the

(n,q+5)-XPKE assumption there exists an extractor that outputs

(η0,ηβ ,ηδ ,ηβδ ,ηδ 2,ηγ,δ ,t ,ηγδ (X),ηb, j)
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such that

log(B)=η0+ηβ β +ηδ δ +ηβδ βδ +ηδ 2δ
2+ηγδ tγδ t(x)+γδηγδ (x)+δ ∑

j
ηb, jµ j.

Taking the adversary and the extractor together, we can see them

as a combined algorithm that outputs A,B,C and the formal polynomial

η(X ,Xβ ,Xγ ,Xx,Xδ ,Xµ1, . . . ,Xµq) such that A = gη(x,β ,γ,δ ,µ1,...,µq). By the (n,q+5)-

Poly assumption this has negligible probability unless η is in the span of

X0, Xα , Xγ , Xx, XαXδ , XγXδ t(X), XγXδ (t(X))2, (Xα +Xβ )XγXδ t(X),{
XγXδ X i, X2

γ Xδ t(X)X i
}n−1

i=0
,
{

XγXδ wi(X)+Xδ (Xα +Xβ )ui(X)
}`

i=0 ,{
X2

γ Xδ wi(X)+XγXδ (Xα +Xβ )ui(X)
}m

i=`+1
,
{

Xµ jXδ

}q
j=1{(

X2
µ j

Xδ +(Xα +Xβ )Xµ jXδ −XγXδ ∑
`
i=0 aµ j,i(Xγwi(X)+(Xα +Xβ )ui(X))

)}q

j=1
.

(4.2)

This means that

η(x,β ,γ,δ ,µ1, . . . ,µq) = η0 +ηγδ tγδ t(x)+ γδηγδ (x)+δ ∑ηb, jµ j.

From the first verification equation we get that C = g f (x,β ,γ,δ ,µ1,...,µq) where f

is given by

1
δ

(
η(x,β ,γ,δ ,µ1, . . . ,µq)+αδ

)
·
(
η(x,β ,γ,δ ,µ1, . . . ,µq)+βδ

)
−αβδ −

`

∑
i=0

aiγδ (γwi(x)+(α +β )ui(x))

By the (n,q+5)-Poly assumption this means that

1
Xδ

(
η(X ,Xβ ,Xγ ,Xδ ,Xµ1, . . . ,Xµq)+XαXδ

)
·
(
η(X ,Xβ ,Xγ ,Xδ ,Xµ1 , . . . ,Xµq)+Xβ Xδ

)
−XαXβ Xδ −

`

∑
i=0

aiXγXδ (Xγwi(X)+(Xα +Xβ )ui(X))

also belongs to the span in (4.2).
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The span has no polynomials of the form 1
δ

thus η0 = 0. The span has no

polynomials of the form Xδ Xµ jXµk for j 6= k thus at most one ηb, j is uncancelled.

Suppose without loss of generality that ηb, j are cancelled for j ≥ 2 and rename ηb,1

by ηµ and µ1 by µ .

We are now left with

δ
(
ηγδ tγt(x)+ γηγδ (x)+ηµ µ +α

)
·
(
ηγδ tγt(x)+ γηγδ (x)+ηµ µ +β

)
= αβδ +

`

∑
i=0

aiγδ (γwi(x)+(α +β )ui(x))+ log(C).

If ηµ 6= 0 then ηγδ t and ηγδ (X) both cancel because the span has no polynomials

of the form Xµb,1XγXδ . As a result, the polynomial f (x,β ,γ,δ ,µ1, . . . ,µq) extracted

from C is given by

(ηµ µ)2 +ηµ µ(α +β )−
`

∑
i=0

aiγδ (γwi(x)+(α +β )ui(x)).

The only way to obtain the (ηµ µ)2 term and the ηµ µ(α +β ) term is if f contains a

non-trivial linear combination of the term(
X2

µ1
Xδ +(Xα +Xβ )Xµ1Xδ −XγXδ

`

∑
i=0

aµ1,i(Xγwi(X)+(Xα +Xβ )ui(X))

)
.

Thus η2
µ = ηµ i.e. ηb,1 = 1 and f contains exactly one of the above term. There

are no polynomials in the span that can be used to balance γδ (α +β )ui(x) because:

there are no Xβ XγXδ X i terms in ν(XXX); t(X) has degree n which is strictly greater than

the degree of the other polynomials; and the set S = {ui(X) : 0≤ i≤ `} is linearly

independent from the set {u j(X) : ` < j≤m}. Hence aµ1,i = ai, i.e. (φ ,π) = (φ1,π1)

and the adversary has regurgitated a simulated proof. Thus for all j, ηµ j = 0.



4.3. Our SE-SNARK Construction 57

We are now left with

δ
(
ηγδ tγt(x)+ γηγδ (x)+α

)
·
(
ηγδ tγt(x)+ γηγδ (x)+β

)
= αβδ +

`

∑
i=0

aiγδ (γwi(x)+(α +β )ui(x))+ log(C).

Looking at the terms involving α , we get that

ηγδ tαγδ t(x)+αγδηγδ (x)=
`

∑
i=0

aiγδαui(x)+
m

∑
i=`+1

aiγδαui(x)+a(α+β )γδ tαγδ t(x)

where a`+1, . . . ,am are the coefficients in f relating to the terms

{
X2

γ Xδ wi(X)+XγXδ (Xα +Xβ )ui(X)
}m

i=`+1

and a(α+β )γδ t relates to the term (Xα +Xβ )XγXδ t(X). We see that ηγδ t = a(α+β )γδ t

because the degree of t(X) is strictly greater than the degree of the other polynomials.

Looking at the terms involving γ2δ , we get that

ηγδ tγ
2
δ t2(x)+γ

2
δη

2
γδ
(x)=

`

∑
i=0

aiγ
2
δwi(x)+

m

∑
i=`+1

aiγ
2
δwi(X)+γ

2
δq(x)t(x)+aγ2δ tt

2(X).

for some polynomial q(X) relating to the coefficients in f that refer to the terms

X2
γ Xδ t(X)X i and where aγ2δ t relates to the term X2

γ Xδ t2(X). We see that ηγδ t =

aγ2δ t because the degree of t2(X) is strictly greater than the degree of the other

polynomials.

Putting these two expressions for ηγδ (X) together gives us that

(
m

∑
i=0

aiui(X)

)2

=
m

∑
i=0

aiwi(X)+q(X)t(X)

which gives us that a`+1, . . . ,am is a valid witness for φ , completing our proof.
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4.3.2 Efficiency

The proof size is 2 elements in G1 and 1 element in G2. Counting group elements

in the SRS, we find there are 7+2n+(`+1)+(m− `) G1 elements and 5+n G2

elements (recall m is the number of wires, n is the number of gates, and ` is the size

of the instance). Accounting for the fact that we have doubled the number of gates

to obtain squaring constraints, the SRS thus contains, 8+4n+2m G1 and 5+2n G2

elements.

The verifier can work with a reduced reference string that only contains `+2

elements from G1, 3 elements from G2, and 1 element from GT of the form

(
gαδ ,hδ ,hβδ ,hγδ ,{gδ (γwi(x)+(α+β )ui(x))}`i=0,e(g

αδ ,hβδ )
)
.

The verification consists of checking that the proof contains 3 appropriate group

elements and checking 2 pairing product equations. The verifier’s computation is

dominated by a multi-exponentiation G1 to ` exponents (noting that a0 = 1) and 5

pairings (assuming e(gαδ ,hβδ ) is precomputed).

The prover has to compute the polynomial q(X) and it depends on the relation

how long this computation takes. If we construct the SAP from an arithmetic circuit

where each multiplication gate connects to a constant number of wires, there is a set

of distinct points r1, . . . ,rn where the polynomials are non-zero only in a few places.

In this case we can use fast polynomial manipulation techniques to compute q(X) in

Õ(n) operations in Zp. The prover also computes the coefficients of ∑
m
i=0 aiui(X),

which again can be done in Õ(n) operations in Zp for polynomials arising from

arithmetic circuits where each multiplication gate connects to a constant number

of wires. Having all the coefficients of relevant polynomials, the prover’s cost is

dominated by m+2n− ` exponentiations in G1 and n exponentiations in G2.



Chapter 5

Updatability

This section discusses the types of reference strings that can and cannot be updated.

First methods for updating universal reference strings that contain only monomials

are discussed. These methods are joint work with Markulf Kohlweiss and are based

on work published at Crypto 2018 [22]. Next this section discusses an impossibility

result: updating a reference string reveals the monomials. This impossibility result

was also presented in [22]; the author is the primary investigator and has been aided

by Markulf Kohlweiss and Sarah Meiklejohn.

5.1 Simulation Sound Proofs of Knowledge
A key property of a reference string that contains only monomials is that it is possible

to update it and prove that the update was applied correctly. As long as one updater

behaves according to the protocol, the resulting parameters are secure. Further, if all

of the updaters are colluding then we can build a simulator that knows the trapdoor.

In order to ensure trapdoor extraction we utilise proofs of knowledge (POKs) that

can be build from trustless setups.

One suggestion for POKs is Fischlin transformed Sigma protocols [49] which

are zero-knowldge in the ROM and have straight line extractors. Fischlin’s trick is

to enforce that any verifying proof must have a number of lower order bits to be

zero in the hash of the proof. This extra constraint makes it highly probable that

a prover queries their random oracle at least twice, thus removing the need for the

forking lemma. Bernhard, Fischlin and Warinschi showed that a Fischlin transformed
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Sigma protocol is a simulation-sound adaptive proof in the random oracle model (see

Theorem 1 [111]). These properties are helpful for our updatability proofs, because

by disallowing an adversary to output a previously seen update proof, we ensure

that an adversary cannot utilise previous update proofs. Fischlin transformed proofs

have high prover costs. However, our language is very simple (knowledge of a small

number of exponents), so they are practical enough for our purposes.

A second suggestion for POKs is to work directly with a KEA assumption and

have the prover provide A and B such that

e(A,h) = e(g,B).

In [22] we show how, when this is completed together with a computational require-

ment, it is possible to prevent the adversary from gaining any advantage from old

proofs. In this thesis, we assume Fischlin transformed Sigma protocols are used for

the POK.

5.2 Updating Reference Strings with Monomials
Our structured reference strings are sampled from specified distributions and sound-

ness is only guaranteed if the SRSs are sampled from the correct distribution. In

this sense we sometimes refer to the SRS being “well-formed”. Ideally we sould

like to verify that the SRS is sampled correctly using only pairing equations with

elements in the SRS. We formalise this notion with progression full sets. The idea is

that given a handful of base elements, the verifier can inductively check that higher

degree monomials are consistent with lower degree monomials.

5.2.1 Progression Full Sets

Consider a reference string of monomials. Then the reference string is updatable if

the monomials can be described by progression-full sets, a notion which we provide

below.

The sets U and V contains vectors of integers with length q, where q is the

number of variables required by the setup algorithm and the vector represents the
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exponents of the variables. The degree of elements of the form (a1, . . . ,aq) in the

sets U or V is equal to d = ∑
q
i=1 |ai|.

Let Ui, Vi be the subsets of U , V that contains degree i elements. Elements in

U , V that have degree 1 and whose non-zero entry is +1 (as opposed to −1) are

the base elements. Let Ub,Vb denote the sets of base elements. Then U and V are

progression-full if:

1. for every uuu ∈U1 \Ub and for every vvv ∈ V1 \Vb, we have that −uuu ∈ V1 and

−vvv ∈U1;

2. for every uuu ∈Ui and for every vvv ∈Vi, there exists some aaa1,aaa2 ∈
⋃i−1

j=1 U j and

bbb1,bbb2 ∈
⋃i−1

j=1 V j such that

uuu = aaa1 +bbb1 vvv = aaa2 +bbb2.

5.2.2 Chain Proofs

The verifier would like to be assured that all the randomness added in each update

is included in the final reference string. To ensure this, the update proofs include a

“chain proof”, which consists of a handful of group elements. By including the chain

proofs, the update string does not need to include the (sizeable) intermediary SRSs.

The chain of proofs is updated step by step, and our chain prover only requires

the previous link in the chain. The ith link in the chain is denoted by chaini. The

chain considers each element in Ub and Vb separately, and distinguishes between

those in Ub∩Vb and those in Vb/Ub. The ith chain proof for an element uuu is denoted

by chaini[uuu]. The verifier requires the entire chain. The element chain0[uuu] is taken

by both prover and verifier to be (g,h) if uuu ∈Ub∩Vb and (g,g,h) if uuu ∈Vb \Ub.

For our reference strings we are assuming that all degree 1 elements are either

of the form uuu ∈Ub∩Vb; or are of the form vvv ∈Vb/Ub. By progression fullness there

exists uuu ∈U1 such that uuu+ vvv ∈U2. This covers all the updatable reference strings

required for this thesis. We are implicitely assuming that there will be a check in the

verification that ensures that the final elements in the chain are consistent with the

base elements in the final srs.
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ChainProve(1λ ,U ,V ,chaini,xxx) 7→ chaini+1

for uuu ∈Ub∩Vb:
(X ,A)← parse(chaini[uuu])
s← uuu · xxx
chaini+1[uuu]← (X s,hs)

for vvv ∈Vb/Ub:
(W,Z,C)← parse(chaini[vvv])
y← vvv · xxx
uuu← vector in U1 such that uuu+ vvv ∈U2
s← uuu · xxx
chaini+1[vvv]← (Zs,Zsy,hy)

return chain

ChainVerify(1λ ,U ,V ,chain) 7→ 0/1
for uuu ∈U1∩V1:

for 1≤ i≤ len(chain):
(Xi−1,Ai−1)← parse(chaini−1[uuu])
(Xi,Ai)← parse(chaini[uuu])
check e(Xi,h) = e(Xi−1,Ai)

for vvv ∈V1/U1
for 1≤ i≤ len(chain):
(Wi−1,Zi−1,Ci−1)← parse(chaini−1[vvv])
(Wi,Zi,Ci)← parse(chaini[vvv])
uuu← vector in U1 such that uuu+ vvv ∈U2
(Xi,Ai)← parse(chaini[uuu])
check e(Zi−1,Ai) = e(Wi,h)
check e(Wi,Ci) = e(Zi,h)

return 1 if all checks pass, else return 0

Figure 5.1: Algorithms for creating and verifying chains of update proofs.

5.2.3 Update Algorithm

We now give a lemma used to prove the update security of our construction. This

lemmas proves that even a dishonest updater needs to know their contribution to the

trapdoor.

Lemma 5.2.1 (Trapdoor extraction for subvertible SRSs). Suppose there exists a PPT

adversary A that outputs a srs,(ρi)
m
i=1 such that VerifySRS(1λ ,srs,(ρi)

m
i=1) = 1

with non-negligible probability. Then there exists a PPT extractor X that, given the

random tape of A as input, outputs τ such that (srs, ·)← Setup(1λ ;τ).

Proof. By the extractability of the proof of knowledge, for every element (X ,A) =

chaini[uuu] (or (W,Z,C) = chaini[vvv]), there exists a PPT extractor that outputs s such

that A = hs (or C = hs). For each variable in Vb, the chain verification ensures that

the final element in the chain is equal to the product of the contributions in each link.

The remaining checks ensure that the reference string is of the correct form with

respect to the extracted variables. Thus setting τ as the hadamard product of all the

extracted elements, we have that (srs, ·) = Setup(1λ ;τ).

From the simulation-sound proof of knowledge, we get that even when given

an honestly generated SRS as input, updaters need to know their contribution to the
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Setup(1λ ) 7→ (srs,ρ1)

x1, . . .xq
$←− F

κ1← POK{hx j : x j} j∈V1

chain1← ChainProve(1λ ,U ,V ,chain0,(x1, . . . ,xq))

srs←{gxa1
1 ...x

aq
q }(a1,...,a1)∈U , {hxb1

1 ...x
bq
q }(b1,...,bq)∈V

ρ1← (chain1,κ1)
return (srs,(ρ1))

Update(1λ ,srs,(ρ)m
i=1) 7→ (srs′,ρm+1)

{ga1,...,aq}(a1,...,aq)∈U , {hb1,...,bq}(b1,...,b1)∈V ← parse(srs)

x1, . . .xq
$←− F

κm+1← POK{hx j : x j} j∈V1

chainm+1← ChainProve(1λ ,U ,V ,chainn,(x1, . . . ,xq))

srs′←{gxa1
1 ...x

aq
q

a1,...,aq }(a1,...,aq)∈U , {hxb1
1 ...x

bq
q

b1,...,bq
}(b1,...,bq)∈V

ρm+1← (chainm+1,κm+1)
return (srs′,ρn+1)

VerifySRS(1λ ,srs,(ρi)
m
i=1) 7→ 0/1

{ga1,...,aq}(a1,...,aq)∈U , {hb1,...,bq}(b1,...,b1)∈V ← parse(srs)

(chaini,κi)
m
i=1← parse((ρi)

m
i=1)

for uuu ∈U1 \Ub:
check e(guuu,h−uuu) = e(g,h)

for vvv ∈V1 \Vb:
check e(g−vvv,hvvv) = e(g,h)

for uuu ∈Ui of degree i≥ 2:
find aaa ∈

⋃i−1
j=1U j and bbb ∈

⋃i−1
j=1Vj such that uuu = aaa+bbb

check e(guuu,h) = e(gaaa,hbbb)

for vvv ∈Vi of degree i≥ 2:
find aaa ∈

⋃i−1
j=1U j and bbb ∈

⋃i−1
j=1Vj such that vvv = aaa+bbb

check e(g,hvvv) = e(gaaa,hbbb)

for 1≤ i≤ m:
check κi 6= κ j for j < i
check POKVerify(κi)

check ChainVerify(1λ ,U ,V ,(chaini)
m
i=1)

return 1 if all checks pass, else return 0.

Figure 5.2: Algorithms for updating structured reference strings with monomials.
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trapdoor. In this way security against the updater is linked to an honest SRS.

5.3 Simpler Update Security implies Update Security
In this section we discuss how – for our constructions – proving security for an

adversary that makes one update to a freshly generated SRS is equivalent to proving

the full version of updatable security, in which an adversary makes all but one update

in the sequence. The proof for Lemma 5.3.1 is due to Kohlweiss and is given in [22].

The following lemma relates updatable security to a model in which the adver-

sary can make only a single update after an honest setup. This is because it is much

cleaner to prove the security of our construction in this latter model, but we would

still like to capture the generality of the former. We already know from Lemma 5.2.1

that it is possible to extract the adversary’s contribution to the trapdoor when the

adversary generates the SRS itself, and from the simulation-soundness of the proof

of knowledge that it is possible to extract it when the adversary updates an honest

SRS.

To collapse chains of honest updates into an honest setup it is convenient that

the trapdoor contributions of Setup and Update commute in our scheme. Trap-

door contributions cannot just be commuted but also combined; that is, for τ ,

τ ′ and τ ′′, Update(1λ ,Update(1λ ,Setup(1λ ;τ);τ ′);τ ′′) = Setup(1λ ;τ⊗ τ ′⊗ τ ′′)=

Update(1λ ,Update′(1λ ,Setup′(1λ ;τ ′′);τ ′);τ). Moreover, in our constructions the

proof ρ depends only on the relation and the randomness of the update algorithm. In

particular it is independent of the reference string being updated. This enables the

following simulation: Given the trapdoor of srs, and the degree 1 elements of srs′

we can simulate a proof ρ2 of srs′ being an update of srs using τ−1.

Lemma 5.3.1 (Single adversarial updates imply full updatable knowledge sound-

ness). If our construction is U-KSND secure for adversaries that can query on the

update only once and then on the final oracle for a set S such that |S| ≤ 2, then

assuming any adversary that produces verifying setup proofs and update proofs can

extract the setup and update randomness, the construction (fully) U-KSND-secure.

As the trapdoor in our scheme consists of all the randomness used by the setup
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and the updaters, we shall oft refer to chains of honest updates and (single) honest

setups interchangeably.

5.4 Updatable SRSs Contain Only Monomials

In this section we show a negative result; namely, that for any updatable NILP

with polynomials encoded into the reference string, it must also be allowed (which

often it is not) for an adversary to know encodings of the monomials that make

up the polynomials. The reason is that from the encodings of the polynomials, we

can construct an adversary that uses the update algorithm in order to extract the

monomials. In Chapter 4 we show how our monomial extractor could be used to

break our SE-SNARK assuming that it was updatable. Due to the similarity in the

approaches, we believe that the same techniques could be used to show that most

other QSP/QAP-based zk-SNARKs in the literature also cannot be made updatable.

As our universal SRSs do consist of monomials, we can avoid this impossibility

result.

5.4.1 The Monomial Extractor

Suppose that a NILP scheme has an update algorithm Update, and that its structured

reference strings σσσ are sampled from the distribution X̂τττ for X̂ a matrix of known

field elements and τττ an unknown vector of (known) monomials. Suppose that for

each j there exists an i such that X̂i, j 6= 0 (otherwise σσσ is independent of τττ). Then

there exists an algorithm MonoExtract that can extract τττ from the reference string

σσσ .

Without loss of generality assume that X̂ is in reduced row echelon form (if

not the algorithm can apply elementary matrices to X̂ and σσσ ). Also without loss of

generality, assume X̂ is a square matrix (by adding some all-zero rows if necessary).

Write X̂ = ∑
r
j=1 X̂ j where X̂ j has at most 1 non-zero element in each column and
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row. For example
1 0 2 0

0 1 0 0

0 0 0 1

0 0 0 0

=


0 0 2 0

0 0 0 0

0 0 0 0

0 0 0 0

+


1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 0

 .

If r > 1 then we will show that it is possible to extract encodings of monomials

that are not given in the reference string. This means that for any updatable NIZK

with polynomials encoded into the reference string, soundness must hold even for

an adversary that knows encodings of the monomials that make up the polynomials.

For our constructions in Chapters 6 and 7 we have that r = 1; i.e., the SRS already

contains all the monomials.

We use an inductive algorithm. We start by showing that there is a probabilistic

algorithm BaseMono that can compute vectors uuu, along with a corresponding set of

matrices
{

Â j}r
j=2, that satisfy the equation

X̂1
τττ = uuu+

r

∑
j=2

Â jX̂ j
τττ.

We give a second algorithm InductMono that, upon input of r− i vectors {uuu`}r−i
`=1,

and (r− i)2 matrices
{

Â`, j}r,r−i
j=i+1,`=1, such that

X̂ i
τττ = uuu`+

r

∑
j=i+1

Â`, jX̂ j
τττ

outputs r− i−1 vectors {zzz}r−i−1
`=1 and (r− i−1)2 matrices

{
D̂`, j}r−i−1,r

`=1, j=i+2 such that

X̂ i+1
τττ = zzz`+

r

∑
j=i+2

D̂`, jX̂ j
τττ.

We will then inductively find X̂ rτττ in the algorithm FinalMonoExtract. We can then

backwards compute in the algorithm MonoExtract to find X̂ jτττ for 1≤ j ≤ r.

Theorem 5.4.1. Suppose that a NILP scheme has structured reference strings σσσ that
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are sampled from the distribution X̂τττ for X̂ a matrix of known field elements with

no empty columns and τττ an unknown vector of (known) monomials. Suppose there

exists an update algorithm

(σσσ ′,ρ ′)
T̂←− Update(1λ ,σσσ ,ρ)

such that VerifySRS(1λ ,σσσ ′,(ρ,ρ ′)) = 1 and a corresponding extractor that outputs

a linear transformation T̂ such that σσσ ′ = T̂ σσσ . Then there exists an algorithm

MonoExtract that can extract τττ from the reference string σσσ .

The Base Case: Here we describe the base case algorithm BaseMono. First note that

in a generic scheme which is updatably zero-knowledge we require that that for an

accepting updated reference string σσσ1 the updater knows their personal contribution

to the trapdoor. In other words they know a matrix T̂ such that σσσ1 = X̂ T̂ τττ (but they

do not necessarily know τττ).

BaseMono(σσσ , X̂1, . . . , X̂ r)

σσσ1
T̂←− Update(σσσ)

T̂ i $←− matrices with X̂ T̂ = ∑i T̂ iX̂ i

u← (T̂ 1)−1σσσ1

Âi←−(T̂ 1)−1(T̂ i)

return u, Â2, . . . , Âr

It can be seen that

uuu+∑
r
j=2 Â jX̂ jτττ = (T̂ 1)−1σσσ1−∑

r
j=2(T̂

1)−1T̂ jX̂ jτττ

= (T̂ 1)−1
[
X̂ T̂ τττ−∑

r
j=2 X̂ jT̂ τττ

]
= (T̂ 1)−1

[
X̂−∑

r
j=2 X̂ j

]
T̂ τττ

= (T̂ 1)−1X̂1T̂ τττ

= (T̂ 1)−1T̂ 1X̂1τττ

= X̂1τττ

so BaseMono outputs correct values of uuu and Â j.
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We wish to argue the existence of T̂ 1, . . . , T̂ r. It can be assumed that X̂ does not

have any empty columns, otherwise the setup can select τττ from a smaller distribution.

Thus for

ai j = (X̂ T̂ )i j

there exists X̂k and ` such that X̂k
` j = x. The BaseMono can set T k

i` =
ai j
x .

If X̂k
i` = 0 then choosing T̂ k

ji
$←− F will not affect the result. Now for k < r the

matrices T̂ k contain at least one column chosen at random. Further, X̂ T̂ cannot have

a zero-column (else τττ and T̂ τττ are sampled from different distributions), and thus T̂ k

cannot contain a zero-row. This means that the determinant

det(T̂ k) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

T k
i,σ(i)

is non-zero with overwhelming probability, so T̂ k is overwhelmingly invertible.

The Induction: The inductive algorithm InductMono works as follows.

InductMono(U,A,r, i)

u1, . . . ,ur−i← parse(U)

{Â1, j}r
j=i+1, . . . ,{Âr−i, j}r

j=i+1← parse(A)

for 1≤ `≤ r− i−1:

M̂`←
[
Â1,1− Â`+1,1]−1

z` = M̂` [u`+1−u1]

for 1≤ `≤ r− i−1:

for i+2≤ j ≤ r:

D̂`, j = M̂`
[
Â`+1, j− Â1, j]

return {z`}r−i−1
`=1 , {D̂`, j}r−i−1,r

`=1, j=i+2

For each 1≤ `≤ r− i−1, we have that u1,u`+1 are such that

X̂ i
τττ = u1 +

r

∑
j=i+1

Â1, jX̂ j
τττ and X̂ i

τττ = u`+1 +
r

∑
j=i+1

Â`+1, jX̂ j
τττ.
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Putting the two equations together yields

u1 +
r

∑
j=i+1

Â1, jX̂ j
τττ = u`+1 +

r

∑
j=i+1

Â`+1, jX̂ j
τττ.

We then rearrange to get

(
Â1,i+1− Â`,i+1

)
X̂ i+1

τττ = u`+1−u1 +
r

∑
j=i+2

(
Â`+1, j− Â1, j

)
X̂ j

τττ.

With the matrix M̂` =
(
Â1,i+1− Â`+1,i+1)−1 we have that

X̂ i+1
τττ = M̂

[
u`+1−u1 +

r

∑
j=i+2

(
Â`+1, j− Â1, j

)
X̂ j

τττ

]
.

If M̂` does not exist then the probabilistic algorithm BaseMono can be rerun. Hence

we have that

X i+1
τττ = z`+

r

∑
j=i+2

D̂`, jX̂ jxxx

as required.

Extractor of the Final Monomial Our monomial extractor first runs an algorithm

to extract the final monomial, and from there backwards computes. We use the

notation U [i] to denote sampling the ith component from the set U .

FinalMonoExtract(σσσ , X̂1, . . . , X̂ r)

U = /0; A = /0; B = /0

for 1≤ i≤ r:

u,{Â j}r
j=2

$←− BaseMono(σσσ , X̂1, . . . , X̂ r)

U =U ∪ {u}; A = A ∪ {{Â j}r
j=2}

B = B∪{U [1],A[1]}

for 1≤ i≤ r−1

(U,A)← InductMono(U,A,r, i)

B = B∪{U [1],A[1]}

return B

This algorithm outputs a set B consisting of pairs, where each pair contains a vector
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and a sets of matrices. The i-th entry is B[i] = {u,
{

Â j}r
j=i+1} such that

X̂ i
τττ = u+

r

∑
j=i+1

Â jX̂ j
τττ.

For the final entry B[r], the set of matrices is empty, so the right-hand side of the

above equation is simply u. Hence this final u is equal to X̂ rτττ .

The Monomial Extractor We are now in a position to define an algorithm that takes

the output of FinalMonoExtract and then backwards computes to find
{

X̂ iτττ
}r

i=1.

This algorithm is our monomial extractor.

MonoExtract(σσσ , X̂1, . . . , X̂ r)

B $←− FinalMonoExtract(σσσ , X̂1, . . . , X̂ r)

{vr, /0}← parse B[r]

for r−1≥ i≥ 1:

{u,{Â j}r
j=i+1}← parse B[i]

vr−1← u+∑
r
j=i+1 Â jv j

return v1, . . . ,vr

5.5 Our SE-SNARK is not Updatable
Intuitively, the existence of the monomial extractor would break most pairing-based

NIZK proofs using QAPs or QSPs. This is because these arguments typically depend

on the instance polynomials and the witness polynomials being linearly independent

from each other. Here it is demonstrated how the existence of a monomial extractor

would break the knowledge soundness of the SE-SNARK in Chapter 4. Our results

are based of a similar proof by the author showing that Pinocchio [2] is not updatable

published in [22].

The SRS is given by

gα ,gγ ,gx,gαδ ,gγδ t(x),gγ2δ t(x)2
,g(α+β )γδ t(x),

h,hβ ,hδ ,hβδ ,hγδ t(x),hδ 2{
gγδxi

,hγδxi
,gγ2δ t(x)xi

}n−1

i=0
,
{

gγδwi(x)+δ (α+β )ui(x))
}`

i=0
,{

gγ2δwi(x)+(α+β )γδui(x))
}m

i=`+1
,


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where α,β ,γ,δ ,x are random field elements. For our attack, it suffices to just

consider the exponents of g and not h. There exists a matrix X̂ such that σσσ = X̂τττ for

τττ =
(

α,γ,x,{αδxi,βδxi}n−1
i=0 ,{γδxi,αγδxi,βγδxi}n

i=0,{γ2δxi}2n
i=0

)
. (5.1)

Lemma 5.5.1. If there exists a monomial extractor for Construction 4.2, then there

exists an adversary that can find a verifying proof for any instance (a1, ...,a`) ∈ Zp.

Proof. The verifier returns 1 if and only the following equations are satisfied

e(Agαδ ,Bhβδ ) = e(gαδ ,hβδ )e(g∑
`
i=0 aiδ (γwi(x)+(α+β )ui(x)),hγδ )e(C,hδ )

e(A,h) = e(g,B)

Suppose the adversary A chooses µ
$←− Zp and sets the components A,B,C by

A = gµγδ , B = hµγδ , C = gµ2γ2δ+µαγδ+µβγδ−∑
`
i=0 ai(δγ2wi(x)+αγδui(x)+βγδui(x)).

The component gγδ is in the extracted monomials in (5.1) thus A can compute A.

The component hγδ is in srs thus A can compute B. The components

γ
2
δ ,αγδ ,βγδ ,{δγ

2xi,αγδxi,βγδxi}n−1
i=0

are in the extracted monomials in (5.1) thus A can compute C. Direct verification

shows that the verifier’s equations are satisfied.

Theorem 5.5.2. If there exists an update algorithm for Construction 4.2, then either

the relation is easy or the scheme is not knowledge-sound.

Proof. Suppose that srs← Setup(1λ ); i.e., srs = X̂gτττ for τττ as in Equation 5.1.

Suppose that (a1, . . . ,a`) ∈ Zp. By running MonoExtract, an adversary A can

calculate gτττ . By Lemma 5.5.1, the adversary A can continue, and calculate a

verifying proof for (a1, . . . ,a`). Hence either there is a PPT extractor that can output

a valid witness for any instance (meaning the language is easy), or there is no

extractor and A breaks knowledge-soundness.



Chapter 6

Updatable and Universal

zk-SNARKs

This chapter presents a construction of an updatable and universal zk-SNARK

from a work published at Crypto 2018 [22] together with Jens Groth, Markulf

Kohlweiss, Sarah Meiklejohn, and Ian Miers. The construction is QAP-based and

makes use of a universal reference string. A proof of subversion zero knowledge

and updatable knowledge soundness is given under the knowledge-of-exponent

assumptions introduced in Chapter 3. The content in this chapter is joint work with

Jens Groth and Markulf Kohlweiss.

6.0.1 Quadratic Arithmetic Programs

We let the security parameter 1λ (deterministically) determine parameters

(n,m, `,bp), where bp = (p,G1,G2,GT ,e,g,h), n is the maximum degree of the

QAP, and m is the maximum number of input variables.

Formally, we will be working with quadratic arithmetic programs R due to

Gennero et al. [73] that have the following description

R = (bp, `,{ui(X),vi(X),wi(X)}m
i=0, t(X)) ,

where the bp defines the finite field Zp we will be working over, 1 ≤ ` ≤ m is

the instance formed of public field elements to a QAP, ui(X),vi(X),wi(X), t(X) ∈

Zp[X ] and ui(X),vi(X),wi(X) have strictly lower degree than n, the degree of t(X).
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Furthermore, we require that the set S = {ui(X) : 0≤ i≤ `} is linearly independent

and that any ui(X) ∈ S is also linearly independent from the set {u j(X) : ` < j ≤ m}.

A quadratic arithmetic program with such a description defines the following binary

relation, where we define a0 = 1,

R =


(φ ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ = (a1, . . . ,a`) ∈ Z`
p

w = (a`+1, . . . ,am) ∈ Zm−`
p

∃ q(X) ∈ Zp[X ],deg(q)≤ n−2 :

(∑m
i=0 aiui(X))(∑m

i=0 aivi(X)) = ∑
m
i=0 aiwi(X)+q(X)t(X)


We say R is a bilinear group and quadratic arithmetic program generator if it

generates relations of the form given above with prime p > 2λ−1. The sequence of

parameters indexed by the security parameter define a universal relation R consisting

of all pairs of QAPs and instances as described above that have a matching witness.

6.1 Reworking the QAP recipe

Our final scheme is formally given in Figures 5.2 and 6.2. In this section we describe

some of the technical ideas behind it. Due to the existence of monomial extractors

for updatable SRSs (Chapter 5), many of the usual tricks behind the QAP-based

approach are not available to us. Instead we first switch to a multi-variate scheme,

where the proof elements need to satisfy equations in the indeterminates X , Y , Z. We

can then prove the well-formedness of our proof elements using a subspace argument

for our chosen sums of witness QAP polynomials. Once we have that the proof

elements are well formed, we show that the exponents of two of them multiply to get

an exponent in the third proof element such that (1) the sum of all the terms where Y

has given power j is equal to the QAP expression in the X indeterminate, and (2) the

value Y j is not given in the universal SRS. For our final scheme, we use j = 7.

Fix the circuit: The circuit need only be fixed upon running the SRS derivation

algorithm. At this point, the circuit is described as a QAP; i.e., for a0 = 1, the field
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elements (a1, . . . ,am) ∈ R if and only if

(
m

∑
i=0

aiui(X)

)
·

(
m

∑
i=0

aivi(X)

)
=

m

∑
i=0

aiwi(X)+q(X)t(X)

for some degree (n−2) polynomial q(X).

Prove the commitments are well formed: In our scheme an honest prover outputs

group elements (A,B,C) such that

log(A) = log(B) = q(x)y+
m

∑
i=0

ai(wi(x)y2 +ui(x)y3 + vi(x)y4)− y5− t(x)y6.

Ensuring that log(A) = log(B) can be achieved with a pairing equation of the form

e(A,h) = e(g,B). Thus we need to show only that A is of the correct form.

Usually, proving an element is of the correct form is achieved by encoding

relation dependent polynomials in the SRS and forcing the prover to use linear

combinations of these polynomials; this is the approach we take for constructing a

subversion-extractable zk-SNARK in Chapter 4. Since we cannot take this approach

and allow updates, we instead construct a new subspace argument. First the verifier

subtracts out the known elements in the instance and obtains a new group element

with the exponent

q(x)y+
m

∑
i=`+1

ai(wi(x)y2 +ui(x)y3 + vi(x)y4).

A matrix M̂ is set to be the (m + d − `)× 4n matrix that contains the coeffi-

cients of {(wi(x)y2 +ui(x)y3 + vi(x)y4)}m
i=`+1,{x

iy}n−2
i=0 with respect to monomials

{xiy j}(n−1,4)
(i, j)=(0,1). The corresponding null-matrix N̂ is mapped by M̂ to zero, i.e.

M̂N̂ = 000. If we introduce the variable z, then the verifier can scale the columns of N̂

by different powers of z, and thus can check that M̂ maps all the columns of N̂ to 000.

This should hold if and only if A is chosen from the correct subspace.
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Prove that the QAP is satisfied: Assuming that A and B are of the correct form, we

have that log(A) · log(B) is equal to

2

(
q(x)y+

m

∑
i=0

ai(wi(x)y2 +ui(x)y3 + vi(x)y4)− y5− t(x)y6

)2

.

which, for terms involving y7, yields

t(x)q(x)−
m

∑
i=0

aiwi(x)+

(
m

∑
i=0

aiui(x)

)
·

(
m

∑
i=0

aivi(x)

)
.

The terms in other powers of y can be considered as computable garbage and are

cancelled out in other proof components. The equation above is satisfied for some

polynomial q(X) if and only if the QAP is satisfied. Thus, given an SRS that does

not contain any y7 terms, and a verification equation that checks logA · logB = logC,

we ensure that the proof element C is computable if and only if the QAP is satisfied.

6.2 A Null Space Argument

The primary investigator in designing the following null space argument is Jens

Groth, and the more detailed description in this section is new to this thesis. The

argument utilises the Rank-Nullity theorem, which states that the null space of a set

of vectors is orthogonal to the span of the set of vectors.

Consider a set of vectors S = {uuui}i∈I which is a subset of a vector space S⊂V .

The null space of S is the largest possible set of linearly independent vectors in V ,

N = {ηηη j} j∈J such that for all i ∈ I and j ∈ J,

uuui ·ηηη j = 0.

If we wish to show that a vector aaa is included in the span of S, then it suffices to

show that for all j ∈ J,

aaa ·ηηη j = 0.
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In our case the vector space and the set of vectors are given by

V = {X iY j}n,4
i=0, j=1

S = {X iY}n−2
i=0 ∪{wi(X)Y 2 +ui(X)Y 3 + vi(X)Y 4}m

i=`+1∪{t(X)Y j}4
j=2

The Rank-Nullity theorem tells us that

dim(V ) = rank(S)+nullity(S) i.e. |V |= rank(S)+ |N|.

The dimension of V is equal to 4n+4. The rank of S is equal to the number of linear

independent vectors in S, which is bounded by the size of S. Thus the rank of S is

bounded by n+m− `+2. Now m is equal to the number of wires in the circuit, and

because we are working with fan-in 2 gates, this means that m is bounded by 2n. The

nullity of S is equal to the size of the null space. Therefore

|V |= rank(S)+ |N|

⇒ |N|= 4n+4− rank(S)≥ 4n+4− (n+m− `+2)≥ 4n+4− (n+2n− `+2)

⇒ |N| ≥ n+2+ `

i.e. when the instance is small, there are approximately n vectors in the null space.

We represent our null space in a polynomial of the form

η(X ,Y,Z) =
n

∑
i=0

4

∑
j=1

|N|

∑
k=1

ηk,i, jX4n−iY 4− jZk

where ηk,i, j is the i(n+1)+ jth entry of the kth vector in the null space. We represent

elements aaa that are in the span of S by polynomials of the form

a(X ,Y ) =
n

∑
i=0

4

∑
j=1

ai, jX iY j
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where ai, j is the i(n+1)+ jth entry of aaa. Then

a(X ,Y )η(X ,Y,Z) =
n

∑
i,s=0

4

∑
j,t=1

|N|

∑
k=1

ai, jηk,s,tX i+4n−kY j+4−tZk

=
n

∑
i=0

4

∑
j=1

|N|

∑
k=1

ai, jηk,i, jX4nY 4Zk + ∑
(i, j)6=(n,4)

|N|

∑
k=1

ri, jX iY jZk

= ∑
(i, j)6=(n,4)

|N|

∑
k=1

ri, jX iY jZk

for ri, j known field elements.

The SRS does not contain the elements {gxny4zk}|N|k=1. The prover provides an

element A = ga(x,y) and a second element C = ga(x,y)η(x,y,z). The verifier checks that

e(ga(x,y),hη(x,y,z)) = e(C,h)

If a(X ,Y ) is not in the span of S, then a(x,y)η(x,y,z) will have non-zero terms

XnY 4Zk. By the Mono assumption the prover cannot compute gx4ny4zk
and therefore

it can only compute C if a(X ,Y ) is in the correct span.

6.3 Derivation of a Linear SRS

Astute readers may note that our null space argument requires the SRS to contain

a quadratic sized set of monomials. We tackle this issue by providing an untrusted

derive function (which can be seen as a form of precomputation) in order to find a

linear SRS for a fixed relation. The output of the derive algorithm can be considered

equivalent to the output of a trusted setup for a zk-SNARK with a relation specific

SRS. Using the linear reference string, our prover computation consists of a linear

number of group exponentiations in the circuit size.
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The universal SRS contains base g exponents {xiy jzk}(i, j,k)∈U where

U =


{(1,0,0),(0,1,0),(0,0,1)}

∪{(i, j,0) : i ∈ [0,2n], j ∈ [1,12], j 6= 7}

∪{(i, j,k) : i ∈ [0,2n], j ∈ [1,6],k ∈ [1,3n],(i, j) 6= (n,4)}

∪{(i, j,6n) : i ∈ [0,n], j ∈ [1,4]}


and base h exponents {xiy jzk}(i, j,k)∈V where

V =


{(1,0,0),(0,1,0),(0,0,1),(0,0,6n)}

∪{(i, j,0) : i ∈ [0,n], j ∈ [1,6]}

∪{(i, j,k) : i ∈ [0,n], j ∈ [0,2],k ∈ [1,3n]}

 .

This SRS is updatable using techniques described in Chapter 5.

We provide an algorithm for deriving a qap specific SRS from the universal

SRS in Figure 6.1. With the derived SRS we can construct efficient prove and verify

algorithms. The derive algorithm is trustless in the sense that it can be ran by any

party. On the other hand, the derived srs cannot be updated. Computing the null

space requires Gaussian elimination over a sparse matrix.

6.4 Our Construction
In this section we construct a zk-SNARK for QAP satisfiability given the derived

structured reference string from the previous section. The construction is given in

Figure 6.2. The prover is given (φ ,w) ∈ R and must convince the verifier that φ is in

the language.

Theorem 6.4.1. The proof system described in Figures 6.1&6.2 has subversion

zero-knowledge against all PPT adversaries that generate a verifying global srs.

Proof. To prove subversion zero-knowledge, we need to both show the exis-

tence of an extractor XA , and describe a SimProve algorithm that produces

indistinguishable proofs when provided the extracted trapdoor (which it can

compute given the randomness of both A and the honest algorithms). The
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Derive(bp,qap,srs) 7→ srsqap

parse (`,{ui(X),vi(X),wi(X)}m
i=0, t(X))← qap

assert gy−t(x)y2 6= 1
for 0≤ i≤ n−w:

si(X ,Y )← X iY
for 1≤ j ≤ 3:

sn−1+ j(X ,Y )← t(X)Y j+1

for n+3≤ i≤ n+3+m− `:
si(X ,Y )← wi(X)Y 2 +ui(X)Y 3 + vi(X)Y 4

compute a basis of the polynomials η1(X ,Y ), . . . ,η3n−m+`(X ,Y ) such that
for all `+1≤ i≤ m+3 and 1≤ k ≤ 3n−m+ `, the product
si(X ,Y ) ·ηk(X ,Y ) has coefficient 0 for the term XnY 4

η(X ,Y,Z)← Z6n +∑
3n−m+`
k=1 ηk(X ,Y )Zk

srsqap←


{gxiy j}2n,12

i=0, j=1, j 6=7,g
y−t(x)y2

,{gwi(x)y2+ui(x)y3+vi(x)y4}m
i=0,

gy5+t(x)y6
,{g(wi(x)y2+ui(x)y3+vi(x)y4)·η(x,y,z)}m

i=`+1
{hxiy}n

i=0,h
y−t(x)y2

,{hwi(x)y2+ui(x)y3+vi(x)y4}m
i=0,

hy5
,ht(x)y6

,hη(x,y,z)


return srsqap

Figure 6.1: The derive algorithm for generating circuit specific reference strings for our
updatable and universal zk-SNARK.

simulator knows x,y,z and picks r ← Zp and sets A = gr,B = hr and C =

gr2+(r+y5+t(x)y6−∑
`
i=0 ai(wi(x)y2+ui(x)y3+vi(x)y4))·η(x,y,z). The simulated proof have the

same distribution as the real proofs because A includes the random term r(y− t(x)y2)

and y 6= 0 and t(x) 6= y−1. Given A the verification equations uniquely determine

B and C. Both real and simulated proofs have uniformly random A and satisfy the

equations. Consequently, subversion zero-knowledge follows from the extraction of

the trapdoor, which can be extracted by Lemma 5.2.1.

Theorem 6.4.2. The protocol in Figure 6.2 is update knowledge sound provided that

the (2n,36n2)-MKE and the (2n,36n2)-Mono assumptions hold for n the number of

multiplicative constraints.

Proof. To prove this it suffices, by the results in Chapter 5, to prove security in
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Common Input: info = bp,qap,srsqap

Prove(info,φ ,w) 7→ π

(a0,a1, . . . ,am)← parse(1,φ ,w)

r $←− Zp

q(X)← ∑
m
i=0 aiui(X)·∑m

i=0 aivi(X)−∑
m
i=0 aiwi(X)

t(X)

a(X ,Y )←
(

q(X)Y + r(Y − t(X)Y 2)+∑
m
i=0 ai(wi(X)Y 2 +ui(X)Y 3 + vi(X)Y 4)

−Y 5− t(X)Y 6

)
c(X ,Y,Z)←

(
a2(X ,Y )+(q(X)Y + r(Y − t(X)Y 2)) ·n(X ,Y,Z)(

∑
m
i=`+1 ai(wi(X)Y 2 +ui(X)Y 3 + vi(X)Y 4)

)
·n(X ,Y,Z)

)
A,B,C← ga(x,y),ha(x,y),gc(x,y,z)

return π = (A,B,C)

Verify(info,φ ,π) 7→ 0/1
(a0,a1, . . . ,a`) ∈ Z`+1

p ← parse(1,φ)
(A,B,C) ∈G1×G2×G1← parse(π)

f (X ,Y )← Y 5 + t(X)Y 6−∑
`
i=0 ai(wi(X)Y 2 +ui(X)Y 3 + vi(X)Y 4)

check e(A,B)e(Ag f (x,y),hη(x,y,z)) = e(C,h)
check e(A,h) = e(g,B)
return 1 if both checks pass, else return 0.

Figure 6.2: An updatable and specialisable zk-SNARK for QAP

the setting in which the adversary makes only one update to the SRS. Imagine we

have a PPT adversary A U-Os that after querying U-Os on (Setup, /0) to get srs,

then queries on verifying (final,srs′,{ρ,ρ ′})), and then outputs verifying (φ ,π);

i.e., such that VerifySRS(R,srs′,{ρ,ρ ′}) = 1, srsqap ← Derive(srs′,qap), and

Verify(srsqap,φ ,π) = 1. Set a0 = 1 and parse the instance as φ = (a1, . . . ,a`) and

the proof as (A,B,C). The updated SRS verifies, thus there exists an extractor XA

that outputs τ = (α,β ,γ) such that Update(1λ ,srs,{ρ};τ) = (srs′,ρ ′).

From the second verification equation we have e(A,h) = e(g,B). From the q-

MKE assumption there exists a PPT extractor XA for A that outputs field elements

{ai, j,k}(i, j,k)∈{(0,0,0)}∪U defining a formal polynomial a(X ,Y,Z) equal to

a0,0,0 +a1,0,0X +
n,6

∑
i=0, j=1

ai, j,0X iY j +
2n,3,3d

∑
i=0, j=0,k=1

ai, j,kX iY jZk +a0,0,6nZ6n
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such that B = ha(x,y,z).

Taking the adversary and extractor together, we can see them as a combined

algorithm that outputs A,B,C and the formal polynomial a(X ,Y,Z) such that A =

ga(x,y,z). By the q-Mono assumption this has negligible probability of happening

unless a(X ,Y,Z) is in the span of {0,0,0}∪U ∩V :

{
1,X ,Z,{X iY j}2n,12

i=0, j=1, j 6=7,{X
iY jZk}2n,6,3n

i=0, j=1,k=1,(i, j)6=(n,4),{X
iY jZ6n}n,4

i=0, j=1

}
.

This means that

a(X ,Y,Z) = a0,0,0 +a1,0,0X +
n,6

∑
i=0, j=1

ai, j,0X iY j +
n,3,3n

∑
i=0, j=1,k=1

ai, j,kX iY jZk.

From the first verification equation we get C = g f (x,y,z) where f (x,y,z) is given

by

a(x,y,z)2 +
(

a(x,y,z)+β
5y5 + t(αx)β 6y6

−
`

∑
i=0

ai(wi(αx)β 2y2 +ui(αx)β 3y3 + vi(αx)β 4y4)
)
·n(αx,βy,γz).

By the q-Mono assumption this implies

a(X ,Y,Z)2 +
(
−

`

∑
i=0

ai(wi(αX)β 2Y 2 +ui(αX)β 3Y 3 + vi(αX)β 4Y 4)

+a(X ,Y,Z)+β
5Y 5 + t(αX)β 6Y 6

)
×
(

γ
6nZ6n +

3n−m+`

∑
k=1

nk(αX ,βY )γkZk
)

also belongs to the span of

{
1,X ,Z,{X iY j}2n,12

i=0, j=1, j 6=7,{X
iY jZk}2n,6,3n

i=0, j=1,k=1,(i, j)6=(n,4),{X
iY jZ6n}n,4

i=0, j=1

}
.

Set a′i, j,k =
ai, j,0

α iβ jγk and observe that

a(X ,Y,Z) = ∑
i, j,k

ai, j,kX iY jZk = ∑
i, j,k

a′i, j,k(αX)i(βY ) j(γZ)k = a′(αX ,βY,γZ).
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Wlog. we can then rename the variables αX , βY , γZ by X ,Y,Z to get that

a′(X ,Y,Z)2 +
(

a′(X ,Y,Z)+Y 5 + t(X)Y 6

−
`

∑
i=0

ai(wi(X)Y 2 +ui(X)Y 3 + vi(X)Y 4)
)
· (Z6n +

3n−m+`

∑
k=1

nk(X ,Y )Zk)

The span has no monomials of the form X iY jZk for k > 6n. Looking at the

sub-part a′(X ,Y,Z)Z6n we deduce that a′i, j,k = 0 for all k 6= 0, which means

a′(X ,Y,Z) = a′0,0,0 +a′1,0,0X +
n,6

∑
i=0, j=1

a′i, j,0X iY j.

There are also no Z6n or XZ6n monomials in the span, so we get a′0,0,0 = 0 and

a′1,0,0 = 0. We are now left with

a′(X ,Y,Z) =
n,6

∑
i=0, j=1

a′i, j,0X iY j.

Define p(X ,Y ) such that

p(X ,Y ) =
n,6

∑
i=0, j=1

a′i, j,0X iY j +Y 5 + t(X)Y 6−
`

∑
i=0

ai(wi(X)Y 2 +ui(X)Y 3 + vi(X)Y 4).

Looking at the remaining terms of the form X iY jZk we see that for k = 0, . . . ,3n−

m+ `

p(X ,Y )ηk(X ,Y ) ∈ span{X iY j}2n,6
i=0, j=1,(i, j)6=(n,4).

This implies p(X ,Y )ηk(X ,Y ) has coefficient 0 for the term XdY 4. Recall the nk(X ,Y )

polynomials are constructed such that this is only possible if p(X ,Y ) can be written

as

Y q(X)+
m

∑
i=`+1

ai(wi(X)Y 2+ui(X)Y 3+vi(X)Y 4)+r1t(X)Y 2+r2t(X)Y 3+r3t(X)Y 4.

Finally, we look at terms of the form X iY 7. These do not exist in the span, so
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all the terms of that form in a(X ,Y,Z)2 should sum to zero. This implies

 q(X) ·Y +∑
m
i=0 ai(wi(X)Y 2 +ui(X)Y 3 + vi(X)Y 4)

+r1t(X)Y 2 + r2t(X)Y 3 + r3t(X)Y 4−Y 5− t(X)Y 6

2

should have no X iY 7 terms. This in turn implies

2

 (r3 ∑
m
i=0 aiui(X)+ r2 ∑

m
i=0 aivi(X)− r1−q(X)) · t(X)

−∑
m
i=0 aiwi(X)+∑

m
i=0 aiui(X) ·∑m

i=0 aivi(X)

= 0

By definition of qap we now have that (a`+1, . . . ,am) is a witness for the instance

(a1, . . . ,a`).



Chapter 7

Sonic: Zero-Knowledge Arguments

from Linear Sized SRSs

This Chapter presents work [23] together with Sean Bowe, Markulf Kohlweiss,

and Sarah Meiklejohn. The author was the primary investigator in this work. The

construction, which we call Sonic, is of a NIZK with an updatable and universal

SRS of linear size (as opposed the quadratic SRS in Chapter 6). The proof sizes are

succinct and the verifier’s computation is succinct in the “helper” setting. By this we

mean that there is an untrusted helper that produces succinct arguments that a batch

of proofs verify, and a verifier can use this argument to check the entire batch with a

one off linear cost and a succinct cost per proof.

7.0.1 Building Blocks

Sonic uses two main primitives as building blocks: a polynomial exponent commit-

ment scheme and a signature of correct computation [67]. A polynomial commitment

scheme is defined by three DPT protocols:

• (ComR,ComR′)← Commit(bp,srs, f (X)) takes as input the bilinear group,

the structured reference string, a maximum degree, and a Laurent polynomial

with powers between −d and d. It returns a commitment ComR, and a proof

of knowledge of the contents of the commitment ComR′.

• b← pcV(bp,srs,ComR,ComR′,R,π) takes as input the bilinear group, the

SRS, a commitment, an evaluation and a proof. It outputs a bit indicating
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acceptance (b = 1), or rejection (b = 0).

We require that this scheme is evaluation binding; i.e., given a commitment ComR, an

adversary cannot open ComR to two different evaluations R1 and R2 (more formally,

that it cannot output a tuple (ComR,R1,π1,R2,π2) such that pcV returns 1 on both

sets of evaluations and proofs). We also require that it is polynomial extractable; i.e.,

any adversary that can provide a valid evaluation opening also knows an opening

f (X) with powers−d ≤ i≤ d, i 6= 0 (more formally, that this is true for any adversary

that outputs a tuple (ComR,ComR′) that passes verification). For both properties,

we require that they hold with respect to an adversary that can update the SRS; i.e.,

that has access initially to the oracle in Definition 3.1.3.

In Section 7.4 we provide a polynomial exponent commitment scheme satisfying

these two properties. We prove its security in Lemma 7.4.1.

A signature of correct computation is defined by two DPT protocols:

• (s(z,y),sc)← scP(bp,srs,s(X ,Y ),y) takes as input the bilinear group, the

SRS, a two-variate polynomial s(X ,Y ), and a point in the field y. It returns a

commitment S = Commit(bp,srs,s(X ,y)) and a proof sc.

• b← scV(bp,srs,s(X ,Y ),(z,y),S,sc) takes as input the same parameters as

the scP algorithm in addition to an evaluation and a proof. It outputs a bit

indicating acceptance (b = 1), or rejection (b = 0).

We require that this scheme is sound; i.e., given y and S, an adversary can convince

the verifier only if S = Commit(bp,srs,s(X ,y)).

In Section 7.4 we provide a signature of correct computation satisfying this

property. We prove its security in Lemma 7.4.2.

7.0.2 Our Techniques

At a high level, our protocol combines techniques from both Bulletproofs and zk-

SNARKs to obtain a scheme with many of the benefits of both. In order to achieve

this, we make heavy use of a pairing-based polynomial commitment scheme due to

Kate et al. [66].
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In a bit more detail, the goal of Sonic is to provide zero-knowledge arguments

for the satisfiability of arithmetic circuits. The key idea behind our protocol is to

start with a two-variate polynomial equation used in Bulletproofs that was designed

by Bootle et al. [61]. The polynomial equation is satisfied if and only if the circuit

is satisfied. This two-variate polynomial depends only on monomials and not on

polynomials. By designing our scheme around Bulletproofs, as opposed to around

the quadratic arithmetic programs that are typically used by zk-SNARKs, we acquire

an SRS that naturally depends only on monomials. Thus we derive a scheme that

can be built from our universal and updatable structured reference string. The

prover is required to calculate polynomials in the exponent at unknown points x and

known points y. The prover does not reveal its polynomials, but rather provides

commitments to them using Kate et al.’s polynomial commitment scheme. This

scheme has constant size and verification time, but is designed for single-variate

polynomials, whereas our polynomials are two-variate.

There are three key observations that allow us to use a single-variate polynomial

commitment scheme in order to commit to two-variate polynomials.

The first observation is that for polynomials of the form f (X ,Y ) = ∑
d
i=0 aiX iY i,

we have that for all z and y in F, f (zy,1) = f (z,y). We use this to have our prover first

commit to f (X ,1) and later commit to f (X ,y) at a random point y. The verifier sends

the prover a random point z. By opening the first commitment at zy and the second at

z and checking that the results are equal, the verifier learns that the two commitments

are consistent. Our prover hides their witness in the unknown polynomial before

they learn y, and are later required to scale their committed polynomial by y.

The second observation is that when the prover and verifier both know a two-

variate polynomial to which the verifier wants to calculate a commitment, this work

can be unloaded onto the prover. We utilise this observation by placing the work

of uploading a polynomial specifying the circuit onto the prover. The prover can

commit to the polynomial, and the verifier can check that the commitment is correct

by asking the prover to open the commitment at a random point, and then checking

that the result is the evaluation of the polynomial at that point. This shifts the required
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work for the verifier from computing a polynomial in the exponent to computing a

value in the field.

Our third observation is that verifiers can sometimes be helped by entities

other than the prover, which we call “helpers”. In particular, when off-loading its

computation to the prover, the verifier asks each individual prover to open their

commitments at different random points. Using a helper, however, it can instead

ask the helper to open all of the commitments at the same random point. Thus the

verifier only needs to compute a polynomial in the field once. Therefore, they can be

convinced that all of the commitments have been computed correctly provided that

the helper’s argument verifies.

7.1 Our Techniques

Like all the constructions in this thesis, Sonic is used to show satisfiability of

arithmetic circuits. There are a number of techniques for parsing from an arithmetic

circuit to a set of polynomial constraints that are compatible with zero-knowledge

proofs such as the quadratic arithmetic programs discussed in other chapters [73].

Sonic uses the polynomial constraints system described in [61]. The system in [61]

was designed not with amortisation in mind, but with the goal of being practical even

if only used once. Hence we obtain a system in which it is relatively cheap to derive

the circuit specific constraints.

Pairing based SNARKs require the prover to show that the exponents in the

group elements are in the correct span of the polynomial constraints. Our updatable

and universal zk-SNARK does this with a null-space argument and our SE-SNARK

with a relation dependent SRS. This is where Bulletproofs are truly ideal for Sonic.

Bulletproofs use a polynomial constraint system where the exponents of the group

elements must only be linearly independent from a single monomial and this can be

shown with a relation independent SRS.

To use the constraint system in Bulletproofs that was originally introduced

in [61] we require a polynomial commitment scheme. Here we can take advantage

of our structured reference string and the fact that we are allowing pairings to use an
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adaption of a scheme by Kate, Zaverucha, and Goldberg [66]. They have constant

sized proofs for any sized polynomial (up to a given bound) and verification consists

of checking a pairing.

The Sonic prover first computes three polynomials that depend on the witness

and satisfy the verifier’s constraints. Second, the prover commits to one of these

polynomials. The other two polynomials are entirely determined by the first poly-

nomial. Third, the verifier sends a challenge. Fourth, the prover evaluates their

polynomials at the challenge point. They send the evaluated polynomials and a proof

of correct evaluation to the verifier. The verifier checks that the polynomials satisfy

the polynomial constraints. If they do, then it knows that the evaluated polynomials

were computed by a prover that knows a valid witness.

Our linear verification cost comes in checking that the polynomials satisfy the

polynomial constraints. In particular, it is required to calculate a two-variate (but

sparse!) polynomial in the field. Note that this is more efficient than Bulletproofs in

which the verifier is required to calculate a two-variate polynomial in the exponent.

In the batched setting, a Bulletproofs verifier can calculate a polynomial in the

exponent once, but still needs to calculate a two-variate polynomial for every proof

in the batch. Sonic, on the otherhand, uses a helper (described in Section 7.3) to

reduce the verifier work per proof to constant.

7.1.1 Structured Reference String

In all of the following we require a structured reference string with unknowns x and

α of the following form

{
{gxi}d

i=−d, {g
αxi}d

i=−d,i6=0, {h
xi
,hαxi}d

i=−d, e(g,hα)
}

for some large enough d to support the circuit with n multiplication gates. By

omitting gα from the reference string we can, when necessary, force the prover to

demonstrate that a committed polynomial (in x) has a zero constant term. We can

generate such a reference string using techniques described in Chapter 5.
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7.1.2 Circuit Processing Techniques from Bulletproofs

We process our circuits using techniques by Bootle et al. [61]. Let a, b, and c be

n-length vectors over Zp such that the i-th entries correspond to the left, right and

output wires, respectively, of the i-th multiplication gate of an arithmetic circuit. The

goal of our protocol is to allow a prover to demonstrate knowledge of a satisfying

witness (a,b,c) for some fixed circuit.

We will be using a quadratic polynomial equation by Bootle et al. [61], with

some minor tweaks. We start by expressing our circuit as a system of arithmetic

constraints so that the prover can equivalently demonstrate that the system is satisfied.

Our constraint system consists of n multiplication constraints corresponding to

each multiplication gate, where the i-th multiplication constraint is of the form

ai ·bi = ci.

We will also have Q linear constraints in order to simulate the effects of addition

gates, where the q-th linear constraint is of the form

n

∑
i=1

aiui,q +
n

∑
i=1

bivi,q +
n

∑
i=1

ciwi,q = kq

for k that depends on the instance and for constant coefficients u, v, and w.

For example, to represent the constraint x2 + y2 = z, one would set

• aaa = (x,y), bbb = (x,y), ccc = (x2,y2)

• uuu1 = (1,0),vvv1 = (−1,0),www1 = (0,0),k1 = 0

• uuu2 = (0,1),vvv2 = (0,−1),www2 = (0,0),k2 = 0

• uuu3 = (0,0),vvv3 = (0,0),www3 = (1,1),k3 = z

Any arithmetic circuit can be represented with our constraint system by using the mul-

tiplication constraints to determine the multiplication gates and the linear constraints

to determine the wiring of the circuit and the addition gates. Thus the constraint

system covers NP.
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We follow the general logic of Bootle et al. to embed each equation into the

coefficient of a polynomial in formal indeterminate Y , producing the equation

n

∑
i=1

aiui(Y )+
n

∑
i=1

bivi(Y )+
n

∑
i=1

ciwi(Y )+
n

∑
i=1

Y iaibi− k(Y ) = 0 (7.1)

where

ui(Y ) =
Q
∑

q=1
Y q+nui,q vi(Y ) =

Q
∑

q=1
Y q+nvi,q

wi(Y ) =−Y i +
Q
∑

q=1
Y q+nwi,q k(Y ) =

Q
∑

q=1
Y q+nki

.

This equation will hold at all Y for valid wire assignments and has negligible proba-

bility of holding for invalid assignments at most Y given a large enough field.

Bootle et al. argue that (7.1) holds by constructing a special Laurent polynomial

t(X ,Y ) in a second formal indeterminate X which has 2k(Y ) as the constant term. We

use a modification of this polynomial, swapping exponents to simplify polynomial

commitments later. Where Bootle et al. set

r(X ,Y ) =
n

∑
i=1

aiY iX i +
n

∑
i=1

biX−i +
n

∑
i=1

ciX i+n

we set

r(X ,Y ) =
n

∑
i=1

aiY iX i +
n

∑
i=1

biX−i +
n

∑
i=1

ciX−i−n

i.e. we use negative exponents for the output wires rather than positive exponents.

We then modify our other polynomials to accommodate this change. We also append

6 dummy multiplication gates so that the additional wire values can act as blinding

factors for the polynomials. This is what gives our scheme its zero-knowledge

properties.

r(X ,Y ) =
n+6
∑

i=1
aiY iX i +

n+6
∑

i=1
biX−i +

n+6
∑

i=1
ciX−i−n−6

s(X ,Y ) =
n+6
∑

i=1
ui(Y )Y−iX−i +

n+6
∑

i=1
vi(Y )X i +

n+6
∑

i=1
wi(Y )X i+n+6

r′(X ,Y ) = r(X ,Y )+2s(X ,Y )

t(X ,Y ) = r(X ,Y )r′(X ,Y )−2k(Y )

(7.2)
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By demonstrating that the constant term of t(X ,Y ) is zero, we demonstrate that (7.1)

is satisfied.

7.2 Our Sonic Construction

The general approach behind Sonic is to have the prover commit to the polynomial

r(X ,Y ) with their choice of witness (a,b,c), and then evaluate r(x,y) and s(x,y)

such that the verifier can apply pairings to ensure that t(X ,Y ) has a constant term of

zero.

We split the polynomial r(X ,Y ) by expressing it as the sum of two polynomials

r1(X ,Y ) =
n+6
∑

i=1
aiX iY i

r2(X) =
n+6
∑

i=1
biX−i +

n+6
∑

i=1
ciX−i−n−6

The prover begins by sending the verifier commitments ComR = gαr1(x,1) and

R2 = gαr2(x). The verifier chooses y $←− Zp so that the prover can send R1 = gαr1(x,y)

and S = gαs(x,y) to the verifier.

The subprotocol (scP,scV) is run over S to ensure it is correct. Because s(X ,Y )

is a Laurent polynomial, the subprotocol scales the commitment by hxn
within the

pairing equation so that the prover and verifier can work over a polynomial in X .

The subprotocol (peP,peV) is ran over ComR and R1 to ensure R1 was com-

puted consistently with y. The verifier is concerned that R1 may be a commitment to

a polynomial in X of degree larger than n, and so the prover sends Rx = gαxd−n−6r1(x,y)

to demonstrate that this is not the case, which the verifier checks with a pairing.

The prover shows that R1,R2 are commitments to polynomials in the variables

X ,X−1 respectively. It does this by providing elements A1 = Rx−d

1 and A2 = Rxd

2 ,

which the verifier checks.

The prover sends R′ = hα(2s(x,y)+r(x,y)) which the verifier checks. Finally, the

prover sends T = gαt(x,y) and the verifier is convinced if

e(R1R2(2S),R′)e(g,h)−2α2k(y) = e(T,hα)
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holds. If T has a term that is not scaled by α , then the verifier’s equation is not

satisfied as all of R1, R2, S only have terms scaled by α . This demonstrates that

t(X ,Y ) has a constant term of zero.

Common Input: info = bp, srs, s(X ,Y ), k(Y ), φ , e(gxα ,hαx−1
)

zkP1(info,a,b,c) 7→ (zk.msg1,zk.st1):

an+1, . . . ,an+6,bn+1, . . . ,bn+6
$←− Zp

cn+1, . . . ,cn+6← an+1 ·bn+1, . . . ,an+6 ·bn+6
r1(X)← ∑

n+6
i=1 aiX i

r2(X)← ∑
n+6
i=1 biX−i + ciX−i−n−6

(pe.msg1,pe.st1)← peP1(srs,r1(X))

R2← gαr2(x)

A2← gr2(x)xd

zk.msg1←{R2,A2,pe.msg1}
zk.st1←{info,r1(X),r2(X),pe.st1}
return (zk.msg1,zk.st1)

zkV 7→ zkP: Send y $←− Zp to prover

zkP2(st1,y) 7→ (zk.msg2,zk.st2):
(pe.msg2,pe.st2)← peP2(pe.st1,y)
(sc.msg1,sc.st1)← scP1(srs,Xn+6s(X ,Y ),y)
A1← gr1(xy)x−d

S← gαs(x,y)

# The value R1 = pe.msg2 is equal to gr1(xy).
# The value Sx = sc.msg1 is equal to gxn+6s(x,y).
zk.msg2 = {S,A1,sc.msg1,pe.msg2}
zk.st2 = {pe.st2,sc.st1}
return (zk.msg2,zk.st2)

zkV 7→ zkP: Send z $←− Zp to prover

zkP3(zk.st2, i) 7→ (zk.msg3):
R′← hαr(x,y)+2αs(x,y)

Rx← Rαxd−n−6

1
T ← gαt(x,y)

pe.msg3← peP3(peP.st2,z)
sc.msg2← scP2(sc.st1,z)
zk.msg3←{R′,Rx,T,pc.msg2,pe.msg3,sc.msg2}
return zk.msg3

zkV(info,zk.msg1,zk.msg2,zk.msg3,y,z) 7→ 0/1:
set R = R1R2
check peV(srs,pe.msg1,y,pe.msg2,pe.msg3,z)
check scV(srs,Xn+6s(X ,Y ),y,sc.msg1,sc.msg2,z)
check e(A1,gαx−d

) = e(R1,h)
check e(A2,hα) = e(R2,hxd

)
check e(g,R′) = e(RS2,h)
check e(Rx,h) = e(R1,hxd−n−6

)

check e(S,hxn+6
) = e(Sx,hα)

check e(T,hα) = e(R,R′)e(gαx,hαx−1
)−2k(y)

return 1 if all checks pass, else return 0.

Figure 7.1: Sonic protocol to check that prover knows a valid assignment of the wires in the
circuit.

Theorem 7.2.1. Sonic satisfies subversion zero-knowledge.

Proof. To prove subversion zero-knowledge, we need to both show the existence of

an extractor XA that can compute a trapdoor from the updated proofs, and describe

a SimProve algorithm that produces indistinguishable proofs when provided with

the extracted trapdoor.

The simulator is given the trapdoor gα and chooses random vectors aaa, bbb from

Zp of length n+ 6 and sets ccc = aaa · bbb. It computes r(X ,Y ), r′(X ,Y ), t(X ,Y ) as in

(7.2) where (unlike for the prover) t(X ,Y ) can have a non-zero coefficient in X0.

The simulator then behaves exactly as the prover in Figure 7.1 with its random
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polynomials. Observe that the simulator can compute gαt(x,y) for all y ∈ Zp.

Both the prover and the simulator utilise a polynomial exponent commitment

scheme for r1(X ,Y ) and they also both provide r2(X) in the exponent. The former

reveals the values r1(x,1), r1(x,y), r1(z,y), w0(x), w1(x) i.e. 5 evaluations (some of

these are in the exponent). The latter simply reveals the value r2(x). The prover has

six blinders for r1(X), (an+1, · · · ,an+6) and six blinders for r2(X), (bn+1, · · · ,bn+6).

Thus for a verifier that obtains less than six evaluations, the prover’s polynomial is

indistinguishable from the simulators random polynomial. All other components in

the proofs are either uniquely determined given the previous components for both

prover and simulator, or are calculated independently from the witness (and are

chosen in the same method by both prover and simulator). Consequently, subversion

zero-knowledge follows from the extraction of the trapdoor, which we show below.

A reference string and proof (srs,{ρ}m
i=1) that passes verification is structured

as if it were computed by Setup(1λ ) i.e. there exist values (x,α) ∈ Z2
p such that

srs=
{
{gxi}d

i=−d, {g
αxi}d

i=−d,i 6=0, {h
xi
,hαxi}d

i=−d

}
. The ith verifying update in-

cludes a proof of knowledge for αi such that α = (α1 · · ·αi−1)×αi. Combining the

extractors for these proofs of knowledge gives α = α1 · · ·αn. The combined extrac-

tors run in polynomial time because, where the proofs of knowledge use Fischlin

transforms, the extractors are straight-line.

Theorem 7.2.2. Sonic has updatable witness extended emulation assuming the

d-PKE and the 3d-BGDHE asssumptions hold.

Proof. By Lemma 5.3.1, it suffices to consider an adversary that performs all the

updates except the original setup. Suppose that A is an adversary that receives a

structured-reference string from the setup algorithm

{
{gxi

1}d
i=−d, {g

α1xi
1}d

i=−d,i 6=0, {h
xi

1,hα1xi
1}d

i=−d

}
.
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Further suppose that A performs m verifying updates to set the srs to
{g(x1...xm)

i}d
i=−d,

{g(α1...αm) (x1...xm)
i}d

i=−d,i 6=0

{h(x1...xm)
i
,h(α1...αm)(x1...xm)

i}d
i=−d

 .

Since the adversary’s updates verify, there exists an extractor that outputs α2, . . . ,αm

and x2, . . . ,xm. For ease of notation, we set x = x1 . . .xm and α = α1 . . .αm.

Suppose that A can convince a verifier with non-negligible probability. Our

extractor runs the first step of A to get zk.msg1 with respect to the updated srs and

an instance φ . It then runs the second two stages of A , with the random challenges

y and z.

The verifier checks that that e(g,R′) = e(RS2,h). Therefore, by the q-PKE

assumption there exists an extractor XA that outputs ui,vi such that

log(R′) = 2αs(x,y)+∑
d
i=−d uixi

1 + viα1xi
1 .

By the soundness of the signature of correct computation (see Lemma 7.4.2),

log(S) = αs(x,y) and

log(R) = u(x1)+α1v(x1).

By the soundness of the polynomial exponent commitment scheme (see

Lemma 7.4.1), the extractor can output r1(X) such that ComR = gα1r1(x1) and

R1 = gα1r1(x1). This means that the extractor also learns r2(X) = log(R)−αr1(X).

The verifier checks that

e(A1,hα) = e(gαr1(x1),hx−d
) and e(A2,hα) = e(gαr2(x1),hxd

).

This implies that

e(Aα2...αm
1 ,hα1) = e(gαr1(x1)x2...xm ,hx−d

1 )

e(Aα2...αm
2 ,hα1) = e(gαr2(x1)x2...xm ,hxd

1).
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If r1,−1, . . . ,r1,−d,r2,1, . . . ,r2,d 6= 0 then A obtains non-trivial linear combina-

tions of xd+1
1 , . . . ,x2d

1 , breaking the (2d + i)-BGDHE assumption for 0 ≤ i ≤ d.

If r1,0,r2,0 6= 0 then the adversary breaks the d-BGDHE assumption. Where

e(Rx,h) = e(gr1(x1),hxd−n−6
), we get that r1,n+7, . . . ,r1,d must equal zero. If not,

then the adversary could obtain non-trivial linear combinations of xd+1
1 , . . . ,x2n−n−6

1 ,

breaking the (2d + i)-BGDHE assumption.

As a result, the extractor learns that log(R) is given by

r(x,y) = α1

n+6

∑
i=1

r1,ixiyi +α1

d

∑
i=1

r2,ix−i.

They also learn that R′ = h2αs(x,y)+α1r(x1,y)). This means that

log(T ) = α1r(x1,y) · (2αs(x,y)+α1r(x1,y))−2αk(y).

Now log(T ) cannot have a zero-term in α1x1 by the d-BGDHE assumption. Set

(α2 . . .αm)aaa =
r1,1

x2...xm
, . . . ,

r1,n+6
(x2...xm)n+6

(α2 . . .αm)bbb =
r2,1

(x2...xm)−1 , . . . ,
r2,n+6

(x2...xm)−n−6

(α2 . . .αm)ccc =
r2,n+7

(x2...xm)−n−7 , . . . ,
r2,2n+12

(x2...xm)−2n−12

.

This means that ∑
n+6
i=1 yiaibi +aiui(y)+bivi(y)+ ciwi(y)−2k(y) = 0. Finally, sup-

pose that this holds for n+Q+1 different challenges y∈Zp. Then, we have equality

of polynomials in (7.1), since a non-zero polynomial of degree n+Q+ 1 cannot

have N +Q roots. This means that the circuit is satisfied.

7.2.1 Efficiency

Our system uses 1 polynomial exponent commitment and 1 signature of correct

computation in addition to the explicit checks. Overall there are 13 elements in G1, 4

elements in G2, and 1 element in Zp. The verifier is required to compute 24 pairings

in total, or 12 pairing equations (of these 11 can be batched). Thus the batched

verifier needs to compute 2m+22 pairings where m is the number of proofs in each

batch.
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7.2.1.1 Circuit Processing Adaptations for Sonic

Our aim is to amortise computation over many proofs, thus we now differ from [61]

in the two following fashions.

First Adaptation: In order to run our “helper” to amortise the verifier costs, we

require that the polynomial s(X ,Y ) is unaffected by the instance, i.e., we require

that the vectors uuuq,vvvq,wwwq are unaffected by the instance. Recall that the instance

is denoted by φ and has size `. We use between ` and 2` additional constraints to

include the instance. These are designed so that the instance only affects the scalars

k.

• When φm is a wire that leads into a multiplication gate we can simply include

an equality check. For example, suppose that ai = φm. Then we would set uq

to equal 1 in the ith entry and zero everywhere else, vq, wq to equal 0 in all

entries, and kq = φm.

• In the more complicated scenario where φ j is used to scale an addition con-

straint e.g. aiuq,i+b jφm = kq we do the following: (1) add a multiplication gate

to the circuit of the form an+1b j = cn+1: (2) check φm = an+1 as per the previ-

ous example; (3) set wq,n+1 = 1 in the ith entry and zero everywhere else, and

replace our original constraint with one of the form aiuq,i + cn+1wq,n+1 = kq.

This ensures that only kq+1 is affected by the instance.

Second Adaptation: The second adaptation was designed by Sean Bowe. The veri-

fier is expected to calculate a polynomial k(Y ), and the sparseness of this polynomial

depends on the number of non-zero kq values. To keep to verifier costs down, we use

the following trick to ensure that all “non-instance” values kq are equal to zero. First

we add three instance wires to the circuit, a1,b1,c1, all of which are set to equal 1

(the circuit only needs to check that a1 = 1). Then when

a ·uq +b ·vq + c ·wq = kq
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Scenario Helper time Verifier time Helper proof size

No helper 0 O(m×n) 0
Helper O(mn log(n)) O(m)+O(n) 2m+1 G1, m Zp

Table 7.1: Efficiency comparison for the helper and the (un)-helped verifier for Sonic.

if we reset uq,1 from 0 to −kq we have that

a ·uq +b ·vq + c ·wq = 0.

7.3 A Helping Hand for the Verifier

As currently described, the zero-knowledge proofs in Sonic have linear verification

time, because the verifier has to check the signature of correct computation. However,

in the amortised setting, where one is proving the same thing many times, we can

use what we refer to “helpers” in order to make the linear cost a one-off payment,

and then we have constant verification costs per proof. The proofs provided by the

helper are succinct, and the helper can be run by anyone (i.e., they do not need any

secret information from the prover). The natural candidate for this role in the setting

of blockchains is a miner, as they are already investing computational energy into

the system.

The key observation is that if the helper knows the evaluations S1, . . . ,Sm in

advance, then they can run the protocol for scP where all m iterations receive the

same challenge. Then, the expensive part of the scV verifier, namely checking that

s(z,y) = v, need only be run once.

When a helper’s services have been provided, the verifier does not check that

the scV verifier is satisfied. Nonetheless, for the challenges y1, . . . ,ym, the verifier

still needs to be assured that S1, . . . ,Sm = gs(x,y1), . . . ,ss(x,ym) for a public polynomial

s(X ,Y ). The helper should not be able to convince a verifier to accept their help

unless this is the case. A summary of the efficiency tradeoffs in both the helped

and the unhelped scenarios is in Table 7.1. Here n is the number of multiplication

gates, m is the number of proofs for the same circuit, and k is the number of times
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the chained helpers update the chain.

7.3.1 The Helper

The algorithm for our helper is given in Figure 7.2. The helper is denoted by hscP

and the verifier is denoted by hscV. Roughly the idea is as follows. The helper is

given a random challenge by the verifier. First the helper computes an element C

which contains the polynomial s(X ,Y ) in the exponent, but it flips the unknown

coefficient. So rather than computing s(x,y) in the known coefficient y and the

unknown coefficient x, it computes s(z,x) in the known challenge u and the unknown

challenge x. It sends a compact proof that both S j and C open to the same point at y j.

Provided that C has been calculated correctly, the helper can open C only to s(z,y j).

Thus if S j can be opened to s(z,y j) for any challenge z, then S j must equal gs(x,y j).

Overall, the verifier is required to check the proofs that S j and C open to the same

values, and that C has been computed correctly.

Common Input: info = bp, srs, {S j, S̄ j,y j}m
j=1, s(X ,Y ) = ∑

d
i, j=0 si, jX iY j

hscV 7→ hscP: Send u $←− Zp to prover

hscP1(info,u) 7→ (hsc.msg1,hsc.st1):
C,C̄← gs(u,x),hs(u,x)

for 1≤ j ≤ m : r j = s(u,y j)

w j(X)← s(X ,y)−r j
X−u

q j(X)← s(u,X)−r j
X−y j

Wj,Q j← gw j(x),gq j(x)

hsc.msg1← (C,{Wj,Q j,r j}m
j=1)

hsc.st1← (C,u,{Wj,Q j,r j}m
j=1)

return (hsc.msg1,hsc.st1)

hscV 7→ hscP: Send z $←− Zp to prover

hscP2(hsc.st1,z) 7→ (hsc.msg2):
c← s(u,z)
q0(X)← s(u,X)−c

X−z
Q0← gq0(x)

hsc.msg2← (Q0)
return (hsc.msg2)

hscV(info,hsc.msg1,hsc.msg2,u,z) 7→ 0/1:
c← s(u,z)
check e(Cg−c,h) = e(Q0,hx−z)
check e(C,h) = e(g,C̄)
for 1≤ j ≤ m, check e(S jg−r j ,h) = e(Wj,hx−u)

check e(S j,h) = e(g, S̄ j)
check e(Cg−r j ,h) = e(Q j,hx−y j)

return 1 if all checks pass, else return 0

Figure 7.2: The helper protocol for aggregating signatures of correct computation.

Lemma 7.3.1. Suppose that for a set of elements S1, S̄1, . . . ,Sm, S̄m, a correspond-

ing set of points (y1, . . . ,ym), and a polynomial s(X ,Y ), an adversarial helper
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A convinces a hscV verifier. Then by the d-PKE and the d-BGSDH assumption,

S j = gs(x,y j).

Proof. The verifier checks that e(C,h) = e(g,C̄) and e(S j,h) = e(g, S̄ j) . Thus by

the d-PKE assumption, there exists an extractor that can output c(X), f j(X) such

that C = gc(x) and S j = g f j(x).

The verifier opens C to s(u,z) at z. If c(X) 6= s(u,X) then the verifier can find

g
s(u,z)−c(z)

x−z , breaking the d-BGSDH assumption. The verifier opens C to r j at y j. If

r j 6= s(z,y j) then the verifier can find g
r j−s(z,y j)

x−y j , breaking the d-BGSDH assumption.

The verifier opens S j to r j = s(z,y j). If f j(z) 6= s(z,y j) then the verifier can find

g
r j− f j(z)

x−z breaking the d-BGSDH assumption. Suppose we have 2d + 1 challenges

such that f j(zi)= s(zi,y j). Then f j(X) and s(X ,y j) are degree d Laurent polynomials

that are equal on 2d +1 points, meaning that f j(X) = s(X ,y j).

7.4 A Polynomial Commitment Scheme

Kate, Zaverucha, and Goldberg designed a constant-size, pairing-based polynomial

commitment scheme [66]. The idea is to commit to a polynomial f (X) by evaluating

C = g f (x) at some unknown point x. They then use that for any z ∈ F, X− z divides

f (X)− f (z) perfectly to find W = g
f (x)− f (z)

x−z . To verify, they use a pairing to show that

W x−z =Cg− f (z).

We take inspiration from their scheme in the design of our zero-knowledge argument.

In order to get knowledge extraction we wish to use the q-PKE assumption.

This can either go through by putting the proof component W in the second source

group G2 or by including a replicated version of C in G2 and checking a second

pairing. We choose to use the second pairing. This is because when a verifier is

checking many proofs, they are able to batch the proofs. In all of the schemes below,

we assume that x is a fixed but unknown value hidden in the structured reference

string.
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7.4.1 Polynomial Exponent Commitment Scheme

We wish to commit to polynomials of the form

f (X ,Y ) =
m

∑
i=1

aiX iY i

and to evaluate them at and unknown point X and a known point y. To do this, the

prover commits to f (X ,1) and to f (X ,y) separately. Then, at a random point z,

they open f (X ,1) to f (yz,1) and f (X ,y) to f (z,y). If the prover behaves honestly

then these two values will be equal. If not, then we show that they have negligible

probability of being equal.

Common Input: info = bp,srs, e(g,hα)

peP1(info, f (X ,Y )) 7→ (pe.msg1,pe.st1):
ComR← gα f (x,1), ComR′← hα f (x,1),
pe.msg1←{ComR,ComR′},
pe.st1←{info, f (X ,Y )}
return (pe.msg1,pe.st1)

peV 7→ peP: Send y $←− Zp to prover

peP2(pe.st1,y) 7→ (pe.msg2,pe.st2):
R← gα f (x,y), R̄← hα f (x,y),
pe.msg2←{R, R̄}, pe.st2←{info, f (X ,Y ),y}
return (pe.msg2,pe.st2)

peV 7→ peP: Send z $←− Zp to prover

peP3(st2,z) 7→ pe.msg3:
r← f (y,z),
w0(X)← f (X ,1)− f (yz,1)

X−yz , w1(X)← f (X ,y)− f (z,y)
X−z

W0,W1← gw0(x),gw1(x), pe.msg3←{r,W0,W1}
return pe.msg3

peV(info,pe.msg1,pe.msg2,pe.msg3,y,z):
check e(ComR,h) = e(g,ComR′)
check e(R,h) = e(g, R̄)
check e(ComR,h)e(g,hα)−r = e(W0,hαx−zyα)
check e(R,h)e(g,hα)−r = e(W1,hαx−zα)
return 1 if both checks pass, else return 0

Figure 7.3: Polynomial exponent commitment scheme.

Lemma 7.4.1. The polynomial exponent commitment scheme in Figure 7.3 is eval-

uation binding and polynomial extractable by the d-PKE, d-BTPF, and d-BGSDH

assumptions.

Proof. Suppose that an adversary outputs ComR,R in the polynomial exponent

commitment scheme and convinces a verifier. We show that there exists an extractor

that can output f (X) such that ComR = g f (x) and R = g f (xy).

By Lemma 6 from [22], we only need to consider an adversary that receives

an srs from the setup, and performs all other updates. Then for an srs containing
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gx1...xm , the adversary knows x2, . . . ,xm.

From the first pairing equation, the extractor can compute a(X),b(X) such

that ComR = ga(x1)+α1b(x1) or else the adversary breaks the q-PKE assumption.

From the second pairing equation, the extractor can compute p(X),q(X) such that

R = gp(x1)+α1q(x1) or the adversary breaks the d-PKE assumption.

The adversary outputs r,W0,W1 such that

e(ga(x1)+αb(x1)−rα ,h) = e(W0,hαx−zyα)

e(gp(x1)+α1q(x1)−rα ,h) = e(W1,hαx−zα)

with x = x1 . . .xm and α = α1 . . .αm. If a(X) 6= 0 then the adversary can compute

e(g,h)
a(x)
α1 = e(gα2...αm(r−b(x1))(W0)

α2...αm ,hx−zy).

Hence it can break the d-BTPF assumption. Likewise p(x1) = 0.

If r 6= b(zy) then the adversary can find another value r′= b(zy),W ′0 that satisfies

the verification equation. Hence they can find g
(r′−r)
αx−z . By multiplying through by

α2...αm
r′−r then the adversary breaks the d-BGSDH assumption with c = z

x2...xmα2...αm
.

Likewise, r is equal to p(z).

Suppose this holds for 2d + 1 different values z j ∈ Zp. Then q(z j) = q0 +

q1(z j)+ . . .+qn(z j)
n and hence the polynomial q0 +

q1
y X + . . .+ qn

yn Xn evaluates to

r j at z jy. By uniqueness of interpolated polynomials, this scaled polynomial equals

b(X). This completes the proof.

7.4.2 Signature of Correct Computation

Our signature of correct computation is checking the correct evaluation in the ex-

ponent rather than in the field. The scheme is given for proving correct evaluation

of a known multivariate polynomial s(X ,Y ) at an unknown point x and a known

point y; s(X ,Y ) = ∑
n
i, j=0 si, jX iY j. The prover calculates gs(x,y). The verifier responds

with a challenge z. The prover sends a proof that s(z,y) is a correct evaluation of

the committed polynomial at z. This suffices to show that the commitment was

calculated correctly. The verifier is required to compute s(z,y), so there is still a
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linear overhead (recall s(X ,Y ) is sparse). However, this linear overhead is in terms

of field operations as opposed to group exponentiations, so there is less work for the

verifier.

Common Input: info = bp, {gxi
,hxi}d

i=−d, s(X ,Y ) = ∑
d
i, j=0 si, jX iY j, y

scP(info) 7→ (sc.msg1,sc.st1):
S← gs(x,y), S̄← hs(x,y),
sc.msg1← (S, S̄), sc.st1 = (info)
return (sc.msg1,sc.st1)

scV 7→ scP: Send z $←− Zp to prover

scP(sc.st1,z) 7→ (sc.msg2):

w(X)← s(X ,y)−s(z,y)
X−z , W ← gw(x), sc.msg2←W

return sc.msg2

scV(info,sc.msg1,sc.msg2,z):
r = s(z,y)
check e(S,h) = e(g, S̄)
check e(Sg−r,h) = e(W,hx−z)
return 1 if both checks pass, else return 0

Figure 7.4: Signature of correct computation.

Lemma 7.4.2. The signature of correct computation in Figure 7.4 is sound by the

d-PKE and the d-BGSDH assumptions.

Proof. We show that if an adversary, including one that can perform updates, outputs

a verifying transcript then either S = gs(x,y) or the adversary breaks the d-PKE or the

d-BGSDH assumptions.

By Lemma 6 from [22], we only need to consider an adversary that receives an

srs from the setup, and performs all other updates. Suppose that an adversary has

non-negigible probability of outputting a verifying transcript. Then by the d-PKE

assumption, the adversary can output a polynomial f (X) such that S = g f (x1). Hence

the adversary can also output

p(X) = f0 +
f1

x1 . . .xm
X + . . .+

fn

(x1 . . .xm)n Xn

such that S = gp(x1...xm).

Suppose this holds for 2d + 1 challenges, z j. If f (z j) 6= s(z j,y) then A can

break the d-BGSDH assumption as in Lemma 7.4.1. Since f (X) and s(X ,y) are
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Scheme Verifier Costs Proof Size

No. Pairings No. Eqs Asymp

(peP,peV) 8 4 O(1) 4G1, 2G2, 1Zp
(scP,scV) 4 2 O(n) 3G1, 1G2

Table 7.2: Efficiency costs for the different polynomial commitment schemes used by Sonic.

(Laurent) polynomials of degree d, and they evaluate to the same values at 2d +1

different points, f (X) = s(X ,y).

7.4.3 Efficiency

Table 7.2 gives the size of the proofs and the number of pairings a verifier needs

to check for the polynomial commitment schemes given in this section. Here n is

the degree of the polynomial that is being committed to. The prover costs for each

of these schemes is O(n log(n)) assuming that the provers use multi-exponentiation

techniques [112].

Observe that if many pairings are being computed then the verifier can batch

the checks to reduce the total cost using techniques similar to those in [113]. To see

this, note that

e(Cgr,h) = e(W,hx−z)⇔ e(CW zgr,h) = e(W,hx).

Thus, to check whether (C0,W0,r0,z0) and (C1,W1,r1,z1) both hold, the verifier

picks (γ0,γ1)
$←− Zp and checks that

e((C0W z0
0 gr0)γ0(C1W z1

1 gr1)γ1,h) = e(W z0
0 W z1

1 ,hx).



Chapter 8

Conclusions and Future Work

In this thesis we have looked into mitigating two security issues for zero-knowledge

arguments: trusted setup and malleability. Our constructions focus on maintaining

efficiency in the amortised setting. We have designed: one SE-SNARK that requires

trusted setup; one updatable and universal zk-SNARK with quadratic global parame-

ters; and one updatable and universal zero-knowledge argument with linear global

parameters and efficient “helped” verification. We show that updatable schemes are

possible if the SRS contains only monomials, but not if it contains polynomials.

Compared to current zk-SNARKs and Bulletproofs, our updatable zk-SNARK

has competitive proof sizes and prover computation. However, the quadratic global

parameters are potentially unrealistic in practice. The storage requirements for cir-

cuits with 217 gates is in the order of terabytes, running the updates scales linearly in

the size of the SRS, and verifying the updates requires a linear number of pairings.

Although there are supercomputers that potentially have the resources to run this

computation, the implication is that the only parties that could verify the computa-

tions are those that also have large computational power at their disposal. Overall, it

appears that to move this approach from theoretical to practical, one would need to

find a means to reduce the size of the null space.

Sonic is realistic in practice provided that there is a party available to run the

helper. Unlike our updatable zk-SNARK, Sonic has a linear sized reference string

and the storage requirements for circuits with 217 gates is in the order of megabytes.

Verifying the updates requires a linear number of group exponentiations and a
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constant number of pairings; verification could be ran from a personal computer.

In blockchain settings the helper can be ran by miners and stakers, thus it is a

natural alternative to zk-SNARKs: the proof sizes, prover computation and verifier

computation in the batched setting are all competitive with the zk-SNARKs in use.

To make Sonic attractive for other settings, one would need to look into methods for

verifying the calculation of bivariate polynomials efficiently.

Our SE-SNARK has competitive proof sizes, SRS sizes, prover computation,

and verifier computation, which all asymptotically match the most efficient zk-

SNARKs in the literature. Unlike other zk-SNARKs it is simulation extractable.

However, the SRS’s are not updatable nor universal, therefore the trusted setup

concerns are not mitigated.

Our trio of schemes are constructed over bilinear groups, but it would be

interesting to see whether some of our techniques used might be transferable to

other settings such as the lattice world. By allowing updatable SRSs rather than

untrusted setup, we are able to amortise our verifier’s costs, and it is possible

that hidden monomial evaluations in other schemes might help improve efficiency.

Furthermore, our method for employing a helper to aggregate proofs to reduce the

verifier computation may be applicable to other schemes.

In defining simulation-extractability, we are strict about what the adversary

is not allowed to do. We say that the scheme is only secure if any adversary that

produces any unseen instance-proof pair must know a witness. Yet in the case of

digital signatures, it is not always the case that malleating a proof is the fundamental

security concern; sometimes one is only concerned if the adversary can change the

message. It would be interesting to investigate how zk-SNARKs can be constructed

with respect to an adversary that can change the proof but not the instance, and

whether this would have consequences for receipt-freeness [11].

On the negative side, all our protocols depend on knowledge-of-exponent

assumptions. Due to an impossibility result by Gentry and Wichs [114], NIZKs

with sublinear proof sizes are not possible in the standard model, and this result is

often used to justify the use of such strong assumptions. However, their result does
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not rule out the possibility of succinct proofs in the random oracle model. While

often slated for its unrealisability [115], the random oracle model (ROM) allows for

practical and non-interactive schemes. Further, proofs of knowledge in the ROM

show the existence of an extractor that computes a valid witness from any adversary

as opposed to an adversary dependent extractor. We argue that this simple change

in the order of quantifiers is preferable for security. In the ROM one provides an

extractor in the security proof and soundness can be shown to be broken from the

existence of an adversary against which the extractor does not succeed. In KEA

protocols the extractor is assumed to exist and soundness can only be provably

broken from the non-existence of an extractor for some adversary. We finish this

thesis with the question:

Can zk-SNARKs in the random oracle model match the efficiency of zk-SNARKs built

from knowledge assumptions?
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