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A comprehensive single cell transcriptional
landscape of human hematopoietic progenitors
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Olga K. Weinberg3, Alessandra Biffi1, Allon M. Klein 2 & Luca Biasco1,4

Hematopoietic Stem/Progenitor cells (HSPCs) are endowed with the role of maintaining a

diverse pool of blood cells throughout the human life. Despite recent efforts, the nature of the

early cell fate decisions remains contentious. Using single-cell RNA-Seq, we show that

existing approaches to stratify bone marrow CD34+ cells reveal a hierarchically-structured

transcriptional landscape of hematopoietic differentiation. Still, this landscape misses

important early fate decisions. We here provide a broader transcriptional profiling of bone

marrow lineage negative hematopoietic progenitors that recovers a key missing branchpoint

into basophils and expands our understanding of the underlying structure of early adult

human haematopoiesis. We also show that this map has strong similarities in topology and

gene expression to that found in mouse. Finally, we identify the sialomucin CD164, as a

reliable marker for the earliest branches of HSPCs specification and we showed how its use

can foster the design of alternative transplantation cell products.
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In humans, there have been conflicting proposals for the
hierarchical relationships linking different hematopoietic
progenitors1–7. In the conventional depiction of human

haematopoiesis, supported by lineage-tracing studies in the
mouse8, the earliest branching splits lymphoid vs myelo/ery-
throid fate commitment. Conversely, in a recent challenge of the
classical view, it has been suggested that multipotent progenitors
could undergo a very early fate decision towards the mega-
karyocyte lineage followed by a single step-wise transition to
either erythroid, myeloid, or lymphoid commitment9. The
advent of single-cell RNA sequencing (scRNA-Seq) has not only
created an opportunity to improve our understanding of the
nature of human haematopoiesis through the study of tran-
scriptional single-cell states10–12, but also generated conflicting
observations. Initial use of this technology in humans led to an
alternative view that early haematopoiesis is composed by a
continuum of low-primed undifferentiated haematopoietic
stem and progenitor cells (CLOUD-HSPCs) from which
unilineage-restricted cells emerge10. Recently, scRNA-Seq data
combined with assays of chromatin accessibility supported
instead the notion of a structured hierarchy, revealing a var-
iegated hematopoietic landscape13, the existence of lineage-
biased stem cells in mice14,15 and of different stages of human
lymphoid commitment in humans16,17.

Human HSPCs are commonly identified by expression of the
antigen CD3418. CD34+ cells are heterogeneous, and there are
ongoing efforts to classify their substructure by immunopheno-
typing and according to their differentiation and in vivo survival
potential5. The CD34+ cell population structure is unresolved,
with recent studies showing that the current immunophenoty-
pically defined CD34+ subsets could be more heterogeneous than
previously thought9,19. A possible reason for the lack of resolution
is that enrichment methods for CD34+ cells may bias the
representation of cell states during early hematopoietic commit-
ment, as the CD34 marker is downregulated at different rates
along commitment to different cell fates20,21. In this regard, one
should note that previous single-cell studies on human hemato-
poiesis focused exclusively on the whole CD34+ population
(comprising both Lin− and Lin+ cells)11, or on in silico mod-
eling of the fate commitment of the CD34+ fraction containing
the least differentiated HSPCs10.

We here aim at providing insights on the population structure
of early hematopoietic commitment, by profiling human HSPCs
with high-throughput scRNA-Seq22,23. Differently from previous
works, in the present study we not only isolate the immature cells
expressing the CD34 antigen, but we also extend our analysis to
the whole bone marrow (BM) fraction lacking the main markers
of terminal differentiation (Lineage negative, Lin− cells). The
resulting scRNA maps provide a comprehensive transcriptional
snapshot of the early human hematopoietic cell fates, shedding
light on the origin of the basophil branching and on a previously
unappreciated surface marker for fractionating the HSPCs cell
product.

Results
Generating a high-resolution scRNA map of CD34+ pro-
genitors. To establish a reference data set and to address the
heterogeneity and fate potential of the known CD34+ subsets,
our first investigations aimed at mapping at high-resolution the
single-cell transcriptional states of cells commonly defined as
human HSPCs (Fig. 1a). To this goal, we separated CD34+ cells
purified by magnetic beads selection into seven subpopulations5,
marking cells of differing fate potential (Fig. 1b) and tagged and
sequenced the transcriptome of 6011 single cells (Supplementary
Fig. 1a and Supplementary Table 1). We then used the

scRNA-Seq data to infer the structure of cell states in high-
dimensional gene expression space (Fig. 1c). We applied a
visualization method previously developed for mouse hemato-
poietic progenitors24, whereby each cell represents a graph node,
with graph edges linking nearest neighbor cells. The scRNA-Seq
graph, visualized using SPRING force-directed layout25, shows a
hierarchical, tree-like continuum of states, with branches that
terminate at cells expressing recognizable transcriptional sig-
natures of lineage commitment before the expression of final
maturation markers (Fig. 1c, d) (megakaryocytes (Meg), erythroid
cells (E), granulocytes (G), dendritic cells (DC), lymphoid cells
(Ly1-2)). The structure of the single-cell data broadly partitions
based on immunophenotypic subpopulations, but, significantly
and in line with recent suggestions9, we observed that previously
defined HSPC subpopulations hide substantial transcriptional
heterogeneity (Supplementary Fig. 2a).

Our scRNA-Seq map of CD34+ subpopulations suggests
that HSPCs do not undergo a single-step transition from
CLOUD-HSPCs to unilineage states. Instead, they form a
structured hierarchy (Fig. 1c). The earliest fate split separates
erythroid–megakaryocyte progenitors from lymphoid–myeloid
progenitors (LMPs), which separate further into lymphoid, DC
and granulocytic progenitors. This hierarchy is highlighted by
both inferred transcriptional trajectories (Fig. 1e and Supple-
mentary Fig. 3a) and formal high-dimensional analysis of graph
structure using the population balance analysis (PBA) algo-
rithm24 (Fig. 1f)24. We conclude that human HSPCs are more
organized than recently hypothesized and show more structure
than appreciated by classical immunophenotyping.

Extending the scRNA profiling to all BM progenitors. In the
1980 s, the wide adoption of monoclonal antibodies for immu-
nophenotyping revealed that the CD34 antigen is an effective
marker to isolate immature HSPCs from humans18. Since then,
efforts have been made to define the hierarchical structure of
HSPCs purified from immunomagnetic-selected CD34+ cells,
under the assumption that this cell population effectively captures
all early fate choices. Although our above analysis supports such
efforts, we reasoned that a focus on CD34+ cells purified with
magnetic beads enrichment might provide an incomplete view of
the earliest branching events in haematopoiesis. We noted, for
example, that branches towards basophils/eosinophils/mast cells
and monocytes commitments were missing in our initial scRNA-
Seq analysis of CD34 cells, despite these appearing as early events
in mouse haematopoiesis24. In addition, many cells negative for
mature lineage markers in human BM are CD34low/− and could
account for additional transitional states at which CD34 expres-
sion is rapidly downregulated, thus greatly reducing their prob-
ability of capture. Therefore, to generate a complete landscape of
early haematopoiesis, we extended our analysis to encompass
human CD34low and CD34− cells. To this aim, we collected
from a second healthy donor four fractions of BM Lin− cells,
covering different degrees of maturation (Fig. 2a). The graded
fluorescence-activated cell (FACS) sorting used in this analysis
corrects for expansion of cells as they differentiate, allowing
examination of early states alongside later ones that comprise the
vast majority of Lin− progenitors. In fractionating the cells by
maturity, we made use of a cell surface marker, CD164, that we
identified from the initial data set as expressed by cells that are
multipotent until just beyond the first E/Meg–LMP branchpoint
(Fig. 1g, h). This fractionation strategy allowed us to preserve
resolution of the single-cell events of the more-primitive com-
partments, whereas at the same time maintaining a full repre-
sentation of the late cell fate branching (Fig. 2b; Supplementary
Figs. 1b, 2b).
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As predicted, the transcriptional map of the Lin− fraction,
derived from the high-throughput clustering of 15,401 single cells
(Fig. 2b; Supplementary Fig. 4 and Supplementary Table 1),
revealed important early features that were missing from the
analysis of the immune-selected CD34+ population. Using the
same graph-based technique as for CD34+ cells, we could now

identify later cell fate decisions. Monocyte progenitors seem to
emerge from a common neutrophil/monocyte precursor later in
the myeloid commitment and after the branching decision
towards DC progenitors, with a possible contribution from DC
progenitors as recently shown in the mouse24,26. These data also
suggest that the identity of the remaining CD34− Lin− cells
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consists mostly of late neutrophil progenitors, and of a continuum
of differentiating states towards erythroid commitment. Our
results could be formalized, on a computational basis, by both
high dimensions (using PBA algorithm, Fig. 2c) and inferred
transcriptional trajectories (Fig. 2d and Supplementary Fig. 3b)
and were confirmed upon analyzing the data with an independent
method (Diffusion Maps27, Supplementary Fig. 5, 6) that does not
rely on a limited amount of k-nearest neighbors (kNN) for data-
embedding calculation. To generate a resource for further studies,
we investigated the association between gene expression dynamics
and cells progression along the estimated differentiation paths. We
identified putative transcriptional switches occurring during early
hematopoietic cell fate choices and genes exhibiting significant
variations during lineage commitments (Fig. 2e; Supplementary
Fig. 7 and Supplementary Information for the complete lists). This
analysis contains valuable information for in vitro reprogramming
efforts and for investigations into the origin of blood cell
differentiation disorders and cancers.

To understand how the enrichment of CD34+ subsets could
limit our view of early haematopoiesis, we projected the CD34+
HSPCs subpopulations onto the Lin− state map (Fig. 2f). The
analysis confirmed that large portions of the Lin− map are
strongly under-represented upon the magnetic pulldown of the
CD34+ population (namely the ones identifying basophils,
monocytes progenitors, and the stages of late erythroid differ-
entiation). This supports the concept that the Lin− population
structure provides a more complete view of key cell fate decisions
along human hematopoietic commitment and suggests that, for a
complete classification of HSPCs, analyses should be performed
on FACS-sorted CD34+, CD34low and CD34− compartments.
Finally, with this projection we could appreciate the heterogeneous
nature of the currently defined HSPC subsets, showing that they
can be further fractionated into distinct and more homogenous
transcriptional states (Supplementary Fig. 8).

Exploring the origin of the human basophilic branch.
The most-notable result emerging from the exploration of our BM
Lin− map was the identification of a branch toward cells carrying
a transcriptional profile of early basophils specification. Strikingly,
this class of basophils progenitors (BaP) was found to associate
with erythroid and megakaryocyte fates and not with granulocytes
precursors. Our data, generated on adult human BM, align with
and expand on preliminary observations done in human cord
blood CD34+ cells11,28, and in murine haematopoiesis29. To
elaborate on this observation, we computationally projected the
Basophil branch of our BM Lin− map onto the Lin− HSPC map
to identify which, among the HSPC single cell states, had the
highest scRNA similarity to this branch. The topological origin of
the early basophil cell specification in the HSPC map was in
striking accordance with what observed in the BM Lin− map and
the highest level of similarity was detected with respect to the
CD135− progenitors with known megakaryo–erythroid potential

(MEP) (Fig. 3a). Building on these results, we thus designed and
conducted a series of in vitro differentiation assays starting from
FACS sorting Lin−CD34+ cells into CD135+ (FLT3+) (by
definition containing common myeloid progenitors (CMP) and
granulocyte–monocyte progenitors; GMP) and CD135−(FLT3−)
(by definition containing MEP) cells (Fig. 3b–d and Supplemen-
tary Fig. 9c). These two groups of cells were separately put in
culture in myeloid-, megakaryocytes (MK)-, and basophil-
differentiating conditions under the hypothesis that if basophils
are generated by CMP or GMP (as suggested by the classical
model of haematopoiesis) the CD135+ fraction should be the one
capable of differentiating into basophils after culture. As reported
in Fig. 3, the Lin−CD34+4+CD135− and Lin−CD34+CD135+
populations had, as expected, specific growth preferences toward
MK (the former) and myeloid (the latter) cell fates (Fig. 3e, f). The
two populations grew at similar rate in basophilic conditions, but
while the Lin−CD34+CD135+ fraction generated mostly CD14+
monocytes (Fig. 3g, h), the Lin−CD34+CD135− fraction
emerged as the only population capable of giving rise with high
efficiency to bona fide basophils (Fig. 3g, h; Supplementary Fig. 9b,
d, e) defined as SSC-AlowCD14-CD15-FceRIA+ CCR3+ IL5RA+
cells (as in Mori et al. 200930 and in our immunophenotyping on
human peripheral blood reported in Supplementary Fig. 9a). This
observation is in line with our scRNA data showing that the
basophil branch emerges from CD135− cells already committed
toward a mixed MK/Erythroid/Basophil potential. Notably,
because our experimental design purposely included also CD38−
multipotent progenitors, one could have expected that basophils
would have been generated at similar rates by the CD38− HSC/
MPP that were present in both CD135+ and CD135− cell frac-
tions (Fig. 3d). Conversely, the observation that only the CD135−
cells were endowed with substantial basophilic potential strongly
support the notion that the Lin−CD34+CD38−CD135− popu-
lation might be already enriched in stem cells with very early
priming towards a basophilic cell fate.

Comparing human vs mouse hematopoietic scRNA-seq pro-
files. Another question of practical interest for modeling human
disease is the relationship between human and mouse haemato-
poiesis. Although cell surface markers used to isolate HSPC
subpopulations are known to differ between the two species,
scRNA-Seq provides an opportunity to link population structure
using whole-transcriptome information. We compared the
scRNA-Seq map of the human Lin− population to that of mouse
HSPCs, using data that we recently published on Kit+ mouse BM
progenitors24. This analysis unveiled a strong similarity among
the branching structures of haematopoiesis in the two organisms,
with almost a 1:1 correspondence between hierarchies of cell
states (Fig. 4a vs Fig. 2d, Supplementary Figs. 3c, 10). Further-
more, by comparing branch-specific gene signatures, we could
identify that the vast majority of gene orthologous in the ery-
throid branch were equivalently expressed in human and mouse

Fig. 1 Experimental workflow and transcriptional map for human HSPCs. a Schematic for experimental design and workflow of data analysis. Two
experiments have been performed on two separate healthy donors to generate two single-cell transcriptome maps (MNC, mononuclear cells; PBA,
population balance analysis; GEA, Gene expression analysis). b Gating strategy used for the FACS sorting of seven HSPC subsets from magnetic beads
purified CD34+ cells of a healthy donor BM (HSC, hematopoietic stem cells; MPP, multipotent progenitors; MLP, multi-lymphoid progenitors; Pre-B/NK,
Pre-B lymphocytes/natural killer cells; MEP, megakaryocyte-erythroid progenitors; CMP, common myeloid progenitors; GMP, granulocyte–monocyte
progenitors). c SPRING plot of the seven HSPCs single-cell transcriptomes. Each point is one cell. Labels at the edges represent the transcriptional states
associated to early lineage commitment (Meg, megakaryocytes; E, erythroid cells; G, granulocytes; DC, dendritic cells; Ly1/Ly2, lymphoid B, T, NK cells).
Color legend as in b. d Representative gene expression maps of lineage defining genes (PLEK, Meg; HBB, E; MPO, G; SPIB, DC; CD79A, and DNTT, Ly1/2).
e Classification of individual cells into homogenous transcriptional groups numbered from 1 to 11, based on inferred principal trajectories (Supplementary
Fig. 3a for details). f Predicted hierarchy based on two steps PBA. g Heatmap showing the expression average in groups shown in e for statistically
significant genes coding for CD markers (likelihood ratio test [LRT] adjusted p value < 0.05). h Gene expression maps of CD34 and CD164
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(Fig. 4b). Recently, we showed that erythroid progenitors in the
mouse can be classified as early, which uniquely give rise to burst-
forming units (BFU-E) and are marked by Trib2; and as com-
mitted, which give rise to colony-forming units (CFU-E) and
express Car2. Notably, we see the same progression from TRIB2-
expressing to CA2-expressing erythroid progenitors (Fig. 4c),
suggesting the existence of the same two precursors subclasses

in humans. In this regard, our data also confirm and
expand the information on the divergence of human and mouse
erythropoiesis31 (Fig. 4c). Of note, when analyzing the
human–mouse orthologous that are differently expressed along
the erythroid branch, we discovered that the most significant
distinction is the expression of genes involved in the molecular
apparatus supporting protein translation (Supplementary Fig. 10).
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This difference in the expression of the machinery of ribosome
biogenesis during erythropoiesis could explain why mouse
models of red blood cells disorders caused by a partial loss of
ribosomal function, such as Diamond–Blackfan anemia, are not
able to recapitulate the human phenotype32.

Exploring CD164 as a marker of early human HSPC. We next
asked whether we could take advantage of the data to rationally
select a cell surface marker to fractionate human HSPCs for
transplantation and gene therapy (Fig. 5). To date, the CD38
antigen has served to negatively enrich for the primitive pro-
genitors for transplantation. Yet this marker suffers three short-
comings and thus motivated us to search for an alternative from
the data. First, there is no consensus on the gating strategy to be
used for CD38 expression to define CD38− primitive cells33,
resulting in variable efficiencies of progenitor cell enrichment.
Second, in strategies proposing a CD38− cells selection for

transplantation, CD38+ myeloid progenitor cells (CMP and
GMP) must be provided separately to support short-term gran-
ulopoiesis in conditioned neutropenic patients33,34. Third, we
show here that expression of CD38 is rapidly lost in culture upon
cytokine exposure (Supplementary Fig. 11), meaning that the
viability and composition of early progenitors cannot be verified
in transplantation products after in vitro expansion using the
CD38− cytometric gating. We propose here that the cell surface
antigen CD164 could be used to overcome all three of these
shortcomings.

The CD164 gene encodes for a membrane-associated sialomu-
cin, endolyn, whose function is that of an adhesion receptor35.
The few investigations on the membrane expression of this
protein in the human blood cell population suggest that CD164
could have a role in early erythropoiesis, stem cell maintenance
and homing capacity36,37. An early study showed that the CD164
population is enriched in CD34+CD38− progenitors38, but
following these investigations the use of CD164 for defining

Fig. 3 Cell fate analyses of Lin−CD34+CD135− cells support the MEP-associated origin of basophil progenitors. a Projection of the transcriptional profile
of cells belonging to group 9 in Lin−CD34/CD164 data set onto sorted HSPCs map. Pie chart on the bottom represents the immunophenotipic
characteristic for HSPC cells identified as most similar. b Experimental design. Lin−CD34+CD135− and Lin−CD34+CD135+ populations were sorted
from the BM CD34+ cells of three healthy donors and their lineage potential was investigated through in vitro functional assays. c Spatial distribution
estimated by using a two-dimensional kernel density estimator for cell exhibiting: top graph, high expression (at RNA level) of FLT3 gene (normalized
expression > 0.9); bottom graph, no expression of FLT3 gene (normalized expression= 0). d Bar graph showing the content of HSPCs in CD135− and
CD135+ fractions. Values are proportions estimates ± SE, estimated using method of moments and Dirichlet-Multinomial model. Hypothesis testing has
been performed by means of independent samples, heteroscedastic, two-tailed Student’s t test. Details are provided in Supplementary Table 3. e Growth
curves from three different culture conditions. My, Myeloid differentiating culture; Mk, Megakaryocyte differentiation culture; Baso, Basophil differentiation
culture. Values are median ± error. Statistics by independent samples, two-tailed Student’s t test for each time point considered independently from the
others (*p < 0.05). f Single-cell (SC) assay showing the total number of colonies obtained from CD135− and CD135+ fractions at the end of the three
different culture conditions. Shown are median ± error. Statistics by independent samples, two-tailed Student’s t test (*p < 0.05). g FACS analysis of bona
fide Basophils (Baso) defined as CD14−CD15−FceRIA+CCR3+IL5RA+ cells on CD135− and CD135+ populations upon basophil (upper panel) and
myeloid (lower panel) differentiation culture. FceRIA− pick indicates the negative control. h Bar graphs summarizing the cytometric analysis described in
g. Shown are the percentage of Baso, CD14+ cells and CD15+ cells on CD135− and CD135+ populations from the basophil (left panel) and myeloid (right
panel) differentiation culture. Values are median ± error. Statistics by independent samples, two-tailed Student’s t test (*p < 0.05)
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primitive progenitors was abandoned. Up until now, the
expression of CD164 inside the currently defined HSPC
subpopulations and upon in vitro manipulation of CD34+ cells,
were not appreciated.

Interrogating scRNA-Seq data for enrichment of transcripts
encoding for surface antigens in early progenitors (Fig. 1g),

CD164 emerged as the gene whose expression displayed the
most-pronounced difference in early vs late progenitors. By
contrast, neither CD38 nor CD90 (common marker used for
identification of primitive HSPCs) stood out as genes whose
transcripts strongly discriminate between early vs late stages of
blood cell fate commitment. Although mRNA abundances do not
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necessarily correlate with protein abundance, we found that the
CD34+ population can be split into two sub-fractions on the
basis of two clearly distinct levels of CD164 transcript abundances
(Fig. 1h), which tracked fractionation by CD164 antibody-based
sorting. The CD164 RNA is selectively expressed at high level not
only in CD38− multipotent progenitors (as previous studies
suggested) but also in CD90+ precursors (which in humans
comprise both HSC and early CMP), in the most primitive
fraction of MEP and to a lesser extent, in MLP (Fig. 1g). During
later stages of commitment, the CD164 mRNA and protein
surface expressions levels begin to diverge (e.g., in the
CD34–CD164high erythroid-committed cells).

CD164 selects an alternative CD34+ cell product. To investi-
gate the utility of CD164 role in fractionating early hematopoietic
progenitors, we performed a series of immunophenotypic and
functional assays on human BM CD34+ cells (Fig. 5a). In line
with scRNA-Seq results, a cytometric analysis combining anti-
CD164 antibody with the other classical HSPCs markers, con-
firmed that the CD34+ population contains two clearly distinct
fractions of CD164high and CD164low-expressing cells, the first of
which was highly enriched in cells with cytometric markers of
primitive progenitors, MEPs and early CMPs and, notably, was
almost entirely depleted of pre-B-NK and Lin+ cells (Fig. 5b–e
and Supplementary Fig. 12a). Importantly, we could show that
this differential composition between CD164high and CD164low

populations in the human BM is not merely owing to the dif-
ferences in the relative CD34 surface expression or in the Lin+
cell content. Indeed, we obtained the same results upon analyzing
CD34+ cells from G-CSF- and plerixafor-mobilized peripheral
blood where the CD34 expression is uniform in both CD164high

and CD164low cell fractions and where the contribution of the
Lin+ population is negligible (Supplementary Figs. 13, 14). To
date, the literature reports only the results of a clonogenic assay as
test of the in vitro differentiation potential of CD34+CD164+
cells38. To integrate these data, we here conducted a set of
functional tests on FACS-sorted CD34+CD164high and CD34+
CD164low cells from the BM of several healthy donors (Fig. 5f–h).
The CD34+CD164high population displayed a superior in vitro
differentiation potential as compared with the CD34+CD164low

fraction and even to the total CD34+ population, showing higher
rate of colonies generation (confirming previously published
results38) and of expansion not only in Myeloid but also in MK-

differentiating conditions (Fig. 5f–h). Cytometric analysis of dif-
ferentiation states after culture confirmed the more primitive
nature of CD34+CD164high cells (Supplementary Figs. 12, 15). At
last, the CD34+CD164high cells expanded more rapidly in culture
conditions used in clinical gene therapy for in vitro stem cell
enrichment prior to autologous transplantation39 (Fig. 5g).
Importantly, in this context we observed that CD164 allows, as
compared with CD38, a more robust cytometric estimation of the
primitive progenitor content upon in vitro manipulation of
CD34+ cells, as its loss of expression coincides with the pro-
gressive cell differentiation upon cytokine exposure (Supplemen-
tary Fig. 11). This is a major advantage over the use of the classical
CD38 marker whose expression dynamics were instead not con-
sistent with the expected phenotype changes of differentiating cells.

Another key surface marker used for the identification of stem/
multipotent vs committed progenitor is CD9040. We thus
conducted additional differentiation assays on three healthy
donors comparing the performance of FACS-sorted CD34+
CD90+ cells to CD34+CD164high population. The results
displayed in Supplementary Figs. 16 and 17 show that the
CD34+CD164high fraction has a much higher discriminatory
potential, as compared with the CD34+CD90+ selection, for cells
capable of growing in myeloid- and MK-differentiating condi-
tions and for clonogenic progenitors (Supplementary Figs. 16g,
17c). Furthermore, as in the case of CD38, the CD90 marker
presented inconsistent expression dynamics in culture, being
upregulated (and not downregulated) upon cell differentiation
(Supplementary Figs. 18–20), again pointing to the superior
performance of CD164 in allowing a more reliable evaluation of
the stem cell content of in vitro manipulated CD34+ cell
products (Supplementary Fig. 21).

We have shown above that the CD34+CD164high population
contains both multipotent progenitors and early CMP. On the
basis of the model of hematopoietic reconstitution emerging from
our recent clonal tracking data in humans6,41, we reasoned that
the CD34+CD164high fraction might constitute a suitable self-
sufficient cell product for transplantation that would not require
the co-infusion of other cells to support recovery from
neutropenia and early myelopoiesis. To test this hypothesis, we
sorted and transplanted CD34+CD164high vs CD34+CD164low

populations into NOD.Cg-KitW-41JTyr+PrkdcscidIl2rgtm1Wjl/
ThomJ (NBSGW) mice (Fig. 5i–k, Supplementary Fig. 22). The
results confirmed that the CD34+CD164high cell product is
capable of sustaining both the early and late phases of

Fig. 5 Immunophenotyping and in vitro/in vivo functional assays of CD164 expressing subsets in BM CD34+ cells. a Experimental design. b Representative
FACS plots showing the contribution of Lin−/+ cells and HSPC subsets in CD164high and CD164low fractions of CD34+ cells. c Percentage of CD164high

and CD164low fractions in CD34+ cells. Shown are Mean ± SD from nine independent BM. d Bar graphs showing the content of Lin−/+, CD38−, CD90+
cells and HSPCs in CD164high and CD164low fractions, and in CD34+ cells. Values are Mean ± SD from nine independent BM. Statistics by independent
samples, heteroscedastic, two-tailed Student’s t test (*p < 0.05, **p < 0.0005, ***p < 0.0001). For the HSPCs bar graph, plotted values are proportion
estimates ± SE, estimated using method of moments and Dirichlet-Multinomial model. Details are provided in Supplementary Table 4. e Pie chart
distribution of CD164high and CD164low fractions on HSPC subsets from nine independent BM. f Bar graphs showing the total number (left) and type of
colonies (right) scored at day 14 in a methylcellulose-based colony-forming unit (CFU) assay. Top left, sorting gating strategy (CFCs, colony-forming cells,
BFU-E, burst-forming unit-erythroid cells, CFU-E, colony-forming unit-erythroid cells, CFU-GM,colony-forming unit-granulocyte/macrophages). Shown are
mean ± SD from six independent BM. Statistics by independent samples, heteroscedastic, two-tailed Student’s t test (*p < 0.05). g Growth curves from
three different culture conditions. Mk, Megakaryocyte; My, Myeloid. Values are mean ± SD from nine independent BM. Statistics by independent samples,
heteroscedastic, two-tailed Student’s t test (*p < 0.05, **p < 0.0005, ***p < 0.0001). h Single-cell (SC) assay showing the total number of colonies
obtained from each population in the Mk (left) and My (right) differentiating culture. Shown are median ± error from three independent BM. Statistics by
independent samples, two-tailed Student’s t test (*p < 0.01). i Experimental design. Sorted CD164high and CD164low populations were transplanted in
NBSGW mice each at the dose of 2.5 × 105 cells/mouse. In order to reflect the real proportions in the human BM, immunomagnetic-selected CD34+ cells
were transplanted at the dose of 5.0 × 105 cells/mouse. The human engraftment was evaluated in the murine peripheral blood at different time points, and
in BM and spleen at 16 weeks post transplant. j Human CD45+ cell engraftment in murine PB (left; CD164high, n= 3; CD164low, n= 3; CD34+, n= 4 mice)
and BM (right; CD164high, n= 3; CD164low, n= 2; CD34+, n= 4 mice). k Relative contribution of human cell populations inside the hCD45+ and hCD45−
compartments in murine BM. (CD164high, n= 3; CD164low, n= 2; CD34+, n= 4 mice)
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hematopoietic reconstitution, whereas the CD34+CD164low

population did not have a role in blood cell production at either
stage, making its use in transplantation virtually dispensable.
Remarkably and in line with this observation, the dynamics and
size of human lymphoid and myeloid cells output in the mice
infused with FACS-sorted CD34+CD164high cells was compar-
able to the mice infused with CD34+ cells, despite the latter
receiving twice the amount of cells. Overall, our data clearly
highlight the biological relevance of the CD164 gene in early
haematopoiesis, reviving the use of this marker for the study of
human HSPC and setting the basis for exploring the potential use
of the CD34+CD164high fraction in clinical transplantation and
gene therapy, where there is a high demand for reducing the
production costs for genetic engineering.

Discussion
We here report the generation of high-resolution scRNA maps of
human hematopoietic cell fate commitment and the interrogation
of our transcriptional profiling for conducting investigations into
the basic biology of early hematopoiesis. Our fractionation strategy
of the BM Lin− cells extended outside the CD34+ compartment
constitutes a main advance over previous studies in that allowed us
to preserve high resolution at both primitive and lineage-primed
progenitors level. The results of the in silico, in vitro, and in vivo
analyses reported in this work strongly suggests that human hae-
matopoiesis develops along early cell fate bifurcations occurring in a
continuum of states forming a hierarchical-like structure.

Our investigations into the origin of the basophil branch
suggest that a very early priming of CD38− progenitors might be
in place toward either the MK/erythroid/basophil or the lym-
phoid/granulo/DC/monocyte commitment and that this might be
dependent on the expression of the CD135 surface marker. This
observation calls for further studies into the potential hetero-
geneous composition of the CD34+CD38− compartment. In this
regard, we would like to raise awareness on the arbitrary nature of
the current strategies for the cytofluorimetric identification of the
CD38− compartment. Indeed, despite using a very stringent
CD38− sorting strategy we still observed an overlap of tran-
scriptional states between CD38− HSC/MPP and CD38+ CMP/
MEP (Supplementary Fig. 2a). This is owing to the continuum of
CD38 expression, which does not provide a clear-cut way to
isolate with high purity primitive progenitors. We therefore
suggest that, upon validating potential early lineage priming of
human HSC or MPP, one should commit to the use of an
extremely conservative CD38− gate in order to obtain high purity
of bona fide multipotent progenitors.

Our in vitro and in vivo data support the hypothesis that the
CD34+CD164high population might have a clinical relevance for
transplantation purposes. Among the advantages of using such
fraction of CD34+ cells in the clinic we would like to underline
the following: (1) it excludes Pre-B precursors and CD34+ Lin+
cells (in large part composed by CD34+CD19+ cells), providing
a system worth exploring for the potential exclusion of residual
leukemic cells with early B-cell commitment in transplantation
products for B-cell leukemia; (2) it could reduce of about a half
the number of target cells needed for genetic engineering in
clinical gene therapy, in turn reducing of 50% the costs for
manufacturing of gene transfer/gene editing platforms. Notably,
because it combines only two surface markers (CD34 and
CD164), this fractionation method allows designing strategies
based on magnetic beads selection, a more suitable and scalable
approach for the clinical arena than FACS sorting. We also show
here that this fraction might constitute a self-sufficient product
capable of sustaining both early and late phases of hematopoietic
reconstitution41, another advantage over the currently proposed

selection strategies that would likely require co-transplantation of
committed precursors to sustain early myelopoiesis33,34. Before
suggesting its use in the clinic, further investigations are under-
way in our laboratory to test the safety and efficacy performance
of the CD34+CD164high population upon different in vitro
manipulation protocols and after transplantation in multiple
recipient animal models.

Despite the high-resolution achieved upon our scRNA profil-
ing it should be reminded that such analytical method generates a
static snapshot of the transcriptional landscape and cannot pro-
vide, as such, conclusive information on the dynamics occurring
along cell state transitions. Ongoing and future efforts toward fate
mapping in vitro and in vivo will be required to confirm or refine
the inferences of our study. In this regard, our results in humans
align with the ones of Tusi et al. in the mouse in supporting the
hypothesis of an early separation of cells with erythroid vs neu-
trophil potential, a concept that would challenge some earlier
deductions made in other studies of murine hematopoietic cell
dynamics8,42.

In conclusion, we show here that the transcriptional informa-
tion represented in our hierarchy fosters basic investigation into
human hematopoiesis and enables the identification of human
HSPCs subsets potentially suitable for clinical application.

Methods
Cell preparation. BM samples were collected from adult healthy donors at Chil-
dren’s Hospital in Boston with the approval of the Committee on Clinical Inves-
tigations Children’s Hospital Boston and consent from the subjects under the
protocol #09-04-0167. Mononuclear cells (MNCs) were isolated using Ficoll-
Hypaque gradient separation (Lymphoprep, STEMCELL Technologies). CD34+
cells were purified from MNCs with the human anti-CD34 MicroBeads Isolation
Kit (Miltenyi Biotec) according to the manufacturer’s specifications or were pur-
chased from commercial sources (AllCells).

Cell sorting and immunophenotyping. Seven HSPC subpopulations were purified
from the CD34+ fraction of a healthy donor BM cells through a two-step four-way
sorting using FACSAria II (BD Biosciences) and processed to generate the tran-
scriptome network in Fig. 1. The following combinations of cell surface markers
were used to identify and separate the HSPC subsets. Hematopoietic stem cells
(HSC): Lin−CD34+CD38-CD90+CD45RA-; multipotent progenitors (MPP): Lin
−CD34+CD38−CD90−CD45RA−; multi-lymphoid progenitors (MLP):
Lin−CD34+CD38−CD90−CD45RA+; pre-B lymphocytes/natural killer cells
(PREB/NK): Lin−CD34+CD38+CD7−CD10+; MEP: Lin−CD34+CD38+CD7−
CD10−CD135−CD45RA−; CMP: Lin−CD34+CD38+CD7−CD10−CD135+
CD45RA−; GMP: Lin−CD34+CD38+CD7−CD10−CD135−CD45RA+.

For the generation of the transcriptome network in Fig. 2, four cell fractions
were purified from a healthy donor BM MNCs through a four-way sorting using
the following combinations of cell surface markers: Lin−CD34+CD164+; Lin
−CD34lowCD164high; Lin−CD34–CD164high; Lin−CD34–CD164low. CD71 was
included to identify erythroid progenitors.

For in vitro functional assays, Lin−CD34+CD135− and Lin−CD34+CD135+
fractions were purified from the CD34+ cells of three independent BM through a
two-way sorting. The cell subsets CD34+CD164high and CD34+CD164low were
FACS-sorted from the CD34+ cells of nine independent BM. Of these, three BM
were also used to purify CD34+CD90+ and CD34+CD90− cells.

For in vivo studies, CD34+CD164high and CD34+CD164low cells were FACS-
sorted and purified from a pool of BM CD34+ cells from two additional healthy
donors.

Immunophenotyping was performed on BM CD34+ cells labeled with CD135
or CD164 in combination with HSPC subsets markers by using LSR Fortessa (BD
Biosciences). CD15 and CD19 were included to identify the lineage positive cells.
Flow cytometry data were analyzed with FlowJo 10.2 (Tree Star). The antibodies
were as follows: CD34 PB (1:40, #343512), CD38 PE/Cy5 (1:40, #303508), CD90
APC (1:33, #328114), CD10 PE/Cy7 (1:33, #312214), CD135 PE (1:10, #313306),
Lin BV510 (1:10, #348807), CD15 BV510 (1:50, #323028), CD164 FITC (1:20,
#324806 clone 67D2), CD164 PE (1:10, #324808 clone 67D2), CD71 PerCP/Cy5.5
(1:20, #334114), CD41 APC (1:20, #303710), CD19 PE/Cy7 (1:20, #302216), all
Biolegend. CD45RA APC-H7 (1:17, #560674), CD7 AF700 (1:20, #561603), CD15
FITC (1:20, #555401), CD15 PE (1:10, #555402), all BD Biosciences. Glycophorin
A APC-Vio770 (1:11, #130-100-268), Miltenyi Biotec.

To characterize the basophils contribution in the human peripheral blood and
upon in vitro differentiation, the gating strategy reported in Supplementary Fig. 9a
has been set using the following antibodies: CD34 PB (1:40, #343512), FceRIA APC
(1:10, #334612), CD14 AF700 (1:10, #367114), CD19 PE/Cy7 (1:20, #302216),
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CD15 FITC (1:20, #555401), CCR3 PerCP/Cy5.5 (1:10, #310718), all Biolegend.
IL5RA PE (1:10, #555902), BD Biosciences.

To evaluate the human cell engraftment in the murine peripheral blood, BM
and spleen the antibodies were as follows: CD33 PE (1:40, #561816), CD13 PE
(1:40, #555394), CD3 V500 (1:20, #561416), CD19 PE/Cy7 (1:80, #557835),
mCD45 APC (1:100, #561018), mCD45 PE (1:100, #553081), 7-AAD (1:12,
#559925), all BD Biosciences. CD45 PB (1:40, #368540) and CD41 APC (1:50,
#303710) all Biolegend. Glycophorin A APC-Vio770 (1:22, #130-100-268),
Miltenyi.

In vitro functional assays. For the in vitro functional assays, sort-purified
populations and CD34+ cells were seeded in the different culture conditions with a
starting cell number of 20,000 cells, unless otherwise indicated.

To test for basophil potential, cells were cultured in Iscove's Modified
Dulbecco's medium (IMDM) containing 1% P/S/Glu, 20% FBS (Gemini) and
supplemented with IL-3 (20 ng/ml), IL-5 (20 ng/ml), SCF (20 ng/ml), GM-CSF (50
ng/ml) for 3 days, whereas supplemented only with IL-3 (20 ng/ml) and IL-5 (20
ng/ml) from day 4 to day 14. Cells were counted on days 7,11,14. Fresh medium
was added as needed, to keep the cell concentration at 0.5 × 106/mL. At the end of
the culture, cells were analyzed by flow cytometry for the basophil markers and
mounted on cytospin preparation to define the presence of basophils by Giemsa
staining.

Myeloid potential was evaluated in IMDM medium containing 1% P/S/Glu and
10% FBS (Gemini) and supplemented with IL-3 (60 ng/ml), SCF (300 ng/ml), IL-6
(60 ng/ml) for 2 weeks. Cells were counted on days 7,11,14. Fresh medium was
added as needed, to keep the cell concentration at 1 × 106/mL. At the end of the
culture, cells were analyzed by flow cytometry for immunophenotyping and
lineage-positive markers CD15 and CD19, and for basophil markers.

Expansion culture was set up in serum-free CellGro SCGM medium (Cell
Genix) containing 1% penicillin/streptomycin/glutamine (P/S/Glu, Lonza) and
supplemented with FLT3-L (300 ng/ml), IL-3 (60 ng/ml), SCF (300 ng/ml), TPO
(100 ng/ml) for 8 days. Cells were counted on days 4 and 8. Immunophenotyping
and flow cytometric analysis for lineage-positive markers CD15 and CD19 were
performed at day 4. All growth factors and cytokines were purchased from
Peprotech.

Megakaryocyte potential was assessed in StemSpan SFEM II serum-free
medium supplemented with StemSpan Megakaryocyte Expansion Supplement
(STEMCELL Technologies) for 2 weeks. Cells were counted on days 7,11,14. Fresh
medium was added as needed, to keep the cell concentration at 1 × 106/mL.
Immunophenotyping and flow cytometric analysis for CD41, CD71, and
Glycophorin A were performed at the end of the culture.

To test the clonogenic potential of sort-purified populations and CD34+ cells,
single-sorted cells were deposited in 96-well plates in different culture conditions.
Medium was added at day 7 and colonies were scored at day 14. From CD34+ cells
and each freshly sorted CD164high and CD164low populations, the clonogenic
potential was also assessed by seeding 3500 cells with 2.4 ml of Methocult medium
(H4434, STEMCELL Technologies) for 2 weeks. Erythroid (BFU-E or CFU-E) and
granulocyte–macrophage (GM) colonies were scored from duplicate plates on
day 14.

Transplantation into humanized mouse model. NOD.Cg-KitW-41JTyr+Prkdcsci-
dIl2rgtm1Wjl/ThomJ (NBSGW) mice were purchased from the Jackson Laboratory.
All animal procedures were performed according to ethical regulations for animal
testing and research, upon approval by the Institutional Care and Use Committee
(IACUC) at the Dana-Farber Cancer Institute. Six-week-old mice were transplanted
with human HSPCs by tail injection without undergoing irradiation or other
conditioning regimen. Mice were randomized in the following transplantation
groups: sorted purified CD34+CD164high (2.5 × 105 cells/mouse) and CD34
+CD164low (2.5 × 105 cells/mouse), immunomagnetic-selected CD34+
(5 × 105 cells/mouse). For each sorted population, three mice were transplanted
(four mice for the whole CD34+ population). Human cell engraftment was assessed
by serial bleeding and immunophenotyping at 3, 5, 7, 10, 14 weeks post transplant
and in BM and spleen at sacrifice 16 weeks post transplant. The CD34+CD164high

selection method is under provisional Patent Application U.S. Serial No.: 62/737,483
filed in the United States Patent and Trademark Office (USPTO).

InDrops scRNA-Seq and data analysis. Single-cell mRNA barcoding and pre-
paration of libraries for sequencing were performed following the inDrop protocol
previously described in Zillionis et al.22, with modifications as described for the
FACS subsets samples in Tusi et al.24. FACS-sorted subpopulations were indivi-
dually processed for droplet barcoding (Supplementary Table 1). Emulsions were
split in aliquots each containing ~ 2500 single-cell barcoded transcriptomes.
Libraries generated from each FACS sorting were prepared in parallel and
sequenced on Illumina NextSeq 500 using a NextSeq High Output 1 × 75 cycle kit.
Raw sequencing data (FASTQ files) were processed using the previously described
inDrops.py bioinformatics pipeline24 (available at https://github.com/indrops/
indrops). Bowtie v.1.1.1 was used with parameter -e 100. All ambiguously mapped
reads were excluded from analysis and reads were aligned to the Ensemble
GRCh38.85 version of human genome.

Cell filtering and data normalization. Each library of sorted HSPCs or CD34/
CD164 cells was processed according to the following procedure. Upon inspection
of the histograms reporting the total reads per cell, barcodes were initially filtered
according to a customized threshold in order to include only the most abundant
ones (transcript counts threshold used for the sorted HSPC: HSC, 1000; CMP, 800;
MEP, 1000; GMP, 1000; Pre-B-NK, 800; MLP, 2000; MPP, 2000; transcript counts
threshold used for the sorted CD34/CD164 cells: Lin−CD164high CD34lowRep
(Replicate)1, 1000; Lin−CD164highCD34lowRep2, 1000; Lin−CD164highCD34-
Rep1, 800; Lin−CD164high CD34-Rep2, 800; Lin−CD164high CD34+ Rep1, 1000;
Lin−CD164high CD34+ Rep2, 800; Lin−CD164lowCD34-, 700). Next, for all
samples we excluded the cells with > 25% of their transcripts coming from mito-
chondrial genes as this is a marker of stressed or dying cells. The final number of
barcodes used in the downstream analysis is summarized in Supplementary
Table 1. The gene expression counts of each cell were normalized using a total-
count normalization variant that avoids distortion from very highly expressed
genes, as in Klein et al.43. Specifically, we calculated x̂i;j , the normalized transcript
counts for gene j in cell i, from the raw counts xi,j as follows: x̂i;j ¼ xi;j �X=Xi , in
which Xi ¼

P
xi;jand �Xis the average of Xi over all cells. To prevent very highly

expressed genes from correspondingly decreasing the relative expression of other
genes, we excluded genes comprising > 5% of the total counts of any cell when
calculating �X and Xi.

Data visualization and kNN graphs. After filtering, the data were used to con-
struct a k-NN graph, in which cells correspond to graph nodes and edges connect
cells to their nearest neighbors. An independent kNN graph was generated for each
data set as follows. Genes were further filtered by selecting only genes with Fano
factor43 (measure of dispersion) above a mean dependent threshold (median value)
and requiring at least three UMIFM (Unique Molecular Identifiers Filtered Map-
ped) to be detected in at least three cells (sorted Lin−HSPCs, n= 5596 genes;
sorted Lin−CD34/CD164 cells, n= 7156 genes). Expression values for each gene
were standardized independently by applying Z score transformation. Unless
otherwise stated, for all the analyses and graphical representations throughout the
paper, z scores have been used as a measure of gene activity. From previous
experiments24, we found that cell cycle and ribosomal associated genes can have a
significant impact on the definition of cell clustering and on cell-to-cell tran-
scriptional distance. For this reason, we defined a G2/M genes set (UBE2C,
HMGB2, HMGN2, TUBA1B, MKI67, CCNB1, TUBB, TOP2A, TUBB4B) and
ribosomal genes set (RPL− and RPS−). We then constructed a G2/M and a
ribosomal signature score by summing the average z score of respective genes sets
and removing genes that were highly correlated (Pearson r > 0.2) with these sig-
natures (sorted Lin−HSPC, n= 117 genes; sorted CD34/CD164 cells, n= 304
genes). Finally, we performed dimensionality reduction by principal component
analysis (PCA). KNN graphs were constructed by setting k, number of neighbors,
equal to four, using the first 40 principal components and a Euclidean metric to
measure distance between transcriptomes. The kNN graphs were visualized by
means of a force-directed layout using the custom interactive software interface
SPRING25. The final layout, corresponding to a minimal free-energy configuration,
showed a high degree of robustness with respect to different initialization (except
for layout rotation that do not affect subsequent analyses). No manual adjustments
were performed on the visualizations. Visual inspection on SPRING plot for Lin−
CD34/CD164 transcriptome data set showed the presence of a cluster of cells (860
barcodes), highly interconnected and very poorly linked to the rest of the layout.
Investigating for the presence of a particular gene expression signature char-
acterizing this subpopulation, we observed high level of expression for mito-
chondrial genes (MT.CYB, MT.ATP6, MT.ND4, MT.ND1, MT.CO3, MT.ND3).
We concluded that these events had a peculiar transcriptional profile indicator of
stressed or dying cells, which was not detected upon the dedicated filtering step and
we therefore manually removed them from the final kNN graph.

Projection of scRNA data across experiments. To project subsets of cells from
one map to the other, we first needed to define a common lower dimensional space
to be used as reference to compare expression profiles, calculate transcriptional
distances and locate cells with an high degree of similarity among the two maps.
For this reason, we identified the intersection set among genes used to generate the
two kNN graphs (n= 5116 genes). Given that Lin−CD34/CD164 map represents a
broader view on Lin− compartment with respect to the sorted Lin−HSPC data set,
we performed PCA on Lin−CD34/CD164 reduced expression matrix retaining the
first 40 principal components. Sorted Lin−HSPCs were projected on the Lin
−CD34/CD164 principal component space upon z score transformation of genes
expression data with gene specific centering and scaling parameters derived from
Lin−CD34/CD164 data. With this procedure we obtained a common 40-
dimensional support that allows for a direct comparison among transcriptome data
derived from the two experiments. For each cell belonging to a specific group
(FACS-sorted subpopulation or computationally identified group) in either sorted
Lin−HSPC or Lin−CD34/CD164 map, we identified the k= 4 most similar cells in
the other map, using PCA scores and Euclidean distance. The graphical repre-
sentations in Fig. 2f and Supplementary Fig. 8 show sorted HSPC cell groups
projection into Lin−CD34/CD164 map and have been generated by rescaling the
two-dimensional Lin−CD34/CD164 SPRING layout to a unit squared area. We
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calculated cell spatial distribution using a two-dimensional kernel density estimator
(bandwidths for x and y directions both set to 0.035) and use a contour plot for
density level 1e-05 to highlight areas characterized by a non-negligible probability.
We then overlaid a density estimation (bandwidths for x and y directions both set
to 0.1) for the spatial distribution of cells selected as most similar. In Fig. 3a, Lin
−CD34/CD164 group 9 have been projected into sorted Lin−HSPC layout. Set-
tings used to generate graphs have been kept equal to those aforementioned. In
addition we also investigate the immunophenotypic distribution for sorted Lin
−HSPCs, reported as piechart in Fig. 3a

Observed and adjusted cell-density estimations. The transcriptional state
related to small subpopulations such as the most-primitive ones, are difficult to
investigate by means of single-cell profiling on bulk heterogeneous populations.
Introducing a fractionation strategy through FACS sorting before inDrops bar-
coding, we were able to overcome this limitation by artificially over-representing
primitive fractions inside the CD34+ and Lin− compartments. This aspect is
shown in the two-dimensional density estimation plotted in Supplementary Fig. 1a,
b (left plots) where high-density values can be found in graph areas associated to
both primitive and committed cells. To provide a representation of what would
have been instead the expected contribution of single cell events to the bulk human
CD34+ and Lin− population we assigned to each cell a weight, defined according
to the proportion of events observed in the corresponding FACS gate. The graphs
of Supplementary Fig. 1a, b (right), show densities obtained by keeping cells
location constant and taking into account the calculated cell weights. Details for the
calculation of weights are provided in the Supplementary Table 2.

Transcriptional principal trajectories identification. Both the topologies gener-
ated with SPRING reveal the presence of a continuum of transcriptional states
connecting the most primitive subpopulations to more committed ones. Although
some degree of variability is observed, layout topologies also suggest the presence of
principal transcriptional trajectories during the differentiation process. We con-
sidered that the estimation and characterization of these trajectories could
potentially allow us to: (a) establish an order among transcriptional states with
respect to differentiation process; (b) group together cells with a common fate; (c)
investigate the gene regulatory dynamics underlying fate decision and lineages
commitment. For these purposes, we implemented a procedure composed by the
following main steps: (1) structure-aware filtering performed on transcriptome
graph; (2) branching reconstruction by minimum spanning tree on reduced con-
solidating points; (3) association and ordering of cells according to inferred
branching structure. To follow the description of these steps.

(1) Structure-aware filtering. The structure-aware technique that we adopted in
this paper work is aimed to at revealing and consolidating continuous, low-
dimensional, and high-density structures in the underlying higher-dimensional
data, whereas ignoring noise and outliers. The theory, proof of convergence to the
exact underlying data manifolds (under Gaussian noise assumption) and an
investigation of its performance under different scenario can be found in Wu
et al.44. Here we will briefly describe its discretized version formulation, i.e.,
representing densities by sets of sample points. Observed data points, pi, are
considered sampled from an underlying n-dimensional density fp(z), supposed to
have been generated by adding noise to an underlying lower (m < n) m-
dimensional data manifold. Consolidation points, xi(t), are considered to be
sampled from a time-dependent distribution fx(z,t), initialized as fx(z,0)= fp(z), that
changes over time (iterations) guided by a time-dependent velocity field that
gradually remove noise while revealing the underlying m-dimensional structure in
the input density fp(z). Initially, consolidation points can be either a random
sample of data points or, as we did, the whole data set. Although data points are
fixed in the n-dimensional manifold, the position of every consolidation point is
iteratively updated according to the following formula:
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P
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where K′ and L′ are first derivatives of a standard and modified Gaussian
smoothing kernels defined as

K′
1
2

pj � xi tð Þ
��� ���2

� �
¼ e� pj�xi tð Þk k2

� �
=2r2

and

L′
1
2

A xk tð Þ � xi tð Þ½ �k k2
� �

¼ e� A xk tð Þ�xi tð Þ½ �k k2ð Þ=2r2

A xk tð Þ � xi tð Þ½ �k k2� � ;
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symmetric, n-dimensional neighborhood of user-defined radius r centered on xi(t);
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with fλ1i ; λ2i ; ¼ ; λmi g and fv1i ; v2i ; ¼ ; vmi g, respectively, first m eigenvectors and
eigenvalues of the k × n matrix in which the k-th row is equal to the n-dimensional
vectors xk(t)− xi(t). The iterative procedure continues until the sum of
consolidation points displacement, ΔX ¼ P½xi t � 1ð Þ � xi tð Þ�2 is greater than a
given small ε (0.001). In the updating formula it is possible to recognize two
components: the first one, called the data-term, pulls consolidation points toward
local extrema (high-density regions) of the noisy input density. The second, called
repulsion-term, prevents clumping of consolidation points by pushing them along
locally optimal directions, enhancing latent continuous m-dimensional structures.
A graphical representation is given in Supplementary Fig. 23a. In this work, we
performed structure-aware filtering on the two-dimensional representation of
SPRING generated layouts, upon rescaling to the unit square two-dimensional
space as previously described. The goal was to highlight the underlying one-
dimensional (curves) representations (m= 1). In general, given a value for radius
size r, it returns an estimated optimal structure providing an accurate
representation of data layout complexity and allowing for an interpretation in
biological terms. In their paper44, authors suggest a method to help user in setting
this critical parameter. Under the assumption of Gaussian distributed input data
with known variance, this method estimates a lower bound for r able to guarantee
convergence to the true m-dimensional manifold. We chose algorithm input
parameters complying with these indications, setting, respectively, for the sorted
Lin−HSPC and sorted Lin−CD34/CD164 cell graphs: r equal to 0.05 and 0.02; μ
equal to 0.3 for both. To ensure reproducibility of the results, we initialized the set
of consolidation points with the whole set of data points. In Supplementary Fig. 3,
initial, temporary (2nd and 10th iterations) and the final configurations are shown.

(2) Branching reconstruction by minimum spanning tree on reduced
consolidating points. Structure-aware filtering returns coordinates of consolidation
points in the n-dimensional input space such that they describe a continuum of
locally optimal m-dimensional structures. In order to infer the principal
transcriptional trajectories, we proceed as follows. We first reduced the set of
consolidation points by iteratively averaging points closer than 0.01
(Supplementary Fig. 3, Merging plots). This step has a regularization goal and
allows for a considerable reduction of the data set size for downstream analyses. To
connect points and design the graph skeleton, we opted for the minimum spanning
tree algorithm, with Euclidean distance based edges weighting. Only in the sorted
HSPC analysis we left unconnected the small cluster located between erythroid and
neutrophils due to its large distance from others consolidation points. The
minimum spanning tree on reduced points is visible in Supplementary Fig. 3,
MST plots.

(3) Branch association and cells ordering. Through the identification of
bifurcation nodes, we subdivided the minimum spanning tree in segments (or
trajectories, or branches) as shown in Supplementary Fig. 3, Principal trajectories
plots. Each cell has been associated to one segment, based on minimum distance
criteria. In order to exclude cells with a transcriptional profile too different from
those captured by the principal trajectories, cells more distant than 0.05 from any
of the branches remained unlabeled. To order cells along the corresponding
trajectory, we calculated the distance between the initial node (marked with 0 in
Supplementary Fig. 23b) and the projection of each cell onto the trajectory.
Rescaled distances (0–1 interval), have been calculated and used as pseudotime
values in all gene expression analyses described in the next session and discussed in
the manuscript.

All the algorithms have been implemented in R45 and are made available for
download at https://github.com/BiascoLab/PrincipalDevelopementalTrajectories.

Generation of Diffusion map. In order to verify the robustness of our results
with respect to the adopted data analysis approach, we compared the Lin−CD34/
CD164 kNN-based transcriptome topology and inferred differentiation trajec-
tories to those derived from an alternative method, not relying on kNN, such as
Diffusion map27. We took advantage of R implementation of diffusion map
available in package destiny46, that is specifically designed for scRNA-seq
data. We passed as input argument to DiffusionMap function the matrix
reporting the 40 principal components representation of filtered-and-normalized
expression data, obtained as described in the Data visualization and construction
of k-nearest neighbors graphs section. All other DiffusionMap settings have
been kept to default configurations. The diffusion map for Lin−CD34/CD164 is
shown in Supplementary Fig. 5. We confirmed the transcriptional principal
trajectories identified starting from SPRING layout (Fig. 2d) by applying our
algorithm to the three-dimensional diffusion map. The results are reported in
Supplementary Fig. 6.

Gene expression analysis. Throughout the manuscript, different types of gene
expression analysis have been shown. The statistical model underlying each of
them has been defined according to the specific question of interest. The analyses
can be grouped in the following categories with related examples shown in Sup-
plementary Fig. 23c: (1) differentially expressed genes across cell groups (Fig. 1c;
Supplementary Fig. 5a, c); (2) identification of genes with a significant association
between expression level and branch-specific pseudotime ordering (Fig. 3b, c;
Supplementary Fig. 7); (3) investigation of differences in gene expression dynamics
among trajectories (Fig. 2e; Supplementary Fig. 5b). Similarly to what proposed in
Trapnell et al.47, we opted for a Generalized Additive Models48 approach, that
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allows to test the dependence between the response variable and different types of
predictors in a more flexible manner. For example, by estimating regression
coefficients by using different loss functions (M-estimators) or by modeling trend
with nonparametric functions. To prevent the potentially high impact of expression
value outliers and dropouts, frequently observed in single cell RNA-Seq data, in all
fitting procedures we employed the Huber loss function for regression. Huber loss
function is commonly used in robust regression and consists in a piecewise penalty
function in which a quadratic penalization is replaced by a linear one for large
differences. Its tuning constant has been set to k= 0.862, meaning that the linear
loss is applied to differences below the 10th and above 90th percentile, assuming a
central Gaussian part of the distribution of residuals.

Differentially expressed genes across cell groups have been identified by fitting
and comparing the two following models for each gene separately. The full model
assumes gene expression averages to be group-dependent. From a practical view-
point, model likelihood and coefficients have been calculated by using group
labels Gi; i ¼ 1; ¼ ; k, where k is the number of groups, as dummy variables,
M1 : μ Yð Þ ¼ β0 þ β1G1 þ ¼ þ βkGk , where μ(Y) is the average expression value
for a gene. The restricted (null) model M0 : μ Yð Þ ¼ β0 instead, assumes no-
differences in mean expression values among groups and considers variation only
owing to the intrinsic noise of expression measurements. Derived from this analysis
are heatmaps in Fig. 1g and Supplementary Fig. 5a,c where statistically significant
genes within specific subsets (CD marker genes49, Human and Mouse transcription
factors50, blood cancer associated proto-oncogenes51) are shown. Information
regarding all significant genes are available in Supplementary Information. Detection
of genes that significantly change as a function of pseudotime, t, has been done by
comparing the likelihood of the model M1 : μ Y ; tð Þ ¼ β0 þ s tð Þ, where expression
value trend μ(Y, t) varies according to a cubic splines (with four degree of freedom), s
(t), to a flat null hypothesis M0 : μ Yð Þ ¼ β0 in which expression is assumed to
randomly fluctuates around a constant value along the whole branch. All genes have
been tested for association with respect to each branch and all estimated regression
functions are available in Supplementary Information. Panels in Fig. 3b, c and
Supplementary Fig. 7 are based on this modeling approach. Finally, to find differences
in gene expression dynamics underlying fate decisions and divergent differentiation
trajectories, we proceed as follows. As aforementioned, cell pseudotime value can be
interpreted as a measure of cell degree of maturation along a specific segment of the
differentiation process. Even though it is difficult to make a direct comparison among
the regulatory dynamics underlying commitment toward different lineages, by
rescaling the branch total length to the unit interval, it is possible to test whether a
gene behaves differently among branches. This is a simplistic approach that only
partially takes into account the potential presence of different maturation paces or
other confounding factors such as varying duplication/differentiation/death rates. In
the formulation of the full model employed in this gene expression analysis, we also
assumed that cells belonging to trajectories stemming from a common bifurcation
node, exhibit an expression pattern highly similar for pseudotime values close to 0,
that will then eventually progressively diverge toward more branch-specific
transcriptional states. This assumption motivated the formulation of the model
M1 : μ Y; tð Þ ¼ β0 þ si tð ÞGi þ sj tð ÞGj , in which branch-specific gene regression
curves can evolve according to distinct pseudo-temporal dynamics si(t) and sj(t),
constrained to have the same expression value for t= 0 (common intercept). The
reduced model M0 : μ Y ; tð Þ ¼ β0 þ s tð Þ, allows gene expression average to vary over
pseudotime according to a non-linear function, but assumes a common s(t) for both
groups. In Fig. 2e, Supplementary Fig. 5b and tables in Supplementary Information
significant fate associated genes are reported. Transcription factors shown in Fig. 2e,
Supplementary Fig. 5b have been selected (among those significant) because already
proposed in the literature has correlated with lineage committed.

In all cases, the differences in explanatory power between M1 and nested model
M0, have been tested by Chi-squared likelihood ratio test (LRT). Statistic value,
along with associated p values, gene name, and estimated mean/regression curves
are reported in Supplementary Information only for those genes with adjusted p
value α < 0.05 (Holm method52 for multiple comparisons). All the analyses have
been performed by means of custom R45 scripts available at https://github.com/
BiascoLab/PrincipalDevelopementalTrajectories. For regression fitting and model
testing, we used the VGAM library53, and in particular vgam(), huber1() and sm.
bs(), respectively, for estimate, loss function and splines interpolation and lrtest()
for testing.

Comparison of human vs mouse erythropoiesis. In order to compare the gene
expression dynamics associated to human and mouse erythropoiesis, we took
advantage of data generated by using inDrops technology on mouse Kit+ cells24.
For mouse data set, differentiation trajectories were identified and cells labeled
(Fig. 3a) according to the methodology afore described. We considered as repre-
sentative of erythroid commitment subgroup 6 in mouse and subgroups 6, 7, 8 in
human Lin−CD34/CD164 map (Fig. 3b top). Genes were tested for association to
pseudotime in the two organisms separately (human: 3821; mouse: 1071 statisti-
cally significant genes, LRT adjusted p value < 0.05; complete lists and details are
available in Supplementary Information). Among those significant, we retrieved
720 orthologous genes based on Mouse Genome Database (MGD)54 (Mouse
Genome Informatics website, The Jackson Laboratory, Bar Harbor, Maine, http://
www.informatics.jax.org), for which behavior is plotted by means of symmetric

heatmap in Fig. 3b (bottom). We further investigated dis/similarities calculating
Pearson correlations coefficients for each couple of human/mouse homologous
genes (Supplementary Fig. 10, table available in Supplementary Information), and
performed pathway enrichment analysis using Reactome database55 on the 89
human genes exhibiting a low-or-negative correlation (Pearson correlation < 0.5).

Population balance analysis. To infer the structure of the hematopoietic lineage
tree from the scRNA-seq data, we applied PBA (Weinreb et al.56) and calculated
couplings between each pair of fates. For the Lin−HSPC subset data set, PBA was
run on the merged data, using the kNN graph constructed as above (Data visua-
lization and construction of kNN graphs). PBA was run as in Tusi et al.24. In brief,
we assigned negative values of R (the local imbalance between cell division and cell
loss) to the five cells with highest gene signature score for each fate (see next
paragraph) and a single positive value to the remaining cells such that

P
i Ri ¼ 0.

Setting the diffusion constant to 1, we fit the exit rates for each fate such that the
five cells with highest HSC signature had average fate probabilities within 1% of
uniform. A similar procedure was carried out for the Lin−CD34/CD164 data set.
Here, we restricted the analysis to the CD164highCD34+ population, as this con-
tained all uncommitted progenitors and the earliest unilineage progenitors. The
kNN graph for PBA was constructed setting k to 40 to improve the robustness of
the analysis, and we set the diffusion constant to 0.5 and used 10 cells per fate and
10 HSCs to fit the exit rates.

We used the following gene sets to define the lineage-specific signatures for the
Lin−HSPC subset data set:

Meg: ITGA2B, PF4, VWF
E: CA1, HBB, KLF1, TFR2
DC: CCR2, IRF8, MPEG1
G: ELANE, MPO, LYZ, CSF1R, CTSG, PRTN3, AZU1
Ly1: RGS1, NPTX2, DDIT4, ID2
Ly2: DNTT, RAG1, RAG2
HSC: CRHBP, HLF, DUSP1

And for the Lin−CD34/CD164 data set:
E: KLF1, CA1
Meg: ITGA2B, PLEK
BEM: CLC, CPA3, HDC
Ly: DNTT, CD79A, VPREB1
DC: IRF8, SPIB, IGKC
M: LYZ, MS4A6A, ANXA2
N: ELANE
HSC: HLF, ADGRG6, CRHBP, PCDH9

For both data sets, we used the PBA-predicted fate probabilities to infer a
differentiation hierarchy, as in Tusi et al.24 (Figs 1f, 2c). A fate coupling score (see
next paragraph) was computed for each pair of fates, and pairs with scores
significantly higher than expected under the null model were joined and their fate
probabilities merged by addition. This process was carried out iteratively until all
fates were joined.

The coupling score between two fates A and B is the number of cells with P(A)P
(B) > ε, using ε= 1/14 throughout. We generated a null distribution for each pair of
fates by computing the coupling scores for 1000 permutations of the original fate
probabilities, re-normalizing each cell’s probabilities at each randomization. The
significance of the observed couplings was measured using the z score with respect
to the null distribution.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw data are available with GEO accession code GSE117498 [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE117498]. SPRING plots are available for inspection at the
following links: Mouse Kit+, [https://kleintools.hms.harvard.edu/tools/
springViewer_1_6_dev.html?datasets/mouse_HPCs/basal_bone_marrow/full]; Human
Lin− CD164/CD34, [https://kleintools.hms.harvard.edu/tools/springViewer_1_6_dev.
html?datasets/CD34_CD164/CD34_CD164]; Human sorted HSPC, [https://kleintools.
hms.harvard.edu/tools/springViewer_1_6_dev.html?datasets/sortedHSPC/sortedHSPC].
The source data underlying Figs. 1g, 2e, 3, 4b,c, 5, Supplementary Figs. 7, 10, 12, 13, 15–
17, 21–23 are provided as a Source Data File.

Code availability
SPRING software is available at https://github.com/AllonKleinLab/SPRING. PBA
algorithm is available at https://github.com/AllonKleinLab/PBA. Structure-aware data
consolidation algorithm described in Wu, Shihao et al.44 has been implemented in R is
available at https://github.com/BiascoLab/PrincipalDevelopementalTrajectories.
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