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Abstract CHC22 clathrin plays a key role in intracellular membrane traffic of the insulin-

responsive glucose transporter GLUT4 in humans. We performed population genetic and

phylogenetic analyses of the CHC22-encoding CLTCL1 gene, revealing independent gene loss in at

least two vertebrate lineages, after arising from gene duplication. All vertebrates retained the

paralogous CLTC gene encoding CHC17 clathrin, which mediates endocytosis. For vertebrates

retaining CLTCL1, strong evidence for purifying selection supports CHC22 functionality. All human

populations maintained two high frequency CLTCL1 allelic variants, encoding either methionine or

valine at position 1316. Functional studies indicated that CHC22-V1316, which is more frequent in

farming populations than in hunter-gatherers, has different cellular dynamics than M1316-CHC22

and is less effective at controlling GLUT4 membrane traffic, altering its insulin-regulated response.

These analyses suggest that ancestral human dietary change influenced selection of allotypes that

affect CHC22’s role in metabolism and have potential to differentially influence the human insulin

response.

DOI: https://doi.org/10.7554/eLife.41517.001

Introduction
Clathrin-coated vesicles (CCVs) are key players in eukaryotic intracellular membrane traffic (Brod-

sky, 2012). Their characteristic lattice-like coat is self-assembled from cytoplasmic clathrin proteins,
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captures membrane-embedded protein cargo and deforms the membrane into a vesicle. This pro-

cess enables CCVs to mediate protein transport to and from the plasma membrane and between

organelles. The triskelion-shaped clathrin molecule is formed from three identical clathrin heavy

chain (CHC) subunits. Humans have two genes (CLTC and CLTCL1) that respectively encode CHC17

and CHC22 clathrins (Wakeham et al., 2005). CHC17 clathrin, which has three bound clathrin light

chain (CLC) subunits, is expressed uniformly in all tissues and forms CCVs that control receptor-

mediated endocytosis, as well as lysosome biogenesis and maturation of regulated secretory gran-

ules. These pathways are conventionally associated with clathrin function and are mediated by cla-

thrin in all eukaryotic cells (Brodsky, 2012). In humans CHC22 clathrin is most highly expressed in

muscle and adipose tissue and forms separate CCVs that are not involved in endocytosis

(Dannhauser et al., 2017). In these tissues, CHC22 CCVs regulate targeting of the glucose trans-

porter 4 (GLUT4) to an intracellular compartment where it is sequestered until released to the cell

surface in response to insulin (Vassilopoulos et al., 2009). This insulin-responsive GLUT4 pathway is

the dominant mechanism in humans for clearing blood glucose into muscle and fat tissues after a

meal (Shepherd and Kahn, 1999). In addition to its distinct tissue expression pattern and biological

function, CHC22 does not bind the CLC subunits that associate with CHC17 clathrin, even though

the CHC protein sequences are 85% identical (Dannhauser et al., 2017; Liu et al., 2001). This

remarkable biochemical and functional divergence evolved since the gene duplication event that

gave rise to the two different clathrins during the emergence of chordates (Wakeham et al., 2005).

Notably, however, the CLTCL1 gene encoding CHC22 evolved into a pseudogene in the Mus genus,

although mice maintain an insulin-responsive GLUT4 pathway for clearing blood glucose. This

eLife digest When we eat carbohydrates, they are digested into sugars that circulate in the

blood to provide energy for the brain and other parts of the body. But too much blood sugar can be

poisonous. The body regulates blood sugar balance using the hormone insulin, which triggers the

removal of sugar from the blood into muscle and fat cells. This removal process involves a pore in

membranes at the surface of muscle and fat tissue, called a glucose transporter, through which the

sugar molecules can pass. During fasting, the glucose transporter remains inside muscle and fat. But

after a meal, insulin acts to release the transporter from its storage area to the surface of the tissue.

How efficiently this process happens reflects how efficiently sugar can be removed from the blood.

When this pathway breaks down, it can lead to diabetes.

In humans, a protein called CHC22 is needed to deliver the glucose transporter to its storage

area. In mice, CHC22 is absent. The question arises: do different animals’ eating habits influence

CHC22’s role in controlling blood sugar? The evolutionary history of CHC22 in a number of different

animals could reveal what is special about glucose transport after a meal in humans, and how it

might fail in diabetes.

By analyzing the genomes of several different species, Fumagalli et al. found that the gene

encoding CHC22 first evolved around the time animals began developing a backbone and complex

nervous systems. Afterwards, it was lost by some animals – including mice, sheep and pigs.

Fumagalli et al. also discovered that CHC22 varies between individual people. A new form of

CHC22, which first appeared in ancient humans, is less effective at holding the glucose transporter

inside muscle and fat – leading to a tendency to reduce blood sugar levels. This new form became

more common in humans over a period witnessing the introduction of cooking, and later farming;

both of these technologies are associated with increased sugar in the diet. But not everyone has this

new variant of the gene – both the old and newer variants are present in people today.

The history of CHC22 suggests that it was useful for early humans to hold the glucose transporter

inside muscle and fat, keeping blood sugar levels high, which contributed to the development of a

large brain. But as humans became exposed to higher dietary levels of sugar the newer form of

CHC22 allowed blood sugar to be lowered more readily. People with different forms of CHC22 are

likely to differ in their ability to control blood sugar after a meal. In some cases, this could lead to

heightened blood sugar levels, which in turn can lead to diabetes.

DOI: https://doi.org/10.7554/eLife.41517.002
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observation suggests that, despite the importance of the CLTCL1 gene product, backup pathways

have evolved to compensate for loss of the CHC22 protein. To understand the evolution of the spe-

cialized function of CHC22, and the potential selective processes involved, we here explore the phy-

logenetic history of the CLTCL1 gene in vertebrates and its population genetics in humans, non-

human primates and bears.

Ecological shifts create selective forces that filter variation in cellular genes. These include

changes in nutritional conditions (Babbitt et al., 2011), as well as encounters with pathogens

(Fumagalli et al., 2011); both documented as selective forces that affect membrane traffic genes

(Elde and Malik, 2009; Liu et al., 2014). Recent studies of the evolution of genes involved in mem-

brane traffic have focused on an overview of all eukaryotes with the goals of establishing the origins

of membrane-traffic regulating proteins in the last common eukaryotic ancestor and defining the

species distribution of various families of traffic-regulating proteins (Rout and Field, 2017;

Dacks and Robinson, 2017). These studies have identified common features of proteins that regu-

late membrane traffic (Rout and Field, 2017) and revealed that extensive gene duplication has

allowed lineage-specific diversification of coat proteins and other membrane traffic regulators, such

as the Rab GTPases (Diekmann et al., 2011; Guerrier et al., 2017). Our earlier study of available

annotated genomes in 2005 suggested that the gene duplication giving rise to the two CHC-encod-

ing genes occurred as a result of one of the whole genome duplications contributing to vertebrate

evolution (Wakeham et al., 2005). Here we focus on the more recent evolutionary history of these

genes, as well as analyze the increased number of fully annotated vertebrate genomes. We establish

that the loss of CLTCL1 in the Mus genus is not unique in vertebrates, identifying at least one addi-

tional independent gene loss event in the clade of Cetartiodactyla affecting pigs, cows, sheep, por-

poise, and possibly additional related species. Nonetheless, there is strong evidence for CHC22

sequence conservation amongst those species that retain CLTCL1 (Wakeham et al., 2005). This evo-

lutionarily recent gene loss in some lineages and retention of the functional form in others suggested

that CLTCL1 may still be under purifying selection, so we examined CLTCL1 variation between indi-

viduals within vertebrate populations. Comparing populations, we found CLTCL1 to be considerably

more polymorphic than CLTC, which encodes the clathrin found in all eukaryotes, with evidence for

strong ancient purifying selection for CHC17 clathrin function and relaxed purifying selection on

CHC22 function. Additionally, we identified two common allotypes of human CHC22, which have dif-

ferent functional properties. The derived allele arose in ancient humans and is more frequent in farm-

ing populations when compared to hunter-gatherers. We previously observed that CHC22

accumulates at sites of GLUT4 retention in the muscle of insulin-resistant patients with type two dia-

betes (Vassilopoulos et al., 2009) in addition to its active role in membrane traffic of GLUT4. Thus,

CHC22 variation has potential to differentially affect membrane traffic pathways involved in insulin

resistance, as well as alter normal glucose metabolism within human and other vertebrate popula-

tions. The analyses reported here lead us to propose that variation in the CHC22 clathrin coat may

be a response to changing nutritional pressures both between and within vertebrate species.

Results

Phylogenetic analyses reveal selective loss or retention of a functional
CLTCL1 gene in vertebrates
Identification of CHC-encoding genes in 62 vertebrate and non-vertebrate species ((Figure 1—fig-

ure supplement 1, Figure 1—figure supplement 2) indicates a dynamic history of gene duplica-

tions and losses (Figure 1). The CLTCL1 gene was detected only in jawed vertebrates (bony

vertebrates and cartilaginous fish), while the two jawless vertebrate genomes available – lamprey

(Petromyzon marinus) and hagfish (Eptatretus burgeri) – have only one CHC-encoding gene. This dis-

tribution refines the timing of the CHC-encoding gene duplication to the period after the Agnatha

split off the vertebrate lineage, estimated at 493.8MYA (95% HPD: 459.3, 533.8), and before the

evolution of jawed vertebrates 450.8MYA (95% HPD: 432.1, 468.1) (Hedges et al., 2015; dos Reis

et al., 2015). Of the ten species of bony fish that split off the spotted gar (Lepisosteus oculatus) line-

age (Amores et al., 2011), whose genomes are generally tetraploid, all had two versions of CLTC

and at least one CLTCL1 gene, except for cave fish (Astyanax mexicanus) apparently lacking CLTCL1.

Eight additional species of vertebrates with high genome coverage and reliable annotation had the

Fumagalli et al. eLife 2019;8:e41517. DOI: https://doi.org/10.7554/eLife.41517 3 of 29

Research article Cell Biology Evolutionary Biology

https://doi.org/10.7554/eLife.41517


CLTC gene but no identifiable CLTCL1 gene. CLTCL1 genes are present in the Caviomorpha and

Sciuridae rodent suborders, and lost in the Muroidea suborder from the entire Mus genus

(Wakeham et al., 2005) and from rat (Rattus norvegicus). The Cetartiodactyla clade also appears to

have lost CLTCL1, as CLTCL1 is absent from the four representative genomes in our dataset (pig

(Sus scrofa), sheep (Ovis aries), cow (Bos taurus), Yangtze finless porpoise (Neophocaena asiaeorien-

talis)). This suggests a loss event before the Cetartiodactyla lineage split, independent of the loss

event preceding split of the Muroidea lineage. The absence of CLTCL1 in rat clarifies why CHC22

could not be biochemically identified in rat and indicates that antibodies against CHC22 that react

with rat cells must cross-react with other proteins (Towler et al., 2004). CLTCL1 was also not

detected in the genomes of the little brown bat (Myotis lucifugus) and the duck-billed platypus

(Ornithorhynchus anatinus). Assuming the genome annotations for the species analyzed are reliable,

these data indicate that there have been at least five independent losses of CLTCL1 that are clade-

or species-specific. The intermittent loss of CLTCL1 and the retention of CLTC raises the question of
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Figure 1. Phylogenetic analysis of CLTC/CLTCL1 reveals independent loss of the gene encoding CHC22 clathrin from vertebrate lineages and

complete conservation of the gene encoding CHC17 clathrin. Phylogenetic profiles of CLTC/CLTCL1 are shown, with gene presence in the

corresponding genome indicated by a filled black circle. All sequences used have less than 5% unspecified residues (‘X’s in the relevant database).

Divergent gene sequences with low sequence similarity but that still fall within the CLTC clade are shown as empty circles (see Materials and methods

for similarity threshold and sequence IDs). Based on the profile and species tree the most parsimonious phylogenetic tree for loss and duplication

events is inferred and shown as red stars and blue squares, respectively.

DOI: https://doi.org/10.7554/eLife.41517.003

The following figure supplements are available for figure 1:

Figure supplement 1. Unreconciled phylogenetic tree for CLTC and CLTCL1 across all investigated species.

DOI: https://doi.org/10.7554/eLife.41517.004

Figure supplement 2. Reconciled phylogenetic tree (therefore missing support values) for CLTC and CLTCL1 across all investigated species.

DOI: https://doi.org/10.7554/eLife.41517.005
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whether their patterns of evolution are typical for genes with related functions that duplicated in the

same time frame as CLTC/CLTCL1.

CLTC and CLTCL1 are located on paralogous regions of human chromosomes 17 and 22, respec-

tively. For these two genes, the evolutionary rates (rate of non-synonymous substitutions to rate of

synonymous substitutions; dN/dS) across vertebrates at each position were determined and plotted
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Figure 2. Genes encoding clathrin heavy chains show evidence for purifying selection with CLTCL1 (CHC22-encoding) being more variable than CLTC

(CHC17-encoding) over evolutionary time. Evolutionary rates expressed as dN/dS ratios are shown for each position in CLTC (A) and CLTCL1 (B). Rates

are averages over an entire phylogenetic tree and therefore not specific to the human proteins. However, to assist interpretation, only rates for residues

present in the human proteins are shown. Kernel density estimates of the distributions of dN/dS ratios per paralogous pair of proteins (C–E). CLTA and

CLTB encode clathrin light chains A and B, respectively. MMTR3 and MMTR4 encode myotubularin lipid phosphatases. Mean dN/dS ratios averaged

over all sites are shown as hatched marks.

DOI: https://doi.org/10.7554/eLife.41517.006
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along the length of the protein sequences (Figure 2A–B). Several adjacent paralogs have been main-

tained in these chromosomal regions, some of which are involved in membrane traffic, including the

gene pair of MTMR4 and MTMR3, encoding myotubularin lipid phosphatases. Also, CLC subunits of

CHC17 clathrin are encoded by paralogous genes on different chromosomes (CLTA and CLTB) that

arose from a local gene duplication, mapped to the same time frame as the CHC-encoding duplica-

tion (Wakeham et al., 2005). Comparison of the distribution of dN/dS ratios for the three pairs

revealed stronger purifying selection on the CLTC/CLTCL1 genes than on MTMR4/MTMR3 and

CLTA/CLTB (Figure 2C–E), suggesting the CHC-encoding clade is more evolutionarily constrained.

This observation is consistent with our previous identification of conserved signature residues in

CLTCL1 using DIVERGE analysis (Wakeham et al., 2005) and indicates conserved functions for both

the CLTC and CLTCL1 gene products. Furthermore, there is a striking difference in the distribution

and average of evolutionary rates, as measured by dN/dS, between CLTC and CLTCL1 (Kolmo-

gorov-Smirnov test p-value<2.2e-16), with CLTC being significantly more constrained by purifying

selection than CLTCL1. In contrast, there is minimal difference in the distribution and average of evo-

lutionary rates between the two paralog pairs MTMR4/MTMR3 and CLTA/CLTB (Kolmogorov-Smir-

nov test yields p-values 0.003643 and 0.9959, respectively).

Human population genetic analyses indicate purifying selection with
ongoing diversification for CLTCL1
To follow up the indication that CLTC and CLTCL1 are subject to different degrees of purifying

selection, we investigated their variation in human populations. We analyzed 2504 genomes from

the 1000 Genomes Project database, phase 3 (1000 Auton et al., 2015) and identified alleles result-

ing from non-synonymous substitutions for CLTC and CLTCL1. This dataset included individuals from

each of five human meta-populations: European (EUR, 503), East Asian (EAS, 504), Admixed Ameri-

can (AMR, 347), South Asian (SAS, 489) and African (AFR, 661). Individual populations with their

abbreviations are listed in Supplementary file 1a. The reference sequences for chimpanzee (Pan

troglodytes) and pseudo-references for two archaic humans, Altai Neanderthal and Denisovan, were

also included to relate allelic variation to the ancestral state. A median-joining network for all the

inferred CLTC human alleles showed a very common allele (sample frequency 0.997) with only five

low-frequency variants generating a total of six alleles (Figure 3A). Each allele encodes a variant of a

CHC (allotype), which includes one or more single nucleotide polymorphisms (SNPs).

In contrast to CLTC, we identified 46 non-synonymous SNPs in CLTCL1, present in 52 distinct

haplotypes (referred to here as alleles, following the definition given above, Supplementary file 2b-

c). A median-joining network for the most common CLTCL1 alleles showed that they are widely dis-

tributed within the human meta-populations (Figure 3B). Each meta-population tends to have pri-

vate, less frequent alleles. Nevertheless, all the meta-populations comprised two main allelic clades,

together constituting a sample frequency of 77%. These two main alleles differ by a single methio-

nine to valine substitution at position 1316 (M1316V) in the protein sequence (SNP ID rs1061325

with genomic location chr22:19184095 on hg19 assembly). The valine at position 1316 is predicted

to have a functional effect on the protein since it was categorized as ‘probably damaging’ with a

probability of 0.975 by PolyPhen (Adzhubei et al., 2010) and as ‘damaging’ by SIFT (Kumar et al.,

2009). Sequences in chimpanzee and archaic humans have the M1316 allotype, suggesting that

M1316 is likely to represent the ancestral state. To further investigate this, we inspected raw

sequencing data from both Altai Neanderthal and Denisovan (Supplementary file 1d). We inferred

the most likely genotype to be homozygous for the M1316 amino acid (minimum sequencing depths

equal to 40 and 28, respectively). We then extracted sequencing data for an additional 13 archaic

and ancient humans (Supplementary file 1d). We found that the V1316 amino acid is present in

Pleistocene hunter-gatherers and Neolithic farmers but not in other Neanderthals or Holocene

hunter-gatherers in this limited data set. The equivalent residue in human CHC17 (encoded by

CLTC) is also methionine, suggesting that methionine at this position likely pre-dated the initial

duplication generating CLTCL1. For the non-human species analyzed (Figure 1), all CHC-encoding

genes present would produce clathrins with M1316, further indicating its ancient and conserved role

in CHC structure or function.

To quantify the levels of nucleotide and allelic diversity for non-synonymous sites within human

populations, several summary statistics of diversity were calculated. For populations within each

meta-population, we separately calculated Watterson’s and Nei’s estimators of genetic diversity (TW
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A CLTC

AFR

AMR

EAS

EUR

SAS

CLTCL1B

M1316V

Pan paniscus

Pan troglodytes

Pan troglodytes ellioti

Pan troglodytes schweinfurthii

Pan troglodytes troglodytes

Pan troglodytes verus

CLTCC CLTCL1D

Figure 3. The CLTCL1 gene encoding human CHC22 has two major variants, and is highly polymorphic relative to the human CLTC gene encoding

CHC17, with a similar pattern in chimpanzees. Median joining network of human alleles for CLTC (A) and CLTCL1 (B) are shown. Each circle represents

a unique allele whose global frequency is proportional to its circle’s size and the line length between circles is proportional to the number of non-

synonymous changes between alleles. For CLTC, the least common alleles have a frequency ranging from 0.04% and 0.06% and the circles representing

them were magnified by a factor of 10. For CLTCL1, only alleles with a frequency greater than 20% were plotted. The two major alleles show a

combined frequency of 77% while the other alleles depicted in the figure have a frequency ranging from 0.44% to 5.67%. Segregation of the M1316V

variation is depicted with a hashed line, with alleles carrying the M variant on the left-hand side, and alleles carrying the V variant on the right-hand

side. The meta-populations in which the allele is found are indicated in color representing their percentage of the total frequency of the allele in

humans. Meta-populations analyzed are African (AFR), American (AMR), East Asian (EAS), European (EUR), South Asian (SAS). (C–D) Median joining

network of CLTC (C) and CLTCL1 (D) alleles for chimpanzees (Pan troglodytes, four identified subspecies and one unidentified) and bonobos (Pan

Figure 3 continued on next page
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and PI, respectively), Tajima’s D (TD), Fu and Li’s D* (FLDs) and F* (FLFs), the sum of squared allele

frequencies including the most common allele (H1) and excluding it (H2), and the normalized ratio

between H2 and H1 (H2H1) (Supplementary file 2a). To assess whether observed summary statistics

are expected or not under neutral evolution in each population, we calculated the empirical null dis-

tribution from a set of 500 control genes with the same coding length as CLTCL1

(Supplementary file 2b). High or low percentile rank values for CLTCL1 in the empirical distribution

indicate that the summary statistic for CLTCL1 is unlikely to occur by mutation and neutral genetic

drift alone. Summary statistics and populations were then clustered according to their empirical

ranks and plotted on a heat map (Figure 4).

All populations tend to display high genetic diversity for CLTCL1, as summarized by PI and TW,

and an unusually high frequency for the second most common allele, as summarized by H2 and

H2H1. Such configuration is likely to occur under balancing selection (Charlesworth, 2006) or

because of a soft sweep (Messer and Petrov, 2013). That CLTCL1 was low ranking in all populations

for H1, a statistic representing the frequency of the most common allele, also supported diversifying

selection rather than hard sweeps. On the other hand, all populations display negative TD values

with many populations exhibiting negative FLDs and FLFs values. These values are consistent with

low diversity within common alleles and an excess of low-frequency variants. Finally, we calculated a

measure of genetic differentiation (fixation index FST) between pairs of canonical reference popula-

tions, namely Yoruba from Nigeria (YRI), North Americans with European ancestry (CEU), and Han

Chinese from Beijing (CHB). We did not find any evidence that FST values for CLTCL1 (YRI-CEU 0.15,

YRI-CHB 0.077, CEU-CHB 0.065) are outliers in the empirical distribution of control genes.

Such inconsistent patterns could be partly explained by the fact that we considered only non-syn-

onymous changes, and the limited number of SNPs considered per gene may create a larger vari-

ance in the empirical distributions, especially for allele-based statistics. We therefore further

examined the high frequency of the second most common allele by investigating whole genomic var-

iation, including silent SNPs. We observed a local increase of H2 statistics in CLTCL1 for European

populations, which already shows a large value based on non-synonymous changes (Figure 4—fig-

ure supplement 1). This analysis also indicates that any selection signatures are restricted to a local

genomic region encompassing CLTCL1.

Another reason for the summary statistics not being strong outliers in the empirical distribution is

the high recombination rate (sex-average rate of 2.5 cM/Mb) inferred for the genomic region

encompassing CLTCL1 (Kong et al., 2002). We therefore performed coalescent simulations under

neutrality of a putative 100kbp genomic region surrounding the SNP encoding the M1316V varia-

tion, taking into account the local recombination rate and a previously proposed demographic

model for Africans (YRI), Europeans (CEU) and East Asians (CHB) (Gutenkunst et al., 2009) with a

mutation rate of 1.5 � 10�8 per base pair per generation. The observed values for TW and PI were

significantly greater than expected under neutral evolution for all populations (p-values<0.001),

while TD was greater than expected for CHB only, although with a marginally non-significant statisti-

cal support (p-value 0.056). All these results are suggestive of a genetic diversity higher than

expected under neutrality for a region encompassing M1316V, although possible complex evolution-

ary scenarios may limit the power of summary statistics to detect such selective events.

One plausible explanation of the high genetic diversity and frequency of the two major alleles of

CLTCL1 that occur in all modern human populations (Figure 3B, Supplementary file 1b) is balancing

selection (Charlesworth, 2006). Such a distribution of allele frequency was confirmed using a differ-

ent data set of more than 50 sampled human populations (Figure 4—figure supplement 2). In sev-

eral populations, we also observed an apparent excess of heterozygosity at SNP rs1061325

Figure 3 continued

paniscus). The species and subspecies in which each variant is found are indicated in color representing their percentage of the of the total frequency

of the variant in chimpanzees and bonobos.

DOI: https://doi.org/10.7554/eLife.41517.007

The following figure supplement is available for figure 3:

Figure supplement 1. Phylogenetic trees of amino acid sequences for CLTC and CLTCL1 in the bear samples analyzed.

DOI: https://doi.org/10.7554/eLife.41517.008
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(Supplementary file 2c), compatible with heterozygote advantage (overdominance) for the two

encoded allotypes differing at residue 1316. Specifically, all European populations show a ratio of

observed versus expected (assuming Hardy-Weinberg equilibrium) heterozygosity greater than 1,

with the highest value of 1.24 (chi-squared test nominal p-value 0.047) for Iberic Spanish (IBS) (Fig-

ure 4—figure supplement 3). Selective pressures that might be acting on CLTCL1, irrespective of

population distribution, could be changes in human diet, a number of which have been inferred over

the last 2.6 million years (Hardy et al., 2015). Perhaps the best known of these dietary transitions

are the introduction of cooking ~450 KYA, the development of farming ~12,500 YA, and more

recently industrialized food processing, which gradually and then dramatically increased
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Figure 4. Summary statistics for genetic diversity of CLTCL1 indicate selection over neutral variation. For each human population (on the rows) we

calculated several summary statistics to analyze diversity (on the columns, defined in Materials and methods) and reported their percentile rank against

their corresponding empirical distribution based on 500 control genes. The resulting matrix was then sorted on both axes as a dendrogram (not

reported) based on the pairwise distances between each pair of populations. The populations analyzed, with their abbreviations, are listed in

Supplementary file 1a, and the inclusive meta-population is indicated in parentheses, defined as in the legend to Figure 3. As depicted in the color

legend, red and yellow denote low and high percentile ranks, respectively. Percentiles lower than 0.10 or greater than 0.90 are given in the

corresponding cell.

DOI: https://doi.org/10.7554/eLife.41517.009

The following figure supplements are available for figure 4:

Figure supplement 1. Variation of H2 statistics along a genomic region surrounding CLTCL1 in four European populations, with abbreviations as

defined in Supplementary file 1a.

DOI: https://doi.org/10.7554/eLife.41517.010

Figure supplement 2. Geographical distribution of M1316- and V1316-encoding alleles across human populations in the HGDP-CEPH panel data set.

DOI: https://doi.org/10.7554/eLife.41517.011

Figure supplement 3. Worldwide distribution of heterozygosity of M1316- and V1316-encoding alleles.

DOI: https://doi.org/10.7554/eLife.41517.012
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carbohydrate availability and consumption by humans. As CHC22 clathrin, the gene product of

CLTCL1, is required for formation of the intracellular pathway critical for an insulin response, its

genetic history could potentially be influenced by these changes. To address the hypothesis that

nutritional habits conferred selective pressure on CLTCL1, we compared the frequency of SNP

rs1061325 (M1316V) in farming versus hunter-gatherer population samples from ancient and modern

humans. Although the appearance of SNP rs1061325 predates the advent of farming

(Supplementary file 1d), the observed frequencies of this allele, which encodes the CHC22-V1316

allotype, are consistent with a tendency for it to increase once farming became common practice for

a population (Figure 5), although the small sample size for modern humans limits the power to reach

statistical significance. The highest difference in allele frequency was observed between early farm-

ers and hunter-gatherers from West Eurasia. However, as these two populations are highly diverged,

it remains possible that this significant difference in allele frequency is due to genetic drift shaped

by population history, rather than natural selection. To test this model, using the same dataset, we

extracted 2500 control SNPs with a global minor allele frequency similar to rs1061325 (M1316V) (up

to an error of 5%) and minimum global sequencing depth of 100X. We obtained statistical signifi-

cance (p-value 0.036) when testing the difference in derived allele frequency in farmers compared to

hunter-gatherers (+26.58%), while we found no statistical support (p-value 0.080) when testing the

absolute difference in allele frequency between these two populations.
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Figure 5. Frequencies of the V1316 variant of CHC22 trend higher in populations of farmers compared to hunter-

gatherers. Maximum a posteriori estimates and 95% highest posterior density credible intervals of the frequency of

V1316 are compared for modern and ancient hunter-gatherer (HG) and farmer populations indigenous to three

continents. Probability of the V allele being at a higher frequency in farmers, labeled as P(f > hg), is also reported.

DOI: https://doi.org/10.7554/eLife.41517.013
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Genetic variation in non-human vertebrate species supports functional
diversification of CLTCL1
We analyzed allelic variation for CLTC and CLTCL1 in the genomes of 79 individuals representing six

species of great ape, two species each for chimpanzees, gorillas and orangutans (Pan troglodytes,

Pan paniscus, Gorilla beringei, Gorilla gorilla, Pongo abellii, Pongo pygmaeus). After data filtering

and haplotype phasing, we found no non-synonymous SNPs for CLTC and 64 putative non-synony-

mous SNPs for CLTCL1 (Supplementary file 3a). In three species of great apes analyzed, one of the

non-synonymous changes in CLTCL1 leads to a premature stop-codon at amino position 41, with an

overall frequency of 36%. However, sequences containing the stop-codon exhibited only a marginal

increase of nucleotide diversity (+4.7% as measured by Watterson’s index; Watterson, 1975) com-

pared to the full-length sequences, suggesting that these are relatively new variants. Notably, for all

the non-human primates analyzed, CLTCL1 variants do not encode the V1316 allotype, which

appears private to humans. However, in all three types of great ape we found a common but differ-

ent substitution, threonine (T1316), at the same amino acid position.

To further investigate variation in non-human primates, we increased the sample size per species

by analyzing CLTC and CLTCL1 variation in 70 chimpanzee and bonobo genomes, including four

subspecies of chimpanzee. While no variation was observed for CLTC (Figure 3C), a median-joining

network for the inferred 8 CLTCL1 alleles (Supplementary file 3b) showed a major allele common to

different species and subspecies with less frequent alleles primarily restricted to individual ones

(Figure 3D). In this chimpanzee data set, we observed considerable diversity, with a potential ten-

dency towards multiple variants. However, amino acid 1316 was not covered in this data set, possi-

bly due to poor data mapping quality associated with the high nucleotide diversity observed. In

another data set of 20 individuals (Teixeira et al., 2015), we found a frequency of 10% for the

T1316 allotype in chimpanzees but not in bonobos.

We further investigated CLTCL1 variation in polar bears (Ursus maritimus) and their closest

related species, brown bears (Ursus arctos). These two species, which diverged 479–343 KYA

(Liu et al., 2014), have very different diets (Liu et al., 2014; Bojarska and Selva, 2012) and are phy-

logenetically closer to each other than chimpanzees and humans. Polar bears subsist on a high fat,

low carbohydrate diet, whereas brown bears consume a more varied diet of carbohydrate, protein

and fat. Analysis of 21 bear genomes (seven polar bears and 14 brown bears) (Benazzo et al.,

2017), revealed three positions (1267, 1389, and 1522) which are fixed in polar bears but are either

polymorphic or have a different residue in brown bears (Supplementary file 3c). Genetic differentia-

tion between polar and brown bears, as measured by FST, is markedly higher for CLTCL1 (0.56) than

for CLTC (0.26) (Liu et al., 2014). Furthermore, a phylogenetic tree of both bear species in our sam-

ple exhibits more diversification for CLTCL1 compared to CLTC (Figure 3—figure supplement 1).

This sample of bear populations may support the emergence of multiple CLTCL1 variants within a

species and a potential role for diet-related selection.

Modeling CHC22 variation based on CLTCL1 polymorphism suggests an
effect on clathrin lattice contacts
One expectation for selection of the human-specific CLTCL1 allele encoding the CHC22-V1316 allo-

type is that this amino acid change might confer a functional change in the clathrin lattice. This was

predicted by the PolyPhen and SIFT analyses, highlighting the change as potentially structure-alter-

ing. As many humans are heterozygous for the M1316 and V1316 allotypes (44% based on all indi-

viduals from 1000 Genomes project), there may potentially be special properties for mixed lattices

formed from the two protein allotypes. To address the possibility that the M1316V polymorphism

affects protein function, we used MODELLER (Benjamin and Sali, 2014) to produce a homology

model of the two CHC22 allotypes based on the crystal structure of CHC17 clathrin (PDB

1B89) (Ybe et al., 1999), taking advantage of the 85% protein sequence identity between human

CHC17 and CHC22 (Figure 6). Modeling using UCSF Chimera (Pettersen et al., 2004) showed that

residue 1316 is found at a key interface between triskelion legs in assembled clathrin (Figure 6A and

top of panel B). If M1316 is substituted by V1316, the smaller side chain creates a void that would

be energetically unfavorable (Figure 6, bottom of panel B), such that the triskelion leg might twist

slightly to close the void. In the clathrin lattice, the legs have a torque that rotates the assembly

interface along the protein sequence (Wilbur et al., 2005), so a further twist could slightly adjust the
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interface, altering assembly interactions. Changes in the assembly interface could affect integrity of

the lattice and potentially influence kinetics of assembly and disassembly. Mixed lattices of the two

CHC22 allotypes would therefore have different properties from CHC22 coats formed in homozy-

gotes for the two major CLTCL1 alleles. CHC22 is needed for the traffic of GLUT4 to its intracellular

storage compartment, where GLUT4 awaits release to the plasma membrane in response to insulin.

However, CHC22 also accumulates at the GLUT4 storage compartment (GSC) when it expands due

to impaired GLUT4 release in cases of insulin-resistant type two diabetes (T2D)

(Vassilopoulos et al., 2009). Thus, genetic variation of CHC22 could alter rates of retention and

release of GLUT4 in both healthy and disease states.

CHC22 variants display functional differences
To test whether the evolutionary change from M1316 to V1316 in CHC22 clathrin alters its proper-

ties, three aspects of CHC22 biochemistry and function were compared for the two allotypes. HeLa

cells were transfected with constructs encoding each CHC22 variant or CHC17, tagged with green

fluorescent protein (GFP). Atypically for their epithelial cell origin but not for transformed cells, HeLa

cells express CHC22 clathrin (they are homozygous for the M1316 allotype) (Adey et al., 2013;

Landry et al., 2013). We observed that the transfected fluorescently tagged CHC22 allotypes were

both concentrated in the perinuclear region of the cell, similar to endogenous CHC22-M1316

detected by antibody, and did not overlap with endogenous CHC17 (Figure 7A). Conversely, trans-

fected GFP-CHC17 did not overlap with endogenous CHC22, so expression of the transfected CHCs

reflected their natural distribution (Dannhauser et al., 2017). Using these constructs, the dynamics

CHC-1 

CHC-2 

CHC-3 

CHC-4 

MET 

1316 

VAL 

1316 

1316 

!" #"

Figure 6. Modeling of the structural changes in clathrin caused by the methionine-valine dimorphism at residue 1316 predicts conformational

alteration. Model of the CHC17 clathrin lattice (A) is reproduced with permission (Fotin et al., 2004) with the region comprising residue 1316 boxed.

Panel B (top part) is the magnified boxed region in A with a CHC22-M1316 model (residues 1210 to 1516) docked into one of the four clathrin heavy

chains (CHC-1) forming the edge of the lattice. The black arrow shows the location of the amino acid residue 1316 with the side chain highlighted in

CHC-1. The density of the other three CHCs is indicated. Computational models of human CHC22 (residues 1210 to 1516) with either Met or Val at

position 1316 (B, lower parts). The yellow circle encloses space opened by reducing the side chain size, which would require a shift in CHC torque to

regain structurally favorable side chain contacts.

Ó 2004, Springer Nature. All Rights Reserved. Panel A reproduced, with permission, from Fotin et al. (2004).

DOI: https://doi.org/10.7554/eLife.41517.014
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of membrane association for the two allotypes of CHC22 and for CHC17 was assessed by Fluores-

cence Recovery After Photobleaching (FRAP). To assess clathrin turnover, as an indicator of clathrin

coat stability, cells expressing fluorescent proteins were photobleached in the perinuclear area

(Figure 7B) and their rate of fluorescence recovery was measured. Recovery of CHC17 fluorescence

was the fastest, consistent with its more soluble properties compared to CHC22 (Dannhauser et al.,
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Figure 7. The CHC22-M1316 and CHC22-V1316 allotypes have different dynamics of membrane association, as measured by fluorescence recovery

after photobleaching (FRAP). HeLa cells were transfected with CHC22-M1316-GFP (CHC22M) or CHC22-V1316-GFP (CHC22V) or CHC17-GFP and the

expressed constructs were localized relative to endogenous CHC22 and CHC17, which were also compared to each other (A). Endogenous CHC22,

CHC17 and the transfected proteins were visualized by immunofluorescence with anti-CHC22 rabbit polyclonal antibody (pAb, red), anti-CHC17 mouse

monoclonal antibody (mAb, green) and anti-GFP chicken polyclonal antibody (green for CHC17-GFP or red for CHC22-GFP), respectively. Bars

represent 3 mm (untransfected and CHC22M-GFP) and 5 mm (CHC22V-GFP and CHC17-GFP). Transfectants were photobleached in the circular region

indicated (B) and recovery of fluorescence (FRAP) was visualized over time (bars, 10 mm) and quantified within the bleached regions (C). For the data in

(C), area under the curves (D) and mobile fractions Mf (E) were calculated (Lippincott-Schwartz et al., 2001). We performed a one-way analysis of

variance (ANOVA) with Tukey’s multiple comparison post-hoc test: * p-value<0.05, ** p-value<0.01.

DOI: https://doi.org/10.7554/eLife.41517.015

The following source data is available for figure 7:

Source data 1. FRAP experiment data set 1.

DOI: https://doi.org/10.7554/eLife.41517.016

Source data 2. FRAP experiment data set 2.

DOI: https://doi.org/10.7554/eLife.41517.017

Source data 3. FRAP experiment data set 3.

DOI: https://doi.org/10.7554/eLife.41517.018
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2017). CHC22-M1316 showed the slowest recovery and CHC22-V1316 was intermediate

(Figure 7C–E), suggesting that it is more exchangeable in the CHC22 coat than the M1316 allotype.

The impact of CHC22 variation on GLUT4 retention was then assessed. Because HeLa cells

express CHC22, they can form a GSC, when transfected to express GLUT4. These cells sequester

GLUT4 intracellularly, and then release it to the plasma membrane in response to insulin, behaving

like muscle and adipocytes, though with more modest insulin response (Camus et al., 2018;

Trefely et al., 2015; Haga et al., 2011). To detect GLUT4 release to the cell surface, we used a con-

struct expressing GLUT4 tagged with mCherry and a hemagglutinin (HA) epitope embedded in an

exofacial loop of the transporter (HA-GLUT4-mCherry). Appearance of surface GLUT4 in response to

insulin was detected by fluorescence-activated cell sorting (FACS) using an antibody to the HA epi-

tope (Figure 8A). Transfection of HeLa cells with siRNA depleting CHC22 ablates this insulin-respon-

sive pathway (Camus et al., 2018) (Figure 8A). We then assessed if siRNA inhibition of insulin-

responsive GLUT4 release can be rescued by expression of CHC22-M1316-GFP or CHC22-V1316-

GFP. These constructs, the same as characterized in Figure 7A, are siRNA-resistant, as well as being

GFP-tagged. We observed that, when endogenous CHC22 was depleted, CHC22-M1316 was able

to restore the insulin response but CHC22-V1316 was not, when the rescue constructs were

expressed at the same levels in cells (measured by intensity of GFP fluorescence) (Figure 8A).

CHC17 expression also did not rescue insulin-induced GLUT4 expression, as shown previously
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Figure 8. Differences in intracellular GLUT4 sequestration and stability occur in cells expressing the CHC22-M1316 or CHC22-V1316 allotypes. HeLa

cells were treated with siRNA to deplete endogenous CHC22 or with control siRNA, then transfected to co-express HA-GLUT4-mCherry along with

CHC17-GFP (CHC17), CHC22-M1316-GFP (CHC22M) or CHC22-V1316-GFP (CHC22V) (A and B). Total levels of expressed GLUT4 and CHC were

measured by FACS (mean fluorescence intensity (MFI) for mCherry or GFP, respectively). Surface levels of GLUT4 were measured with anti-HA antibody

at basal conditions (-) or after 30 min of exposure to insulin (+) and surface/total GLUT4 is reported as a measure of GLUT4 translocation to the cell

surface (A) in cells expressing equivalent total levels of CHC-GFP. The extent of GLUT4 translocation was assessed in each experimental group before

and after insulin stimulation; Student t-test, * p-value<0.05. Transfected cells treated with siRNA to deplete endogenous CHC22, but not treated with

insulin, were gated into thirds expressing equivalently low (L), medium (M) and high (H) levels of CHC-GFP for each type of CHC, then total levels of

HA-GLUT4-mCherry in each population were plotted (B). We performed a one-way analysis of variance (ANOVA) with Tukey’s multiple comparison

post-hoc test: * p-value<0.05.

DOI: https://doi.org/10.7554/eLife.41517.019

The following source data is available for figure 8:

Source data 1. GLUT4 translocation experiment.

DOI: https://doi.org/10.7554/eLife.41517.020

Source data 2. Total GLUT4-mCherry levels.

DOI: https://doi.org/10.7554/eLife.41517.021
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(Vassilopoulos et al., 2009). However, CHC22-V1316 is functional for trapping GLUT4 intracellularly

because CHC22-transgenic mice that express CHC22-V1316 in muscle, using the natural human pro-

moter, show excessive GLUT4 sequestration in muscle compared to wild-type mice without CHC22,

leading to higher blood glucose in the transgenic animals (Vassilopoulos et al., 2009). To analyze

GLUT4 sequestration in another way, cells depleted for CHC22 and then transfected with mCherry-

GLUT4 plus either CHC22 allotype or CHC17 were each divided into three populations expressing

equivalently low, medium and high levels of the transfected CHC-GFP. Then, the total GLUT4 con-

tent of the cells was measured by mCherry fluorescence. We observed higher levels of GLUT4 in

CHC22-depleted cells expressing CHC22-M1316-GFP, compared to cells expressing either CHC22-

V1316-GFP or CHC17-GFP at both medium and high levels of CHC expression (Figure 8B). This sug-

gests that GLUT4 is sequestered more effectively from degradative membrane traffic pathways

when trafficked by CHC22-M1316 than by CHC22-V1316, indicating that the M1316 variant is more

efficient at targeting GLUT4 to the GSC. As indicated by their weak insulin response compared to

muscle or fat cells, HeLa cells are only just able to form a functional GSC from which GLUT4 can be

released. For these cells, the less effective CHC22-V1316 is inadequate to restore GSC formation

when their endogenous CHC22-M1316 is depleted. Use of this HeLa model was necessitated by the

lack of natural models for the CHC22-dependent GLUT4 pathway in myoblasts and adipocytes, as

well as a lack of antibodies that detect surface GLUT4. Nonetheless, these experiments demonstrate

a functional difference between CHC22-M1316 and CHC22-V1316 and suggest that CHC22-V1316

is less efficient at GLUT4 sequestration.

Discussion
We studied the phylogenetics and population genetics of CHC22 clathrin to understand the func-

tional variation of this protein in relation to its evolutionary history. CHC22 clathrin is a key player in

post-prandial blood glucose clearance in humans through its role in intracellular packaging of the

GLUT4 glucose transporter in muscle and fat, the tissues in which CHC22 and GLUT4 are expressed

(Vassilopoulos et al., 2009). The CHC22 pathway positions GLUT4 for cell surface release in

response to insulin and consequent uptake of glucose into these tissues (Bryant et al., 2002). The

CLTCL1 gene encoding CHC22 resulted from gene duplication that we have now dated to 494–451

MYA, early in vertebrate evolution when jawed vertebrates emerged. We had previously shown that

CLTCL1 is a pseudogene in mice (Wakeham et al., 2005). Expanding analysis to 56

jawed vertebrate genomes (>5X coverage) we could not detect CLTCL1 in nine of them. Six of these

absences can be ascribed to two independent gene loss events in branches of the Rodentia and the

Cetartidactylae. The three others may represent additional gene losses or incomplete genome anno-

tation. All vertebrate and non-vertebrate eukaryotes considered here have retained the parent CLTC

gene encoding CHC17 clathrin, which mediates endocytosis and other housekeeping membrane

traffic pathways. The analysis described here establishes that CLTC is under strong purifying selec-

tion. Notable is our evidence for purifying selection on CLTCL1 in the species in which it has been

retained, supporting its functional importance in those species. Compared to CLTC, extensive allelic

diversity was observed for CLTCL1 in all species for which populations were analyzed, including

humans, chimpanzees and bears. Variant alleles were species-specific in most cases. In all human

populations, two allelic variants of CLTCL1 are present in high frequency, differing only at one nucle-

otide, resulting in CHC22 protein with either methionine or valine at position 1316. The V1316 allo-

type appears specific to humans, but some non-human primates have a different variation at the

position 1316. Analysis of ancient humans dated the appearance of the V1316 variant to 500–50

KYA and indicated that M1316, which is fixed in CHC17 clathrin, is the ancestral state. Analyses of

human population genetic data provided support for the maintenance of high genetic diversity and

two allotypes of CHC22. We hypothesize that selective pressure on CHC22 clathrin comes from its

role in nutrient metabolism. Consistent with this hypothesis, we observed functional differences

between the two CHC22 allotypes in their capacity to control GLUT4 membrane traffic, as predicted

by structural modeling and differences in cellular dynamics of the two allotypes.

Retention of CLTC in all vertebrate species is consistent with the encoded CHC17 mediating cel-

lular housekeeping clathrin functions shared by all eukaryotes. On the other hand, CHC22, encoded

by the paralogous gene CLTCL1, operates in the specialized insulin-responsive GLUT4 pathway to

make the pathway more efficient in those species that retained CLTCL1. Data presented here
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(Figure 8) and our recent mapping of a novel intracellular location for CHC22 function

(Camus et al., 2018) indicate that, in human cells, CHC22 clathrin promotes transport from the

secretory pathway to the insulin-responsive GSC. This CHC22 pathway complements the endocytic

pathway for GLUT4 targeting to the GSC, so species without CHC22 can rely primarily on endocyto-

sis for GLUT4 trafficking to the GSC, while species with CHC22 use both pathways. Thus, we hypoth-

esize that species with functional CHC22 clathrin are more efficient at intracellular GLUT4

sequestration, resulting in lower surface GLUT4 in the absence of insulin, and tighter regulation of

GLUT4 release in response to insulin. The trade-off is that these species have an inherent increased

tendency to insulin resistance as their GLUT4 is sequestered more effectively. The two main verte-

brate branches that have lost CHC22 comprise the Muridae (mice and rats) who are incessant herbi-

vores and the Cetartiodactyla (sheep, cattle, porpoise and pigs) which include the ruminants (sheep

and cattle) whose muscle uptake of glucose is critical for muscle function, but is not a main pathway

for glucose clearance (Hocquette et al., 1995). These two groups of species require greater avail-

ability of GLUT4 on their cell surfaces, so that more efficient GLUT4 sequestration by CHC22 would

not be favorable to their nutritional needs. The fact that CHC22 alters the balance of membrane traf-

fic to the GSC means that species losing CLTCL1 could evolve compensatory pathways more com-

patible with their diets. Thus, transgenic mice expressing CHC22 over-sequester GLUT4 in their

muscle and develop hyperglycemia with aging (Vassilopoulos et al., 2009). The cave fish, which

appears to lack CLTCL1, has independently evolved mutations in the insulin receptor, creating natu-

ral insulin resistance, such that the presence of CHC22 on top of this mechanism might be detrimen-

tal (Riddle et al., 2018). The loss of CLTCL1 from cave fish is consistent with the insulin responsive

GLUT4 pathway being a target for natural selection driven by diet, which might also explain CLTCL1

variation or loss for additional vertebrate species during vertebrate evolution.

The allelic variation reported here for CLTCL1 in human and bear populations further supports

the hypothesis that CLTCL1 has undergone continued selection during vertebrate evolution in rela-

tion to diet. While purifying selection appears to be operating on CLTCL1 in those species that

retain it, CLTCL1 is far more variable than CLTC in these species. In humans, we find two major and

functionally distinct alleles at remarkably similar frequencies in all populations studied. Statistical

analysis comparing early farmer and hunter-gatherer populations shows an apparent increase of the

V1316 variant, suggesting a correlation with regular consumption of digestible carbohydrate. Nota-

bly, the SNP distinguishing these alleles is human-specific and likely arose 550–50 KYA (i.e. post-

Neanderthal split, pre-Neolithic). Other dramatic increases in digestible carbohydrate utilization

have been inferred for humans in this timeframe; in particular the advent of cooking (which gelati-

nizes crystalized starch, making it much easier to digest), salivary amylase gene copy number

increase (allowing increased starch digestion capacity) and accelerated brain size increase (which

would increase demands for blood glucose) (Hardy et al., 2015). While the co-evolution of these

cultural and genetic traits was originally proposed to have occurred some 800 KYA, recent studies

indicate a time frame of 450–300 KYA years for cooking (Shahack-Gross et al., 2014), increased oral

amylase activity (Inchley et al., 2016) and accelerated brain size increase (Dunbar, 2019). The fact

that the two major human CLTCL1 alleles are functionally distinct is consistent with diversifying selec-

tion operating on CLTCL1, with a balancing selection possibly caused by heterozygote advantage.

While population genetic signatures for balancing or overdominant selection were not entirely

robust, some summary statistics were suggestive of an increased diversity that was unlikely to have

occurred under neutrality. Other statistics, such as the ones based on allele frequencies, would not

be expected to gain significance within the timeframe of the human-specific diversifying selection

we detect. The allelic diversity of CLTCL1 in other primate species could have the potential effect of

diluting its function. Whilst chimpanzees are omnivores and gorillas herbivores, both rely for nutrition

on extensive foraging for carbohydrate. Also notable is that polar bears, who have a very low carbo-

hydrate diet compared to their brown bear relatives, have distinct CHC22 variants with unknown

functionality, again consistent with CLTCL1 undergoing selection driven by nutritional ecology.

Clathrins are self-assembling proteins and function as a latticed network in the protein coat that

they form on transport vesicles. Our structural modeling predicts that the single amino acid differ-

ence between the two main human CHC22 allotypes could influence the strength of molecular inter-

actions in the CHC22 clathrin lattice, as position 1316 occurs at a lattice assembly interface

(Figure 6). When expressed in cells, both CHC22 variants gave the same overall intracellular distribu-

tion, but CHC22-V1316 shows faster turnover from membranes than CHC22-M1316 (Figure 7) and
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is less effective at GLUT4 sequestration (Figure 8B). These properties are consistent with the methi-

onine to valine change attenuating GLUT4 retention. This interpretation is further supported by a

GLUT4 translocation assay, which indicates that the V1316 variant is less effective in forming the

insulin-responsive GSC than the ancestral M1316 form of CHC22 (Figure 8A). Thus, mixed lattices

occurring in heterozygous individuals, potentially reflect balancing selection and overdominance,

might reduce GLUT4 sequestration compared to M1316 homozygotes. This would have the effect of

improving glucose clearance. It can be argued that human consumption of digestible carbohydrate

on a regular basis (Hardy et al., 2015), requiring increased glucose clearance, might be a selective

force driving this genetic adaptation. This view is consistent with the increased frequency of the

V1316 variant in early farmers. It is also possible that some forms of polar bear CHC22 are super-

active at GLUT4 sequestration, providing a route to maintain high blood glucose, as occurs through

other mutations in the cave fish (Riddle et al., 2018).

Regulators of fundamental membrane traffic pathways have diversified through gene duplication

in many species over the timespan of eukaryotic evolution. Retention and loss can, in some cases, be

correlated with special requirements resulting from species differentiation, such as the extensive

elaboration of genes in the secretory pathway of Tetrahymena (Dacks and Robinson, 2017;

Bright et al., 2010). The evolutionary history of CLTCL1, following vertebrate-specific gene duplica-

tion, suggests that differentiation of nutritional habits has shaped selection for the presence and

absence of CLTCL1 in some vertebrate species, and its diversification in humans and potentially

other species. Though its highest expression is in muscle and adipose tissue, transient expression of

CHC22 during human brain development has also been documented (Nahorski et al., 2015). This

was noted in a study of a very rare null mutant of CLTCL1 that caused loss of pain sensing in homo-

zygotes and no symptoms for heterozygotes (Nahorski et al., 2015). Attenuated CHC22 function of

the V1316 variant might lead to a spectrum of pain sensing in humans but this is unlikely to be a

strong selective force affecting reproductive success, whereas glucose homeostasis, as suggested by

our analysis, is more likely. By exerting efficient control of blood glucose levels, the presence of

CHC22 clathrin was likely beneficial in providing the nutrition required to develop the large human

brain, as well as affecting reproduction by influencing glucose availability during pregnancy

(Hardy et al., 2015). However, over the last 12,500 years in association with farming, or perhaps

over the last 450,000 years in association with cooking, salivary amylase activity and starch digestion

(Hardy et al., 2015; Shahack-Gross et al., 2014; Inchley et al., 2016), readily available carbohy-

drate has increased our need to clear glucose from the blood, such that selection continues to act

on CLTCL1 in humans. Our cell biology studies have also demonstrated that CHC22 increases

GLUT4 retention. While we would not expect the major CLTCL1 polymorphism to directly influence

the development of T2D, CHC22 accumulates on the expanded GSC that forms in cases of insulin-

resistant T2D (Vassilopoulos et al., 2009), so its variation could potentially exacerbate insulin resis-

tance to different degrees. The genetic diversity that we report here may reflect evolution towards

reversing a human tendency to insulin resistance and have relevance to coping with increased carbo-

hydrate in modern diets.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation Source or reference Identifiers

Additional
information

Cell line
(human)

HeLa ATCC Cat. #: CCL-2;
RRID:CVCL_0030

Antibody Mouse
monoclonal
anti-CHC17 (X22)

Frances Brodsky PMID: 2415533 IF (5 mg/mL)

Antibody Mouse monoclonal
anti-CHC17 (TD.1)

Frances Brodsky PMID: 1547490 WB (1.3 mg/mL)

Antibody Rabbit polyclonal
anti-CHC22 (SHL-KS)

Frances Brodsky PMID: 29097553 WB (0.4 mg/mL)

Continued on next page
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Continued

Reagent type
(species)
or resource Designation Source or reference Identifiers

Additional
information

Antibody Mouse monoclonal
anti-b-actin (AC-15)

Sigma Cat. #: A1978;
RRID:AB_476692

WB (1:2000)

Antibody Purified
anti-HA.11 (16B12)

Covance Cat. #: MMS-101P;
RRID:AB_10064068

Antibody Rabbit polyclonal
anti-CHC22

Proteintech Cat. #: 22283–1-
AP;
RRID:AB_11183764

Antibody Goat anti-rabbit
IgG coupled to HRP

Thermo
Fisher Scientific

Cat. #: 172–1019 WB (1:8000)

Antibody Goat anti-mouse
IgG coupled to HRP

Thermo
Fisher Scientific

Cat. #: 170–6516 WB (1:8000)

Antibody Anti-mouse IgG1
coupled to
Brilliant Violet
421 (RMG1-1)

Biolegend Cat. #: 406616;
RRID:AB_2562234

FC (1:200)

Recombinant
DNA reagent

HA-GLUT4-mCherry This paper Generated
from HA-
GLUT4-GFP
(gift from Dr
Tim
McGraw,
PMID: 11058093)

Recombinant
DNA reagent

CHC22V
(pEGFP-C1-GFP-CHC22V)

Frances Brodsky

PMID: 20065094

Recombinant
DNA reagent

CHC22M
(pEGFP-C1-GFP-CHC22M)

This paper Generated by Quick
change mutagenesis from CHC22V

Recombinant
DNA reagent

CHC17
(pEGFP-C1-GFP-CHC17)

Frances Brodsky

PMID: 29097553

Sequence-
based reagent

AllStars Negative
Control siRNA

Qiagen Cat. #:
SI03650318

Commercial
assay or kit

Quick change
mutagenesis

New England Biolabs, USA Cat. #: E0554S

Commercial
assay or kit

BCA Pierce Cat. #: 23225

Commercial
assay or kit

Western
Lightning

Chemilumi-
nescence
Reagent

GE Healthcare Cat. #: RPN2209

Chemical
compound, drug

JetPrime
transfection
reagent

PolyPlus Cat. #: 114–07

Chemical
compound, drug

Insulin Sigma Cat. #: I9278

Chemical
compound, drug

Bovine serum
albumin (BSA)

Sigma Cat. #: A7906

Software,
algorithm

FlowJo Treestar

Software,
algorithm

ImageJ NIH

Software,
algorithm

Prism Graphpad

Continued on next page
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Continued

Reagent type
(species)
or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

R R Project Packages: pegas, Smisc, gplots

Other CellView glass
bottom
culture dish

Greiner Bio-one Cat. #: 627860

Other Nitrocellulose
membrane

Biorad Cat. #: 1620112

Phylogenetics
Vertebrate genomes as well as genomes of Drosophila melanogaster, Caenorhabditis elegans, Ciona

intestinalis and Ciona savignyi were downloaded from Ensembl (Yates et al., 2016), all accessed on

23/04/2016 except for pig (14/12/2017), marmoset and hagfish (both 09/08/2018), excluding verte-

brate species sequenced below five-fold genome coverage, that is with less than five reads per site

on average. In addition, we downloaded the genomes of the elephant shark (Venkatesh et al.,

2014), whale shark (Read et al., 2017), marmot (The Alpine Marmot Genome, BioProject

PRJEB8272 on NCBI) and porpoise (Yuan et al., 2018). All potential orthologs for the human iso-

forms of CLTC/CLTCL1, MTMR4/MTMR3, and CLTA/CLTB, in the above genomes were retrieved via

BLAST (Boratyn et al., 2013). An e-value threshold of 0.001 with additional constraints applied by

default in InParanoid version 7 (Ostlund et al., 2010) were used (at least 50% of the sequences are

covered by the alignment, and at least 25% of the residues are aligned). The polar bear (Ursus mari-

timus) (Liu et al., 2014), brown bear (Ursus arctos) (Benazzo et al., 2017) and black bear (Ursus

americanus) CHC17 and CHC22 protein sequences were manually added. For CLTCL1 only the ele-

phant and horse sequences (XP_023397213.1 and XP_023502410.1 respectively) were manually

added.

The sequences corresponding to the longest transcripts were aligned with MAFFT (Katoh and

Standley, 2013) and phylogenetic trees generated with PhyML (Guindon et al., 2010). The last two

steps were repeated after manually removing outlier sequences lying on long branches (CLTC/

CLTCL1: ENSTNIP00000007811.1, ENSTGUP00000014952.1, XP_023397213.1, XP_023502410.1;

CLTA/CLTB: ENSPSIP00000012669.1) and, in the case of genomes not retrieved from Ensembl

(therefore lacking the gene-to-transcript mapping), sequences most likely corresponding to alterna-

tive transcripts (XP_015350877.1, XP_007899998.1, XP_007899997.1, XP_007904368.1,

XP_007904367.1, XP_020375861.1, XP_020375865.1, XP_020375862.1, XP_020392037.1,

XP_020375864.1, XP_020375859.1). Trees were manually reconciled based on the Ensembl species

tree extended by elephant shark, whale shark, brown bear, black bear, porpoise and marmot with

TreeGraph (Stöver and Müller, 2010). Branch lengths were estimated based on the multiple

sequence alignment (MSA) with PhyML fixing the manually reconciled topology, with options ‘-u’

and ‘–constraint_file’. With this approach no support values for splits are calculated. The resulting

trees were used as input to generate a new phylogeny-aware MSAs with PRANK (Löytynoja and

Goldman, 2005). Branch lengths of the reconciled topologies were then re-estimated based on the

MSA generated by PRANK.

To compute evolutionary rates, the sequences and subtrees corresponding to CLTC and CLTCL1

clades after duplication (i.e. excluding non-vertebrates) were extracted and sequences from species

without either CLTC or CLTCL1 were removed. The same procedure was performed for MTMR4/

MTMR3 and CLTA/CLTB. A phylogeny-aware MSA was computed with PRANK on the remaining

sequences, and the amino acid alignment was converted to a codon alignment with PAL2NAL

(Suyama et al., 2006). Finally, dN/dS ratios (i.e. the ratio of the rate of nonsynonymous substitutions

to the rate of synonymous substitutions) were inferred based on the codon alignments with PAML

(Yang, 2007) for the six proteins independently using the site model M7. Model M7 fits a Beta-distri-

bution to the site rates by estimating the two Beta parameters shape and scale. Rates are estimated

per site over the entire phylogeny, and therefore represent time averages. Phylogenetic trees of

consensus amino acid sequences for bear samples only were computed using PhyML 3.1

(Guindon et al., 2010) with default values as implemented in Phylogeny.fr (Dereeper et al., 2008).
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Population genetics
Phased genotypes were obtained by querying Variant Call Format (VCF) files (Danecek et al., 2011)

from the 1000 Genomes Project database Phase 3 (1000 Auton et al., 2015) for all available 2504

samples. Only high-quality variants were retained using vcflib (https://github.com/vcflib/vcflib) with

options ‘VT = SNP and QUAL > 1 and AC >1 and DP >5000’. Missing genotypes were assigned to

homozygotes for the reference alleles. Finally, only sites with a recorded annotated function of being

missense, nonsense, stop-loss or frame-shift for tested genes according to the UCSC Table Browser

were retained (Speir et al., 2016) (tables snp150 and snp150CodingDbSnp). For each retained posi-

tion, the reference sequence for chimpanzee from the UCSC Table Browser (Speir et al., 2016)

(table snp150OrthoPt5Pa2Rm8) was initially used to infer the putative ancestral state. For ambiguous

or multiallelic states in the chimpanzee sequence, the human reference base was used as an initial

proxy for the ancestral state. The predicted functional impact of amino acid replacements was

obtained by using Polyphen (Adzhubei et al., 2010) and SIFT (Kumar et al., 2009). Additional fre-

quency information for a single mutation of interest in more than 50 human populations was

retrieved from the HGDP CEPH Panel (Cann et al., 2002) from http://hgdp.uchicago.edu/cgi-bin/

gbrowse/HGDP/. Genotype data for farmer and hunter-gatherer individuals were collected from the

Simons Genome Diversity Project Dataset (Mallick et al., 2016). Populations were merged based on

their assigned geographical region with the following classification for hunter-gatherers: Africa

(Biaka, Ju|‘hoan North, Khomani San, Mbuti), Central Asia and Siberia (Aluet, Chukchi, Eskimo Chap-

lin, Eskimo Naukan, Eskimo Sireniki, Even, Itelman, Tlingit, Tubalar, Ulchi, Atayal), East and South

Asia (Atayal, Kusunda). Farmer and hunter-gatherer allele frequencies were compared following a

previously described approach (Raineri et al., 2014). Briefly, we analytically computed the probabil-

ity that the V allele is more frequent in farmers than in hunter gatherers while fully accounting for the

uncertainty in the individual frequency estimates. V allele frequencies were inferred from allele

counts of M and V in a Bayesian framework with a conjugate Beta uniform prior. We recorded maxi-

mum a posteriori estimates with 95% highest posterior density credible intervals computed with the

Smisc R library, version 0.3.9. We collected further published ancient DNA data from Western Eura-

sia and classified into three genetic grouping: hunter-gatherer (HG), early farmer (EF) and steppe,

using supervised ADMIXTURE (Alexander et al., 2009) as previously described (Mathieson and

Mathieson, 2018). These are genetic groups and not directly based on differences in material cul-

ture or subsistence, but importantly in the case of HG and EF, these genetic classifications corre-

spond closely to hunter-gatherer and agricultural subsistence strategies (Haak et al., 2015;

Skoglund et al., 2014; Skoglund et al., 2012). We then restricted analysis to samples dated

between 10,000 and 5,000 years before present that were classified as either HG or EF, leading to a

dataset of 119 HG and 316 EF of which 85 and 188 respectively had coverage at rs1061325. Fre-

quencies for South-East Asians and ancient Eurasians were down-sampled to ensure numerical stabil-

ity. The HeLa genomic data were accessed through the NIH database of Genotypes and Phenotypes

(dbGaP at http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap) through dbGaP accession number

phs000640.

High-coverage VCF files for 79 individuals from six species of great apes were retrieved (Prado-

Martinez et al., 2013). Data was filtered using vcflib on the combined data set with the options

‘QUAL > 32 and DP >50 and DP <7000 and FS <27 and MQ > 25 and AC >1’, similarly to the origi-

nal manuscript describing this data set (Prado-Martinez et al., 2013). To retrieve nonsynonymous

changes, only variants where the translated proteins for each allele differ were retained. We finally

phased the data and assigned individual haplotypes using shapeit v2.r837 with the options ‘-burn 50

-prune 20 -main 100 -window 0.5 -effective-size 20000’. Additional 110 genomes of chimpanzees

and bonobos were analyzed (Teixeira et al., 2015; de Manuel et al., 2016). Data filtering, functional

annotation and haplotype phasing were performed as described above.

Full genome VCF files for two high-coverage archaic humans, namely one Altai Neanderthal

(Prüfer et al., 2014) and one Denisova were retrieved (Meyer et al., 2012). Low-quality sites were

filtered out using vcflib with the options ‘QUAL > 1 and DP >10’. A pseudo-reference sequence for

each archaic human was constructed by replacing the heterozygous sites with the previously inferred

human ancestral state. Sequencing data information for additional ancient human samples were

obtained from previously published high-quality whole genome sequences (Skoglund et al., 2014;

Broushaki et al., 2016; Hofmanová et al., 2016; Lazaridis et al., 2014; Olalde et al., 2014;
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Raghavan et al., 2014; Seguin-Orlando et al., 2014; Fu et al., 2014). Genotype likelihoods were

calculated using the standard GATK model (McKenna et al., 2010). Median-joining network plots

were generated in R using pegas package (Paradis, 2010).

Several summary statistics were calculated on the inferred alleles to describe their levels of nucle-

otide diversity. Specifically, for each population separately, Watterson’s estimator of population

mutation parameter (TW) (Watterson, 1975), Nei’s genetic diversity index (PI) (Nei, 1973), Tajima’s

D (TD) (Tajima, 1989), Fu and Li’s D* (FLDs) and F* (FLFs) (Fu and Li, 1993), the sum of squared

allele frequencies including the most common allele (H1) and excluding it (H2) and their normalized

ratio (H2H1) (Garud and Rosenberg, 2015; Garud et al., 2015) were calculated. We also computed

genetic differentiation (FST) (Reynolds et al., 1983) between pairs of canonical reference popula-

tions, namely Yoruban (YRI), Europeans (CEU), and Han Chinese (CHB).

To assess whether the observed summary statistics are expected under neutral evolution, genes

with a coding length approximately equal (±5%) to the one observed for the tested gene, CLTCL1,

were selected. For this analysis, the longest isoform for each gene, and its annotation was consid-

ered according to refGene table from the UCSC Genome Browser. We discarded genes on chromo-

some six and on sex chromosomes, as well as CLTA, CLTB and CLTC. This set was further reduced

to the first 500 genes with the closest genomic length to CLTCL1. As summary statistics can be cal-

culated only in case of genetic variability, genes showing no non-synonymous SNPs within each pop-

ulation were discarded. For each summary statistic, the empirical percentile rank for the value

observed in CLTCL1 compared to the whole distribution of control genes was calculated. Low or

high values are suggestive of CLTCL1 being an outlier in the empirical distribution. For plotting pur-

poses, summary statistics and populations were clustered according to a dendrogram inferred from

their respective distances based on the calculated matrix of empirical percentile ranks. That is, popu-

lations clustering together exhibit similar patterns of percentile ranks, and thus of summary statistics.

The underlying dendrograms are not reported. The heatmap plot was generated using the function

heatmap.2 in R with the package gplots. Cells with an empirical percentile rank lower than 0.10 or

greater than 0.90 were filled with the exact rank value. We also obtained a null distribution of sum-

mary statistics by performing coalescent simulations using msms (Ewing and Hermisson, 2010)

under a previously derived demographic model for human populations (Gutenkunst et al., 2009).

Structure prediction by modeling
MODELLER v9.13 (Benjamin and Sali, 2014) was used to model the structure of the proximal leg

segment of CHC22, using the crystal structure of bovine CHC17 (PDB 1B89) (Ybe et al., 1999) as a

template. The model of the M1316V mutant was derived in a similar way using a mutated sequence.

Structure visualization and analysis of residue interactions at the mutation site M1316 were per-

formed using UCSF Chimera (Pettersen et al., 2004). The wild type and mutant homology models

were positioned in the cryo-electron microscopy map of the bovine clathrin lattice (EMD: 5119)

(Fotin et al., 2004) by structural superposition on the atomic model originally fitted in the map

(PDB 1XI4).

Functional experiments
Antibodies, plasmids and reagents
Mouse monoclonal anti-CHC17 antibodies X22 (Brodsky, 1985), TD.1 (Näthke et al., 1992) and

affinity-purified rabbit polyclonal antibody specific for CHC22 and not CHC17 (Vassilopoulos et al.,

2009) were produced in the Brodsky laboratory. Commercial sources of antibodies were as follows:

mouse monoclonal anti-b-actin (clone AC-15, Sigma), mouse monoclonal anti-HA (clone 16B12,

Covance), rabbit polyclonal anti-CHC22 (Proteintech). Secondary antibodies coupled to HRP were

from ThermoFisher, the secondary antibody coupled to Brilliant Violet 421 was from BioLegend. The

HA-GLUT4-mCherry was generated by replacing the GFP from the HA-GLUT4-GFP construct (gift

from Dr Tim McGraw; Lampson et al., 2000) with mCherry using KpnI and EcoRI. The generation of

the CHC22 variant expressing a valine at position 1316 (CHC22V) was previously described

(Esk et al., 2010). The CHC22 variant expressing a methionine at position 1316 (CHC22M) was gen-

erated from CHC22V by quick-change mutagenesis (New England Biotechnologies, USA) following

manufacturer’s instructions.

Fumagalli et al. eLife 2019;8:e41517. DOI: https://doi.org/10.7554/eLife.41517 21 of 29

Research article Cell Biology Evolutionary Biology

https://doi.org/10.7554/eLife.41517


Small RNA interference
Targeting siRNA was produced to interact with DNA sequences AAGCAATGAGCTGTTTGAAGA for

CHC17 (Esk et al., 2010) (Qiagen), TCGGGCAAATGTGCCAAGCAA and AACTGGGAGGATCTAG

TTAAA for CHC22 (1:1 mixture of siRNAs were used) (Vassilopoulos et al., 2009) (Dharmacon).

Non-targeting control siRNA was the Allstars Negative Control siRNA (Qiagen).

Cell culture
HeLa cells were grown in Dulbecco’s Modified Eagle Medium high glucose (Gibco) supplemented

with 10% FBS (Gibco), 50 U/mL penicillin, 50 mg/mL streptomycin (Gibco), 10 mM Hepes (Gibco)

and maintained at 37˚C in a 5% CO2 atmosphere. HeLa cells were free of mycoplasma infection.

siRNA and DNA transfection
Cells were transfected for 72 hr with 20 nM of siRNA. Silencing was assessed by immunoblotting.

Transient DNA transfections for rescue experiments were performed during the third day of silenc-

ing. For FACS experiments, cells (per well of 6-well plate, 70% confluent) were transiently trans-

fected with 1 mg DNA for CHC22M-GFP and CHC22V-GFP, 1.5 mg DNA for CHC17-GFP and HA-

GLUT4-mCherry. For FRAP experiments, cells (per glass bottom dish, 60% confluent) were trans-

fected with 0.75 mg DNA for CHC22-GFP (M or V) or 1.5 mg DNA for CHC17-GFP. FACS and FRAP

experiments were carried out 24 hr later. All transfections were performed using JetPrime transfec-

tion reagent (PolyPlus) following manufacturer’s instructions.

GLUT4 translocation assay using flow cytometry
HeLa cells were grown in 6-well plates and transiently transfected with either HA-GLUT4-mCherry

alone or in combination with GFP-tagged CHC22 (M or V) or CHC17-GFP the day before the experi-

ment. The next day, cells were serum-starved (2 hr) before insulin stimulation (170 nM or vehicle

(water) for 15 min, 37˚C). Cells were then placed on ice and rapidly washed (2X, PBS, 4˚C) and fixed

(PFA 2%, 15 min). After fixation, cells were washed (2X, PBS, RT) then blocked for 1 hr (PBS 2% BSA,

RT) before incubation with monoclonal anti-HA antibody (45 min, RT) to detect surface GLUT4. After

incubation, cells were washed (3X, PBS, RT) and incubated with anti-mouse secondary Ig coupled to

Brilliant Violet 421 (45 min, RT). Cells were then washed (5X, PBS, RT), gently lifted using a cell

scraper (Corning), pelleted (800xg, 8 min) and re-suspended (PBS, 2% BSA, 4˚C). Data was acquired

with Diva acquisition software by LSRII flow cytometer (Becton Dickinson). Typically, 10,000 to

30,000 events were recorded and Mean Fluorescence Intensity (MFI) values for surface GLUT4 (Bril-

liant Violet 421) and total GLUT4 (mCherry) were recorded using 450/50 and 530/30 filters, respec-

tively. The ratio of surface to total MFI was calculated to quantify the extent of GLUT4 translocation.

MFI values for total GLUT4 (mCherry) were plotted for GLUT4 stability assays. Histograms and post-

acquisition analysis were performed using FlowJo software (Treestar). Total GLUT4 and surface

GLUT4 values are reported separately for cells expressing CHC22 variants with equalized GFP sig-

nals at the top third (high), middle third (medium) and bottom third (low) levels of expression.

Fluorescence Recovery After Photobleaching
The imaging of transiently transfected HeLa cells grown on Cellview glass bottom culture dishes

(Greiner, Germany) was performed at 37˚C in a 5% CO2 atmosphere, using low 488 nm laser power

to minimize photobleaching using a 63x (1.4 NA) lens on a Leica SP8 confocal microscope. A 2.0

mm2 circular region of interest was positioned in the perinuclear region of the transfected cells, a

region where both CHC22 and CHC17 naturally occupy. A 100% laser power (488 nm) coupled to 11

iterations was performed to achieve GFP photobleaching. Recovery of fluorescence was recorded

from 4 to 10 independent cells per dish. The experiment was repeated at least three times.

Immunoblotting
HeLa cells protein extracts were quantified by BCA (Pierce), separated by SDS-PAGE (10% acrylam-

ide), transferred to nitrocellulose membrane (0.2 mm, Biorad), labeled with primary antibodies (1–5

mg/mL), washed and labeled with species-specific horseradish peroxidase-conjugated secondary

antibodies (ThermoFisher). Peroxidase activity was detected using Western Lightning Chemilumines-

cence Reagent (GE Healthcare). The molecular migration position of transferred proteins was
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compared to the PageRuler Prestain Protein Ladder 10 to 170 kDa (Thermo Fisher Scientific). Signals

were detected using the Chemidoc XRS + imaging system (Biorad) and quantifications were per-

formed using Image J software (NIH).

Statistical analyses
Graphs and statistical analyses were performed using Prism software (Graphpad). Detailed statistical

information including statistical test used, number of independent experiments, p-values, definition

of error bars is listed in individual figure legends. All experiments were performed at least three

times.
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