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Abstract

Connectivity-based parcellation of subcortical structures using diffusion tractography is now a common paradigm in neuroscience.
These analyses often imply voxel-level specificity of connectivity, and the formation of compact, spatially coherent clusters is
often taken as strong imaging-based evidence for anatomically distinct subnuclei in an individual. In this study, we demonstrate
that internal structure in diffusion anisotropy is not necessary for a plausible parcellation to be obtained, by spatially permuting
diffusion parameters within the thalami and repeating the parcellation. Moreover, we show that, in a winner-takes-all paradigm,
most voxels receive the same label before and after this shuffling process—a finding that is stable across image acquisitions and
tractography algorithms. We therefore suggest that such parcellations should be interpreted with caution.
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Introduction

Diffusion tractography uses proxy information about white
matter structure to reconstruct the paths of neural tracts in the
living brain. Being based on magnetic resonance imaging (MRI),
it is a noninvasive technique with broad applicability in neuro-
science and the clinic. An increasingly common application
of tractography is connectivity-based parcellation, a paradigm
in which a contiguous anatomical region—typically cortical or
subcortical grey matter—is parcellated into subregions based
on the inferred projections from each imaging voxel contained
within it. This is established by running diffusion tractography
a large number of times and assessing the pattern of connections
to a set of target regions.

The steadily growing popularity of the technique has seen
it being applied to the parcellation of a wide range of brain
structures across many studies. The thalamus was the canon-
ical early example, due to its extensive connectivity to different
parts of the cortex, its functional relevance to a range of impor-
tant neurological disorders and the well-established histological
evidence of its nuclear structure (Guillery & Sherman, 2002;
Krauth et al., 2010; Morel et al., 1997). Tractography-based in
vivo thalamic parcellations were demonstrated in a seminal pa-
per by Behrens et al. (2003), and similar principles have since
been applied to the amygdala and basal ganglia (Bach et al.,
2011; Draganski et al., 2008; Lambert et al., 2012; Saygin et al.,
2011). Cortical regions have been explored too: Johansen-Berg
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et al. (2004) showed a marked distinction between the connec-
tivity of the supplementary motor area (SMA) and the adjoining
pre-SMA, Anwander et al. (2007) demonstrated a connectivity-
based subdivision of Broca’s area and Jakab et al. (2012) clus-
tered the insula, amongst many other studies. Other work still
has taken a simultaneous global parcellation approach, divid-
ing up the whole brain at once based on its connectivity (e.g.,
Gallardo et al., 2018; Moreno-Dominguez et al., 2014).

Use of information from MRI as the basis for such par-
cellations predates the use of tractography. Magnotta et al.
(2000) described a cortex-attenuated MRI sequence able to ren-
der thalamic nuclei more visible than on conventional struc-
tural scans—although segmentation of the nuclei in such im-
ages would require additional processing. Tuch (2002, ch. 6)
clustered voxels directly from diffusion MRI data, using a com-
bination of proximity and fibre orientation information. But
tractography-based parcellation rapidly superseded such approaches
in the literature, and improvements to tractography methods—
particularly the ability to resolve fibre crossings within image
voxels—led to greater stability in the parcellations (Behrens
et al., 2007).

In addition to their value in primary neuroscientific investi-
gations, such parcellations are relevant in the clinic. Patient-
specific maps of subcortical nuclei provide potentially valu-
able navigation information prior to electrode implantation for
deep brain stimulation (DBS), a therapeutic neurosurgical inter-
vention used to treat movement disorders such as Parkinson’s
disease and dystonia. Recently, da Silva et al. (2017) have
demonstrated a connectivity-based parcellation of the globus
pallidus internus, a frequent target for DBS, while Akram et al.
(2017) identified clusters in the subthalamic nuclei of patients
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that were associated with alleviation of various Parkinsonian
symptoms.

Although the tractography-based approach has been shown
to be reproducible, and in many cases to broadly match expec-
tations from neurophysiology and anatomy (Klein et al., 2007),
the approach has received some criticism. Eickhoff et al. (2015)
reviewed several challenges, including inconsistencies between
parcellations derived from different clustering methods and imag-
ing modalities, difficulties with statistical inference in this con-
text, and the role of functional gradients as opposed to clearly
defined nuclear boundaries. Nevertheless, the mechanics of the
technique are rarely scrutinised in detail. In particular, while
tractography itself faces a number of outstanding issues, such
as a preponderance of “false positive” connections (Maier-Hein
et al., 2017), the impact of these and other matters of procedure
on the parcellations has barely been explored in vivo.

In this work we examine the role of fibre orientation infor-
mation within the parcellated region of interest, by deliberately
scrambling the voxels within it and considering the effect on the
pattern of projected connections. We demonstrate that coher-
ent structure within the human thalamus in diffusion MRI data
is not necessary for plausible delineation of connected subre-
gions. We therefore conclude that such parcellations are po-
tentially prone to over-interpretation, and must be treated with
caution.

Methods

Ethical approval for all imaging was granted by the Re-
search Ethics Committee at University College London.

Diffusion-weighted spin-echo echo-planar (DW-SE-EPI) im-
ages were acquired from 17 healthy adult volunteers (six fe-
male; mean age at scan 32.84 yr, standard deviation 8.13 yr) on
a Siemens Avanto 1.5 T scanner with a 32-channel head coil.
Diffusion weighting was applied along 30 noncollinear direc-
tions at b = 800 s mm−2 and 60 directions at b = 2400 s mm−2,
and nine volumes were acquired with b = 0. The echo time
was 98 ms and the volume repetition time was 8.30 s. 60 slices
were acquired, with a matrix size of 96× 96 and a voxel size of
2.5 mm in each dimension. The data were converted from DI-
COM to NIfTI-1 format using TractoR (Clayden et al., 2011),
corrected for susceptibility and eddy current induced distor-
tions using topup and eddy from FSL version 5.0.11 (Anders-
son et al., 2003; Andersson & Sotiropoulos, 2016; Smith et al.,
2004), and masked using FSL’s brain extraction tool (Smith,
2002). A T1-weighted structural scan was also acquired (3D
Fast Low-Angle SHot; flip angle 15◦, echo time 4.94 ms, rep-
etition time 11 ms, resolution 1 × 1 × 1 mm), and automati-
cally parcellated using FreeSurfer (Desikan et al., 2006). The
raw data is available online (https://osf.io/94c5t/; Deli-
gianni et al., 2016).

To explore the generalisability of our findings across ac-
quisitions, an additional data set was acquired from a 36 year-
old male volunteer on a Siemens Prisma 3 T scanner with 64-
channel head coil. In this case, diffusion data were acquired
along 60 directions at b = 1000 s mm−2 and 60 directions at
b = 2200 s mm−2, along with 14 interspersed b = 0 volumes.

A multi-band DW-SE-EPI sequence was used with multi-band
factor 2 (Setsompop et al., 2012); the echo time was 60 ms and
the volume repetition time was 3.05 s. 66 slices were acquired
with a matrix size of 110 × 110 and a 0.2 mm slice gap; the
voxel size was 2 mm in each dimension. The T1-weighted scan
in this case used a Magnetisation-Prepared Rapid Acquisition
Gradient Echo sequence with a flip angle of 8◦, echo time of
2.74 ms, repetition time of 2300 ms, inversion time of 909 ms
and reconstructed resolution of 1 × 1 × 1 mm. All image pre-
processing was equivalent.

The left and right thalami, and non-overlapping masks cov-
ering the frontal cortex, precentral gyrus, postcentral gyrus, tem-
poral cortex and parietal–occipital cortex, were extracted from
the FreeSurfer parcellations (see Fig. 1a). These masks were
transformed to diffusion space using NiftyReg (Modat et al.,
2010), based on a nonlinear registration between the T1-weighted
image and a b = 0 volume from the diffusion acquisition.

“Ball-and-sticks” models with one, two and three sticks were
fitted separately to each dataset using FSL-BEDPOSTX (Behrens
et al., 2007). A copy of each dataset was made, and the fitted
ball-and-sticks model parameters for each voxel were randomly
repositioned in space within the left and right thalamus in turn
(see Fig. 2). The code for this process, in the form of a TractoR
script, is available alongside this paper.

In every unshuffled and shuffled dataset, 5000 streamlines
were seeded from each voxel within the thalamus masks, and
streamlines were propagated using TractoR in one direction only.
Streamlines reaching one of the target masks were counted as
connecting the source voxel to that target, and then immediately
terminated (see Fig. 1b). Each thalamus voxel was coloured to
indicate the target at which the greatest number of streamlines
arrived, following the “winner-takes-all” scheme introduced by
Behrens et al. (2003). No colour was assigned where none of
the streamlines from a voxel reached any of the target regions.

Constrained spherical deconvolution (CSD) was also sepa-
rately performed on the preprocessed 3 T dataset, using MRtrix
3.0 RC3 (Tournier et al., 2007). An iterative algorithm was used
to fit the response function (i.e., deconvolution kernel) from the
b = 2200 s mm−2 shell in the diffusion-weighted data, using
a maximum spherical harmonic order of eight (Tournier et al.,
2013). The default tracking parameters in MRtrix were used to
generate 5000 streamlines per seed voxel, except that stream-
lines were propagated in one direction only, to match the pro-
cess used with the ball-and-sticks models. Maps of the end-
points of streamlines reaching each of the target regions were
obtained, and a winner-takes-all parcellation was derived from
these maps.

In every case outlined above, a series of summary statistics
were compiled, capturing the numbers of streamlines reaching
the targets, the numbers of labelled voxels and the degree of
consistency in the labels before and after shuffling. To provide
a meaningful baseline, the degree of agreement under a direct,
random permutation of voxel labels was calculated as described
in the Appendix. Analysis was performed with R version 3.5.0
(R Core Team, 2018), and graphics were created with TractoR
and the ggplot2 package (Wickham, 2009).
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Figure 1: Rendered three-dimensional map of the cortical targets used in this study (a), along with a full set of streamlines projecting from the thalamus (b). Targets
are the frontal cortex (red), precentral gyrus (light blue), postcentral gyrus (dark blue), temporal cortex (green) and parietal–occipital cortex (orange). Streamlines are
coloured according to their local orientation, using the conventional colour scheme with red for left–right, green for anterior–posterior and blue for superior–inferior.

Figure 2: Illustration of the effect of parameter shuffling within the thalamus in one subject. Fibre direction information is shown as fitted by BEDPOSTX for the
one stick (a) and three stick (c) cases, alongside the shuffled equivalents (b, d). All parameters are moved wholesale to a randomly chosen other voxel, separately
for each hemisphere. The axial slice containing the most thalamus voxels is shown in each case.
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Results

In every dataset and for every analysis, our shuffling process
drastically reduced the number of streamlines reaching any of
the target regions, due to the disorderly nature of the orientation
information within the thalamus. This resulted in several voxels
being unlabelled, especially towards the centre of the thalamus.
Nevertheless, the parcellations were still remarkably coherent,
with a level of agreement in voxel labels which was well above
chance in every case. Neither switching acquisitions nor chang-
ing tractography algorithms altered the pattern of the results.

For each subject and diffusion model, the real fitted diffu-
sion parameter maps were shuffled within each thalamus as de-
scribed, the tractography and parcellation was repeated, and the
total number of voxels labelled equivalently before and after
shuffling was counted. These values were then averaged over
the one, two and three stick diffusion models, giving one ag-
gregate value per subject. The subjects showing the minimum,
median and maximum agreement by this aggregated measure
were then identified, and are shown in Fig. 3, so as to illus-
trate a range of outcomes. The figure shows the axial slice con-
taining the largest number of thalamus voxels in each subject,
parcellated as described above, coloured as shown in Fig. 1a
and overlaid on a fractional anisotropy map. We observe that
parcellations in the unshuffled data generally become a little
cleaner as the number of fibre directions modelled per voxel in-
creases (from left to right within each subject)—but the same
is also true for the shuffled variants. Although several voxels
are uncoloured, clear and coherent structure remains visible in
the shuffled parcellations, and there remains evidence of com-
pact nuclei, despite the absence of internal orientational struc-
ture within the thalami in these cases.

Fig. 4 shows the distributions of various numerical indica-
tors of the effects of shuffling, across the core dataset of 17
subjects. Averaged across this dataset, just 14–17% as many
streamlines seeded from the thalamus reached one of the corti-
cal targets after shuffling, compared to before, but 61% (for the
one-stick model), 83% (two sticks) and 85% (three sticks) of
voxels received a label—compared to almost 100% before shuf-
fling. Out of these connected voxels, 63–66% received the same
label (from the five available) after shuffling, compared to a the-
oretical random baseline averaging 34–35% (see the Appendix
for details of the calculation behind this). Clearly, therefore,
the shuffling process has not fully disrupted the parcellation as
might be expected.

The mean volumes of all parcellated voxels in the thalamus,
and each cluster individually, are shown in Table 1 along with
Dice coefficients averaged across subjects, indicating the de-
gree of overlap in a way that takes these different volumes into
account. The Dice coefficients thus conflate two effects which
Fig. 4 shows separately: the reduction in the proportion of tha-
lamic voxels which receive a label at all after shuffling, and the
extent to which those labels match the equivalents assigned be-
fore shuffling. Nevertheless, some interesting patterns emerge.
The postcentral gyrus cluster is the smallest and least consis-
tent, while the frontal cluster is the largest and has the highest
Dice coefficients. The frontal and temporal clusters shrink ap-

preciably after shuffling, and the postcentral cluster stays about
the same size, but in the 2 and 3 stick models, in particular,
the precentral and parietal–occipital clusters become somewhat
larger.

Figures for the single 3 T dataset are shown in Fig. 4 as
coloured points circled in white, and the shuffled and unshuf-
fled parcellations are shown in Fig. 5, including for the CSD
pipeline. The results are generally similar to those described
above, with the numerical values mostly within the range ob-
served in the main dataset. The exceptions are the proportions
of labelled voxels in the two and three stick models, which
are somewhat higher than in the other cases, perhaps due to
the higher image resolution. Nevertheless, the degree of label
agreement before and after shuffling is in line with the broader
pattern. CSD does not have a fixed bound on the number of
fibre populations in the same way as BEDPOSTX, and the nu-
merical results were a little higher throughout, with 25% as
many streamlines reaching targets after shuffling, 100% of vox-
els connected and 75% overlap in labels against a random base-
line of 39%. Interestingly, the label overlap between the parcel-
lation derived from CSD and the one from BEDPOSTX (with
three sticks) was also 75% (cf. Fig. 5).

Finally, Fig. 6 shows variants of the maps from Fig. 3, but
focussing on the three-stick model and the subject with the
median level of agreement between the labels before and af-
ter shuffling. The left column of Fig. 6 shows a variant of the
winner-takes-all parcellation where opacity at each voxel is de-
termined by the proportion of connected streamlines that reach
the winning region; in other words, it indicates the margin by
which the winning target wins that voxel. In practice, it looks
very similar to the standard parcellation in Fig. 3, both before
and after shuffling. The remaining columns of Fig. 6 show maps
pertaining to individual target regions, each of which uses a
fixed colour for every voxel, but with opacity normalised across
voxels such that the voxel with the greatest number of stream-
lines reaching that target is opaque. Given that the number of
streamlines seeded from each voxel is the same, these maps
indicate the relative “strengths” of the connections between in-
dividual voxels and the target, and in this case the shuffled maps
look quite different, being visibly limited to a few isolated vox-
els in each case, generally at the boundary with white matter.

Discussion

In this study we have demonstrated that artificially destroy-
ing internal structure in diffusion anisotropy within the human
thalamus does not fully inhibit the creation of plausible streamline-
based parcellations, as might be expected. It can be seen di-
rectly from Figs 3 and 5 that, while several voxels lose their
label completely, the remaining voxels maintain a largely com-
pact, clustered structure, while Fig. 4 shows that consistency in
the parcellation before and after shuffling is well above the level
expected by chance. Moreover, we have demonstrated that all
of these outcomes persist between different image acquisitions
and tractography pipelines. Whilst the robustness of these par-
cellations might be considered to be a positive finding, it casts
significant doubt on the implied spatial specificity of voxelwise
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Figure 3: “Winner-takes-all” parcellations before and after spatial shuffling for three subjects, specifically those with the greatest (top), median (middle) and least
(bottom) number of voxels sharing a label before and after shuffling. The one-stick case is in the left column, two-stick case in the middle and three-stick case on
the right. The axial slice containing the most thalamus voxels is shown in each case, and colours match the cortical areas shown in Fig. 1a. The underlying greyscale
map shows fractional anisotropy.
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Figure 4: Violin plots quantifying the effects of shuffling across the datasets. Four measures are shown, as proportions: the number of streamlines reaching any
of the target regions after shuffling, compared to before; the fraction of voxels receiving a colour; and the proportions of those labelled voxels which receive the
same label before and after shuffling, in practice and at chance level (see the Appendix). Each violin shows the distribution of values for a particular number of
BEDPOSTX stick compartments across the 1.5 T datasets, while the point circled in white shows the position of the 3 T dataset. Note that the chance level varies
between datasets, because of the different numbers of thalamic voxels in each case.

Target region(s) Unshuffled volume, ml Shuffled volume, ml Dice coefficient
1 stick 2 sticks 3 sticks 1 stick 2 sticks 3 sticks 1 stick 2 sticks 3 sticks

all 17.58 17.64 17.64 11.83 15.16 15.36 0.50 0.58 0.56
frontal 8.88 8.91 8.89 4.78 5.91 6.06 0.51 0.62 0.64
temporal 3.36 3.34 3.52 1.11 1.44 1.56 0.29 0.32 0.32
precentral 1.66 1.72 1.50 1.62 1.89 2.09 0.57 0.57 0.55
postcentral 0.16 0.06 0.06 0.14 0.08 0.12 0.20 0.19 0.00
parietal–occipital 3.86 3.97 4.14 3.34 4.92 5.00 0.55 0.60 0.59

Table 1: Median volumes, in millilitres, of the regions parcellated for each target in each BEDPOSTX model, before and after shuffling, and Dice coefficients
indicating the degree of overlap in the whole parcellation and its constituent parts before and after shuffling. This standard overlap measure captures both the change
in volume after shuffling and the level of agreement in the remaining labels.
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Figure 5: “Winner-takes-all” parcellations in the 3 T dataset, based on ball-and-sticks-based (first three columns) and CSD-based (fourth column) tractography. The
axial slice containing the most thalamus voxels is shown in each case, and colours match the cortical areas shown in Fig. 1a.

Figure 6: Use of transparency to show the degree of confidence in each voxel label. The first column matches the three-stick subfigure from the median subject in
Fig. 3, but with the opacity of each voxel set to indicate the proportion of streamlines from that voxel that reach the winning target region. The remaining columns
show maps specific to each target, where the opacity is normalised across voxels such that the voxel with the greatest number of streamlines reaching that target is
opaque.
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connectivity-based parcellations, and suggests that plausibility
in such parcellations should not be interpreted as strong evi-
dence for a particular subject-specific organisation of subnu-
clei, or for specific axonal pathways projecting to or from each
voxel.

Our shuffling process, illustrated in Fig. 2, is a relatively
extreme corruption of the data, which is performed after fitting
ball-and-stick model parameters or estimating spherical har-
monic coefficients. The advantage of performing this kind of
shuffling, rather than using synthetic data, is that all of the pa-
rameters are calculated from measurements taken within the
thalamus in the same hemisphere, and so they are unquestion-
ably within the realm of general plausibility; they are simply
misplaced within the region. Since nothing like this level of
corruption would be expected in an unmodified dataset, it is rea-
sonable to expect that very plausible results could be obtained
even in the presence of substantial numbers of tractographic
false positives and false negatives. Examining the streamline
paths themselves, as in Fig. 1b, is highly advisable.

Since the thalamus contains a fairly large number of vox-
els and is orientationally inhomogeneous (cf. Fig. 2), we would
not expect the specifics of any given shuffle of the voxels to be
important. We checked this explicitly by repeating the shuf-
fling and parcellation in the 3 T dataset 100 times for each dif-
fusion model, and for every value shown in Fig. 4, we found
that the mean of these 100 repetitions was very close to the
value obtained from a single shuffle, with the standard error of
the mean being less than 0.5 percentage points in every case.
This is because the statistic relevant to the parcellation—the
target through which the largest number of streamlines pass—
is heavily overdetermined when there are 5000 streamlines and
only five targets, and repeating the shuffling process does not
substantially change its functional effect.

After shuffling, fibre tracking within the thalamus essen-
tially becomes a random walk (cf. Morris et al., 2008), a series
of short steps in approximately arbitrary directions. Since trac-
tography algorithms generally impose curvature constraints, this
results in a very substantial reduction in the number of stream-
lines that propagate out of the shuffled region, with the shortest
arc lengths being most likely. This explains why most of the
unlabelled voxels after shuffling are towards the centre of the
thalamus, furthest from the surrounding, unshuffled white mat-
ter. Indeed, the relative proximity of each voxel to neighbouring
white matter tracts is then the primary determinant of the point
of exit from the thalamus, and hence the subsequently inferred
connectivity. The changes in cluster volumes reported in Ta-
ble 1 may be due to a transfer between clusters where paths out
of the thalamus are relatively tortuous in the unshuffled data, as
with the “tail” of the frontal cluster, most readily seen in Fig. 6,
which may be largely transferred to the parietal–occipital clus-
ter, which corresponds to closer white matter.

There are fewer disconnected voxels in models with more
complex fibre orientation distributions—two and three stick BED-
POSTX models and CSD—because the fibre tracking process
is more likely to be able to identify a viable orientation at each
step which does not violate its curvature constraints. In the
higher-resolution 3 T dataset, there were fewer disconnected

voxels still, perhaps due to the fact that the step distance—
which is fixed to 0.5 mm in the TractoR tractography—is larger
relative to the voxel size. Finally, the default “iFOD2” algo-
rithm used by MRtrix for tractography is a second-order tech-
nique that considers plausible streamline arcs rather than just
the immediate local fibre orientation information (Tournier et al.,
2010), which may explain why it produces somewhat greater
label agreement before and after shuffling.

The consequences of our findings, and the appropriate mit-
igations for future studies, will depend on the application. A
sensible approach in basic neuroscience and clinical studies that
treat the parcellation as a primary output would be to seek con-
vergent evidence from other imaging or electrophysiological
sources (Glasser et al., 2016; Kelly et al., 2012; Wang et al.,
2015). Applying a threshold to the number of connected stream-
lines needed for a voxel to receive a colour, as demonstrated
by Behrens et al. (2003), would also help to avoid tenuous
labelling—although such thresholds are inevitably arbitrary. By
contrast, in certain clinical contexts it may be that identifying
the core locus of connectivity to a particular target region is
more important than the parcellation as a whole, and in such
cases representations such as those in Fig. 6 would be of more
direct relevance, as well as helping to give a greater sense of
confidence in the putative subnucleus of interest.

Such estimates of confidence can also be incorporated into
subsequent analysis. For example, we calculate that the confidence-
weighted centre of mass of the precentral or motor cluster, a po-
tential target for therapeutic stimulation in patients with tremor
(Akram et al., 2018), is shifted from the unweighted centroid by
an average of 1.2–2.1 mm (depending on the diffusion model
used), or 9–16% of the cluster diameter, which was typically
about 13 mm. This shift is directed towards the edge of the tha-
lamus, nearer the white matter where anisotropy is higher and
orientational uncertainty lower. In general, even in the unshuf-
fled data, there is lesser confidence as one moves further into
the thalamus. This trend is in addition to the substantial vari-
ation across diffusion models directly visible in Figs 3 and 5,
and overall we may therefore conclude that the optimal target
for an implantation is spatially uncertain. Even assuming the
tractography is broadly accurate, there is therefore a need for
caution if the risks of ineffective treatment or a need for further
surgical implantation are to be minimised.

Although we cannot directly measure them in our experi-
ments, tractography algorithms’ in-built biases undoubtedly in-
fluence the parcellations obtained, and validation work has made
it clear that tractography is far from flawless as a tract-tracing
technique. Recently, Donahue et al. (2016) directly and system-
atically compared tractography in postmortem monkey brains
to data from invasive tracer work, and concluded that tractog-
raphy was only “modestly informative in predicting connection
presence and weight”. This is another reason to seek concor-
dant evidence from other modalities where accuracy is impor-
tant.

Of course, this study has a number of limitations. We have
looked only at the thalamus—although, as we have noted, this
is a canonical and well-studied region of interest for parcella-
tion studies. Moreover, due to its relatively large size, issues
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such as the disconnection of voxels toward the centre of the
structure are more visible than might be the case elsewhere.
For smaller structures completely surrounded by white matter,
such as the subthalamic nucleus, a substantially higher pro-
portion of connected voxels would be expected in the shuf-
fled data, and this may also translate into greater agreement
in the parcellation, when compared to the unshuffled original.
Additionally, we have considered only the winner-takes-all ap-
proach to parcellation, rather than any of the various clustering-
based methods. This is partly for simplicity, and partly because
winner-takes-all is relatively unambiguous, both methodologi-
cally and in terms of its interpretation, whereas more complex
multi-target methods (e.g., as used in Draganski et al., 2008)
involve more nuance. For example, approaches based on clus-
tering the patterns of connectivity to multiple targets would vary
due to the clustering algorithm as well as the streamline distri-
bution, rendering interpretation more difficult. Finally, we have
focussed on approaches that seed within deep grey matter it-
self, whereas several parcellation studies propagate streamlines
only from the boundary between grey matter and white matter,
where anisotropy will generally be higher and orientational un-
certainty therefore lower (Gallardo et al., 2018; Moreno-Dominguez
et al., 2014; St-Onge et al., 2018). A wholly different category
of experiments would be needed to investigate the interpretabil-
ity of those approaches.

In conclusion, we advocate a more cautious interpretation
of connectivity-based parcellations than has been prevalent in
the literature, and careful scrutiny of the data in future work.
We have shown that applying a substantial corruption to diffu-
sion datasets has relatively little effect on such parcellations—
indeed, no bigger than switching tractography algorithms. Par-
ticularly with modern, multi-compartment diffusion models and
tractographic biases such as the tendency to favour directional
continuity, algorithms are able to string together paths through
even unreliable fibre-orientation fields and build a parcellation
by brute force. Nevertheless, our findings have no direct bear-
ing on the correctness of the parcellation—indeed, a parcella-
tion of the thalamus with frontal connectivity towards the ante-
rior margin and occipital connectivity posterior is logical from
the point of view of economical wiring in the brain (Laughlin
& Sejnowski, 2003; Van Essen, 1997). But the lack of sensi-
tivity to internal structure undermines the principle of mapping
spatially specific, voxel-to-region connectivity in vivo, which is
the technique’s core idea.

Acknowledgments

The authors are grateful to Dr Kiran Seunarine and Prof.
Chris Clark for the 3 T volunteer dataset used in this study, and
to Prof. Daniel Alexander and Alina Matis for initial discus-
sions about this work. DLT is supported by the UCL Leonard
Wolfson Experimental Neurology Centre (PR/ylr/18575). AK
is supported by the Wellcome Trust. All research at Great Or-
mond Street Hospital NHS Foundation Trust and the UCL Great
Ormond Street Institute of Child Health is made possible by
the NIHR Great Ormond Street Hospital Biomedical Research
Centre.

Appendix: Random shuffling

Any given classification of N voxels separates them into n
groups containing mi elements each, with i ∈ {1, 2, . . . , n}, such
that

∑
i mi = N. A comparison of the overlap between two

such classifications should consider as a baseline the degree of
overlap that would be expected by chance.

The number of possible permutations of the labels is given
by the multinomial coefficient,(

N
m1,m2, . . . ,mn

)
=

N!
m1! m2! · · · mn!

.

After a random permutation of the labels, the number of cases
in which a voxel from group i retains that label is

(N − 1)!
(mi − 1)!

∏
j,i m j!

,

the number of combinations of all elements except the one stay-
ing the same.

Taking Xl, with l ∈ {1, 2, . . . ,N} indexing over all voxels,
to be the random variable with value 1 if voxel l from group i
retains its label, and 0 otherwise, we divide the two previous
equations to obtain

E(Xl) =

(
(N − 1)!

(mi − 1)!
∏

j,i m j!

) (
m1! m2! · · · mn!

N!

)
=

(N − 1)! mi!
(mi − 1)! N!

=
mi

N
.

Taking X = X1 + X2 + . . .+ XN , we can make use of the linearity
of expectations to quickly determine that

E(X) =
∑

l

E(Xl) =

n∑
i=1

mi
mi

N
=

1
N

n∑
i=1

m2
i .

This process is a permutation, and therefore assumes that
the proportions of each label remain exactly equal. However, if
instead we draw voxel labels at random such that the probability
of each voxel having label i is mi/N, independently of all other
voxels, the expectation does not change. Clearly, Pr(Xl = 1) =

mi/N, since voxel l originally had label i, and so we can proceed
using linearity of expectations as above. Assuming fixed prob-
abilities therefore has the same expected outcome as assuming
fixed proportions.
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& Rozanski V.E. (2017). A diffusion-based connectivity map of the GPi for
optimised stereotactic targeting in DBS. NeuroImage 144(Pt A):83–91.

Deligianni F., Carmichael D.W., Zhang G.H., Clark C.A. & Clayden J.D.
(2016). NODDI and tensor-based microstructural indices as predictors of
functional connectivity. PLoS ONE 11(4):e0153,404.

Desikan R.S., Ségonne F., Fischl B., Quinn B.T., Dickerson B.C., Blacker D.,
Buckner R.L., Dale A.M., Maguire R.P., Hyman B.T., Albert M.S. & Kil-
liany R.J. (2006). An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. NeuroIm-
age 31(3):968–980.

Donahue C.J., Sotiropoulos S.N., Jbabdi S., Hernandez-Fernandez M., Behrens
T.E., Dyrby T.B., Coalson T., Kennedy H., Knoblauch K., Van Essen D.C.
& Glasser M.F. (2016). Using diffusion tractography to predict cortical con-
nection strength and distance: A quantitative comparison with tracers in the
monkey. Journal of Neuroscience 36(25):6758–6770.

Draganski B., Kherif F., Klöppel S., Cook P.A., Alexander D.C., Parker G.J.M.,
Deichmann R., Ashburner J. & Frackowiak R.S.J. (2008). Evidence for
segregated and integrative connectivity patterns in the human basal ganglia.
Journal of Neuroscience 28(28):7143–7152.

Eickhoff S.B., Thirion B., Varoquaux G. & Bzdok D. (2015). Connectivity-
based parcellation: Critique and implications. Human Brain Mapping
36(12):4771–4792.

Gallardo G., Wells W., Deriche R. & Wassermann D. (2018). Groupwise struc-
tural parcellation of the whole cortex: A logistic random effects model based
approach. NeuroImage 170:307–320.

Glasser M.F., Coalson T.S., Robinson E.C., Hacker C.D., Harwell J., Yacoub
E., Ugurbil K., Andersson J., Beckmann C.F., Jenkinson M., Smith S.M.
& Van Essen D.C. (2016). A multi-modal parcellation of human cerebral
cortex. Nature 536(7615):171–178.

Guillery R. & Sherman S. (2002). Thalamic relay functions and their role in
corticocortical communication. Neuron 33(2):163–175.

Jakab A., Molnár P.P., Bogner P., Béres M. & Berényi E.L. (2012).
Connectivity-based parcellation reveals interhemispheric differences in the
insula. Brain Topography 25(3):264–271.

Johansen-Berg H., Behrens T.E.J., Robson M.D., Drobnjak I., Rushworth
M.F.S., Brady J.M., Smith S.M., Higham D.J. & Matthews P.M. (2004).
Changes in connectivity profiles define functionally distinct regions in hu-
man medial frontal cortex. Proceedings of the National Academy of Sciences
of the USA 101(36):13,335–13,340.

Kelly C., Toro R., Di Martino A., Cox C.L., Bellec P., Castellanos F.X. &
Milham M.P. (2012). A convergent functional architecture of the insula
emerges across imaging modalities. NeuroImage 61(4):1129–1142.

Klein J.C., Behrens T.E.J., Robson M.D., Mackay C.E., Higham D.J. &
Johansen-Berg H. (2007). Connectivity-based parcellation of human cor-
tex using diffusion MRI: Establishing reproducibility, validity and observer
independence in BA 44/45 and SMA/pre-SMA. NeuroImage 34(1):204–
211.

Krauth A., Blanc R., Poveda A., Jeanmonod D., Morel A. & Székely G. (2010).
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J., Chamberland M., Yeh F.C., Lin Y.C., Ji Q., Reddick W.E., Glass J.O.,
Chen D.Q., Feng Y., Gao C., Wu Y., Ma J., Renjie H., Li Q., Westin C.F.,
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cal method for whole-brain connectivity-based parcellation. Human Brain
Mapping 35(10):5000–5025.

Morris D.M., Embleton K.V. & Parker G.J.M. (2008). Probabilistic fibre
tracking: Differentiation of connections from chance events. NeuroImage
42(4):1329–1339.

R Core Team (2018). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.

Saygin Z.M., Osher D.E., Augustinack J., Fischl B. & Gabrieli J.D.E. (2011).
Connectivity-based segmentation of human amygdala nuclei using proba-
bilistic tractography. NeuroImage 56(3):1353–1361.

Setsompop K., Cohen-Adad J., Gagoski B.A., Raij T., Yendiki A., Keil B.,
Wedeen V.J. & Wald L.L. (2012). Improving diffusion MRI using simulta-
neous multi-slice echo planar imaging. NeuroImage 63(1):569–580.

Smith S.M. (2002). Fast robust automated brain extraction. Human Brain
Mapping 17(3):143–155.

Smith S.M., Jenkinson M., Woolrich M.W., Beckmann C.F., Behrens T.E.J.,
Johansen-Berg H., Bannister P.R., De Luca M., Drobnjak I., Flitney D.E.,
Niazy R.K., Saunders J., Vickers J., Zhang Y., De Stefano N., Brady J.M.
& Matthews P.M. (2004). Advances in functional and structural MR image
analysis and implementation as FSL. NeuroImage 23 Suppl 1:S208–19.

St-Onge E., Daducci A., Girard G. & Descoteaux M. (2018). Surface-enhanced
tractography (SET). NeuroImage 169:524–539.

Tournier J.D., Calamante F. & Connelly A. (2007). Robust determination of the
fibre orientation distribution in diffusion MRI: Non-negativity constrained
super-resolved spherical deconvolution. NeuroImage 35(4):1459–1472.

Tournier J.D., Calamante F. & Connelly A. (2010). Improved probabilistic
streamlines tractography by 2nd order integration over fibre orientation dis-
tributions. In Proceedings of the International Society for Magnetic Reso-
nance in Medicine. ISMRM.

Tournier J.D., Calamante F. & Connelly A. (2013). Determination of the appro-
priate b value and number of gradient directions for high-angular-resolution
diffusion-weighted imaging. NMR in Biomedicine 26(12):1775–1786.

Tuch D.S. (2002). Diffusion MRI of complex tissue structure. Ph.D. thesis,
Massachusetts Institute of Technology.

Van Essen D.C. (1997). A tension-based theory of morphogenesis and compact

10

https://www.R-project.org/


wiring in the central nervous system. Nature 385(6614):313–318.
Wang J., Yang Y., Fan L., Xu J., Li C., Liu Y., Fox P.T., Eickhoff S.B., Yu C. &

Jiang T. (2015). Convergent functional architecture of the superior parietal
lobule unraveled with multimodal neuroimaging approaches. Human Brain
Mapping 36(1):238–257.

Wickham H. (2009). ggplot2: Elegant graphics for data analysis. Springer,
New York.

11


