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Abstract. We prove a hyperbolic analogue of the Bloch-Ochiai
theorem about the Zariski closure of holomorphic curves in abelian
varieties.

Résumé. On démontre un analogue hyperbolique du théorème de
Bloch-Ochiai sur l’adhérence de Zariski d’une courbe holomorphe
dans une variété abélienne.
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1. Introduction.

The following theorem of Bloch-Ochiai (see Chapter 9, theorem 3.9.19
of [3]) is classically proved using Nevanlinna theory.

Theorem 1.1 (Bloch-Ochiai). Let A be an abelian variety and f : C −→
A be a non-constant holomorphic map. Then the Zariski closure of
f(C) is a translate of an abelian subvariety.

In this paper we formulate and prove an analogue of this theorem
for a certain type of locally symmetric varieties, namely the compact
Shimura varieties.

Andrei Yafaev was supported by the ERC grant Project 307364 SPGSV.
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For notations and facts about Shimura varieties and weakly special
subvarieties, we refer to [9] and references therein. Recall that any
hermitian symmetric domain X, admits a realisation X ⊂ Cn (with
n = dim(X)) as a bounded symmetric domain. See [5], Chapter 4 for
details.

Recall also that given an arithmetic lattice Γ ⊂ Aut(X)+, such that
the quotient Γ\X is compact, there exists a fundamental domain F
for the action of Γ on X which is an open subset of X such that F
is compact. For a bounded hermitian symmetric domain X ⊂ Cn, we
denote by ∂X the boundary of X, i.e. ∂X = X\X where X denotes
the topological closure of X in Cn.

For notions of Shimura data, Shimura varieties and their weakly
special subvarieties we refer to [2], [9] and references contained therein.
We just recall that weakly special subvarieties are defined in terms
of Shimura subdata, but as shown in [6], they are exactly the totally
geodesic subvarieties of Γ\X and terms ‘weakly special’ and ‘totally
geodesic’ are used in the literature interchangeably.

Let (G,X) be a Shimura datum with G anisotropic over Q, let X+

be a connected component of X and K a compact open subgroup of
G(Af ). As above, X+ ⊂ Cn is a bounded symmetric domain.

We let Γ be the intersection of K with the stabiliser of X+ in G(Q).
Then Γ is an arithmetic congruence group acting on X+.

Then S = Γ\X+ is compact. Let π : X+ −→ Γ\X+ be the quotient
map.

Theorem 1.2. Let f : C −→ Cn be a holomorphic map such that C =
f(C) ∩X+ is non-empty. The folowing holds:

(1) Let C ′ be an analytic irreducible component of f(C)∩X+. Then
the Zariski closure Zar(π(C ′)) is weakly special.

(2) The components of the Zariski closure Zar(π(C)) of π(C) are
weakly special subvarieties of S.

An easy analytic continuation argument shows that if Y is an ir-
reducible analytic subset of X+, then Zar(π(Y )) is (algebraic) irre-
ducible. It follows that in the statement (1) of 1.2, one does not need
to consider irreducible components of Zar(π(C ′)).

Another comment is that (2) does not follow directly from (1) since
f(C) ∩X+ can have infinitely analytic irreducible components. Addi-
tional arguments are necessary. They are given in section (2).

This result is partly inspired by the so-called hyperbolic Ax-Lindemann
theorem whose slightly different but equivalent formulation is proven
in [9], Théorème 1.3 in the co-compact case and in [4] for all Shimura
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varietes. The statement of the hyperbolic Ax-Lindemann theorem is
as follows.

Theorem 1.3. Keep the notations of theorem 1.2.
Let Y be an irreducible algebraic subset of X+. Then the Zariski

closure of π(Y ) is a weakly special subvariety of S.

The proof of theorem 1.2 relies on the theory of o-minimality and
the Pila-Wilkie counting theorem and is inspired by the proof of the
hyperbolic Ax-Lindemann theorem in the co-compact case as in [9].
The proof also uses in an essential way the hyperbolic Ax-Lindemann
theorem itself and the results of [8].

An analogous question in the context of abelian varieties has been
investigated in [10]. In that paper we have not been able to re-prove
Bloch-Ochiai theorem using o-minimal techniques. We however ob-
tained a result analogous to 1.2 in the abelian context for certain sets
definable in the usual o-minimal structures. Our result in [10] is in some
ways more general than the Bloch-Ochiai theorem. It is surprising and
interesting that the obstructions to prove the Bloch-Ochiai theorem
using o-minimality do not occur in the hyperbolic case we consider
here, however additional serious difficulties arise which we overcome in
section 3.

The strategy of the proof is as follows. We start by decomposing
f−1(f(C) ∩ X+) as a union of connected components Ui ⊂ C. For a
given i we prove that for some Ri > 0, it is in fact enough to prove
the conclusion for π ◦ f(Ui ∩B(0, Ri)) where B(0, Ri) is the open ball
centered at the origin of radius Ri. This is done in section 2.

We now set Ci = f(Ui∩B(0, Ri)). Section 3 is the technical heart of
the proof. The analytic curve Ci in X+ is definable in the o-minimal
structure Ran (here Cn is identified with R2n). For o-minimality, related
notions and results we refer to [11]. We fix a fundamental domain F
for the action of Γ on X+.

We let Vi be the Zariski closure of π(Ci) and Ṽi be π−1(Vi) ∩F . We
associate to Ci a certain definable (in Ran) set Σ ⊂ G(R) and show

that Σ · Ci ⊂ Ṽi. The main technical work is to prove that Σ contains
a lot of points of G(Q) of height up to T . Pila-Wilkie theorem then
allows us to conclude that Σ contains a positive dimensional semi-
algebraic subset W and the hyperbolic Ax-Lindemann theorem allows
us to conclude that Vi contains a Zariski dense set of weakly special
subvarieties. Using results from [8] and some additional arguments, we
conclude the proof of theorem 1.2.

We do not know whether conclusions of theorem 1.2 remain true
without the assumption that S is compact. The main difficulty in
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removing the compactness assumption lies in proving that Ci (with
the above notations) intersects “many” translates of a fundamental set.
We in fact do not know whether it is possible for Ci to be contained in
a union of finitely many such translates.
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2. Preliminaries.

Keep notations as in Theorem 1.2. For simplicity of notation, we
write X for X+. Let

f−1(f(C) ∩X) =
∐
i∈I

Ui

be the decomposition of f−1(f(C) ∩ X) into connected components.
By definition of the Ui, for each i, we have

f(Ui) ∩ ∂X 6= ∅.
For Ri > 0 large enough, we have

f(B(0, Ri) ∩ Ui) ∩ ∂X 6= ∅
(where B(0, Ri) is the open ball of radius Ri centered at the origin).
For each i, we fix an Ri with this property.

Proposition 2.1. We have

Zar(π ◦ f(Ui)) = Zar(π ◦ f(B(0, Ri) ∩ Ui).

Proof. One inclusion is obvious. Write Zar(π ◦ f(B(0, Ri)∩Ui)) ⊂ Pm
for some m and let s ∈ H0(Pm,O(l)) for l ≥ 1 such that s is zero on
π ◦ f(B(0, Ri) ∩ Ui). Then the function s ◦ f ◦ π : Ui −→ C is zero
on B(0, Ri) ∩ Ui). Since Ui is connected, by analytic continuation, the
function s ◦ f ◦ π is zero on Ui. It follows that s is zero on π ◦ f(Ui).
This proves the other inclusion. �

In this paper we will prove the following:

Theorem 2.2. The Zariski closure of π ◦ f(B(0, Ri) ∩ Ui) contains a
Zariski dense subset of weakly special subvarieties.

Let V = Vi be the Zariski closure of π◦f(B(0, Ri)∩Ui). The theorem
2.2 will be deduced from the following:



HOLOMORPHIC CURVES IN COMPACT SHIMURA VARIETIES. 5

Theorem 2.3. There exists a positive dimensional semialgebraic set
W in G(R) such that

W · f(B(0, Ri) ∩ Ui) ⊂ π−1(V ).

To deduce 2.2 from 2.3, let P ∈ f(B(0, Ri) ∩ Ui). For the notion
of algebraic subset of X, we refer to Appendix B of [4]. There exists
a complex algebraic subset YP ⊂ π−1(V ) such that W · P ⊂ YP (see
[4], Lemma B.3). By Ax-Lindemann theorem 1.3, the Zariski closure
of π(YP ) ⊂ V is weakly special. Therefore, through each point of
πf(B(0, Ri) ∩ Ui) there passes a weakly special subvariety and hence
V contains a dense set of weakly special subvarieties.

We will now prove that theorem 1.2 follows from theorem 2.2. Let
V be a component of the Zariski closure of π(f(C) ∩X). By theorem
2.2, V contains a Zariski dense set of weakly special subvarieties.

If V is a weakly special subvariety, then we are done. Assume that
V is not weakly special. By [8], Corollary 1.4, there exists a special
subvariety S ′ ⊂ S containing V and such that S ′ = S1× S2 (Si special
and positive dimensional) and such that

V = S1 × V ′

where V ′ is a subvariety of S2.
There exists a sub-Shimura datum (G′, X ′) of (G,X) and a decom-

position

(G′ad, X ′ad) = (G1, X1)× (G2, X2)

such that S1 = Γ1\X1 and S2 = Γ2\X2 (where as usual we omit the
superscript +) and Γ1 and Γ2 are suitable arithmetic lattices in G1(Q)+

and G2(Q)+.
Let p1

∼= Cr1 and p2
∼= Cr2 be the holomorphic tangent spaces to X1

and X2. Then p1 × p2 is a subspace of the holomorphic tangent space
p ∼= Cn to X. Let

f−1(f(C) ∩X) =
∐
i∈I

Ui.

be as before, the connected component decomposition. There exists a
Ui such that the restriction, f : Ui −→ Cn factors through Cr1 × Cr2 .
By analytic continuation f : C −→ Cn factors through Cr1 × Cr2 .

Let f1 and f2 be the holomorphic functions from C to Cr1 and Cr2

respectively such that f = (f1, f2).
Similarly, write

f−1
2 (f2(C) ∩X2) =

∐
j∈J

Vj.

the connected component decomposition.
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From the definition of Uis and Vjs, it follows that any i ∈ I, there
exists an j ∈ J such that Ui ⊂ Vj. It follows that for any i ∈ I, there
exists j ∈ J such that:

Zar(π2 ◦ f2(Ui)) = Zar(π2 ◦ f2(Vj)).

Note that V ′ is the Zariski closure of the union of the π2 ◦ f2(Ui).
Therefore V ′ is the Zariski closure of⋃

i∈I

Zar(π2 ◦ f2(Ui)).

By theorem 2.2, Zar(π2 ◦ f2(Ui)) = Zar(π2 ◦ f2(Vj)) contains a Zariski
dense set of weakly special subvarieties.

It follows that V ′ contains a Zariski dense set of weakly special sub-
varieties of S2. An inductive argument finishes the proof of theorem
1.2 assuming theorem 2.2.

3. Counting lattice elements.

In this section we show that f(Ui) (as in the previous section) in X
intersects “exponentially many” (in a suitable sense) Γ-translates of a
fixed fundamental domain. This section constitutes the technical heart
of the paper.

Recall the following notations from [9]. Let X be a connected Her-
mitian symmetric domain (as usual we omit the superscript +), re-
alised as a bounded symmetric domain in some Cn. We let C to be
f(B(0, Ri) ∩ Ui) with Ri and Ui as in the previous section.

Let Γ be a cocompact arithmetic lattice in the group G of holomor-
phic isometries of X. For a point x0 ∈ X, we let F be a fundamental
domain for the action of Γ on X such that x0 ∈ F . We assume that F
is an open connected set such that F is compact. The set

SF = {γ ∈ Γ : γF ∩ F 6= ∅}
is finite and generates Γ.

The “word metric” l : Γ −→ N with respect to SF is defined as
follows l(1) = 0 and for γ 6= 1, l(γ) is the minimal length of a word in
the elements of SF representing γ.

We also let K(Z,W ) be the Bergmann kernel on X and we let

ω =
√
−1∂∂K(Z,Z)

be the associated Kähler form. We refer to [5] 4.1 for details on this.
We define the following functions:

NC(n) = |{γ ∈ Γ : dim(γF ∩ C) = 1, l(γ) ≤ n}|
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and

N ′C(n) = |{γ ∈ Γ : dim(γF ∩ C) = 1, l(γ) = n}|.
The main result of this section is the following theorem:

Theorem 3.1. There is a positive constant c such that for all n� 0,
we have

NC(n) ≥ ecn.

Let b be a point of the boundary of C ∩ ∂X and a neighbourhood Vb
of b such that C ∩ ∂X ∩ Vb is a real analytic curve.

We parametrise C ∩ ∂X ∩ Vb as follows. For 0 < α, β < 2π, let ∆α,β

be the sector of the unit disc ∆ defined as follows:

∆α,β = {z = reiθ : 0 ≤ r < 1, α ≤ θ ≤ β}.
Let Cα,β be the subset of ∂∆α,β defined as

Cα,β = {z = eiθ : α ≤ θ ≤ β}.
We can find α, β and a real analytic map ψ from a neignbourhood of
∆α,β to Cn such that ψ(∆α,β) ⊂ C ∩X and ψ(Cα,β) ⊂ C ∩ ∂X.

Let ∆ be the open unit disk. We let ω∆ be the usual Poincaré (1, 1)-
form on ∆ (ω∆ =

√
−1 dz∧dz

(1−|z|2)2
). By lemma 2.8 of [9], there exists a

smooth (1, 1)-form η on ∆α,β such that

ψ∗ω = sω∆ + η

for some integer s > 0.
Let γ ∈ Γ be such that dim(γF ∩ C) = 1 and γF ∩ C ⊂ ψ(∆α,β),

then

(1)

∫
γF∩C

ω = s

∫
ψ−1(γF∩C)

ω∆ +

∫
ψ−1(γF∩C)

η

Proposition 3.2. There exists a constant B such that for any γ ∈ Γ
such that dim(γF ∩ C) = 1, we have∫

γF∩C
ω ≤ B.

Proof. We consider the compact dual Xc of X which is a closed al-
gebraic subvariety of some projective Pm. Let L be the dual of the
canonical line bundle endowed with the Fubini-Study metric ||.||FS.
We let ωFS the associated (1, 1)-form: ωFS = c1(L, ||.||FS).

By Harish-Chandra embedding theorem, there is a biholomorphism
λ from p ∼= Cn to an open dense subset of Xc. For details, see Theorem
1, section 5.2 of [5].
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Let γ ∈ Γ be such that γF ∩C 6= ∅. Since ω is Γ-invariant, we have∫
γF∩C

ω =

∫
γ−1(γF∩C)

ω.

On the compact set F , the two forms ω and λ∗(ωFS) are positive holo-
morphic forms, therefore there is a constant B1 such that on F , we
have

ω ≤ B1λ
∗(ωFS).

We have ∫
γF∩C

ω ≤ B1

∫
γ−1(γF∩C)

λ∗(ωFS).

Furthermore, ∫
γ−1(γF∩C)

λ∗(ωFS) ≤
∫
γ−1λ(C)

ωFS.

The conclusion of proposition 3.2 follows from the following lemma that
will be proven in the following section. :

Lemma 3.3. There is a constant B2 such that for all γ ∈ Γ, we have∫
γ−1λ(C)

ωFS ≤ B2.

�

3.1. Proof of lemma 3.3. The volume of the analytic curve λ(C) is
defined as

Vol(λ(C)) =

∫
λ(C)

ωFS.

Let Pm∨ be the dual projective space, the set of hyperplanes in Pm.
Let dJ be the invariant volume element on Pm∨ normalised to have
total mass one.

By Generalised Crofton’s formula (see [1] and references therein), we
have

Vol(γ−1λ(C)) = α

∫
Pm∨

nγ−1λ(C)(J)dJ.

where α is a uniformisation constant and nγ−1λ(C)(J) is the number of
points (counted with multiplicity) of the intersection of γ−1λ(C) with
J . Note that the function nγ−1λ(C)(J) is a function defined on the
open subset of Pm∨ consisting of hyperplanes J such that γ−1λ(C) is
not contained J . The complement of this open set is of measure zero,
therefore, by lemma 3.5, the integral is well defined.
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Lemma 3.4. Let J be a hyperplane in Pm and γ ∈ Γ. There exists a
hyperplane J ′ such that

nγ−1λ(C)(J) = nλ(C)(J
′).

Proof. Recall that L is Γ-invariant and L is very ample i.e. L =
O(1)|Xc . Write s the section of L such that J ∩ Xc = div(s). Let
s′ = γ∗s. Then s′ is a restriction of a section of O(1) corresponding to
some hyperplane J ′ and we thus have

γ(J ∩Xc) = J ′ ∩Xc.

Therefore
λ(C) ∩ γ(J ∩Xc) = λ(C) ∩ (J ′ ∩Xc).

We also have

λ(C) ∩ γ(J ∩Xc) = γ(γ−1λ(C) ∩ J).

We conclude using the fact that

|γ(γ−1λ(C) ∩ J)| = nγ−1λ(C)(J).

�

We finish by proving a general lemma:

Lemma 3.5. Let f : C −→ Pm(C) be a holomorphic map. Let R > 0.
There exists a constant Θ = Θ(R, f) such that for any hyperplane H
of Pm(C) not containing f(C), one has

|{f(B(0, R)) ∩H}| ≤ Θ.

Proof. A reference for notions of Nevanlinna-Cartan theory is [3], Chap-
ter 3, Section B. We use notations from this reference.

Let N(R, f,H) be the counting function associated to f,R and H.
Let α1, . . . , αt ∈ B(0, R) be the complex numbers such that f(αi) ∈ H.

Let ν(f, αi, H) be the multiplicity of f in H at αi. We have

N(R, f,H) =
t∑
i=1

ν(f, αi, H) log(
R

|αi|
).

Therefore

N(2R, f,H) ≥
t∑
i=1

ν(f, αi, H) log(
2R

|αi|
).

We have log( 2R
|αi|) ≥ log(2), therefore a bound on N(2R, f,H) implies

a bound on
∑t

i=1 ν(f, αi, H) = |{f(B(0, R)) ∩H}|. It is hence enough
to bound N(2R, f,H).
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The first main theorem of Cartan-Nevanlinna theory ([3], 3.B.16),
we have

N(2R, f,H) ≤ T (2R, f) + c

where c is a uniform constant and T (2R, f) is the order function defined
in [3], 3.B.2.

Since T (2R, f) does not depend on H, this concludes the proof. �

3.2. End of proof of theorem 3.1. As η is smooth on ∆α,β, the inte-
gral

∫
ψ−1(γF∩C)

η is bounded independently of γ. Equation 1 and lemma

3.2 imply that
∫
ψ−1(γF∩C)

ω∆ is bounded by a constant B′, independent

of γ.
Recall the following lemma (Lemma 2.1) from [9]. Note that this

lemma is proved in [9] for C algebraic but the algebraicity assumption
is not used, the statement and proof remain the same in our situation.
In fact the proof is a combination of some general facts about hermitian
symmetric domains and word metrics.

Lemma 3.6. There exist positive constants λ1 and λ2 and D such that
for all z ∈ ∆α,β with z ∈ ψ−1(γF ∩ C),

λ1l(γ) ≤ − log(1− zz) ≤ λ2l(γ) +D.

We now follow the end of section 2 of [9].
For n > 0, let

In = {z ∈ ∆α,β, e
−(n+1) ≤ 1− |z|2 ≤ e−n}.

The hyperbolic volume of In satisfies

Vol(In) ≥ δ1e
n

where δ1 is a positive constant.
The set In is covered by the ψ−1(γF ∩ C). For each n large enough

and for all z ∈ In, by lemma 3.6, there exists a γ such that ψ(z) ∈ γF
with γ satisfying

c1n ≤ l(γ) ≤ c2n

with uniform (i.e independent of n) constants c1 and c2.
On the other hand, for all z ∈ ∆α,β, such that ψ(z) ∈ γF for some

γ ∈ Γ,
Vol(ψ−1(γF ∩ C)) ≤ B′.

Therefore, by the computation of Vol(In) above, there exists a δ1 > 0
such that ∑

c1n≤k≤c2n

N ′C(k) ≥ δ1e
n.

This finishes the proof of theorem 3.1.
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4. A definable set and application of Pila-Wilkie
theorem.

In this section we prove theorem 2.3 and hence our main theorem.
We follow section 5 of [9] with appropriate modifications.

Let U be as before a connected component of f−1(f(C)∩X) and R
such that f(U ∩ B(0, R)) ∩ ∂X 6= ∅. Note that C = f(B(0, R) ∩ U) is
definable in Ran. Let F be as in the previous section. Recall (see [9],
Proposition 4.2) that π restricted to F is definable in Ran.

Consider

Σ(C) = {g ∈ G(R) : dim(gC ∩ π−1(V ) ∩ F) = 1}.
The set Σ(C) is definable in Ran.

We prove the following.

Lemma 4.1. (1) For all g ∈ Σ(C), gC ⊂ π−1(V ).
(2) Define

Σ′(C) = {g ∈ G(R) : g−1F ∩ C 6= ∅}.
Then

Σ(C) ∩ Γ = Σ′(C) ∩ Γ.

Proof. Let g ∈ Σ(C), then

gC ∩ F ⊂ π−1(V ).

By analytic continuation, this implies that gC ⊂ π−1(V ).
The proof of (2) is exactly identical to the proof of [9], Lemma 5.2

and relies on the fact that π−1(V ) is Γ-invariant. �

From previous lemma and theorem 3.1, we obtain the following.

Lemma 4.2. Let

NΣ(C)(n) = |{γ ∈ Γ ∩ Σ(C) : l(γ) ≤ n}|.
For all n large enough,

NΣ(C)(n) ≥ ecn.

The height H(γ) of an element γ of Γ is defined by viewing Γ as a
subgroup of some GLm(Z) and taking the maximum of the absolute
values of the entries. If l(γ) ≤ n, then H(γ) ≤ (mA)n where A is the
maximum of heights of elements of SF .

Let now

Θ(Σ(C), T ) = {g ∈ G(Q) ∩ Σ(C) : H(g) ≤ T}
and

N(Σ(C), T ) = |Θ(Σ(C), T )|
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Lemma 4.3.

N(Σ(C), T ) ≥ T c1 .

We now appeal to the Pila-Wilkie theorem (see [7], Theorem 1.8).
For a definable (in some o-minimal structure) subset Θ ⊂ Rn, we

define Θalg to be the union of all positive dimensional semi-algebraic
subsets contained in Θ. We define Θtr to be Θ\Θalg.

Theorem 4.4 (Pila-Wilkie). Let Θ be a subset of Rn definable in an
o-minimal structure. Let ε > 0. There exists a constant c = c(Θ, ε)
such that for any T ≥ 0,

|{x ∈ Θtr ∩Qn : H(x) ≤ T}| ≤ cT ε.

In view of lemma 4.3, by Pila-Wilkie theorem, there exists a positive
dimensional semi-algebraic subset W ⊂ Σ(C) and by (1) of lemma 4.1,
we have W · C ⊂ π−1(V ). This finishes the proof of theorem 2.3.
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