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Abstract12

Males and females have different reproductive roles and are often subject to contrast-13

ing selection pressures. This sexual antagonism can lead, at a given locus, to different14

alleles being favoured in each sex and, consequently, to genetic variation being main-15

tained in a population. Although the presence of sexually antagonistic polymorphisms16

has been documented across a range of species, their evolutionary dynamics remain17

poorly understood. Here we study sexually antagonistic selection on gene expression,18

which is fundamental to sexual dimorphism, via the evolution of regulatory binding19

sites. We show that for sites longer than 1 nucleotide, expression polymorphism is20

maintained only when intermediate expression levels are deleterious to both sexes. We21

then show that, in a regulatory cascade, expression polymorphism tends to become22

displaced over evolutionary time from the target of sexually antagonistic selection to23

upstream regulators. Our results have consequences for understanding the evolution24

of sexual dimorphism, and provide specific empirical predictions for the regulatory25

architecture of genes under sexually antagonistic selection.26
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Introduction27

Adaptive responses to divergent selection in males and females are hampered by a largely shared28

genome, which slows or even prevents the evolution of sexual dimorphism, where the two sexes29

reach their respective phenotypic optima. In this situation populations can experience the invasion30

of “sexually antagonistic”(SA) alleles that are beneficial in one sex, but deleterious in the other31

[1, 2, 3, 4].32

Sexual antagonism is increasingly recognised as a taxonomically widespread and evolutionarily33

important phenomenon. A wealth of empirical evidence for SA fitness variation across a wide range34

of animal and plant species has now accumulated [5, 6, 7, 8, 9, 10, 11]. Sexual antagonism is thought35

to be a key driver for the evolution of sex chromosomes [12, 13] and sex determination [14, 15, 16],36

to play a role in reproductive evolution (by eroding “good genes” benefits of sexual selection [17]),37

and to mitigate the evolution of reproductive conflict between the sexes [18]. More generally, sexual38

antagonism has been predicted to maintain alleles in balanced polymorphism [19] and thus may39

also contribute to the maintenance of genetic and fitness variation within populations [20, 21] and40

a reduction in the evolvability of both sexes [22].41

The conditions that favor emergence and maintenance of SA variation in a population have been42

explored by a large body of theoretical work. These previous models have captured the fate of SA43

variation in infinite populations [1, 23] under a wide range of dominance effects [24], in the presence44

of genetic drift in finite populations [25, 26], under fluctuating environments [27], and when there45

is selection on linked SA polymorphisms [19, 28]. What they all have in common, however, is that46

they consider small numbers of allelic variants at one or a small number of loci (often a single47

bi-allelic locus).48

It is important to realise that the abstract concept of the ’locus’ in these models imposes49

limitations on the applicability and generality of their results. Specifically, the notion of alleles50

segregating at distinct and unlinked loci makes the implicit assumption that variants with SA fit-51

ness effects can arise by simple, individual mutation events. This is appropriate when considering52

SA selection on protein coding sequences, where non-synonymous substitutions can generate evo-53

lutionary relevant phenotypic variation in males and females. However, the assumption of isolated54

polymorphisms breaks down in the case of regulatory evolution, where the phenotype—and hence55
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fitness—is determined by the match between the sequence of a putative binding site and the motif56

that is recognised by a transcription factor. Here, it is the combination of sequence states at all57

positions of a binding site that matters, rather than the state at any individual position. The58

degeneracy of individual regulatory sequences typifies regulatory evolution but, in the framework59

of existing models of sexual antagonism, would imply complex effects of linkage and epistasis that60

cannot be readily analysed. Accordingly, previous models are of limited use to predict SA evolution61

of gene regulation.62

Developing models which allow us to explore the evolution of gene regulation under SA selec-63

tion is an important goal, because SA selection on regulatory regions is all but inevitable. This64

inevitability arises because sexual dimorphism requires the differential use, and hence expression,65

of genes in males and females and therefore can only arise via a period of opposing selection on gene66

regulation between the sexes [29]. Understanding how sexually dimorphic regulation can evolve,67

and the constraints that may oppose its evolution, necessitates models that can adequately describe68

the evolution of regulatory binding sites under sex-specific selection.69

To model binding site evolution in this way, we here build on previous work that considers70

the fitness landscape of sequence states across the entire binding site by integrating the known71

biophysical properties of TF binding into models of regulatory evolution. These models often72

make the simplifying assumption that each nucleotide within a binding site contributes equally and73

independently to that site’s binding energy. While in reality this may not always be true [30, 31],74

these models are considered to appropriately capture the evolutionary dynamics of gene regulation75

[30, 32, 33, 34, 35, 36].76

We extend these models to study the effects of SA selection on cis-regulatory evolution. We77

explore, via simulation and analysis, the selective conditions that permit invasion and maintenance78

of SA binding site variants in a population. We then expand our modeling framework to consider79

regulatory cascades under SA selection, and determine where in a regulatory chain polymorphisms80

are most likely to arise and persist. We show that regulatory architecture has a fundamental impact81

on our expectations about the selective conditions, and the positions within a regulatory network,82

that give rise to SA polymorphisms. We further show that SA selection can lead to ongoing reor-83

ganisations in regulatory cascades over evolutionary timescales, including abrupt “displacement”84

events, where the location of polymorphism shifts from genes directly under SA selection, to one85
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of their upstream regulators.86

Materials and Methods87

Here we describe the details of the biophysical and population genetic model used to generate our88

results. Transcription factor binding sites are typically around 10 nucleotides long in eukaryotes [35],89

while the population-scaled mutation rate in Drosophila is Neu ∼ 0.01 (where Ne is the effective90

population size and u is the mutation rate per nucleotide site [37]) and an order of magnitude91

lower in humans, placing both species in the weak mutation limit. For simplicity in our simulations92

(which vary population size, binding site length and the number of binding sites) we assume a93

“standard” binding site of length n = 10 and set the per-binding-site mutation rate at µ = 10u.94

We then run all of our simulations with Neµ = 0.1, which keeps all of our simulations in the weak95

mutation limit [37, 38].96

Gene Expression97

The biophysics of transcription factor binding is well approximated by assuming an optimal consen-98

sus sequence, such that each nucleotide in a contiguous sequence of n nucleotides can be considered99

as either “matched” to the consensus sequence or not. Below we refer to the number of matched100

nucleotides as k, with a matched nucleotide independently contributing an amount, ε ∼ 1− 3kBT101

(absolute energy units) [30, 31], to the site’s binding energy. The probability πk that a binding site102

consisting of k matched nucleotides is bound by a TF protein is given by103

πk =
P

P + exp[ε(n− k)]

104

where P is the number of TF proteins available to bind to the site. We assume P = 200 in our105

simulations. The rate of transcription (for a fixed decay rate) and the number of translated proteins106

at the target for a site that up-regulates expression can then be treated, to a first approximation,107

as proportional to the probability that the binding site is bound. If we define the expression E of108

the target gene as the number of expressed proteins proportional to the maximum, we have simply109
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E =
P

P + exp[ε(n− k)]
(1)

110

This expression assumes that the TF is an activator, meaning stronger binding results in higher111

expression levels, with expression E varying between a minimum E ∼ 0 and a maximum E ∼ 1.112

Note that the scale here is arbitrary, since we are not directly modelling the process of transcription113

and translation, we are simply assuming that stronger binding corresponds to higher expression.114

Similarly, we could consider the case of a repressor, in which case E would decrease with k, and115

our results apply equally to this type of regulation.116

Mutations to binding sites are assumed to occur via single nucleotide substitutions, such that117

the probability of increasing the number of matches by 1, from k → k+ 1, is u(n− k)/3 where the118

factor 3 reflects the fact that only one out of the three possible nucleotide changes will correctly119

match to the consensus sequence. Similarly the rate of mutations that decrease the number of120

nucleotide matches by 1, from k → k − 1 is uk. We therefore not only have a multi-allele system121

but one with asymmetric forward and back mutations, which makes analytical treatment difficult122

in most cases.123

Since we are considering diploid organisms each individual carries two alleles, 1 and 2, with two124

expression levels E1 and E2, so that overall expression of the gene in each individual is given by125

E = (E1 +E2)/2. This simplifying assumption of additivity is well supported with several studies126

finding that cis-regulatory alleles tend to have additive effects on gene expression [39, 40].127

Fitness Landscape128

To explore SA selection over gene expression in this framework we assume that the gene under129

SA selection favors binding that results in maximally high expression (E ∼ 1) given the TF input130

P (complete binding) in males and maximally low expression given P (no binding, E ∼ 0) in131

females. As we note above however, expression level E is arbitrary under our model and our results132

correspond to any case where selection favors higher expression in one sex and lower, (including133

non-zero) expression in the other sex. Fitness in both sexes follows a sigmoid function of expression134

levels:135
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wm(E) = (1− sm) + sm
1

1 + exp[−σm(E − Cm)]

wf (E) = (1− sf ) + sf
1

1 + exp[σf (E − Cf )]
(2)

136

where wm(E) is male fitness and wf (E) is female fitness, s defines the overall strength of selection,137

σ determines the steepness of the sigmoid function and C determines the position of the threshold—138

where the contribution of expression to fitness is half its maximum. We can then define139

c = Cf − Cm (3)

140

as the curvature of the landscape, so that if Cf > Cm the average effect of an allele with intermediate141

expression E = 0.5 will be beneficial compared to alleles with high (E = 1) or low (E = 0) expres-142

sion. We note that under positive curvature, the fitness landscape displays beneficial dominance143

reversal (see [41] for review of dominance reversals), such that heterozygotes with intermediate144

expression levels have a net selective advantage relative to homozygotes with either high or low145

expression. By contrast, while under negative curvature the fitness landscape displays deleterious146

dominance reversal owing to intermediate expression being deleterious on average compared to high147

or low expression.148

Results149

A regulatory binding site under SA selection150

Gene expression is controlled, to a large extent, by transcription regulation, where transcription151

factors (TFs) bind to characteristic sequences of DNA (binding sites) upstream of a transcription152

start site. TFs up- or down-regulate gene expression, for example by aiding or hindering the153

acquisition of RNA polymerase at the transcription start site. The biophysical properties of TF154

binding are well understood [30, 32, 33, 34, 35, 36]. Thus, Eq. 1 above describes the expression155
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level, E, of a gene as a function of: i) the number of nucleotides n in its TF binding site, ii)156

the number of nucleotides k within the binding site that match the maximum binding affinity157

“consensus sequence” for the binding site, and iii) the number of TF proteins P available to bind158

the binding site (Fig. 1). A gene whose expression is under SA selection experiences conflicting159

sex-specific pressures on its regulation. Here, we focus on the straightforward case of a somatic gene160

whose expression is selected to increase in males and decrease in females (the sign associated with161

the selection pressures operating on each sex is arbitrary and identical results would be obtained for162

the opposite case). We begin by focusing on a single binding site that up-regulates the expression163

of its target, meaning that high affinity binding sites are favored in males and low affinity sites are164

favoured in females. Eq. 1 thus provides us with the basis for an empirically grounded genotype-165

phenotype map for this system, since it relates the nucleotide sequence at the binding site to the166

expression level of the gene under SA selection. We assume that the level of gene expression E167

relates to fitness by a sigmoidal function (see Methods, Eq. 2) which increases from 1− sm (when168

E = 0) to 1 (when E = 1, where E is scaled such that E = 1 represents that maximum expression169

level) in males and decreases from 1 (when E = 0) to 1− sf (when E = 1) in females.170

The relative steepness of male and female fitness functions has important consequences for the171

evolutionary dynamics of SA binding site variants. In particular, we must distinguish SA fitness172

landscapes with positive and negative curvature, where curvature is determined by average fitness173

at intermediate expression levels (see Methods). Curvature is said to be positive when the average174

fitness across males and females of intermediate expression alleles (E = 1/2) is greater than the175

average fitness of maximum or minimum expression alleles (E = 1 or E = 0) and to be negative176

when the converse is true (Fig. 1).177

To begin, we use individual-based simulations (see SI) to determine the equilibrium expression178

polymorphism at binding sites in SA fitness landscapes with both positive and negative curvature.179

We explore polymorphism as a function of population size N and binding site length n (Fig. 2).180

Because expression is non-linear in the number of correctly matched nucleotides at a binding site181

(Fig. 1 – left), we quantify polymorphism at the expression level rather than at the genetic level.182

Specifically, we calculate the absolute difference in expression between the two alleles carried by an183

individual, averaged across all individuals (see SI). This measure of “expression polymorphism’, p,184

is maximized (p = 1) when one allele of maximum expression and one allele of minimum expression185
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segregate at equal frequencies in the population, resulting in a maximum frequency of heterozygotes186

(0.5) all of which carry two alleles with maximally different expression. Simulating a wide range of187

binding site lengths 1 ≤ n ≤ 100 (Fig. 2 – left), we find that landscapes with negative curvature188

(where intermediate expression is deleterious on average compared to high or low expression) always189

lead to the evolution of high levels of expression polymorphism. Conversely, high levels of expression190

polymorphism never evolve in landscapes with positive curvature (where intermediate expression191

is on average fitter compared to high or low expression), with the notable exception of the limiting192

2-allele case (n = 1). This result is particularly notable since fitness landscapes with positive193

curvature tend to generate pairs of alleles that display dominance reversal, which has been found194

previously to promote maintenance of SA polymorphism [24]. What our results show is that, in195

the fitness landscapes associated with regulatory evolution, the same circumstances that lead to196

dominance reversal also lead to a minimization of sexually antagonistic fitness variation via fixation197

of binding site alleles with intermediate strength. These results hold over a wide range of population198

sizes 102 ≤ N ≤ 104 (Fig. 2 – right).199

Figure 3 illustrates the intuitive explanation for the effect of fitness landscape curvature, in200

terms of the selection gradient experienced by mutations that increase or decrease binding affinity201

in a typical binding site of 10 nucleotides. When curvature is negative, polymorphism is favored202

between pairs of alleles with intermediate binding strength, and the polymorphisms are subject203

to divergent selection gradients, with weaker sites favored to get weaker and stronger sites to204

get stronger. This results in disruptive selection which generally leads to polymorphism. When205

curvature is positive, polymorphism can still sometimes be favored at intermediate expression levels,206

but there is no disruptive selection and alleles of intermediate binding strength are maintained. This207

is because sexual antagonism can be reduced to the mutual advantage of both sexes by fixing an208

allele of intermediate expression that maximises average fitness across males and females. In the209

2-allele case landscape curvature does not result in these contrasting dynamics. This is because210

when n=1 binding is a binary function of whether or not the binding site matches the consensus211

sequence, meaning intermediate binding is not possible. Thus, in this case—even with positive212

curvature—polymorphism is maintained.213
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Polymorphic displacement in a regulatory cascade214

We have focused so far on a single binding site at a single target gene. However, most genes are215

regulated by multiple binding sites and most regulators are themselves subject to regulation, as216

part of a wider regulatory network [42, 43]. This is particularly true for genes involved in sex217

determination and sexual differentiation for example, which are frequently arranged in regulatory218

cascades [44]. In relation to SA selection, this regulatory connectivity creates the potential for219

polymorphism to arise at multiple points in a regulatory cascade, even if only a single downstream220

gene is subject to direct SA selection for expression.221

In order to investigate the invasion and maintenance of SA polymorphism across regulatory222

cascades, we once again assume a gene whose expression is under SA selection such that high223

expression is favored in males and low expression in females. However, we now assume that this224

gene (gene 1) is at the bottom of a three-gene regulatory cascade (Fig. 4c, right), where its expression225

is up-regulated by a second (gene 2) which in turn is up-regulated by a third (gene 3). The third226

gene further has a binding site that up-regulates its own expression in response to some constant227

input signal (see SI).228

Under a fitness landscape with negative curvature, SA selection on the expression of gene 1229

could potentially lead to polymorphism at any of the three binding sites in the cascade. However,230

determining precisely where polymorphism will arise is not straightforward, since there is a great231

deal of epistasis between mutations at different positions in the cascade, meaning that both the232

ordering of mutations as well as their average fitness effects in males and females becomes important233

to subsequent evolutionary dynamics [45]. We therefore used simulations to explore the evolutionary234

dynamics of all three binding sites (Fig. 4a), starting with a three-gene cascade in which all binding235

sites have high affinity (k = n). We observe that a high degree of expression polymorphism initially236

arises at gene 1, only to subsequently shift towards genes 2 and 3 that sit higher up the cascade.237

To understand these dynamics, it is first necessary to evaluate why expression polymorphism238

should initially arise at the gene directly under SA selection for expression (gene 1). Indeed,239

we observe that expression polymorphism almost always initially arises at gene 1 (> 90% of cases,240

Fig. 4b), and that there is an approximately exponential decline in the frequency of initial expression241

polymorphism as we move up the cascade to genes 2 and 3. This pattern can be explained by the242
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buffering properties of regulatory cascades, where changes upstream of a focal gene may only result243

in minimal downstream consequences (as long as binding is strong and proteins are reasonably244

abundant). Here, this means that mutations to the binding sites of genes 2 and 3 initially generate245

little variation in expression of the gene directly under SA selection (gene 1). Accordingly, the246

selection gradients operating on these upstream binding sites are comparatively weak and mutant247

alleles are unlikely to invade and fix. By contrast, the effects of mutations directly in the binding248

site of gene 1 are not buffered by the regulatory cascade, resulting in much larger phenotypic249

changes. This means that the strength of selection on the binding site at gene 1 is strong, making250

it relatively easier for initial polymorphism to arise here (see SI).251

Regulatory buffering can not only explain the initial emergence of regulatory polymorphism at252

gene 1, it is also central to its subsequent displacement. Specifically, displacement is driven by253

advantageous effects of buffering on fitness in heterozygotes. If gene 1 is polymorphic for highly254

divergent binding site alleles, such that homozygotes have either expression E ≈ 1 or E ≈ 0,255

heterozygotes will have average expression E ≈ 0.5 of gene 1. In a fitness landscape with negative256

curvature, E = 0.5 yields the lowest possible fitness and the fitness of heterozygotes is maximally257

depressed. The emergence of an equivalent polymorphism further upstream in the cascade (gene258

2 or gene 3) is then selectively favoured, because it results in heterozygotes expressing at levels259

E > 0.5 or E < 0.5 (while homozygote expression remains unchanged at E ≈ 1 or E ≈ 0) and260

alleviates the fitness costs. Thus, the higher overall fitness associated with expression polymorphism261

at upstream genes will precipitate the upwards displacement of polymorphism, away from gene 1.262

Finally, we find that over long timescales expression polymorphism is most likely to ultimately263

reside at the very top of the regulatory cascade (gene 3). This pattern is initially surprising264

because there is no mean fitness advantage for expression polymorphism at gene 3 relative to gene265

2 (Fig. S4). However, we do observe that the sex-specific fitness of males and females is more similar266

when expression polymorphism resides at gene 3 than at gene 2 (Figs. S5 & S6). This suggests that267

when there is expression polymorphism at gene 2 there is still disruptive selection that can favour268

the invasion of SA alleles further up in the regulatory cascade. Once expression polymorphism is269

at gene 3 in the cascade there is greater scope to “fine-tune” the expression level of gene 1 via the270

intermediary gene 2, resulting in more balanced male and female fitness, and less opportunity for271

disruptive selection.272
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A typical example of polymorphic displacement is shown in Figure 4c. Here, polymorphism273

arises quickly at gene 1 before being displaced to gene 3, which remains polymorphic over many274

generations. As Figures 4a and 4c both illustrate, displacement takes place over long evolutionary275

timescales, with binding sites experiencing around 105 mutations before any displacement occurs.276

We are thus describing a slow and ongoing reorganization of regulatory cascades in response to SA277

selection. We note that this phenomenon is expected to be a general feature of landscapes with278

negative curvature (see SI).279

Discussion280

The regulation of gene expression is not only a prime mechanism by which sex-specific adaptation281

can be achieved, but also an inevitable target for SA selection. By integrating the population282

genetics of SA variants with a biophysical model of transcription factor binding, our study has283

generated a number of new predictions for the dynamics of regulatory evolution under SA selection.284

First, we show that for binding sites of realistic length, SA polymorphisms will only be main-285

tained when intermediate expression levels are, on average, deleterious compared to high or low286

expression levels. In this scenario of negative curvature, the fitness landscape generates disruptive287

selection at intermediate binding that will favor segregating binding site variants of ever more ex-288

treme affinities. In contrast, a fitness landscape with positive curvature will favour a monomorphic,289

intermediate strength binding site, precluding the maintenance of polymorphism. The requirement290

of negative curvature for SA polymorphism only vanishes for the extreme (and unrealistic) case of291

binding site length n = 1, the situation captured by standard 2-allele models of sexual antagonism.292

At this limit, mutational effects on TF binding are so coarse that alleles with intermediate expres-293

sion cannot arise, and SA polymorphism is predicted even with positive curvature. It is important294

to note that our definition of expression polymorphism p (see SI) measures the variation in termi-295

nal gene expression resulting from genetic variation at each locus. This is a highly conservative296

measure, which can only reach values p ∼ 1 if there is both a high level of heterozygosity and the297

different allelic variants have very different effects on gene expression.298

Our prediction that fitness landscapes with negative curvature promote SA binding site varia-299

tion is in contrast with work focused on 2-allele systems [23, 46, 47], which find that the “positive300
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curvature” scenario and dominance reversal [24] promotes polymorphism. In two allele models,301

polymorphism is promoted by effective heterosis, where the fitness of heterozygotes exceeds that302

of both homozygotes when measured across sexes [23] and heterozygotes are favoured by selec-303

tion. In the system we study, by contrast, polymorphism is the result of disruptive selection on304

binding, where intermediate binding strengths are highly deleterious to both sexes (i.e., deleterious305

dominance reversal occurs) and heterozygotes are disfavoured by selection. This fundamental dif-306

ference makes it difficult to directly compare between the two types of model in how restrictive or307

permissive their conditions for polymorphism are.308

Beyond characterising the conditions under which SA expression variation can occur, our model309

allows us to gain insight into the distribution of SA polymorphism across regulatory cascades. Thus,310

we predict that allelic variation will be subject to displacement along the regulatory hierarchy.311

While polymorphisms are most likely to arise at the target of selection, they can subsequently312

move to other genes higher up the regulatory cascade. The ultimate location of polymorphism is313

expected to be that which offers the greatest average fitness to heterozygotes while minimising the314

opportunity for disruptive selection (see SI). In the type of cascade modeled here, this corresponds315

to the gene at the top of the regulatory chain, where buffering of regulatory effects in heterozygotes316

results in expression other than E = 0.5 at the target gene and an associated benefit compared317

to heterozygotes with strong and weak binding alleles at the target gene. However, it must be318

noted that this three-gene cascade is a “minimal complexity” case, and that in reality regulatory319

networks involve many more regulators interacting in many more ways. We emphasize the simple320

case in order to make it clear that the phenomenon of displaced polymorphism arises even here,321

suggesting that in a real network the location of polymorphism arising due to sexual antagonism322

will be hard to predict.323

It is also important to note that the model we present here, as with many other models of sexual324

antagonism, focuses on the initial invasion and maintenance of SA alleles. It is widely assumed that325

over long timescales, sexual antagonism may be resolved by mechanisms that maintain the benefit326

to one sex while removing the cost to the other [48]—ultimately allowing for the restoration of327

the optimal phenotype in all individuals. Accordingly, we can only expect to observe polymorphic328

displacement in real populations if the timescales over which resolution evolves are more substantial329

than those required for displacement to occur. It is currently difficult to say whether that would330
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be expected to be the case, as we still lack empirical data describing the timescales over which331

these mechanisms may evolve (although new studies are starting to suggest that the timescales332

can indeed be substantial [49]). Moreover, it is evident from our simulations that the timing of333

displacement is highly variable. It is therefore reasonable to suppose that whether resolution or334

displacement occur first will vary on a case-by-case basis.335

We predict that SA polymorphism at the top of a cascade will be most beneficial. However,336

it is worth noting that this expectation rests on a number of assumptions that do not always337

hold in real systems. Our simulations show that the displacement of polymorphism is a highly338

stochastic process. Even when assuming strong selection, the fitness differentials that drive upward339

displacement rapidly decline along the cascade. Thus, while displacing polymorphism away from340

the target gene generates significant gains, the location of polymorphisms in the higher echelons of341

the cascade that we observe in our simulations is largely stochastic and dictated by where suitable342

mutations first arise. It is likely that this tendency will be exacerbated in real regulatory systems,343

where regulatory mutations may have significant pleiotropic effects. As a consequence, it will be344

difficult to make precise predictions about the location of polymorphism, other than that it tends345

to be above the downstream target gene.346

A significant factor that will impact displacement is the structure of a regulatory network. Our347

simple linear cascade assumes a single target gene under SA selection, yet real-life regulatory net-348

works may feature multiple target genes. In cases where all of these target genes are aligned in349

terms of the direction of SA selection, such a modular organization may favor and precipitate up-350

ward displacement of regulatory polymorphism. This is because, in this case, modularity amplifies351

the selective benefits of upstream regulatory variants whose effects propagate across all downstream352

target genes. In contrast, co-regulated target genes may be under different types of selection, for ex-353

ample, some targets may be under SA selection with others under directional/stabilising selection.354

Alternatively, multiple targets may be under SA selection, but in opposing directions. In these355

cases, altered regulation of upstream TFs may generate deleterious pleiotropic effects and prevent356

polymorphism from being displaced. We may then either see the persistence of SA polymorphism357

at individual target genes or larger-scale rewiring of gene regulatory interactions to create modules358

of genes under similar selection (see e.g. [50]).359

The location of SA polymorphism within regulatory networks has consequences for our un-360
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derstanding of how sexual antagonism may be eventually resolved—and hence how sex-specific361

development is regulated. The evolution of sex-specific regulation in SA genes is a prime poten-362

tial mechanism to achieve resolution, certainly in the case that we consider here, where adaptive363

conflict between the sexes occurs over expression levels (rather than coding sequence) of a gene.364

As previously discussed, we only expect to observe polymorphic displacement if the timescale for365

displacement is shorter than that of resolution. In those cases where polymorphic displacement366

precedes resolution, we would expect a corresponding shift in the level at which eventual resolu-367

tion may occur. Thus, we would also expect sex-specific regulation to evolve at higher levels of368

the regulatory hierarchy than would necessarily occur if resolution was faster than polymorphic369

displacement. Reflecting the arguments on modularity above, this should particularly be the case370

where genes under SA selection are organised into co-regulated modules. Not only should up-371

wards displacement of polymorphism be more strongly selected in these cases, but also its eventual372

resolution.373

Our work has shown that SA selection acting on gene expression can give rise to counter-intuitive374

evolutionary dynamics across regulatory networks. These are driven by the conflicting impacts of375

the inherent robustness of networks, whereby changes to the expression of an upstream regulator are376

frequently compensated for by others downstream. Such buffering tends to prevent the emergence of377

initial polymorphism at upstream genes, but once such polymorphism exists at downstream targets,378

favors its upward displacement. Over time, we would therefore expect both SA polymorphism and379

the sex-specific regulation that may arise to resolve it to reside in the upper reaches of regulatory380

networks. Testing these predictions directly is difficult, as current data on SA loci and sex-specific381

resolution are relatively sparse. Interestingly, however, parallels exist between sex-specific selection382

pressures and directional selection in fluctuating environments [51]. It is therefore plausible that383

evolutionary dynamics analogous to those described here occur in networks governing the response384

to alternating environmental conditions, allowing the use of microbial evolution for experimental385

tests of our theory.386
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Figure Legends531

Figure 1: Sexually antagonistic selection on gene expression. Regulation of gene expression532

by TF binding sites is well understood at a mechanistic level, allowing us to construct explicit533

genotype-phenotype maps. In the case we consider, expression level E increases with the number534

of nucleotides k correctly matched to a consensus sequence (left). Binding site length n is well535

known to have important consequences for the dynamics of binding site evolution [36, 35] generally.536

However, population genetic models of sexual antagonism typically focus either on a 2-allele system537

[23, 1, 24, 25, 26] (corresponding to a binding site of 1nt in length), or in some contexts on the538

continuum limit and infinite alleles [52]. Eukaryotic TF binding sites, in contrast, are typically539

around 10 nucleotides long [35], and vary from as short as 5nt to > 20nt in some cases. By varying540

the binding site length n and characterizing a binding site by the number of matched nucleotides k541

we can generate a system with as few as 2-alleles (top - left) to an infinite number of alleles in the542

continuum limit (bottom - left). A realistic eukaryotic TF binding site length of n = 10nt results543

in 11 alleles at a given locus. We assume that expression is selected to be high in males (blue)544

and low in females (red) (right), and we consider fitness landscapes with different “curvatures”545

corresponding to different levels of average fitness at intermediate expression levels.546

Figure 2: Expression polymorphism at a single binding site. Results of individual based547

simulations showing the amount of polymorphism in gene expression (p – see SI) as a function of548

(left) binding site length n, where we construct a single binding site with length varying from 1549

(below the observed range of real binding site lengths) to 100 nucleotides (well above the observed550

range of real binding site lengths) and calculate expression from Eq. 1. and (right) population size551

N for landscapes with negative (dark gray) and positive (light gray) curvature. Points show the552

ensemble average of 104 runs at each parameter value. Default population size was fixed at N = 103553

and default binding site length at n = 10. Per-binding site mutation rates were set to Neµ = 0.1,554

selection was assumed to be strong (sm = sf = 0.1). Curvature was set to c = ±0.2 and the fitness555

landscape had steepness h = 10 (see Methods). Each simulation was run until 106 mutations per556

binding site had occurred.557

Figure 3: Pairwise invasion plot for a single binding site. We calculated the selection558
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gradient (see SI) for a “typical” binding site of 10 nucleotides, assuming weak mutation so that559

at most two alleles segregate in a population at a given time, as a function of fitness landscape560

curvature c. We also used a two-allele approximation to determine whether polymorphism was561

favored (see SI for details), with the polymorphic region indicated in dark gray. Solid purple562

lines indicate stable monomorphic equilibria that arise due to mutation and drift while dashed563

lines indicate unstable equilibria. Blue arrows indicate the direction of the selection gradient564

on an invading allele that benefits males and red the direction of selection on an invading allele565

benefiting females. Black arrows indicate the direction of evolution in a monomorphic population566

under antagonistic selection. Note that when curvature is negative (left hand side, c < 0) the567

evolutionary dynamics lead to convergence on the intermediate, unstable equilibrium. Once this568

has been reached, the population experiences disruptive selection, a scenario that results in the569

emergence and maintenance of SA polymorphism. When curvature is positive (right hand side570

c > 0) the evolutionary dynamics also converge on the intermediate equilibrium, but since this is571

stable, with males and females both experiencing high fitness, polymorphism is limited and sexual572

antagonism is minimal.573

Figure 4: Displaced polymorphism in a regulatory cascade under a fitness landscape574

with negative curvature. a) We observed the average expression polymorphism for each gene575

over evolutionary time. The initial phase (inset) sees expression polymorphism arise at gene 1576

(yellow) and beginning to pass to gene 2 (red) and gene 3 (blue) higher up the cascade. b) We577

determined where in the cascade expression polymorphism of p > 0.5 first arose. In > 90% of578

simulation runs expression polymorphism initially arises at gene 1, with the frequency declining579

approximately exponentially with position in the cascade. c) A sample path for a single simulation580

run shows the dynamics of displacement explicitly, with gene 1 quickly acquiring polymorphism581

until a displacement event shifts the polymorphism up the chain to gene 3. Shading indicates allele582

frequencies within the population. These individual based simulations for a cascade of three genes583

were carried out using the same default parameters given in Figure 2.584
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