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Highlights 

 We discuss the benefit of application of various Omics technologies to the NCLs 

 We discuss the functional Omics based studies so far applied to NCLs 

 We summarise the findings of biomarker-based Omics studies for NCL 

 We show a comparative systems biology analysis of data from published NCL Omics studies  

 

Abstract  

The neuronal ceroid lipofuscinoses are a group of severe and progressive neurodegenerative 

disorders, which generally present during childhood. With new treatments emerging on the horizon, 

there is a growing need to understand the specific disease mechanisms as well as identify 

prospective biomarkers for use to stratify patients and monitor treatment. The use of Omics 

technologies to NCLs have the potential to address this need. We discuss the recent use and 

outcomes of Omics to various forms of NCL including identification of interactomes, affected 

biological pathways and potential biomarker candidates. We also identify common pathways 

affected in NCL across the reviewed studies.    

Keywords: Neuronal ceroid lipofuscinoses; Batten disease; CLN1-14; proteomics; metabolomics; 
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Introduction 

In recent years there has been a revolution in the field of biological understanding driven by 

technological advances in mass screening approaches. This has resulted in an ever-expanding list of 

available “Omics” technologies. Omics include the genome (DNA) through to the transcriptome 

(RNA) and the proteome (protein), and more recently the metabolome (metabolic products). It is the 

integrated study of data derived from investigations of these distinct Omics that gives rise to 

systems biology, allowing us to use the data to answer basic fundamental questions and when 

applied to a disease context, to identify affected biological pathways and potential disease 

mechanisms or drug targets. 

Genomics technologies have progressed significantly over the last few years with the rapid 

development of next-generation sequencing (NGS) and enabling the initiation of national 

programmes such as the 100, 000 genomes project in the UK  [1] and the Precision Medicine 

initiative in the US to sequence 1 million genomes [2].  

Transcriptomic technologies have also advanced in recent years. Such technologies largely consist of 

microarray platforms and high throughput RNA sequencing (RNA-Seq) [3]. Such technologies confer 

profound traction in the field given that a high degree of coverage of the transcriptome may be 

achieved routinely. By comparison, technologies for studying the other Omics are not nearly as 

automated. However, given the large volumes of data emerging from transcriptomic initiatives, 

there is a foreseeable need for the biochemical validation of many findings. Ultimately, investigation 

at the protein level is required to gain the most accurate insight into the molecular dynamics of the 

cell. For example, it has recently been reported that transcriptomic output is heavily influenced by 

epigenetic factors whilst this is not the case for the proteome [4]. 

Mass spectrometry-based technologies are typically used for the study of proteomics and 

metabolomics and their offshoot Omics such as peptidomics and glycomics. However, advances in 

their analysis have not been as rapid in development when compared to the other Omics already 

discussed. This is partially due to the complexity of the sample mixture. For example, there are 

approximately eight splice variants per gene, and potentially ten post-translational modifications per 

splice variant. There are other confounding factors for proteomics which must be accounted for in 

terms of the technological development [5]. For example, unlike genomics or transcriptomics 

methods, there is no equivalent to the DNA polymerase reaction; therefore, while the endogenous 

protein signal or “starting material” may be enriched, it cannot be amplified [6]. It should also be 

noted that approximately 97% of cellular protein (w/w) is encoded by only 3% of the genome.  

Metabolomics is the most downstream and last of the “core” Omics and typically performed using 

either (or both) 1H NMR or mass spectrometry-based platforms. Untargeted metabolomics in IEM is 

a growing area as the emergence of NGS has resulted in the increase of diagnostic testing to confirm 

Variants of Unknown Significance (VUS).  For new or uncharacterised disorders there are no clinical 

tests available and this is where untargeted metabolic profiling is proving valuable [7]. 

 

Why apply Omics technologies to the Neuronal Ceroid Lipofuscinoses (NCLs)?  

The NCLs are part of a larger group of the IEM and occur due to mutations in over a dozen individual 

genes [8]. While Omics approaches have been traditionally utilised in the study of common diseases, 

they have only more recently been applied to rare conditions, in particular in the IEMs/NCLs. 
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Critically, the study of rare diseases including the NCLs is confined by comparably small patient 

populations and accompanying complications, such as limited tissue sampling availability and poor 

public awareness. Consequentially, the research support network and associated available funding 

for the NCLs and other rare diseases are not as well developed as those for conditions which are 

more prominent in the public eye, i.e. diseases associated with advancing age (e.g. Alzheimer’s, 

Parkinson’s, or diabetes). While the NCLs are clinically stratified by their causative gene mutation, 

outlined previously in this review and in the table below, their aetiological diversity appears to 

converge upon a spectrum of common clinical phenotypes. It is therefore likely that the molecular 

origins underpinning the individual NCLs also converge upon common pathological cascades, 

resulting in unifying cellular pathogeneses including defects in lysosomal function, mitochondrial 

dysfunction, and alterations in the endoplasmic reticulum and endo-lysosomal trafficking [9-11]. 

Table 1 highlights some recent studies incorporating these Omics technologies and some of the 

exciting findings from these studies will be discussed in more detail below. This work represents a 

window into what is achievable in terms of Omics application to such disorders. Critically, due to 

advances in the tools and technologies underpinning these -omics investigations we can likely expect 

a dramatic increase in our understanding of the molecular mechanisms underpinning these 

conditions in the coming years. 

 

Omics to characterise the NCL interactome 

Proteomic technologies can be used not only to look at the proteome at the level of whole tissues or 

cells but also through the application to functional studies of proteins. For example, extensive work 

at the University of Helsinki using interactome-centric proteomics has elucidated interacting 

partners of CLN3, CLN5 [12] and CLN1 [13]. In these studies, the authors used neuronal SH-SY5Y cells  

a twice-subcloned cell line derived from the SK-N-SH neuroblastoma cell line which serves as a 

model for neurodegenerative disorders. SH-SY5Y were transfected with tagged CLN proteins and 

subjected to a technique known as tandem affinity purified mass spectrometry (TAP-MS).  Tagged 

CLN proteins were isolated from the SH-SY5Y cells by affinity purification. Isolated CLN complexes 

were analysed using proteomic techniques. Analysis of the CLN3 interactome confirmed 16 known 

interactors as well as identifying a further 43 novel candidates. Functional annotation of these CLN3 

interactors revealed ‘transmembrane transport’ as a key annotated function for the interacting 

proteins. This same procedure was applied to CLN5 protein and identified 31 interactors. 

Interestingly eighteen of these were identified as being in common with the CLN3 interactome. 

Many of these overlapping CLN3/5 common interactors were mitochondrial carriers associated with 

neurological disease and calcium binding roles.  

In a separate study the same group used TAP-MS methodology to characterise the binding partners 

of palmitoyl protein thioesterase 1 (PPT1) the affected gene in CLN1. Scifo et al [12] identified 23 

other proteins in complex with PPT1. Three of these proteins were predicted to be palmitoylated 

substrates whilst others were associated largely with mitochondrial synthesis and other 

mitochondrial functions. Another very recent CLN1 interactome study on mouse brain lysate [14] 

corroborates some of the interacting proteins found in the previous studies, in particular, the 

protein - Transitional endoplasmic reticulum ATPase  (VCP) is consistently detected in the CLN1 

interactome. VCP is associated with or causative for forms of other neurodegenerative disorders 

such as amyotrophic lateral sclerosis types 8 or 14, with or without frontotemporal dementia [15]. 

VCP has also been implicated as a regulator of Wallerian degeneration [16]. Other PPT1 interactors 

ATP synthase subunit beta, mitochondrial (ATP5B), dihydropyrimidinase-related protein 1 (CRMP1), 

microtubule-associated protein 1B (MAP1B) and pyruvate dehydrogenase E1 component subunit 
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alpha (PDHA1), were confirmed to be differentially regulated in previous work by the same group 

[17]. The nature of PPT1, its role as a protein modifying enzyme means that many potential 

biological pathways are affected giving rise to the complex metabolic phenotype observed in CLN1. 

The amoeboid organism Dictyostelium has been shown to act as a useful model to study CLN5. Using 

this model Huber et al have determined CLN5 to be a glycoside hydrolase and used 

immunoprecipitation coupled with mass spectrometry to identify interacting proteins that were also 

associated and implicated in the pathogenesis of other of CLN diseases such as Tpp1 (Cln2), 

cathepsin D (Cln10) and  cathepsin F (Cln13) [18].  

Omics to identify the molecular consequences of NCL causing mutations  

CLN1: Tikka et al [17] have performed proteome analysis of laser-captured thalamus regions of CLN1 

knockout mice models. Looking at pre-symptomatic and symptomatic stages of disease they were 

able to identify 36 proteins altered pre-symptomatically of which 5 were previously identified in the 

CLN1 interactome study. These included CMRP1/MAP1B and PDHA1. The key downregulated 

pathways identified in pre-symptomatic CLN1 brain tissues were biological processes important for 

the proper function of neurons, including neuritogenesis, branching, and microtubule dynamics. 

Pathways identified at early affected stages (3-month old thalamus) ranged from those associated 

with nervous system development, cellular signalling, assembly and organisation. Common 

molecular features (as determined by gene ontology analysis) that spanned the pre and 

symptomatic stages included metabolic pathways involving the 2-ketoglutarate dehydrogenase 

complex TCA cycle and mitochondrial dysfunction [17]. 

Similar findings from the same group were made using transcriptomic profiling of transfected SH-

SY5Y with CLN1 from overexpressing WT CLN1 and 5 selected patient mutations [19]. At the RNA 

level, they confirmed changes in gene expression of genes associated with neurite formation and 

neuronal transmission. Specifically, neuritogenesis and proliferation of neuronal processes which 

ties in convincingly with the proteomic data reported for CLN1 murine thalamic samples (as 

described above) [17]. 

Segal-Salto et al [20] used a targeted approach to functionally characterise CLN1 affected pathways. 

Their approach was to specifically target the membrane proteins of neuronal-like SH-SY5Y cells and 

enrich the acylated membrane proteins. Their study showed 88 proteins were altered in CLN1 

membranes. Of these were ciliogenesis regulating proteins Rab3IP, Rab8 and Rab11. This led to the 

authors to look more closely at cilia in CLN1 tissues where they found reduced palmitoylation of 

Rab3IP. This effectively results in incorrect intracellular localisation of Rab3IP and ultimately results 

in defective cilia. The authors, therefore, propose that CLN1 should also be considered as a 

ciliopathy. 

CLN3: Llavero Hurtado et al [21] used proteomics on isolated pre-synaptic populations from Cln3 −/− 

mouse brains to identify molecular modulators of synaptic stability and degeneration. Key pathways 

identified as correlating with regional synaptic vulnerability and validated using human post-mortem 

brain samples included valine catabolism and Rho signalling pathways. These pathways when 

assessed for potential to modulate disease processes in vivo using a Drosophila CLN3 model were 

indeed capable of altering phenotypic presentation following genetic and/or pharmacological 

targeting. 

CLN4: Using proteomics on human adult CLN4 brain tissue and DNAJC5/CLN4 knock out mice 

Henderson et al [22] identified mislocalisation and upregulation of PPT1. Further analysis revealed 

that presynaptic co-chaperone CSP (encoded by DNAJC5/CLN4) is a substrate of PPT1 and appears to 
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have a functional effect on PPT1 as its absence affects the palmitoylation of other PPT1 substrates, 

particularly lysosomal and synaptic proteins. This study indicates a direct cross-talk between these 

two CLN disease proteins implicating a shared pathological mechanism between these two forms of 

NCL.  

CLN10: Mutations in the Cathepsin D gene are known to cause the severe NCL CLN10. Koch et al [23] 

also from the Helsinki University research group proteomically profiled isolated synapses from a 

mouse knock out model of Cathepsin D and found 453 significantly altered proteins. Subsequent 

bioinformatics analyses indicated key affected pathways were cytoskeletal disruption and cell 

spreading. Wound healing assays in cathepsin D deficient cells confirmed strongly compromised 

spatial orientation, associated with changes in the distribution of focal adhesions and integrin 

assembly. It has been proposed that such changes may contribute to the early synaptic alterations 

and subsequent neuronal loss observed in CLN10. 

CLN11: The NCLs, in particular CLN11, have attracted attention from the adult neurodegenerative 

field due to the shared pathology with adult frontal temporal dementia (FTD) [24]. Individuals 

heterozygous for the progranulin gene GRN also display similar findings such as skin biopsies 

showing enlarged lysosomes containing lamellar, pseudomembranous “fingerprint”-like inclusions of 

the type seen in NCL. However, the neurodegeneration in these patients is adult onset and thus 

occurs much later. Therefore, the pathogenesis of FTD and NCL caused by GRN deficiency may share 

gene-dosage-dependent mechanisms involving lysosomal dysfunction [25]. Evers et al [26] 

performed lipidomic and transcriptomic analysis of heterozygote (GRN+/-) and homozygote (GRN-/-) 

mice tissues as well as GRN FTD patient samples to identify the key pathways affected by GRN 

deficiency. The unbiased lipidomic analysis highlighted an increase of triacylglycerol’s (TAGS) and a 

reduction of phosphatidylserines (PS) and phosphatidylethanolamines (PE) in the mice. 

Complementary transcriptomic analysis performed alongside with the lipidomic analysis included 

another neurodegenerative lysosomal storage disorder, Niemann pick C (NPC) disease as a disease 

control. This analysis revealed a subset of altered lysosomal genes in the GRN mutant mice. Only a 

small proportion of the differently expressed genes overlapped with NPC. Those that didn’t overlap 

included immune and lipid metabolic related genes specific to GRN NCL molecular pathology.   

Omics for NCL Biomarkers 

In recent years there has been increasing focus on using Omics technologies directly on patient 

material, for biomarker studies. Biomarkers are needed for the monitoring of new treatments such 

as the recently FDA and EMA approved enzyme replacement therapy for CLN2 [27] and for other 

emerging novel therapies [28]. Whist the mutation and defective protein and presence of lipofuscin 

deposits are the gold standard way to diagnose an NCL patient, they are not suitable for monitoring 

treatment or predicting disease severity. Other inborn errors of metabolism often result in an 

accumulated or reduced substrate due to a block in a pathway such as accumulation of 

glycosaminoglycans in the mucopolysaccharidoses disorders, or glycosphingolipids in the 

glycosphingolipidoses disorders. For the NCLs, this is comparably more difficult due to both their 

complex genetic aetiologies as well as major gaps in the understanding of the molecular 

pathogenesis of the disease. Applying Omics technologies to the NCLs may reveal downstream 

affected molecules that could serve as biomarkers if they were to both correlate appropriately with 

disease progression and respond to treatment. Functional studies using Omics technologies may 

provide potential pathways to probe for candidate biomarkers. However, an ideal biomarker must 

be both accessible and ideally non-invasive (ie. from urine, plasma or bloodspots) as well as easily 

detectable by immune-based or mass spectrometry methods for clinical laboratory analysis.  

Additionally, it must be robust (ie. not easily affected by environmental conditions) and 
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reproducible. Many candidate biomarkers eventually fail due to not meeting these criteria. The ideal 

approach to biomarker discovery using Omics technologies is analysing an appropriate cohort of 

samples. This can often address the efficacy issues. With NCL being a rare disease acquiring the 

appropriate cohort of patient samples are very challenging. Animal models can help address this 

issue but even if candidate biomarkers are found from animal studies these biomarkers still need to 

be validated in humans if they are to eventually be of clinical use.  

Recent attempts at biomarker discovery using Omics approaches include work by Hersrud et al [29]. 

The authors used a multiple proteomic approach to screen plasma for biomarker discovery in 

juvenile NCL. They began by using a global unbiased 2D Difference Gel electrophoresis method 

combined with 2 multiplex immunoassay panels MILLIPLEX® MAP magnetic immunoassay panel (26 

serum protein panel) and the DiscoveryMAP ® 1.0 immunoassay from Myriad-RBM (MR) (190 

protein panel) before attempting validation of differently expressed proteins by western blot. 

Ultimately, the immunoassay panels proved the most effective and identified candidates already 

associated with neurodegeneration Brain-derived neurotrophic factor, Neuronal cell adhesion 

molecule, Clusterin, Adiponectin, Apolipoprotein E, Vascular cell adhesion protein 1, and Myoglobin 

were significantly elevated in JNCL.   

CSF-based biomarker discovery in NCLs has been explored by Sleat et al [30] by proteomic profiling 

of post-mortem brain and CSF from patients with CLN1, CLN2, and CLN3 disease. Their findings 

reported profound changes in the proteomes of all NCL patients compared to non-NCL controls. 

Interestingly, they observed that CLN2 and CLN3 exhibited a greater similarity in changes than with 

CLN1 which corresponds to the relationship between the respective observed clinical phenotypes. 

Importantly, the CSF profiles of all diseases showed 18 proteins commonly altered in all 3 diseases as 

well as some altered in specific NCLs. Promising candidates include vimentin which is a cellular 

cytoskeletal protein and also cellular retinoic acid-binding protein 1. The candidates presented in the 

Sleat study serve as potential disease biomarker candidates; however, until their efficacy can be 

demonstrated alongside an appropriately altered treatment response profile, their utility remains 

undetermined.  

Sindelar et al [31] used untargeted metabolomic profiling on CSF from CLN2 patients and identified 

disease severity metabolite markers by correlating with clinical disease severity scores, identifying 

29 metabolites that reflected disease severity. Using tandem mass spectrometry and target 

fragmentation they were able to confidently identify 8 of these compounds as being down-regulated 

in CLN2 CSF. Seven of these identified metabolites were acetylated amino acids which led the 

authors to speculate that the reduction of these modified amino acids could be a result of the lack of 

tripeptide cleavage by the CLN2 defective TPP1 enzyme leaving less n-terminal peptides available for 

acetylation.  Two of the key metabolites affected in this study were N-acetylaspartyglutamic acid a 

common neurotransmitter and Glycero-3-phosphoinositol.  Glycero-3-phosphoinositol is converted 

to myo-inositol and glycerol 3-phosphate by glycerophosphodiester phosphodiesterase an enzyme 

implicated in neurite formation which is a pathway previously mentioned in CLN1 proteomics 

studies [17, 19]. Interestingly, some of these CLN2 identified brain metabolites such as myo-inositol 

have been described altered in another neurodegenerative IEM, mucopolysaccharidoses II by 

quantitative in vivo brain magnetic resonance spectroscopic monitoring [32]. These findings 

therefore may additionally serve as general markers of early onset neurodegeneration.  

 

Common features of NCLs – A comparison of existing NCL Omics studies 
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The capacity for a systems biology-based approach is not only advantageous in contextualising –

omics results into mechanisms driving a specific disease, but also invites the possibility to identify 

molecular overlaps uniting the NCLs. Similar approaches have previously highlighted conserved 

molecular profiles uniting members of the motor neuron disease family [33-35] and the muscular 

dystrophies [36]. Although many –omics experiments generate large and often seemingly 

impenetrable datasets, the application of stringent filtering approaches and an unbiased analysis 

methodology to a diverse set of independent NCL studies suggests several conserved key features.  

Here we will highlight shared molecular features uniting the NCLs, derived from our analysis linking 

independent proteomic studies of CLN1, CLN2, CLN3 and CLN4 post-mortem tissue, and disease 

models. Detailed methods used for this comparative analysis are given in supplementary 

information.  
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Figure 1. (A) Overlay of independent proteomic analyses of post-mortem brain in CLN1 [30] [17] [20], 

CLN2 [30], CLN3 and CLN4 [22]patients and a CLN3 mouse model [21] [30]  as well as the neuronal 

PPT1 interactome [13] highlights conserved alterations in oxidative phosphorylation and 

mitochondrial dysfunction as top altered canonical pathways occurring across all studies.  Chart was 

created in Ingenuity Pathway Analysis from an overlay of datasets comprised of proteomic changes 

in respective CLN1-4 tissue compared to wildtype control and the PPT1 interactome [13]. Canonical 

pathway scores and subsequent ranking for all analyses including this comparison are derived from a 
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Fisher’s Exact Test calculating overlap between molecules in each respective input dataset and 

number of molecules comprising canonical pathway defined by Ingenuity Systems Database. 

Changes in oxidative phosphorylation comprised the top conserved canonical pathway according to 

Fisher’s exact test calculated across all studies. Canonical pathway identification and ranking were 

initially performed under omission of protein expression changes between studies to account for the 

PPT1 interactome [13]. After top canonical pathways were determined by this method, data derived 

from all CLN1-3 sources described previously was consolidated in a cross-study comparative analysis 

inclusive of individual protein changes within and between studies as represented by (B) Conserved 

alterations in electron transport chain components comprise the top canonical pathway 

dysregulated across all studies.   Schematic is derived from Ingenuity Pathway Analysis overlay of 

datasets following conversion into fold-change ratios representing expression alteration in the 

respective disease model compared to wildtype control. Subunits highlighted in purple are present 

across all input sources; green represents a downregulation in gene expression, while red represents 

an upregulation in gene expression. Highlighted white subunits indicate that no expression profile 

data is available for one individual input source (eg. interactome study [13]).  

(C) Overlay of independent proteomic analyses highlights Rapamycin-insensitive companion of 

mTOR (RICTOR) as the top “master regulator” linking all proteomic changes occurring across studies. 

Schematic depicts top causal network as defined by z-score weighing the predicted expression 

change of molecules as defined by Ingenuity Knowledge Database against actual expression change 

of molecules reported in input dataset(s). Activation status of causal master regulator (RICTOR) in 

relationship to downstream protein changes is orange to represent “activation.” Expression profile 

of target molecules or nodes within input datasets are depicted in red (upregulation) or green 

(downregulation); expression profiles were confirmed to exhibit the same directionality across all 

input sources. Relationships of upstream regulator activation to molecular changes present across all 

aforementioned proteomic datasets are conveyed by color of line: blue represents inhibition of 

expression of target molecules, orange represents activation of expression of target molecules, and 

yellow represents disagreement, e.g. target molecule is predicted to be inhibited by RICTOR but is 

reported to be upregulated in expression within one or more input datasets.  

 

Canonical pathway analysis shows a conserved dysregulation in oxidative phosphorylation processes 

across independent studies of CLN1-4 disease models.  

As a means of gaining initial insight into any commonly dysregulated processes attributed to the 

individual protein alterations reported by independent proteomic studies of CLN1, CLN2, CLN3 and 

CLN4 disease models and patient post-mortem tissue, we used the canonical pathways function 

within Ingenuity Pathway Analysis (IPA) (see Methods supplementary information and Figure 1). 

Interestingly we identified several canonical pathways which appeared to be consistently perturbed 

between CLN1, CLN2, CLN3 and CLN4 post-mortem tissue and disease models; top cascades are 

outlined below in Figure 1A and are strikingly dominated by conserved disruptions to mitochondrial 

and oxidative phosphorylation processes. An example cascade represented by Figure 1B highlights 

those select and specific subunits of the electron transport chain appear differentially expressed 

across the CLN1, CLN2, CLN3 and CLN4 studies comprising this analysis. It is of interest to note that, 

while it is tempting to infer that this data represents a generalised mitochondrial deficit, specific 

subunits of Complexes I, II and IV of the electron transport chain, highlighted in red (indicating an 

increase in expression), are consistently changed in opposition to the remainder of the pathway 

components between CLN1, CLN2 CLN3 and CLN4, suggesting that in the context of the NCLs, it may 

be important to regard individual components of mitochondrial biology rather than generalizing a 
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global alteration. It is, however, difficult to ascertain without in vivo validation across multiple 

disease models whether these subunit mis-expression data confer a causal contribution rather than 

a downstream consequence of the neurodegeneration unifying the NCLs. While an Omics approach 

provides a unique advantage in pinpointing molecular overlaps between studies that may otherwise 

remain unrecognised, these findings would best serve as a springboard for future studies, such as a 

more thorough dissection of a pre-symptomatic proteomic signature within and between the NCLs, 

in order to better understand how this reported molecular dysfunction promotes a common NCL 

pathophysiology.  

 

Converging analysis of independent CLN1-4 disease studies identifies Rapamycin-insensitive 

companion of mTOR (RICTOR) as a top upstream regulator of proteomic dysregulation present across 

the NCLs.  

Our analyses thus far have identified conserved “pre-symptomatic” protein changes that we have 

been able to track between studies of CLN1, CLN2, CLN3 and CLN4 post-mortem tissue and mouse 

models, which putatively comprise a unified dysregulation in several key cellular pathways across 

discreet NCLs. It was, therefore, next of interest to determine whether these conserved protein 

changes were altered as the result of a common upstream regulatory perturbation, which may 

provide further insight into disease pathogenesis as well as offer the possibility for a therapeutically 

targetable molecular “signature” between conditions. To do this, we performed an upstream 

regulatory analysis using IPA using the same input data sources, with the addition of a 

“symptomatic” dataset by Tikka et al [17]. to include the possibility of tracing downstream effector 

regulation over the disease time course. Interestingly, RICTOR was reported to be the top upstream 

regulator of protein changes reported in independent studies of CLN1-4 disease (Table 2). Through 

the causal network function in IPA, it was possible to extract which specific molecular changes within 

each CLN1-4 dataset have been previously reported in the literature to be downstream of RICTOR 

activation (Table S3). By overlaying each target molecule of RICTOR altered within each individual 

proteomic study, it was possible to then generate a conserved “interactome” comprising protein 

targets within our input datasets in relation to RICTOR, with graphical representation of the 

predicted effect of RICTOR upon its targets compared to the actual changes reported within the 

datasets (Figure 1C). Interestingly, separate targeting of the TORC1 and TORC2 (including RICTOR) 

pathways have been strongly implicated in the maintenance of neuronal stability and modification of 

phenotype in vivo from Drosophila to mouse models of NCLs [37-39].  
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Analysis Tissue Upstream 
Regulator 

Predicted 
Activation 
State 

Activation 
z-score 

p-value 
of 
overlap 

Target molecules in dataset 

Sleat et 
al [25]  

CLN1 
Brain 

RICTOR Activated 6.582 3.75E-
38 

ATP5F1A, ATP5F1B, ATP5F1C, ATP5MG, ATP5PB, ATP5PD, ATP5PO, ATP6AP1, ATP6V0A1, 
ATP6V0D1, ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1D, ATP6V1E1, ATP6V1F, ATP6V1G1, 
ATP6V1G2, ATP6V1H, COX4I1, COX5A, COX6B1, COX7A1, COX7A2, COX7A2L, CYC1, 
FABP5, LHPP, NCAM2, NDUFA10, NDUFA11, NDUFA2, NDUFA3, NDUFA4, NDUFA5, 
NDUFA8, NDUFA9, NDUFB10, NDUFB3, NDUFB4, NDUFB5, NDUFB8, NDUFB9, NDUFC2, 
NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1, NDUFV2, NDUFV3, 
PRKCB, PRKCE, PRKCG, PSMB2, PSMC1, PSMC2, PSMC3, PSMC4, PSMD13, PSMD3, 
PSME2, PTEN, RPL18, RPL28, RPL4, RPL7, RPL8, SDHA, SDHB, UQCRB, UQCRC1, UQCRC2, 
UQCRFS1, UQCRQ 

Sleat et 
al [25]  

CLN2 
Brain 

RICTOR Activated 7.057 1.18E-
36 

ATP5F1A, ATP5F1B, ATP5F1C, ATP5F1D, ATP5MC1, ATP5MG, ATP5PB, ATP5PD, ATP5PO, 
ATP6AP1, ATP6V0A1, ATP6V0D1, ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1D, ATP6V1E1, 
ATP6V1F, ATP6V1G1, ATP6V1G2, ATP6V1H, COX4I1, COX5A, COX6B1, COX7A1, COX7A2, 
COX7A2L, CYC1, FABP5, NDUFA10, NDUFA11, NDUFA3, NDUFA4, NDUFA8, NDUFA9, 
NDUFB10, NDUFB3, NDUFB4, NDUFB5, NDUFB8, NDUFB9, NDUFC2, NDUFS1, NDUFS2, 
NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1, NDUFV2, PPA1, PRKCE, PSMA3, PSMA4, 
PSMA6, PSMB1, PSMB5, PSMB6, RPS18, SDHA, SDHB, UQCRB, UQCRC1, UQCRC2, 
UQCRFS1, UQCRQ 

Sleat et 
al [25]  

CLN3 
Brain 

RICTOR Activated 6.505 1.16E-
31 

ATP5F1A, ATP5F1B, ATP5F1C, ATP5MC1, ATP5PB, ATP5PD, ATP5PO, ATP6AP1, 
ATP6V0A1, ATP6V0D1, ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1D, ATP6V1E1, ATP6V1F, 
ATP6V1G1, ATP6V1G2, COX4I1, COX5A, COX6B1, COX7A2, COX7A2L, NDUFA10, 
NDUFA11, NDUFA3, NDUFA8, NDUFA9, NDUFB10, NDUFB3, NDUFB4, NDUFB5, NDUFB9, 
NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1, NDUFV2, PRKCE, 
PSMA3, SDHA, SDHB, UQCRB, UQCRC1, UQCRC2, UQCRFS1, UQCRQ 

Henders
on et al 
[26] 

CLN4 
Brain 

RICTOR Inhibited -2 1.55E-
0.5 

NDUFA8,  NDUFA9,  COX7A2,  NDUFA5 

Llavero 
Hurtado 

CLN3 
Thala

RICTOR Activated 4.259 5.63E-
43 

ATP5F1A, ATP5F1B, ATP5F1C, ATP5F1D, ATP5MF, ATP5MG, ATP5PB, ATP5PD, ATP5PF, 
ATP5PO, ATP6V0A1, ATP6V0D1, ATP6V1A, ATP6V1B2, ATP6V1C1, ATP6V1E1, ATP6V1F, 
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et al 
[27] 

mus ATP6V1G2, ATP6V1H, COX5A, Cox5b, COX6B1, Cox6c, CYC1, NCAM2, NDUFA10, NDUFA2, 
NDUFA4, NDUFA5, NDUFA7, NDUFA8, NDUFA9, NDUFAB1, NDUFB10, NDUFB4, NDUFB5, 
NDUFB7, NDUFB8, NDUFB9, NDUFC2, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS6, 
NDUFS8, NDUFV1, NDUFV2, PPA1, PPA2, PRKCA, PRKCG, PSMA1, PSMD12, PSMD13, 
PSME1, RPL10, RPL17, RPL6, RPL7, RPS10, RPS15, RPS27A, RPS8, SDHA, SDHB, UQCRB, 
UQCRC1, UQCRC2, UQCRFS1, UQCRHL, UQCRQ 

Tikka et 
al [19] 

CLN1 
Thala
mus 

RICTOR Inhibited -2 2.24E-
05 

NDUFA8, NDUFS3, RPL6, RPS3 

Scifo et 
al[18] 

PPT1 
Interac
tome 

RICTOR     4.85E-
33 

ATP5F1A, ATP5F1B, ATP5F1C, ATP5MF, ATP5MG, ATP5PO, ATP6AP1, ATP6V1A, FAU, 
NDUFA4, NDUFA5, NDUFA8, NDUFAB1, NDUFS2, NDUFS3, NDUFS8, PSMA1, PSMA3, 
PSMA4, PSMA5, PSMA6, PSMA7, PSMA8, PSMB2, PSMB5, PSMB6, PSMC6, PSMD1, 
PSMD11, PSMD12, PSMD3, PSMD8, PSME1, RPL10A, RPL12, RPL13A, RPL18, RPL22, 
RPL23, RPL30, RPL4, RPL6, RPL7, RPL7A, RPL8, RPL9, RPLP0, RPLP2, RPS10, RPS11, RPS13, 
RPS18, RPS19, RPS2, RPS27A, RPS3, RPS5, RPS6, RPS8, RPS9, RPSA, UQCR10 

 

Table 2. RICTOR is predicted to be the top upstream causal regulator resulting from an alignment of independent proteomic analyses of brain in CLN1 [30] 

[17, 20], CLN2 [30], CLN3 [21] [30]  and CLN4 [22] in vivo models as well as the neuronal PPT1 interactome [13]. Predicted activation z-score is calculated by 

weighing the predicted expression change of target molecules as defined by Ingenuity Knowledge Database against the actual expression change of target 

molecules reported in input dataset(s). An activation z-score >2 or <-2 is considered statistically significant. P-value of overlap is derived from a Fisher’s 

exact test are derived from a Fisher’s Exact Test calculating overlap between molecules in each respective input dataset and number of molecules 

comprising a canonical pathway defined by Ingenuity Systems Database (in this case, known downstream interactors of RICTOR). Target molecules present 

within each proteomic dataset predicted to be activated or inhibited by RICTOR accompany their respective input source. As the Scifo et al [12] study 

dataset was published as an interactome, no expression profile is available and therefore no activation z-score calculation nor predicted activation state is 

possible 
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Conclusions 

Overall, relatively few studies have applied Omics technologies to the NCLs with the majority being 

in the last few years. Yet, these studies have helped to expand our understanding of the molecular 

cascades underpinning these disorders. Here, we have used these existing data sets to identify 

pathways which are potentially conserved irrespective of the initiating mutation, model system used 

or omic application used in the initial discovery phase. Whilst this serves to further the proposal that 

there may be converging regulatory mechanisms of vulnerability and or degeneration, in the future 

we can expect such techniques (when used in conjunction with ever more sophisticated models and 

clearly defined patient populations) to lead to the identification of new regulatory cascades and 

clinically relevant biomarkers for disease diagnosis, progression tracking, and treatment response 

reporting.  
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Table 1. Recent NCL Omics studies  

NCL  Disease 
Model 

Omics platform Profiled tissue Year Reference 

NCL Human  Reverse Phase 
Protein Microarrays 

Muscle biopsy 2015 [40] 

jNCL Human 
Plasma 

Proteomics Multiplex immunoassays, 
2D DiGE 

2016 [29] 

CLN1 Human 
Cells 

Proteomics Human ppt1 expressing 
sh-sy5y 

2015 [13] 

CLN1 Mouse Proteomics Laser-captured thalamus 2016 [17] 

CLN1 Mouse Proteomics Brain membrane protein 
cilia 

2017 [20] 

CLN1 Mouse Proteomics Mouse brain  2019 [14] 

CLN2 Human Metabolomics Csf 2018 [31] 

CLN3 Human 
Cells 

Proteomics Human cln3 expressing 
sh-sy5y 

2013 [12] 

CLN3 Mouse Proteomics Synapse 2017 [21] 

CLN1/CLN2/CLN3 Human Proteomics Csf and brain 2017 [30] 

CLN4 Human/
Mouse 

Proteomics Brain 2016 [22] 

CLN1/ CLN5 Mouse Transcriptomics Brain cortex 2013 [41] 

CLN5 Dictyost
elium 

Proteomics  Amoeba cells 2018 [18] 

CLN10 Mouse Proteomics Synapse 2013 [23] 

CLN11  Human 
And 
Mouse 

Multi-Omics 
Lipidomics, 
Transcriptomics 

Lipidomics – mouse 
embryonic fibroblast and 
brain tissue and human 

2017 [26] 
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brain lysosome enriched 
organelles, 
transcriptomics on mouse 
brain 
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Highlights 

 We discuss the benefit of application of various Omics technologies to the NCLs 

 We discuss the functional Omics based studies so far applied to NCLs 

 We summarise the findings of biomarker-based Omics studies for NCL 

 We show a comparative systems biology analysis of data from published NCL Omics studies  
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