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Abstract 

A typical task arising from main effect analyses in a Genome Wide Association Study (GWAS) is to 

identify Single Nucleotide Polymorphisms (SNPs), in linkage disequilibrium with the observed signals, that are 

likely causal variants and the affected genes. The affected genes may not be those closest to associating SNPs. 

Functional genomics data from relevant tissues are believed to be helpful in selecting likely causal SNPs and 

interpreting implicated biological mechanisms, ultimately facilitating prevention and treatment in the case of a 

disease trait. These data are typically used post GWAS analyses to fine-map the statistically significant signals 

identified agnostically by testing all SNPs and applying a multiple testing correction. The number of tested SNPs is 

typically in the millions, so the multiple testing burden is high. Motivated by this, in this work we investigated an 

alternative workflow, which consists in utilizing the available functional genomics data as a first step to reduce the 

number of SNPs tested for association. We analyzed GWAS on electrocardiographic QRS duration using these two 

workflows. The alternative workflow identified more SNPs, including some residing in loci not discovered with the 

typical workflow. Moreover, the latter are corroborated by other reports on QRS duration. This indicates the 

potential value of incorporating functional genomics information at the onset in GWAS analyses.  

Keywords: GWAS; functional genomics; SNP preselection; left ventricular mass 

Data Availability Statement 

No new data were generated in this study. The QRS duration summary statistics for the discovery GWAS 

are available upon request to the authors of (van der Harst et al., 2016). The replication GWAS data can be obtained 

from the UK Biobank (www.ukbiobank.ac.uk), upon application. Identifiers for the publicly available ENCODE 

(www.encodeproject.org), Roadmap Epigenomics (www.roadmapepigenomics.org), and EnhancerAtlas 

(www.enhanceratlas.org) data used in this work are listed in Supplementary Table 1. For the H3K27ac data on HCM 

patients, please refer to (Hemerich et al., 2019). 
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Introduction 

Genome Wide Association Studies (GWAS) were introduced over a decade ago as a way to identify 

genetic risk factors for common human diseases, by analyzing tag Single Nucleotide Polymorphisms (SNPs) that 

capture the variation at nearby sites in the genome (Hirschhorn and Daly, 2005; Wang et al., 2005). The common 

method of analysis is to employ univariate statistical tests followed by multiple testing correction, to agnostically 

identify SNPs that are associated with the trait of interest (Bush and Moore, 2012). The gold standard in the field is 

replication in independent data sets (NCI-NHGRI Working Group on Replication in Association Studies et al., 

2007). While this purely statistical approach is successful at limiting false-positives, it can suffer from inflating the 

number of false-negatives due to the difficulty in detecting SNPs with small effect sizes under the burden of 

multiple testing corrections (Williams and Haines, 2011). 

In recent years, projects such as ENCODE (ENCODE Project Consortium, 2012), Roadmap Epigenomics 

(Roadmap Epigenomics Consortium, 2015) and FANTOM 5 (Andersson et al., 2014; FANTOM Consortium et al., 

2014), as well as specific functional genomics efforts by individual laboratories, have made available regulome and 

transcriptome data sets for a variety of tissues and cell lines, that can be very valuable in the identification of 

biologically relevant signals from GWAS. The typical approach (which we term Workflow 1 in what follows) 

employs this functional information post GWAS analyses (Figure 1a). Namely, association tests are first carried out 

agnostically to identify statistically significant SNPs. Then, functional fine-mapping is applied to identify potential 

causal variants (Spain and Barrett, 2015). An alternative approach (which we term Workflow 2) consists in utilizing 

the functional genomics data, obtained from tissues relevant to the trait, to preselect SNPs for association tests 

(Figure 1b). Since a smaller number of SNPs is tested in Workflow 2, the multiple testing correction is relaxed, 

potentially enabling the detection of SNPs with smaller effect sizes. We say ‘potentially’ because the less stringent 

significance threshold in Workflow 2 may not necessarily lead to more results than Workflow 1, since at the same 

time the set of preselected SNPs to be tested is a smaller candidate set. 

In this study, we have compared these two workflows which leverage the functional genomics data either 

post or prior association analyses for a discovery GWAS data set derived from a large population-based study (van 

der Harst et al., 2016) of pre-clinical cardiovascular disease (CVD) as measured by left ventricular mass (LVM). 
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LVM is a good predictor of cardiovascular mortality and morbidity in all genders, races, and ages. Several 

noninvasive measures of LVM have been developed, and the most commonly applied are electrocardiogram (ECG) 

measurements of the QRS complex. In van der Harst et al. (2016), GWAS meta-analyses of four such measures led 

to the identification of 52 associating loci, the majority of which were in non-coding regions of the genome 

(Hemerich et al., 2019). In this work, we have focused on one of these measurements, namely QRS duration 

(Verdecchia et al., 1998). For this study, we utilized the summary statistics from the QRS duration GWAS meta-

analyses by van der Harst et al. (2016). To assess replication, we utilized the UK Biobank cohort (Sudlow et al., 

2015).  

We leveraged both public and in-house histone modifications, DNA accessibility, and enhancer prediction 

data in heart. We included samples from both Hypertrophic CardioMyopathy (HCM) patients (cardiac septum) and 

controls (Left Ventricle - LV, Human Cardiac Fibroblasts – HCF, and human cardiomyocytes). We used two 

different approaches to generate ‘functional regions’ from these data; FILTER 1 where we operationally defined 

rules for functionality and FILTER 2 where we employed ChromHMM (Ernst and Kellis, 2012), see Methods. We 

ran our workflow comparison for each of these filters. With either choice, we found a larger number of signals and 

loci when using the workflow that preselects the SNPs based on the functional regions as compared to performing 

the statistical testing a priori. Moreover, these loci were consistent with findings in van der Harst et al. (2016), where 

the latter could leverage full access to that consortium data. At the same time, we imposed consistency with an 

additional replication data set, not used in van der Harst et al. (2016). Thus, based on these additional constraints, 

the preselection approach of Workflow 2 displayed better sensitivity without detriment to specificity.  

 

Results 

We first analyzed the data with a typical workflow (Workflow 1), namely we first identified statistically 

significant replicated SNPs, then retrieved their proxy SNPs in high Linkage Disequilibrium (LD; r2>0.8, using 

http://raggr.usc.edu/ with all European populations), and finally extracted the proxy SNPs harbored in tissue specific 

functional regions. In order to test different approaches to functional region definition, we did this separately using 

either FILTER 1 or FILTER 2, described in more details in Methods. We analyzed a total of 2,234,843 SNPs 

common to the discovery and replication data sets and we used a strict Bonferroni correction (see Methods). 
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Therefore, the significance threshold in the discovery data set was set to 2.24×10-08, which yielded 666 significant 

SNPs. We then examined these 666 SNPs in the replication data set (significance threshold=0.05/666=7.51×10-05) 

and found that 374 replicated, all with the same effect directions as in the discovery data set. We grouped the latter 

SNPs into ‘loci’, as in van der Harst et al. (2016). Namely, we sorted the 374 SNPs by increasing p-values and 

defined the first locus as the 2MB region around the SNP with the lowest p-value (which served as the lead SNP for 

this locus). If a SNP down this list was within 1Mb from the lead SNP of an already defined locus, it was assigned to 

that locus, otherwise a new locus was created with that SNP as lead. Under this definition, each locus could have 

more than one independent signal. With this approach, the 374 SNPs were distributed across 14 loci (Table 1). We 

then fine-mapped these 374 SNPs by identifying proxies harbored in the functional regions. Tables 2 and 3 indicate 

(column ‘Workflow 1”), for each of the 14 loci, how many of the replicated SNPs remained after fine-mapping 

employing FILTER 1 and FILTER 2, respectively. After the Workflow 1 fine-mapping with FILTER 1 (respectively 

FILTER 2), we were left with only eight (respectively seven) of the 14 loci.  

 In Workflow 2, SNPs are first preselected based on the functional regions, then analyzed in the GWAS. 

Using FILTER 1, we found 130,836 of the SNPs common to the discovery and replication data sets residing within 

the deduced functional regions. The conservative Bonferroni corrected threshold in the discovery data set was 

therefore set to 3.82×10-07 (Methods), which yielded 84 significant SNPs. We then examined these 84 SNPs in the 

replication data set (significance threshold=0.05/84=5.95×10-4) and found that 54 of these SNPs replicated, all with 

the same effect directions as in the discovery data set. Mapping these 54 SNPs to the 14 loci from Table 1, we found 

that 10 of those loci harbored relevant SNPs. Moreover, we also found a previously unidentified SNP (rs2840167) 

defining a new locus on chromosome 2, where by ‘new’ we mean a locus that was not among the 14 from Table 1. 

Figure 2 summarizes the comparison between the results from Workflow 1 and Workflow 2, using FILTER 1. Table 

2 provides the corresponding details at the locus level. Overall Workflow 2 identified 13 SNPs and three loci that 

were not identified in Workflow 1. Workflow 1 only identified one SNP (rs2109517) that was not identified in 

Workflow 2, but this was in a locus that was also identified in Workflow 2. Moreover, the specific p-value of this 

SNP in the discovery data set was 1.471×10-06, one order of magnitude higher than the p-values of the eight SNPs 

within the same locus identified by Workflow 2. Summarizing, with FILTER 1, Workflow 1 identified eight loci, as 

six of the loci from Table 1 did not have any functional SNP in high LD with the significant signals. Workflow 2, on 

the other hand, identified 11 loci, including all eight discovered with Workflow 1. Indeed, whereas Workflow 1 did 
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not detect any functional SNP in loci chr5:152869040-154869040 and chr7:34404590-36404590, Workflow 2 

detected one such SNP in each of these loci. In addition, Workflow 2 identified a new locus. The SNP identified 

solely by Workflow 2 (rs2840167) and defining the new locus resides in an intron of CRIM1, within a region that 

was operationally identified as a putative active enhancer based on our FILTER 1 criteria. We queried this SNP in 

HaploReg v4.1 (Ward and Kellis, 2012), where it is also annotated as being within a potential enhancer in heart 

tissues, including LV. According to PhenoScanner (Staley et al., 2016), this SNP is also associated to forced vital 

capacity, an interesting related trait. We note that the locus defined by this SNP also contains rs3770900, which was 

identified as a potential secondary SNP with independent effects on QRS by van der Harst et al. (2016). (Note that 

both rs2840167 and rs3770900 do not have a small enough p-value in the UK Biobank data set to pass the 

Workflow 1 replication threshold, but rs2840167 passes the replication threshold in Workflow 2.) All of these 

elements indicate that the locus defined by rs2840167 is interesting, and we will show below that it is also detected 

by Workflow2 using the FILTER 2 criteria.  

We then examined Workflow 2 using the functional regions derived in FILTER 2. We found that 233,790 

of the SNPs common to the discovery and replication data sets resided within these functional regions. The 

Bonferroni corrected threshold in the discovery data set was therefore set to 2.14×10-07, which yielded 109 

significant SNPs. We then examined these 109 SNPs in the replication data set (significance 

threshold=0.05/109=4.59×10-04) and found that 64 of these SNPs replicated, all with the same effect directions as in 

the discovery data set. Mapping these 64 SNPs to the 14 loci from Table 1, we recovered 10 of these and we also 

found six SNPs defining a new locus on chromosome 2 (with lead SNP rs1523787). Supplementary Figure 1 

summarizes the comparison between the results from Workflow 1 and Workflow 2, using FILTER 2. Table 3 

provides the corresponding details at the locus level. Overall, with the latter filter, Workflow 2 identified 16 SNPs 

and three loci which were not identified in Workflow 1. Workflow 1 only identified three SNP which were not 

identified in Workflow 2; rs618472 and rs694808 in locus chr18:41436652-43436652 and rs7526429 in locus 

chr1:50546140-52546140. Of these two loci, only the former was not also identified in Workflow2. Summarizing, 

with FILTER 2, Workflow 1 identified seven loci, as the remaining loci from Table 1 did not have any functional 

SNP in high LD with the significant signals. Only one of these seven loci was not also identified in Workflow 2. 

Workflow 2, on the other hand, identified 11 loci. Indeed, whereas Workflow 1 did not detect any functional SNP in 

loci chr1:60897967-62897967, chr5:152869040-154869040, chr7:34404590-36404590 and chr7:115191301-
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117191301, Workflow 2 identified functional SNPs in all these loci. Moreover, Workflow 2 identified a new locus. 

The six SNPs identified solely by Workflow 2 and harbored in the new locus on chromosome 2 were all within 

500kb from the lead SNP at this locus, rs1523787. The latter is in high LD (r2=0.91) with and <10kb from the SNP 

defining the new locus with FILTER 1 in Workflow 2, indicating that this signal was robust to the different criteria 

used to build the functional regions. 

 The two filters that we constructed identified fairly different sets of SNPs harbored within their 

corresponding functional regions (69,139 in common), and at the SNP level we observed 13 SNPs detected using 

either filter in Workflow 2, two of which were not detected by Workflow 1 in either case. The latter were rs1003549 

in locus chr7:34404590-36404590 and rs2270188 in locus chr7:115191301-117191301. rs1003549 is marked within 

an enhancer region in heart both by our filters and by HaploReg. rs2270188, in an intron of CAV2, a locus 

corroborated in van der Harst et al. (2016), is marked within a promoter/enhancer region in heart both by our filters 

and by HaploReg, moreover it alters the binding motif of the cardiac transcription factor p300 (HaploReg). At the 

locus level, with Workflow 2 both filters detect loci chr3:37767315-39767315, chr6:35622900-37622900, 

chr6:117667522-119667522, chr1:60897967-62897967, chr5:152869040-154869040, chr12:113793240-

1157932401, chr7:34404590-36404590, chr7:115191301-117191301, and the locus on chromosome 2 not 

discovered with Workflow 1. Thus, nine of the 11 discovered loci using either filter are in common, and these 

include three loci which were solely discovered by Workflow 2 in either case (chr5:152869040-154869040, 

chr7:34404590-36404590 and the new locus on chr2). 

Discussion 

GWAS have successfully identified thousands of bona fide associations between SNPs and phenotypes 

using an agnostic approach. However, various issues have been recognized. The first is that a ‘sentinel’ SNP, i.e. the 

SNP with the lowest p-value at a given locus, might not necessarily be the actual underlying causal variant, nor is 

the nearest gene necessarily the functional gene that the SNP is tagging. There is therefore the need to fine-map the 

GWAS results, i.e. refine the set of potential causal variants, using statistical or data-driven approaches. When 

functional genomics data are available for tissues relevant to the trait of interest, these can be used to identify SNPs 

in high LD with the sentinel SNPs and residing in biologically relevant regions. Another issue is that the classical 

agnostic approach, where univariate tests are run prior to functional fine-mapping, can suffer from inflating the 
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number of false-negatives due to the difficulty in detecting SNPs with small effect sizes under the burden of 

multiple testing corrections. Motivated by these issues, we have explored the possibility of using tissue specific 

functional regions to preselect the SNPs to test for association; this approach reduces the number of tested SNPs, 

thereby relaxing the multiple testing correction penalty. This could potentially enable the discovery of additional 

SNPs, harbored within functional regions, but there is no guarantee of obtaining additional signals given that the 

number of candidates is smaller than in the agnostic approach.  

We tested how this alternative approach compares to the classical approach in a real data scenario; we 

leveraged a discovery and a replication GWAS related to QRS duration, a proxy for myocardial mass, relevant to 

CVD. In this context we observed that the alternative approach yielded several more statistically significant SNPs 

and overall more replicated loci. Three of the loci were identified solely with the preselection workflow (Workflow 

2) regardless of the approach used to define functional regions (FILTER 1 or FILTER 2). Locus chr5:152869040-

154869040 is centered around rs13165478, a SNP reported in van der Harst et al. (2016) as associated to QRS 

duration. Even though this SNP was significant and replicated in the UK Biobank GWAS, it had no proxies residing 

in a functional region, hence the locus was not detected in Workflow 1. However, Workflow 2 detected this locus 

via other functional SNPs which were significant and replicated at the thresholds for this workflow. Locus 

chr7:34404590-36404590 is centered around rs340383, a SNP identified as a potential secondary SNP with 

independent effects on QRS by van der Harst et al. (2016). Also this SNP had no proxies residing in a functional 

region, hence the locus was not detected in Workflow 1. However, Workflow 2 detected this locus via other 

functional SNPs, including rs1003549 that resides within functional regions for either filter. Finally, the last locus 

discovered only by Workflow 2 on chr 2, as discussed earlier, contains rs3770900, which was identified as a 

potential secondary SNP with independent effects on QRS by van der Harst et al. (2016). This SNP did not have a 

low enough p-value in the UK Biobank replication data set. However other functional SNPs in this locus could be 

detected by the thresholds of Workflow 2. 

The fact that the loci we discovered solely with Workflow 2 reflect signals observed in van der Harst et al. 

(2016), based on full access to consortium data (which we did not have for this work), indicates that these are likely 

to be relevant to CVD. But we also note that, compared to van der Harst et al. (2016), we added the constraint of 

replication in the UK Biobank. Moreover, we constrained any discovered SNP to reside within the functional 
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regions defined by our filters. With these additional constraints, these loci could only be identified with the 

preselection workflow. As with any genomic association study, further validation is necessary to confirm which of 

the detected signals are truly causal and to elucidate the biological mechanisms and effector genes. 

The main focus of this work was not cardiovascular biology, rather to compare two ways of integrating 

functional genomics data with GWAS summary statistics. This study suggests that incorporating functional 

genomics data at the onset increases power. However, we recognize that the generalizability of this statement needs 

to be examined. To this end, future work, by us but also hopefully by others, should include investigating this further 

for other traits for which both GWAS data (discovery and replication) and functional genomics data for target 

tissues can be obtained. Public resources such as the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/) are 

now providing summary statistics for several traits. In addition, resources such as the UK Biobank 

(www.ukbiobank.ac.uk), allow investigators to apply for access to specified genotype and phenotype data from over 

half a million individuals, enabling direct analyses of GWAS data sets. For functional genomics data, it is crucial to 

team up with domain experts for the trait of interest so to identify the relevant tissues and generate suitable data sets 

for the latter, should they not be already available in public resources. Domain expertise is also necessary to evaluate 

the results of each workflow. 

One important issue in using functional genomics data relates to the regions used for filtering. As indicated 

above, first of all, since these regions are tissue specific, one needs to have a good idea of the involved tissue(s) for a 

trait. Biological knowledge of the latter can vary considerably depending on the trait. Second, even assuming that 

the functional genomics data come from an actual related tissue, there are several criteria to define functional 

regions. In this work, we have used two different methods to derive relevant regions from the functional genomics 

data; in FILTER 1 we operationally defined functional regions based on several rules, whereas in FILTER 2 we 

leveraged the ChromHMM software. These filters produced very different sets of SNPs to be examined in Workflow 

2. However, at the locus level, the results from the two filters in Workflow 2 were consistent, including three loci 

only detected by this workflow. We also note that the issue of how to best define functional regions is relevant to 

both workflows, as ultimately these are the regions used for filtering, whether this is done before or after the 

association analyses. Given the added value that functional genomics data provide towards elucidating the biological 
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mechanisms at play, a crucial area of future research is the development/refinement of methods that can more 

precisely identify functional regions based on these data. 

Methods 

GWAS data sets 

For our discovery data set, we obtained the summary statistics (p-values and beta) on QRS duration for 

~2.7 million SNPs from van der Harst et al. (2016). As replication data set we used 19,416 12-lead rest ECGs from 

the UK Biobank (as of April 2018). We extracted QRS information from the ECGs. After excluding individuals 

using a pacemaker and individuals with heart disease (such as atrial fibrillation, heart failure, myocardial infarction, 

Wolff-Parkinson-White Syndrome and QRS duration > 120ms), we ran a GWAS analysis on QRS duration using 

15,251 individuals that passed quality control filters, with the same methods used on the discovery data, i.e. 

adjusting for sex, height, BMI, age, chip used (for batch effect) and 10 principal components. We obtained summary 

statistics for ~ 92.7 million SNPs. We focused our subsequent analyses on 2,234,843 SNPs, obtained by taking the 

SNPs common to the two data sets, after removing SNPs with inconsistent reported alleles or with ambiguous strand 

alleles (AT, CG).  

Functional genomics data  

Supplementary Table 1 lists the public data sets used to define tissue specific functional regions. According 

to the guidelines presented by the Blueprint Epigenome project (Stunnenberg et al., 2016; found at 

http://dcc.blueprint-epigenome.eu/#/md/chip_seq_grch38), we used broad ChIP-seq peaks for histone modifications 

H3K27me3, H3K36me3, H3K4me1, H3K9me3 and narrow peaks for H3K27ac and H3K4me3.  

We also included H3K27ac Chip-seq generated on human myocardial samples from fourteen HCM patients 

as described in (Hemerich et al., 2019).  

Using these data, we inferred relevant functional regions in two different ways (FILTER 1 and FILTER 2), 

as described below, using hg19 coordinates. BED file manipulations were performed with bedtools v2.27.1 (Quinlan 

and Hall, 2010) and bedops v2.4.35 25 (Neph et al., 2012).  

Definition of functional regions: FILTER 1 
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Similarly to (Manduchi et al., 2018), we operationally defined active enhancers, promoters and exons in the 

relevant heart cellular context as described below, and used the union of these three types of regions as filter. When 

multiple peak files were available for the same mark, they were first merged. 

Putative active enhancers  

1. Take overlaps between the H3K4me1 and H3K27ac peaks. 

2. Flank DNase peaks by 150bp on each side. 

3. Take regions from (2) which have at least 1bp overlap with regions from (1). 

4. Merge regions from (3) with enhancers for LV downloaded from EnhancerAtlas (Gao et al., 

2016). 

Putative active promoters  

1. Flank DNAse peaks by 150bp on each side. 

2. Take regions from (1) which have at least 1bp overlap with H3K4me3 peaks. 

3. Merge regions from (2) with 5000 bp regions centered at the transcription start sites (TSS) of 

genes expressed in LV according to GTEx v7 (GTEx Consortium et al., 2017).  

4. Take all regions from 1000bp upstream to 500bp downstream of GeneCode v19 TSS (Frankish et 

al., 2019), downloaded from the UCSC Genome Browser (Hinrichs et al., 2006). 

5. Take all regions in (4) which overlap with regions from (3). 

Putative active exons  

Take all exons from the transcripts corresponding to the putative active promoters defined above. 

Definition of functional regions: FILTER 2 

We used the DNase and the histone modification data (for six marks) with ChromHMM v1.17 to model 10 

chromatin states. We used as functional regions those corresponding to six of these states which, based on signature, 

appeared to be potential active enhancer, promoters, exons or silenced regions. Prior to running LearnModel from 
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ChromHMM, we separately binarized the data for narrow peaks and broad peaks. According to manual 

recommendations, for narrow peaks, we ran BinarizeBed (from ChromHMM) with the –peak option and with input 

the peak files from Supplementary Table 1. For broad peaks, we ran BinarizeBed without the –peak option and with 

input the alignment files in bed format (listed by GEO accession in Supplementary Table 1). 

Identification of statistically significant replicated SNPs 

We used a significance threshold of 0.05. For a given input set of M candidate SNPs, we first identified 

those with p-value less than 0.05/M in the discovery dataset, hence applying a strict Bonferroni multiple testing 

correction (this is conservative if the M SNPs are not independent). Then we tested only the resulting N significant 

SNPs in the replication data set, identifying those with p-value less than 0.05/N in the latter (again applying a 

Bonferroni correction, but the number of tests is smaller). Any SNP passing this test with the same direction of 

effect in the two data sets was considered significantly replicated. In Workflow 1, the input for the discovery phase 

consisted of all 2,234,843 SNPs common to the two GWAS described above. In Workflow 2, the input for the 

discovery phase consisted of the common SNPs which were located in functional regions defined by FILTER 1 or 

FILTER 2. Figure 1 illustrates the procedure for both workflows. 
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Table 1 

Loci corresponding to the 374 significant replicated SNPs from Workflow 1 (prior to any functional fine-mapping). 

Coordinates refer to hg19. The lead SNP for each locus is indicated, together with its unadjusted p-values in the 

discovery and replication data sets. Loci are listed by increasing p-value of their lead SNP in the discovery data set. 

Locus Lead SNP Discovery p Replication p

chr3:37767315-39767315 rs6801957 6.90E-40 3.27E-15

chr6:35622900-37622900 rs1321311 1.03E-37 7.19E-15

chr6:117667522-119667522 rs11153730 7.44E-29 1.71E-08

chr1:60897967-62897967 rs2207790 6.71E-19 6.81E-06

chr5:152869040-154869040 rs13165478 8.06E-19 6.95E-16

chr12:113793240-115793240 rs883079 4.58E-16 3.88E-07

chr10:113505465-115505465 rs7918405 1.05E-14 3.81E-08

chr18:41436652-43436652 rs10853525 1.41E-14 1.53E-09

chr1:50546140-52546140 rs17391905 1.07E-11 4.65E-05

chr17:63312463-65312463 rs12940610 1.08E-11 6.02E-05

chr13:73513122-75513122 rs728926 5.60E-11 1.26E-05

chr7:34404590-36404590 rs340383 3.72E-10 2.13E-05

chr7:115191301-117191301 rs11773845 7.50E-10 1.66E-06

chr7:45640900-47640900 rs6968945 5.14E-09 5.04E-05   
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Table 2 

Comparison of results from Workflow 1 and Workflow 2 for the functional regions defined by FILTER 1. For each 

of the 14 loci from Table 1 and the new locus (gray cells), the number of SNPs identified by each workflow and 

those identified by both are indicated. The SNPs identified solely by each one of the two workflows are also listed. 

Locus Workflow 1 Workflow 2 Common Worfkflow 1 only Workflow 2 only

chr3:37767315-39767315 20 20 20 none none

chr6:35622900-37622900 3 3 3 none none

rs9489449

rs3734382

chr1:60897967-62897967 1 1 1 none none

chr5:152869040-154869040 0 1 0 none rs17116165

chr12:113793240-115793240 2 2 2 none none

chr10:113505465-115505465 0 0 0 none none

chr18:41436652-43436652 1 1 1 none none

chr1:50546140-52546140 0 0 0 none none

chr17:63312463-65312463 0 0 0 none none

chr13:73513122-75513122 0 0 0 none none

chr7:34404590-36404590 0 1 0 none rs1003549

 rs2191502

rs8713

rs6466587

rs2270188

rs6466579

rs6867

rs1049314

rs9920

chr7:45640900-47640900 1 1 1 none none

chr2:35683316-37683316 NA 1 0 NA rs2840167

chr6:117667522-119667522 13 15 13 none

chr7:115191301-117191301 1 8 0 rs2109517
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Table 3 

Comparison of results from Workflow 1 and Workflow 2 for functional regions defined by FILTER 2. For each of 

the 14 loci from Table 1 and the new locus (gray cells), the number of SNPs identified by each workflow and those 

identified by both are indicated. The SNPs identified solely by each one of the two workflows are also listed. 

Locus Workflow 1 Workflow 2 Common Worfkflow 1 only Workflow 2 only

rs12491987

rs6599210

chr6:35622900-37622900 3 4 3 none rs12207548

chr6:117667522-119667522 8 8 8 none none

rs9436640

rs2103883

rs11167682

rs7706345

chr12:113793240-115793240 9 9 9 none none

chr10:113505465-115505465 1 1 1 none none

rs618472 

rs694808 

chr1:50546140-52546140 6 5 5 rs7526429 none

chr17:63312463-65312463 0 0 0 none none

chr13:73513122-75513122 0 0 0 none none

rs1003549

rs2075048

chr7:115191301-117191301 0 1 0 none rs2270188

chr7:45640900-47640900 0 0 0 none none

rs1523787

rs7562790

rs888083

rs12476515

rs2252032

rs3770781

chr2:35673773-37673774 NA 6 0 NA

chr3:37767315-39767315 22 24 22 none

chr1:60897967-62897967 0 2 0 none

chr5:152869040-154869040 0 2 0 none

chr18:41436652-43436652 2 0 0 none

chr7:34404590-36404590 0 2 0 none
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Figure Legends 

 

Figure 1. Abstract outline of the two workflows compared in this study. (a) In Workflow 1, the typical approach, 

statistically significant replicated SNPs are identified first in the GWAS analyses, then fine-mapped based on tissue 

specific functional regions. (b) In Workflow 2, tissue specific functional regions are used to preselect the SNPs to be 

included in the GWAS analyses. 

Figure 2. Summary results for Workflow 1 (a) and Workflow 2 (b), for the discovery and replication GWAS on 

QRS duration examined in this work, using FILTER 1 to define functional regions. 


