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Abstract
Multi-agent learning is a promising method to
simulate aggregate competitive behaviour in fi-
nance. Learning expert agents’ reward functions
through their external demonstrations is hence
particularly relevant for subsequent design of real-
istic agent-based simulations. Inverse Reinforce-
ment Learning (IRL) aims at acquiring such re-
ward functions through inference, allowing to
generalize the resulting policy to states not ob-
served in the past. This paper investigates whether
IRL can infer such rewards from agents within
real financial stochastic environments: limit or-
der books (LOB). We introduce a simple one-
level LOB, where the interactions of a number of
stochastic agents and an expert trading agent are
modelled as a Markov decision process. We con-
sider two cases for the expert’s reward: either a
simple linear function of state features; or a com-
plex, more realistic non-linear function. Given
the expert agent’s demonstrations, we attempt to
discover their strategy by modelling their latent
reward function using linear and Gaussian process
(GP) regressors from previous literature, and our
own approach through Bayesian neural networks
(BNN). While the three methods can learn the
linear case, only the GP-based and our proposed
BNN methods are able to discover the non-linear
reward case. Our BNN IRL algorithm outper-
forms the other two approaches as the number of
samples increases. These results illustrate that
complex behaviours, induced by non-linear re-
ward functions amid agent-based stochastic sce-
narios, can be deduced through inference, encour-
aging the use of inverse reinforcement learning
for opponent-modelling in multi-agent systems.
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1. Introduction
Limit order books play a central role in the formation of
prices for financial securities in exchanges globally. These
systems centralize limit orders of price and volume to buy
or sell certain securities from large numbers of dealers and
investors, matching bids and offers in a transparent process.
The dynamics that emerge from this aggregate process (Preis
et al., 2006; Cont et al., 2010) of competitive behaviour
fall naturally within the scope of multi-agent learning, and
understanding them is of paramount importance to liquidity
providers (known as market makers) in order to achieve
optimal execution of their operations. We focus on the
problem of learning the latent reward function of an expert
agent from a set of observations of their external actions in
the LOB.

Reinforcement learning (RL) (Sutton & Barto, 2018) is
a formal framework to study sequential decision-making,
particularly relevant for modelling the behaviour of finan-
cial agents in environments like the LOB. In particular, RL
allows to model their decision-making process as agents
interacting with a dynamic environment through policies
that seek to maximize their respective cumulative rewards.
Inverse reinforcement learning (Russell, 1998) is therefore
a powerful framework to analyze and model the actions of
such agents, aiming at discovering their latent reward func-
tions: the most "succinct, robust and transferable definition
of a task" (Ng et al., 2000). Once learned, such reward func-
tions can be generalized to unobserved regions of the state
space, an important advantage over other learning methods.

Overview. The paper starts at Section 2 by introducing
the foundations of IRL, relevant aspects of the maximum
causal entropy model used, and useful properties of Gaus-
sian processes and Bayesian neural networks applied to IRL.
A formal description of the limit order book model follows.
In Section 3, we formulate the one-level LOB as a finite
Markov decision process (MDP) and express its dynamics
in terms of a Poisson binomial distribution. Finally, we in-
vestigate the performance of two well-known IRL methods
(maximum entropy IRL and GP-based IRL), and propose
and test an additional IRL approach based on Bayesian neu-
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ral networks. Each IRL method is tested on two versions
of the LOB environment, where the reward function of the
expert agent may be either a simple linear function of state
features, or a more complex and realistic non-linear reward
function.

Related Work. Agent-based models of financial market
microstructure are extensively used (Preis et al., 2006;
Navarro & Larralde, 2017; Wang & Wellman, 2017). In
most setups, mean-field assumptions (Lasry & Lions, 2007)
are made to obtain closed form expressions for the dynamics
of the complex, multi-agent environment of the exchanges.
We make similar assumptions to obtain a tractable finite
MDP model for the one-level limit order book.

Previous attempts have been made to model the evolution of
the behaviour of large populations over discrete state spaces,
combining MDPs with elements of game theory (Yang et al.,
2017), using maximum causal entropy inverse reinforce-
ment learning. Their focus had been around social media
data. Recently, Hendricks et al. (2017) used IRL in financial
market microstructure for modelling the behaviour of the
different classes of agents involved in market exchanges
(e.g. high-frequency algorithmic market makers, machine
traders, human traders and other investors). We draw in-
spiration from them, and distinguish two types of agents:
automatic agents that induce our environment’s dynamics,
and active expert agents that trade in such environment. We
focus on inferring the expert agents’ objectives from the
point of view of an external observer.

Our simplified MDP model could be seen as a variant of the
multi-agent Blotto environment (Borel, 1921; Tukey, 1949;
Roberson, 2006; Balduzzi et al., 2019). Blotto is a resource
distribution game consisting of two opponent armies having
each a limited number of soldiers that need to be distributed
across multiple areas or battlefields. Each area is won by the
army that has the highest number of soldiers. The winner
army is the one that has majority over the highest number
of battlefields. This environment is often used to model
electoral competition problems where parties have a limited
budget and need to reach a maximum number of voters. In
our environment, only two areas are used (best bid and ask),
but the decisions are conditional to a state, hence the MDP
could be seen as a contextual 2-area Blotto variant.

Contributions. We propose a multi-agent LOB model
which provides the possibility of obtaining transition prob-
abilities in closed form, enabling the use of model-based
IRL, without giving up reasonable proximity to real world
LOB settings. The reward functions we propose have a clear
financial interpretation, and allow flexible and comparable
testing of different IRL methods in a setup that can be scaled
to higher dimension versions of the environment. We then
provide results for the three IRL methods discussed: max-

imum entropy IRL, Gaussian process-based IRL, and our
IRL approach based on Bayesian neural networks. Results
show that BNNs are able to recover the target rewards, out-
performing comparable methods both in IRL performance
and in terms of computational efficiency.

2. Background
2.1. Inverse Reinforcement Learning

We base our IRL experiments on a Markov decision process
consisting of a tuple 〈S,A, T , r, γ, P0〉. S represents the
state space; A the set of eligible actions; T represents the
model’s transition dynamics, where T (s′, a, s) = p(s′|s, a)
is the transition probability to state s′ from state s through
action a; r(s, a) is the unknown reward function we intend
to recover; the discount factor γ takes values in [0, 1]; and
P0 represents the initial state distribution.

Reinforcement learning aims under its general forward for-
mulation at finding an optimal policy π∗ that maximizes the
expected cumulative reward E

[∑T
t=0 γ

tr(st)|π∗
]
, where

the state-action pairs induced by policy π∗ and transi-
tion dynamics T are denoted in a sequence or trajectory
x = {(st, at)}Tt=0.

On the other hand, inverse reinforcement learning aims at
recovering through inference (see Figure 1) an unknown
reward function r(s, a), where we assume π∗(a|s) to be an
optimal policy from where a collection of expert demonstra-
tions D = {xn}Nn=1 is drawn. However, one of the main
difficulties of the IRL problem is its ill-posed nature, as
there could be more than one optimal policy that explains
a given set of demonstrations D (Ng et al., 1999). This
ambiguity is handled by the maximum entropy framework
(Ziebart et al., 2008).

D = {{(snt , ant )}Tt=0}Nn=1 MDP\r = 〈S,A, T , γ, P0〉

Solve MDP

Q(s, a; r̂θ),V(s; r̂θ)

IRL

RL

Optimize w.r.t. θ

Evaluate MaxEnt Objective: p(D|r̂θ)

r̂θ

Figure 1. Flow diagram of maximum entropy-based IRL.

Maximum Causal Entropy Model. The principle of
maximum causal entropy (Ziebart, 2010) assumes that the
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distribution of trajectories generated by the optimal policy
follows π∗(a|s) ∝ exp {Q′ (st, at)} (Ziebart et al., 2008;
Haarnoja et al., 2017), where Q′ is a is a soft Q-function
that incorporates the treatment of sequentially-revealed in-
formation, regularizing the objective of forward reinforce-
ment learning with respect to differential entropy H(·) as
described in Fu et al. (2017): Q′ (st, at) = rt(s, a) +

E(st+1,...)∼π

[∑T
t′=t γ

t′ (r (st′ , at′) +H (π (·|st′)))
]
.

The inference problem for an unknown reward function
r(s, a) thus boils down to maximizing the likelihood
P (D|r) as in Levine et al. (2011):

exp
∑
i

∑
t

[
Q
′r
si,t,ai,t − log

∑
a′

exp(Q
′r
si,t,a′i,t)

]

2.2. IRL methods considered

The three inverse reinforcement learning methods that we
will test on our LOB model for both linear and exponen-
tial expert rewards are: maximum entropy IRL (MaxEnt),
Gaussian processes-based IRL (GPIRL), and our implemen-
tation through Bayesian neural networks (BNN IRL). These
methods are defined as follows:

Maximum Entropy IRL. Proposed by Ziebart (2010),
this method builds on the maximum causal entropy objec-
tive function described above, combined with a linearity
assumption on the structure of the reward as a function of
the state features: r(s) = wTφ(s), where φ(s) : S 7→ Rm
is the m-dimensional mapping from the state to the feature
vector. The IRL problem then boils down to the inference
of such w.

Gaussian Process-based IRL. Maximum causal entropy
provides a method to infer values of the reward function on
specific points of the state space. This is enough for cases
where the MDP is finite and where the observed demonstra-
tions cover all the state space, which are not very common.
In this context, it is important to learn a structure of re-
wards that mirrors as closely as possible the behaviour of
the expert agent.

While many prior IRL methods assume linearity of the re-
ward function, GP-based IRL (Levine et al., 2011), expands
the function space of possible inferred rewards to non-linear
reward structures. Under this model, the reward function
r is modeled by a zero-mean GP prior with a kernel or co-
variance function kθ. If Xf ∈ Rn,m is the feature matrix
defining a finite number n of m-dimensional states, and f
is the reward function evaluated at Xf : f = r(Xf ), then
f |X, θ ∼ N (0,Kf,f ) where [Kf,f ]i,j = kθ(xi, xj).

The GPIRL objective (Levine et al., 2011) is then maxi-

mized with respect to the finite rewards f and θ:

p(f, θ,D|Xf ) =
[ ∫

r

p(D|r)p(r|f, θ,Xf )dr
]
p(f, θ|Xf )

Inside the above integral, we can recognize the IRL objec-
tive p(D|r), the GP posterior p(r|f, θ,Xf ) and the prior
of f and θ. To mitigate the intractability of this integral,
Levine et al. (2011) use the Deterministic Training Condi-
tional (DTC) approximation, which reduces the GP posterior
to its mean function.

Bayesian Neural Networks applied to IRL. A neural
network (NN) is a superposition of multiple layers con-
sisting of linear transformations and non-linear functions.
Infinitely wide NNs whose weights are random variables
have been proven to converge to a GP (Neal, 1995; Williams
& Jacobs, 1997) and hence represent a universal function
approximator (Cybenko, 1989). However, this convergence
property is not applicable to finite NNs, which are the net-
works used in practice. Bayesian neural networks are equiv-
alent networks in the finite case. BNNs have been the fo-
cus of multiple studies (Neal, 1995; MacKay, 1992; Gal &
Ghahramani, 2016) and are known for their useful regular-
ization properties. Since exact inference is computationally
challenging, variational inference has instead been used
to approximate these models (Hinton & Van Camp, 1993;
Peterson, 1987; Graves, 2011; Gal & Ghahramani, 2016).

Given a dataset Z = {(xn, yn)}Nn=1, we wish to learn the
mapping {(xn → yn)}Nn=1 in a robust way. A BNN can
be characterized through a prior distribution p(w) placed
on its weights, and the likelihood p(Z|w). An approximate
posterior distribution q(w) can be fit through Bayesian vari-
ational inference, maximizing the evidence lower bound
(ELBO):

Lq = Eq[log p(Z|w)]−KL[q(w)‖p(w)]

We parametrize q(w) with θ and use the mean-field vari-
ational inference approximation (Peterson, 1987), which
assumes that the weights of each layer factorize to indepen-
dent distributions. We choose a diagonal Gaussian prior
distribution p(w) and solve the optimization problem:

max
θ
Lqθ

In the context of the IRL problem, we leverage the benefits
of BNNs to generalize point estimates provided by maxi-
mum causal entropy to a reward function in a robust and
efficient way. Unlike in GPIRL, where the full objective
is maximized at each iteration, BNN IRL consists of two
separate steps:
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• Inference step: we first optimize the IRL objective
p(D|r̂), obtaining a finite number of point estimates of
the reward {r̂(sn) = r̂n}Nn=1 over a finite number of
states {sn ∈ S}Nn=1

• Learning step: secondly, we use these point estimates
to train a BNN that learns the mapping between state
features s ∈ S and their respective inferred reward
values r̂(s) ∈ R.

The number of point estimates used is the number of states
existing in the expert’s demonstrations. This means that we
do not use each state in the state space once, but as many
times as it exists in the demonstrationsD. This is equivalent
to tailoring the learning rate of the Bayesian neural network
to match the state visitation counts.

2.3. Limit Order Book

Our experimental setup builds on limit order books (LOBs):
here we introduce some basic definitions following the con-
ventions of Gould et al. (2013) and Zhang et al. (2019).
Two types of orders exist in an LOB: bids (buy orders) and
asks (sell orders). A bid order for an asset is a quote to
buy the underlying asset at or below a specified price Pb(t).
Conversely, the ask order is a quote to sell the asset at or
above a certain price Pa(t). For a certain price, the bid
and ask orders have respective sizes (volumes) Vb(t) and
Va(t). Each level (l) of the LOB is represented by one
pair (p(l)b (t), v

(l)
b (t)) or (p(l)a (t), v

(l)
a (t)), generally ranked

in decreasing order of competitiveness.

3. Experiments
Experimental Setup. Our environment setup is a one-
level LOB, resulting from the interaction of N (Markovian)
trading agents (TA) and an expert agent (EA trader). With-
out loss of generality, the EA is regulated to have up to
Imax inventory (amount of securities in their portfolio). The
EA is unaware of the strategies of each of the other trading
agents, but adapts to them through trial and error, as in re-
inforcement learning frameworks (Sutton & Barto, 2018).
The EA solves the following MDP 〈S,A, T , r, γ, P0〉:

• State Space S. The environment state at time-step t,
st, is a 3-dimensional vector:

st =
[
v
(1)
b (t) v

(1)
a (t) i(EA)(t)

]T
∈ S (1)

where v
(1)
b (t), v

(1)
a (t) ∈ R+ are the volumes

available in the one-level LOB through the best
bid and ask levels, respectively, and i(EA)(t) ∈
{−Imax, . . . , 0, . . . ,+Imax} is the inventory held by the
expert agent at time-step t.

• Action Space A. The expert agent chooses to take an
action at at time-step t, by selecting volumes v(EA)

b (t)

and v(EA)
a (t) to match the trading objectives defined by

their reward with those available in the LOB through
the other traders, at the best bid and ask, respectively:

at =
[
v
(EA)
b (t) v

(EA)
a (t)

]T
∈ A (2)

where v(EA)
b (t) + v

(EA)
a (t) ≤ N (see Transition Dy-

namics below). The EA is here an active market partic-
ipant, which actively sells at the best ask and buys at
the best bid, while the trading agents on the other side
of the LOB only place passive orders.

• Transition Dynamics T . At each time-step t, the n-th
trader, n ∈ {1, .., N}, places a single order, o(n)t at
either side of the LOB (best bid, or best ask). The
traders follow stochastic policies:

π(n)(·|st; τ (n)) = Ber

 e
v
(1)
b

(t−1)

τ(n)

e
v
(1)
b

(t−1)

τ(n) + e
v
(1)
a (t−1)

τ(n)

 (3)

o
(n)
t ∼ π(n)(·|st; τ (n)) (4)

where o(n)t = 1 corresponds to a trader placing an or-
der at the best bid, and o(n)t = 0 at the best ask. By
construction, each of the trading agents has to place
exactly one order, a bid or an ask, at each time-step.
Ber(·) denotes the Bernoulli distribution. The tempera-
ture parameters τ = (τ1, . . . , τn) are independent and
unknown to the expert agent.

Hence, the aggregate intermediate bid orders that were
generated by the N trading agents, v(TA)

b (t) are the
sum of N independent Bernoulli variables, whose pa-
rameter is conditioned on the environment state st and
the idiosyncratic temperature parameters τ .

Therefore, the number of intermediate bids is dis-
tributed according to a Poisson binomial distribution
(Shepp & Olkin, 1981), whose probability mass func-
tion can be expressed in closed form. Since each of the
trading agents (but not the EA) should place exactly
one order, the aggregate intermediate ask orders are
v
(TA)
a (t) = N − v(TA)

b (t). The aggregate bids and
asks of the trading agents form an intermediate state
called the belief state bt = (v

(TA)
b (t), v

(TA)
a (t)).

Although the EA can only see the last available LOB
snapshot contained in st, their orders (at) are executed
against the intermediate state bt. This could be com-
pared in real world LOBs to a slippage effect. Based
on the number of bids and asks finally matched by the
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EA in the LOB, their inventory is updated as a net long
or short position. Considering the above dynamics of
the LOB, the transition matrix T , can be calculated
exactly. This allows for an exact solution of the MDP.
An illustration of the dynamics is provided in Figure 2.

• Reward Function r. The selection of the reward func-
tion is crucial, since it induces the behaviour of the
agent (Berger, 2013). The reward function can be ei-
ther a function of state st and action at; or equivalently,
following the dynamics T , of the next state st+1, (Sut-
ton & Barto, 2018). We follow the latter convention,
and use the following two reward functions for the
expert agent to test each IRL method considered:

1. Linear reward, equal to the EA’s hit count:

r(s) = N − v(1)b − v
(1)
a (5)

This reward is equivalent to the hit count of the
EA because there are always exactly N orders in
the intermediate state bt, and therefore the next
state st resulting from the execution of the EA’s
active orders at against the TA orders bt, can be
effectively seen as the remaining orders, i.e. the
number of orders out of a maximum of N that the
EA was not able to match.

This reward function does not incentivize directly
to sell inventory. However, since the episode
is terminated when maximum inventory Imax
is exceeded, the market maker is implicitly
motivated not to violate this constraint, since
the simulation will then be terminated and the
cumulative reward will be reduced.

2. Exponential reward is a model widely used in
economic theory to characterize levels of risk aver-
sion (Pratt, 1964). We may use it to define a non-
linear reward function that depends on both the
inventory of the EA and their hit count:

r(s) = 1− e−α∗(N−v
(1)
b −v

(1)
a −β∗|i

(EA)|) (6)

where α, β ∈ R≥0 are chosen based on the level
of risk aversion of the agent.

Both reward structures are illustrated in Figures 3- 4.

Results and Discussion. Our experiments are performed
on synthetic data, where N = 3 is the number of trading
agents with temperatures τ = (0.1, 0.5, 1.0), and Imax = 5.
We also consider an episodic setup, where the simulation is
terminated either when the maximum inventory is violated,
or T = 5 time-steps are completed. The initial state is
uniformly sampled from the non-terminal states in S.

ρ0 s0

r0

τ

b1

a1

s1

r1

b2

a2

s2

r2

a3

· · ·

· · ·

· · ·

Figure 2. Model of our Markov decision process for a one-level
LOB environment. The expert agent takes actions at (diamond
yellow nodes), conditioned on the observed states st (shaded circle
nodes), receiving reward rt (polygon red nodes). The trading
agents, given the deterministic temperature parameters τ (black
square node), place orders which comprise the latent belief state
bt. The next state st+1 is a function of the expert agent’s action
and the latent belief states, which the expert agent should learn to
infer in order to optimize cumulative returns.

0 20 40 60 80 100
Discrete State, s

0

2

Re
wa

rd
, r

Linear Reward

0 20 40 60 80 100
Discrete State, s

100

0

Re
wa

rd
, r

Exponential Reward

Figure 3. Reward functions (i.e. linear and exponential) with re-
spect to the discrete (enumerated) states, e.g. s = 0 corresponds
to an inventory of −Imax = −5 and to bid and ask volumes of 0;
while s = 1 corresponds to an inventory of -5, a bid volume of 0
and and ask volume of 1, etc.

• Performance metric. Following previous IRL litera-
ture (Jin et al., 2017; Wulfmeier et al., 2015) we eval-
uate the performance of each method through their
respective Expected Value Differences (EVD). EVD
quantifies the difference between:

1. the expected cumulative reward earned by fol-
lowing the optimal policy π∗ implied by the true
rewards;
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for i(EA) = 0
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0.4

0.6

0.8

Figure 4. Reward functions (linear and exponential) with respect
to the state features: volume of best bid and ask and expert agent’s
inventory.

2. the expected cumulative reward earned by follow-
ing the policy π̂ implied by the rewards inferred
through IRL.

EVD = E
[ T∑
t=0

γtr(st)|π∗
]
−E

[ T∑
t=0

γtr(st)|π̂
]

(7)

Since the expert’s observed behaviour could have been
generated by different reward functions, we compare
the EVD yielded by inferred rewards per method, rather
than directly comparing each inferred reward against
the ground truth reward.

MaxEnt GPIRL BNNIRL

210 212 214

Number of Demonstrations

0.2

0.0

0.2

0.4

EV
D

Linear Reward

210 212 214

Number of Demonstrations

0.2

0.0

0.2

0.4

EV
D

Exponential Reward

Figure 5. EVD for both the linear and the exponential reward func-
tions as inferred through MaxEnt, GP and BNN IRL algorithms
for increasing numbers of demonstrations. EVDs are all evaluated
on 100,000 trajectories each. The standard errors are plotted for
10 independent evaluations.

We run two versions of our experiments, where the expert
agent has either a linear or an exponential reward function.
Each IRL method is run for 512, 1024, 2048, 4096, 8192
and 16384 demonstrations. The results obtained are pre-
sented in Figure 5: as expected, all three IRL methods tested
(MaxEnt IRL, GPIRL, BNN-IRL), learn fairly well linear
reward functions. However, for an agent with an exponen-
tial reward, GPIRL and BNN-IRL are able to discover the
latent function significantly better, with BNN outperforming
as the number of demonstrations increases. In addition to

improved EVD, our BNN-IRL experiments provide a sig-
nificant improvement in computational time as compared to
GPIRL, hence enabling potentially more efficient scalability
of IRL on LOBs to state spaces of higher dimensions.

4. Conclusions
In this paper we attempt an application of IRL to a stochastic,
non-stationary financial environment (the LOB) whose com-
peting agents may follow complex reward functions. While
as expected all the methods considered are able to recover
linear latent reward functions, only GP-based IRL (Levine
et al., 2011) and our implementation through BNNs are able
to recover more realistic non-linear expert rewards, thus
mitigating most of the challenges imposed by this stochastic
multi-agent environment. Moreover, our BNN method out-
performs GPIRL for larger numbers of demonstrations, and
is less computationally intensive. This may enable future
work to study LOBs of higher dimensions, and on increas-
ingly realistic number and complexity of agents involved.
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