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Choking and hydraulic jumps in laminar flow

Bernhard Scheichl’'>*, Robert I. Bowles®, and Georgios Pasias’

! Institute of Fluid Mechanics and Heat Transfer, Technische Universitit Wien, Tower BA/E322, Getreidemarkt 9,

1060 Vienna, Austria
2 AC2T research GmbH (Austrian Excellence Center for Tribology), Viktor-Kaplan-Strafe 2/C, 2700 Wr. Neustadt, Austria
3 Department of Mathematics, University College London, 25 Gordon Street, London WC1H 0AY, United Kingdom

The viscous hydraulic jump still represents research in progress rather than a finalised edifice. The existing rigorous ap-
proaches show how this phenomenon is tied in with a bifurcation of the upstream flow adjacent to the guiding rigid plate of
finite length, aligned perpendicularly to the direction of gravity. Here, this together with the upstream influence by the de-
tached flow triggers transition from super- to subcritical flow (sensing its susceptibility to the upstream propagation of small
disturbances). We present recent advances in the self-consistent theory of single-layer jumps continued as free shear layers.
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1 Moderately large Froude numbers: strong jump terminated by choked flow

Consider the planar steady flow of a Newtonian liquid layer exhibiting uniform properties over a finite rigid horizontal plate.
Constant gravity acts in negative vertical direction onto its wetted side. Typically, the ambient gaseous environment is at rest.

Let a reciprocal Froude number or non-dimensional gravitational acceleration g be of O(1) for asymptotically large values
the Reynolds number Re; both are formed with a flow speed U and a vertical hei ght H characteristic of the slender layer de-
scribed in the shallow-water limit. We furthermore identify 1/ Re with the shallow-water parameter €:= H / L so that the layer
becomes a developed one over the horizontal adjustment length L. According to the pioneering study [1], the phenomenon of
a correspondingly smooth “jump” occurring in a developed flow appears self-evidently just as being the result of the upstream
influence present across the entire layer due to the hydrostatic pressure gradient, parametrised by g. Consequently, an appro-
priate downstream conditions in the form of a generic singularity prescribed at the plate edge, accounting for the shortening
of the streamwise scale as the flow approaches the trailing edge of the plate to undergo transcritical conditions, i.e. choking,
there, closes the then weakly elliptic problem. Otherwise, the specific generation of the flow a horizontal distance L upstream
of the plate edge provides a source of ill-posedness of the underlying marching problem: as a typical scenario, the impinge-
ment of a free jet onto the plate provokes a very thin and therefore nearly supercritical, fully developed wall jet, first discussed
in [2], asymptotically far downstream of jet impact but still asymptotically close to it when its streamwise extent is measured
by L. Hence, the match with this flow allows for a one-parametric family of eigensolutions of the linearised shallow-water
operator emerging in the virtual origin of the developed flow, cf. [3]. Most importantly, we find that the singularity terminates
numerical downstream marching: placed as the downstream condition, it selects a specific member of that class to render the
problem a well-posed one. This first completes the rational description of the fully viscous hydraulic jump.

The included limit of an underdeveloped flow and accordingly weak jump as Re~! < e < 1 was already appreciated by
viscous—inviscid interaction in [4] as long as (0 <) 1 — g = O(1). Notably, the study [5] of the according transcritical situ-
ation in the least-degenerate distinguished limit ¢ = O(Re~1/10), (0 <) 1 — g = O(€?) introduces the impact of streamline
curvature and surface tension. By the localised interaction, choking is fully absent in the first case. However, the flow almost
chokes in the second given the O(€?)-detuning of an upstream propagating wave from coming to rest.

We settle an open point crucial for understanding the detailed flow structure for g > 1 in an appealing manner. To this
end, we introduce the distance s from the virtual origin in streamwise direction and the local vertical height h and kinematic
horizontal momentum flux I of the layer, non-dimensional with f, H , and HU? respectively. Then M, q:= I, 4 + ghi, d /2
denotes its total momentum evaluated sufficiently far up- and downstream (subscripts u, d) of the limiting discontinuous jump
at the sought position s = sy, say. The aforementioned self-preserving near-supercritical flow, cf. [2], yields I,, ~ tC/h,,, C
is a universal constant, and h,, ~ 7ts/+/3. On the contrary, the large-g limit entails a subcritical flow governed by a lubrication
approximation valid not too close to the plate edge (s = 1), hence I ~ 5/(6h,4) and h} — h? ~ 12(1 — s)/g where h is
a virtual layer height at the edge. Here we take h. < hq as matching with the terminal flow regime where fluid inertia is
reinstated in full to finally allow for the edge singularity requires also hy given above to behave singular as s — 1_. On
the other hand, the apparent impossibility to extend the lubrication limit to arbitrarily large values of s hampers the flow
from attaining a steady state over an infinitely long plate. This confirms its intrinsic downstream termination by a singularity.
Eventually, from the jump conditions stating conservation of the volumetric flow rate and total momentum or

M, ~ My, s;~C/yg with C=[[(1/3)/T(5/6)]%/(67*?) ~ 0.4001 (1)
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20f2 Section 11: Interfacial flows
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Fig. 1: a Concentric jump (image from [7], used with permission); b, ¢ H1 vs. X; d P vs. X parametrised by T (coloured), T ~ 0.6359.

ensues. The scaling law (1) is at the basis for completing the regularisation of the jump by virtue of its internal structure at
smaller distances |s — sy|, commenced in [1]. Specifically, the invariance of the shallow-water momentum equations against a
change of variables (s, h, g) — (s, hi, g1):= (s/s7,h/ss, s3g) gives g ~ C?/,/g < 1 typical of the flow branching abruptly
off its near-supercritical state close to the virtual origin to undergo the jump. Thus, the generic description of the onset of a
strong jump in [6], also involving capillarity, applies on the smallest streamwise, interactive scale s — s; = O(g}) at play.
The circular counterpart of this strong jump, undular by surface tension, is as ubiquitous in applications as clearly visible
in experiments: see Fig. 1a. For the extension of the current theory coping with the jump over a rotating disc we refer to [8].

2 Very large Froude number: choking by detachment

As demonstrated in [9], the effect of streamline curvature suppresses hydrostatically-induced choking for sufficiently small
values of g. In the very supercritical, extreme limit taking g as of 0(64/ 7), classical choking at the plate edge is replaced by
the upstream influence within the double-tiered interactive flow passing the edge over s = 1 + O(e%/7) and predicting vertical
variations of the free streamlines relative to the base flow upstream of O(e2/7). Let us introduce appropriately scaled O(1)-
quantities: reciprocal Froude and Weber numbers G and 7" (based on H) respectively, horizontal distance X from the plate
edge, leading-order fluid pressure P(X), related displacement function A(X), vertical deflections H (X) of the lower- (—)
and uppermost (+) streamlines. We complete the typical P/A law as given in [9] by considering the detached flow (X > 0):

T-1 ) GX?
{(PH_ H.}= {2T_1 o | A~ A0) ~ A(0)X +sgn(T 1) ] H_A}. )

Here — A describes the variation of the layer height; the quadratic one of H4 with X far downstream provides a match with
the downfall (T < 1/2) or, notably, uprising (T" > 1/2) parabola recovered on a larger scale. Accordingly, P(X) and Hy (X)
result from post-processing the numerical solution of the interaction problem obtained by marching downstream: this is only
entered by P/(X) and A(X) and parametrised by T', whereas the influence of gravity is condensed in the flow profile in the
lower tier at the edge. Serving as an initial condition, it is determined by the preceding marching sweep towards the edge so as
to meet the choking condition P(0) = 0. We finally discuss some preliminary analytical/numerical results obtained from (2).

For 0 < T < 1/2, the free layer exhibits nearly symmetric capillary waves, thus reminiscent of and being an inertia-driven
modification of neutral Rayleigh—Plateau modes: Fig. 1b. In contrast, these modes are replaced by “varicose” ones if 7' > 1:
Fig. lc. For 1/2 < T < 1, however, waves are absent. Rather, for each G > 0 there seems to exist a threshold 7* such that
the flow terminates in the form of an expansive singularity if 7' < T'; this is shifted infinitely far downstream as 7' — 7™ and
superseded by a Goldstein wake adjacent to the lower free streamline as P — GT/(2T — 1) for T = T*; grossly reversed
flow replaces this far wake if T' > T™: Fig. 1d. Current activities focus on an Euler stage regularising that singularity.

The exceptional, singular cases T ~ 1/2 and T ~ 1, not captured by (2), pose formidable challenges of our ongoing
research. We finally remark that the first controls a sign change of capillary dispersion and a presumably nonlinear P/A law.

[G+sgn(T—1)A"]
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