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Abstract 
 
Loop antennas are among one of the simplest antennas to 

construct. Yet, despite this fact, the mathematical 

complexity of the associated radiation integrals has 

complicated the understanding and modelling of such 

structures. Recently, a full analytical theory for the 

radiation properties of loop antennas has been derived, 

which is able to bridge this gap and provide a basis for 

better understanding the behavior of these antennas across 

all frequency ranges. Further, these models have been 

extended to include the effects of loading and coupling, as 

well as have revealed interesting properties such as 

superdirectivity by enabling rapid parametric studies and 

optimizations to be carried out. 

 

1. Introduction 
 

In years past, the loop antenna has received less attention 

than other antennas such as its counterpart, the classical 

dipole antenna. However, with the advent of metamaterials 

there has been a renewed interest in understanding and 

utilizing loop antennas, especially in a split-ring 

configuration [1]. Furthermore, loop antennas have 

received considerable interest in the far-IR to optical 

frequencies for applications such as energy harvesting, 

biological sensing, spectroscopy, and microscopy [2]. As 

in the analysis of all antennas, it is necessary to first 

determine the current throughout the radiating structure. 

Due to the radially symmetric geometry of a circular loop, 

Storer was able to derive an analytical solution for the 

associated current distribution by solving the EFIE using 

the methods of complex Fourier series [3]. Wu recognized 

a convergence problem with these Fourier coefficients and 

amended their definition [4]. Following this work, Werner 

derived the radiated far fields with the current described in 

its most general form as a series of complex Fourier modes 

[5]. All of these developments assume that the frequency 

range of operation is in the RF regime. As a result, these 

methods do not account for the material dispersion inherent 

in metals at higher frequencies, such as in the far-IR to 

optical regimes. McKinley extended the work of Storer and 

Wu in [6], to account for this dispersion by introducing a 

complex surface impedance along the loop. Using these 

definitions, Werner and Lu et al. developed a 

comprehensive, analytical model of the loop antenna valid 

from the RF to the optical regime [7]. Later this work, in 

collaboration, was extended to include the effects of 

loading [8, 9] following the methods of Harrington [10] as 

well as mutual coupling using the induced-EMF method 

[11]. Furthermore, given the analytical nature of the model, 

thin loop antennas and their interactions can be modeled 

more efficiently while using much less RAM than a full-

wave solver would require. This is especially true when 

modelling dispersive loops. The following discusses the 

theory, optimization, and unexpected results associated 

with general thin-wire loops and, in particular, nanoloops. 

 

2. Theory of Unloaded and Loaded Loops 
 

 

Figure 1. a) Geometry of circular loop with radius b and 

wire radius a fed by a delta-gap source at � = 0. b) 

Loaded geometry having identical dimensions as a) with 

M ports located at � = ��. 

 

The geometry of both the unloaded and loaded loops with 

radius � and wire radius � are provided in Figure 1. The 

loop is fed by a delta-gap voltage source located at � = 0. 

The thin-wire approximation is assumed such that � ≪� and � ≪ 	. As a result, the current only varies as function 

of the coordinate � around the loop. Following the moment 

method, the current is decomposed into the entire-domain 

complex exponential basis as a Fourier series. This is 

described below in Equation (1). The current can further be 

expressed in terms of the input voltage and the modal 

admittances 
��  as shown in Equations (2) and (3). The 

addition of the surface impedance term 
�  in the modal 

admittance expression accounts for the material dispersion 

and thus extends this derivation beyond the RF regime. A 

further description of 
� is found in [6]. 
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For the case of the loaded loop with M discrete ports, each 

with a voltage source and complex load impedance, the 

modal current expression is modified by the inclusion of 

the associated series voltage drop, shown in Equation (4). 

Hence, it is necessary to first solve for the currents at each 

port in order to fully specify the modal currents. This can 

be accomplished by means of solving a matrix equation [8]. 

The far-zone electric fields are derived in [7] and presented 

for reference as Equation (5). The directivity, radiation and 

loss resistances, gain, and power can be derived using 

standard antenna principles [12] with analytical solutions 

provided in [7]. 
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3. Coupling Between Loops 
 

 

Figure 2. Coupling configuration between active loop D 
and passive loop �. 

 

The induced EMF method [12] in combination with the 

theory presented above can be used to model and 

analytically study the coupling between two or more 

arbitrary loops. The coupling configuration is shown in 

Figure 2 with a single active loop D and passive loop �. For 

the sake of brevity, only the general form of the current 

induced on the passive loop is described below. In this 

expression, the �E�  are a function of the tangentially 

induced field from the active loop, 
F,��  are the modal 

admittances of the passive loop, Φ′ and J′ are the angular 

coordinates around the passive and active loops 

respectively.  All remaining derivations of the associated 

far fields and full analytical solutions are thoroughly 

discussed in [11]. If the two loops are of the same size or 

operating in the same mode, Equation (6) shows that the 

resulting induced current will be of the same form as the 

source current, modulated by the induced tangential field. 

In addition to the fully analytical approach, a pseudo-

analytical formulation using the near fields can be 

implemented numerically. In this case, the induced current 

may be decomposed into its Fourier modes and Equation 

(4) in combination with array factor theory can be used to 

compute the total radiated field. This numerical 

implementation further extends the utility of this theory to 

handle an arbitrary induced excitation. 
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4. Superdirectivity Phenomenon 
 

 

Figure 3. Frequency sweep of directivity for thin (Ω= 12) and thick (Ω = 8) nanoloops in comparison to 

the Chu-Harrington and Geyi superdirective limits 

with insets of the full radiation pattern at two 

frequencies of interest. 

 

The analytical nature of the model presented allows for 

rapid exploration of the possible design space. Such 

exploration has revealed that it is possible for a single 

nanoloop, in isolation, to exhibit superdirectivity [13]. 

Though it is shown that a thin loop (Ω = 2 ln TUVB
W X = 12) 

has a low radiation efficiency, a thicker loop (Ω = 8) is 

capable of exhibiting a high gain over a wide bandwidth. 

Figure 3 shows the directivity plotted with respect to the 

wave number AB  in comparison to the Chu-Harrington and 

Geyi superdirective limits. This superdirective 

phenomenon is not present in PEC loops since it is 

necessary that the constituent material of the loop be lossy. 

The thin, superdirective loop antenna can be thought of as 

an array of two dipoles located at and directly opposite to 

the feed with a relative magnitude reduction of 

approximately 30% between the two dipoles. However, 



despite similar performance to such an array, the nanoloop 

does not suffer from the same drawbacks (e.g., sensitivities 

to the feeding network and exact placement of array 

elements). Though this model is useful for understanding 

the thin loop, the high directivity mode of the thick loop 

has a different physical explanation.  Regardless, the thick 

nanoloop provides a robust, broadband gain nanoantenna 

with a simple, fabrication friendly geometry. A further 

discussion of this material involving spherical multipole 

decomposition, comparison to other nanoantennas, and the 

effect of a substrate on the radiation pattern can be found 

in [13]. 

 

5. Optimization of Loop Antennas 

 

 

Figure 4. Pareto fronts for a) the directivity in the 

(;, J� = �90°, 90°� direction and b) directivity in the �;, J� = �90°, 180°) direction. 

 
Given the analytical form of the theory, optimizations of 

dispersive nanoloops have now become highly tractable. 

For example, a discrete frequency sweep with 51 points can 

take approximately 2 hours using the full-wave solver 

FEKO [14] with 10 cores, while the theory implemented in 

MATLAB [15] with a single core takes only 20 seconds to 

evaluate. As mentioned in the previous section, the 

superdirective radiation modes of a nanoloop only manifest 

in the endfire direction. A reasonable question to consider 

is whether it is possible to redirect this mode towards a 

different direction. A recent study in [9] has shown that by 

adding capacitors, the loop may radiate superdirectively in 

different directions. The full Pareto fronts of the directivity 

at different angles versus frequency with various loading 

arrangements are shown in Figure 4. It is interesting that 

superdirectivity in the ( 90°, 90°�  direction can only be 

obtained with the application of at least two capacitors. 

Upon further investigation, it is determined that the only 

way to achieve the superdirectivity is by increasing the 

magnitude of the m = -2 current mode. Similarly, 

increasing the magnitude of the m = +2 current mode 

directs the main beam towards the (90°, 270°) direction. 

From Figure 4b, it is notable that the nanoloop may be 

made to radiate with an even higher directivity in the �90°, 180°�  direction by adding capacitive loads. 

Additional applications of optimizations to the study and 

design of nanoloops can be found in [9, 16-17]. 
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