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Federal University of Parana, CS Department, C3SL Labs, Curitiba, Brazil.
E-mail: caghuve@inf.ufpr.br

Leticia Mara Peres
Federal University of Parana, CS Department, C3SL Labs, Curitiba, Brazil
E-mail: lmperes@inf.ufpr.br

Marcos Didonet Del Fabro
Federal University of Parana, CS Department, C3SL Labs, Curitiba, Brazil.
E-mail: marcos.ddf@inf.ufpr.br

Abstract Ontologies are formal specifications of conceptualizations. Their designs re-
quire to understand the concepts involved in the domain to be mapped. One well-known
method to produce ontologies is to extract their concepts from relational databases. We
conducted a practical study over a real-world scenario on applying existing rules and we
identified open issues to be addressed, such as the utilization of logical metadata as a
proper vocabulary, the implementation targeted to specific domains and mappings of hi-
erarchical and self-hierarchical structures. In this paper, we present a novel approach that
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rules, taking into account instances and (self)hierarchies. We validate our approach with
2 experiments from the healthcare domain as input.
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2010, and carried out her post-doctoral studies at the Department of Services and Infor-
mation Systems Engineering at the Polytechnic University of Catalonia, 2016. Her main
research interests are on applications and fundamentals of systems and software engi-
neering, with emphasis on verification and validation of systems and software.

Marcos Didonet Del Fabro received his Ph.D. degree in computer science from the Uni-
versity of Nantes, in 2007. He is an Associate Professor with the Universidade Federal do
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1 Introduction

Ontologies are explicit and formal specifications of a con-
ceptualization. An ontology depicts a certain problem
domain, and provides an abstract model, comprising un-
ambiguous and consensual definition of concepts and re-
lationships among them, which can be understood and
processed by computers [1]. Ontologies are increasingly
being used, and considerably growing in number, com-
plexity and domains they model [2], playing an impor-
tant role in resolving semantic heterogeneity. However,
building ontologies from scratch or manually is a com-
plex, mistakable and time consuming process [3]. More-
over, the domain experts need to understand the syntax
and semantics of ontology development languages, often
leading to poor definitions [4].

To overcome this lack, the generation of ontologies
from relational databases (RDB) has been widely stud-
ied as a viable approach for ontology construction [5].
Relational databases can be used as the source of infor-
mation, leading to the creation of systems for instantiat-
ing ontologies. The process of building ontologies should
be preferably (semi)automated for a knowledge acqui-
sition process that does not have the support of do-
main experts [6, 5]. The RDB structure is intended to be
used in different ways in order to construct ontologies,
such as simply building an ontology, integrating multiple
databases, ontology learning, and managing the organi-
zation knowledge [7]. Moreover, ontologies can be used
to unify the description and retrieval of data in relational
databases, giving data integration that includes: a) to
recognize data inconsistency and redundancy, b) to sup-
port shared common data understanding and mapping,
c) to provide a vocabulary of terms which is indepen-
dent of relational database schemata, and d) to express
the equivalence of terms used in relational databases [8].

The works from [9, 10, 11] provided a classification
covering aspects such as the existence of an initial on-
tology, its application in reverse engineering, automa-
tion level, and others. Notably, the approaches [12, 13,
3, 14, 15, 16, 6, 17, 18, 19, 5, 20] aim to convert rela-
tional data models to ontologies, by providing mapping
rules that translate the elements of a database schema
into concepts and relationships of an ontology. The W3C
RDB2RDF Working Group provides as well a survey [21]
of different approaches of mapping relational databases
to ontologies, including the definition of a reference ar-
chitecture to compare them. It focuses on the aspects
to be addressed to move towards standardization, not
detailing the kinds of mappings.

We conducted a practical study over a scenario from
the medical domain on applying existing rules, aiming
on the increase of the legibility of the generated ontol-
ogy. We identified that although these approaches are
designed with a significant number of rules, they per-
form mappings at the physical level and there are gaps
to be addressed. Important aspects that could enrich
the generated ontology are not handled, such as: a) us-
ing relationships and tuples in order to identify class

(self)hierarchies, b) considering “Boolean” attributes in
order to define positive or negative property assertions,
and c) using logical metadata as a proper vocabulary
in order to produce a target ontology that provides the
common understanding of a knowledge domain.

In this paper, we present a complete relational-to-
ontology mapping architecture and tool to overcome the
mentioned issues. Our solution has three main contribu-
tions.

Generic architecture: it covers the full chain of defini-
tions and operations. We notably define metadata scripts
and mappings that store complete information about the
mapping process, which is technology independent.

Utilization of the logical model : the architecture uses
the physical and logical models to enrich the terminology
produced in the target ontology, making the ontology
easier to understand. Both models are also stored in the
metadata mappings, being as well not dependent of any
RDB or ontology format.

Mapping rules: they cover a large set of translation
cases. Some part of the rules are based on existing works,
while the new subset handles problems identified on our
study. We provide improvements in the naming of on-
tology elements and instances, mapping NxN relation-
ships, handling database constraints and producing self-
hierarchical relationships. The output ontology is gener-
ated in the OWL 1 format.

We validate our approach through 2 experiments us-
ing input data from the healthcare domain. The first one
focuses on the automatization of the execution of the
rules. It is backed up by a complete tool available for
download 2 . The second one uses a complex relational
data model where all the designed rules are applied and
we compare with a significant existing approach.

This paper is organized as follows: Section 2 refers to
the related work, providing an extensive classification of
the existing kind of rules. Section 3 presents the motiva-
tions for our work using a real-world scenario. It makes
clear the necessity of improving existing solutions. Sec-
tion 4 describes the RPL2O mapping process architec-
ture and its set of mapping rules. Section 5 depicts the
experiments performed in order to validate our approach
and to compare it with related work. Finally, Section 6
concludes with considerations and future work.

2 Related Work

Several approaches aim to convert relational data mod-
els into ontologies. Most part of these solutions develop
set of mappings using a RDB physical model or varia-
tions/extensions of it. Michel [11] Spanos [9] and Sequeda
[10] surveyed the motivations and benefits of a mapping
process, analyzing related work and expose different re-
search topics of relational databases in the context of
the Semantic Web, the challenges, and their different

1 http://www.w3.org/OWL/

2 https://github.com/caghuve/rdb-to-onto
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application purposes. In short, these approaches and de-
veloped tools are classified with respect to the following
aspects: a) existence of ontology, b) ontology domain, c)
application of database reverse engineering, d) automa-
tion level, e) data accessibility, e) mapping language, f)
ontology language, g) vocabulary reuse, h) complexity of
mapping definition, i)software availability, j) graphical
user interface, and l) purpose.

Concerning the creation of a new ontology from
scratch from a relational database, in which our ap-
proach will fit in, [9] classified the approaches in two
groups: a) not performing reverse engineering, and b)
performing reverse engineering, through a set of for-
ward and/or backward mappings. In the first group,
approaches such as [22, 23] use the R2RML language
[23, 24, 25]. Although it is an important initiative, this
language does not support to record the decisions made
during the mapping process and the relationships be-
tween concepts of the relational-to-ontology mapping.
For this reason, it is difficult to provide the inverse trans-
lation. Most part of the surveyed approaches support
reverse engineering, even if some of them does not have a
working forward/backward implementation. X3ML [26]
is a recent approach that enables creating mappings us-
ing a specific mapping language. The framework is com-
plete and other solutions could be implemented on top
of it. However, it does not focus in the kinds of rules that
could be implemented.

Jain and Singh [27] compare well-known frameworks
used to convert relational databases to ontologies. The
authors highlight the most common issues in existing
tools, and they propose to extend an existing framework
with new features to overcome such shortcomings. How-
ever, it provides a 1:1 mapping between the input and
output elements (table x class, column x property), lim-
iting the modeling possibilities.

Telnarova [12] produces ontologies from data ex-
tracted from RDBs, specifying rules to create classes,
properties, hierarchies, cardinalities and individuals.
Gherabi et al. [13] developed a tool that searches for par-
ticular cases of database tables to determine which on-
tology component has to be created from which database
component. OGSRD [3] is a method for ontology build-
ing from relational databases that uses construction rules
of ontology elements (concepts, properties, axioms, indi-
viduals), but it ignores sets of tables that express associ-
ation data. Ren et al. [15] propose a rule-based transfor-
mation solution, which considers both schema transfor-
mation (relations, attributes, and constraints) and data
extraction. DB2OWL [16] maps tables to classes and
columns to predicates, using relational database schema
characteristics’ to assert sub-classes and object proper-
ties. Louhdi et al. [6] propose a set of transformation
rules which analyzes stored data to detect disjointness
and totalness constraints in hierarchies and it calculates
the participation level of tables in n-ary relations. Ra-
mathilagam & Valarmathi [4] propose an RDB to Ontol-

ogy mapping framework that can generate an Ontology
based on the proposed mapping rules for a banking do-
main. This framework also includes additional semantic
rules to improve the expressiveness for the generated on-
tology regarding to the search and retrieval processes.
QUALEG DB [14] is a mapping implementation that
handles issues often found in existing approaches, such
as: a) discovery of inheritance; b) discovery of restric-
tions, symmetric and transitive properties; c) consider-
ation of constraints that capture additional semantics;
d) analysis the semantic loss caused by the translation,
due to the semantic mismatch between both data mod-
els. SOAM [17] is a semi-automatic ontology acquisi-
tion method based on data in RDB, which aims to ac-
quire an OWL ontology without demanding an inter-
mediate model and to semi-automatically refine the ob-
tained ontology according to existing lexical knowledge
repositories. Finally, a set of solutions focus on mapping
the database tuples to ontology individuals using differ-
ent methods, such as: a) based on a defined template
(RDB2ONTO [18]); or b) based on datasets extracted
from the source RDB (RDB2OWL [19] and RDOTE [5]).
Similarly, D2RQ 3 offers a powerful declarative language
for mapping RDB tuples to individuals of an ontology.
[28] provides a set of extensive mappings covering nearly
all the elements of an RDB, translating schema and in-
stances. However, they do not focus on semantic rela-
tions handling hierarchical mapping. [29] also provide a
complete mapping from RDB elements, though they use
an intermediate model that it is further translated into
an ontology. While it provides a generic architecture, it
is necessary to manually enrich the ontology with addi-
tional information and to know another representation
format.

Solutions addressing hierarchical mapping were also
studied. Sequeda et al. [10] provides an overview of auto-
matic translation of an inheritance hierarchy in an ontol-
ogy. Reviewed approaches express inheritance modeling
through possible foreign key patterns, wherein: a)foreign
key is also the primary key, b)foreign key and primary
key are disjoint, and c)foreign key is a subset of the pri-
mary key. Finally, the approach from Cerbah [30] consid-
ers additional information in the translation process. It
uses a distance-based feature to select a relevant dataset
based on the similarity between the feature value and
a subset of the input text. The main objective of this
work is to integrate to ’RDBToOnto’ platforms a learn-
ing component to perform categorization patterns from
which class hierarchies can be generated.

3 Motivation

We motivate our approach after attempting to apply the
mapping rules described in the previous section to create
an ontology using OWL 2.0 4 , for the InfoSaude system.
InfoSaude [31, 32] is a medical information system used

3 http://sourceforge.net/projects/d2rq-map/

4 https://www.w3.org/TR/owl2-overview/
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Table 1 Common mapping rules to map relational database elements into ontology components.

Elements Rule Description
1. Tables to A Each non associative table is mapped to an ontology class.

Classes B Information from different tables is mapped to one single
ontology class.

2. Associative C Many-to-many relationships are mapped to two object
Tables properties.

D Many-to-many relationships are mapped to two mutually
inverse object properties.

E Domain and range are defined for object properties that
represent many-to-many relationships.

F Each table that references more than two tables is mapped
to a class and an object property for each foreign key.

3. Foreign Keys to G Each foreign key in non associative tables is mapped
Object Properties to an object property.

H Domain and range are defined for object properties that
represent FKs.

I FKs are mapped as two mutually inverse object properties.
J Define “has-part” and ‘is-part-of” object properties for

each FK that is part of the PH in non-associative tables.
4. Tables to K Each foreign key that is equivalent to the primary key

Subclasses is mapped as a subclass.
L Each foreign key that is part of the primary key is

mapped as a subclass.

5. Columns to M Each column that is not part of a foreign key is mapped
Data Properties to a data property.

6. Not Null N Not null columns are mapped to data properties with min
Constraints cardinality restriction equals to 1.

7. Primary Keys to O Primary key columns are mapped to data properties with
Data Properties min and max cardinality equals to 1.

P Primary key columns are mapped to inverse functional
properties with min cardinality equals to 1.

8. Unique Constraints Q Unique key columns are mapped to data properties with
to Data Properties max cardinality equals to 1.

R Unique key columns are mapped to inverse functional
properties.

9. Table Data S Tuples is mapped to ontology individuals of specific
to Individuals classes.

to meet the needs of 75 public health centers in the city
of Florianópolis, Brazil. It integrates various information
systems used by the Brazilian Ministry of Health, such
as the Outpatient Information System (CIS) and the In-
ternational Classification of Diseases (ICD) tables. The
system is also used to report information about Ambula-
tory Care Individual (RAAI), summarizing data on the
type of care, pregnancies, procedures performed on the
patient, applied vaccines and drug prescriptions. This
schema was chosen for different reasons: first, we could
apply our solution to a real world scenario; second, it is
complex enough since it comprises several existing rules;
finally, it enabled us to discover new issues that are not
covered by existing solutions, which are described in this
section. Still, other schemas with similar constructs from
different applications could also be used.

Figure 1 illustrates an excerpt of the physical and
logical models 5 . This excerpt stores information about
medical procedures, its related disease information and
specific groups of procedures. As it can be seen, the log-
ical model is easier to understand, since it has a more
friendly terminology.

This RDB data model was used to motivate our ap-
proach and the driving example to explain the rules def-

5 The original model is in Portuguese. It has been translated
to English for illustration.

initions, as long as the set of rules from the related work
cannot to handle some RDB structures, or could handle
only part of them, that could enrich the target ontology.
These elements are presented in this section. We describe
below the main issues found while trying to produce a
RDB-to-Ontology mapping for the InfoSaude system.

Naming classes and properties

The analyzed solutions keep the original names, which
makes the ontology difficult to be understood when there
is some type of encoding in naming RDB elements. Al-
though acronyms and abbreviations are widely used to
create RDB elements, it is desirable to have more mean-
ingful names for the ontology elements. Furthermore,
when using FK names to name object properties, the on-
tology may not be able to express concepts with similar
relations (in terms of meaning) modeled between differ-
ent entities. This can lead to generate ontologies where
each source FK relation is a conceptually different one.

RDB logical metadata provides conceptual informa-
tion of a specific problem domain expressed indepen-
dently of a particular database management. The vocab-
ulary used in logical data models are more closely related
to the real world names than the terminology used to
create the physical data model.



6

(a) Logical model (b) Physical model

Figure 1 InfoSaude data model excerpt: Medical
Procedures.

Additionally, there may also exists conflicts when set-
ting data property names for columns that have the
same physical (e.g. active flag) or logical names (e.g.
“Full Description”) in different RDB entities and tables.
One single data property could be created to refer to
all database columns that share the same semantic def-
inition, rather than creating one single data property
corresponding to each database column.

Primary and unique keys

Primary and unique keys are handled by setting min
and max cardinalities and by defining such keys as in-
verse functional properties, which are not defined in ex-
isting specifications. In addition, creating inverse func-
tional object properties to simulate uniqueness would be
semantically inappropriate.

Moreover, it is not possible to define a set of columns
as inverse functional properties for unique keys com-
posed of two or more columns (composite unique con-
straints), otherwise we would have two different unique
keys. Composite keys should be mapped to a single data
property in order to keep the RDB key consistence within
the ontology individuals.

Check constraints and ranged data types

Although in [14] check constraints with specific enumer-
ated values are mapped to data range definitions, no spe-
cific class is created to map valid values as individuals.
Columns associated to a specific check validation based
on a range of values can be mapped as object proper-
ties instead of data properties. Instead of just defining
a range of possible values for a data property, the val-
idation set could be easily managed by mapping such
columns as object properties with range, which is de-
fined as a specific class to represent the check domain
and the corresponding individuals that define the possi-
ble values.

Naming individuals

The analyzed solutions do not describe how to name
the ontology individuals, except for [15], which trans-
lates primary key values into URIs’ (Universal Resource
Identifiers) postfix of the individual names. When a col-
umn that describes a table tuple is not used as part of
the instance name, it becomes necessary to analyze the
instance property values to recognize such instance, in-
stead of identifying it only by its name.

None of the solutions define criteria to select which
input data records should be mapped into ontological
instances. Although the entire RDB metadata can be
used in order to create a target ontology representing
and describing the domain, record data can be partially
mapped to ontology individuals depending on the kind
of table they are associated with. According to [15], RDB
data is divided into two parts: a) master data, represent-
ing the core objects in business behaviors, such as cus-
tomers and products, as well as association data used to
explain the relations between them; and b) transactional
data, representing the historical occurrences of events in
business behaviors that describe business actions. Trans-
actional data can be disregarded when mapping a RDB
to an ontology, however, unless the RDB logical model
stores some information about each entity type, it can
be a difficult task to identify whether a given table stores
master or transactional data.

Hierarchies

Some of the analyzed solutions handles inheritance hi-
erarchies from SQL schemas. They create a subclass hi-
erarchy based on FKs and PKs [12, 14, 6, 15, 3, 16, 17]
specifications. However, none of them support the cre-
ation of a class hierarchy based on record data extracted
from unique columns that have self-hierarchical struc-
tures. This would help to adjust database models that
have hierarchical models only modeled as instances.

In the InfoSaude model, the table SBC ICD 10 (Inter-
national Classification of Diseases provided by the World
Health Organization 6 ) is an example in which the PK
column ID ICD 10 self-connects tuples without a FK def-
inition (e.g. a tuple with ID ICD 10 = “S08” represents

6 http://www.who.int/classifications/icd/

http://www.who.int/classifications/icd/
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a group of diseases that comprises tuples with column
ID ICD 10 in {“S081”,“S082”,“S088”,“S089”}).

Many-to-many relationships

There are tables with many-to-many relationships but
that do not have any other attribute beyond those used
as FKs. We aim to extend these mapping rules to cover
those associative tables that have up to one Boolean at-
tribute used to identify whether or not the relation is
active.

Boolean attributes can be mapped in different ways
in a RDB schema (e.g. “Boolean” with values “True”
or “False”, “Numeric” with values 0 or 1, “Char” with
values “Y” or “N”). Unless the RDB logical model stores
any semantic information about each attribute, it can be
difficult to identify whether or not an additional column
found in an associative table cover such semantic use.

Although table SBC PROCEDURE ICD in Figure 1
is an associative table, it should not be consider as such
because it has an additional column (FL ACTIVE ). We
drive our approach to consider that if this additional
column is defined as a “Boolean” datatype we can still
map such table into two ontological object properties,
using the columns to define object property assertions.

These additional mapping rules are not taken into ac-
count in the analyzed approaches and they are important
in order to improve the conceptual description provided
by the target ontology. In this paper we present a set of
rules that overcomes the issues described above.

A mapping process considering only the use of RDB
physical model accounts for a plain syntactical trans-
lation of relational databases to ontologies. Combining
RDB physical and logical models is our main motiva-
tion to implement a new architecture, in a way to sup-
port more expressive mapping, differentiating from oth-
ers proposals for presenting new rules of identifying hier-
archies and by worrying about the legibility of the gen-
erated ontology.

4 RPL2O Architecture

In this section we present our architecture to perform
relational-to-ontology mappings (RPL2O ). First, we de-
scribe the main components and their flexible pipeline,
taking into account the logical and physical data mod-
els as input. Second, we propose a set of mapping rules,
which are a composition of already known rules from
the literature and also new rules handling the issues pre-
sented in the motivation section.

4.1 Context

This section present the definitions of ontology models
and database schemas, which are used in our approach.

4.1.1 Relational databases schemas

Modeling is part of database design which defines a capa-
ble structure for data manipulation. Database modeling
is divided into three levels: conceptual, logical and phys-
ical. At a high-level, data requirements are mapped into
a conceptual data model, sufficiently detailed to describe
its scope [33]. Next level matches the logical specifica-
tion of a data model, which groups the information into
structures (e.g. entities, attributes) and describes how
the information will be structured (e.g. relationships, in-
tegrity rules). Last, physical data model corresponds to
the internal organization of data storage. [33]. In our ap-
proach, we focus on the logical and physical models.

The database definitions are descriptive information
stored by a DBMS in a catalog or dictionary [34]. The
data specification from a database is called relational (or
data) schema. A database schema reflects the design and
the data specification of the database.

A relational schema R, denoted by R(A1, A2, ..., Ax),
is composed by a relation name R and a list of at-
tributes A1, A2, ..., Ax. Each attribute Ai, also named a
column, is a name of a role played by some domain D
in the relational schema R. D is called domain of Ai

and is denoted by dom(Ai). A relation state r of a re-
lational schema R, also denoted by r(R), is a set of n-
tuples r = {t1, t2, ..., tn} (tuples are also referred to as
records). Each n-tuple t is an ordered list of m values,
t = (v1, v2, ..., vm), where each value vp, 1 ≤ p ≤ n, is an
element of dom(Ai) or is a special NULL value [34].

The possible tuple values can be categorized differ-
ently. A key value (K) allows identifying stored data re-
ferring it by a unique identifier [35]. A unique key (UK)
is composed of one or more columns, and it forces a
unique information in each table tuple. A primary key
(PK) is composed of one or more columns which, taken
collectively, allows us to identify uniquely a table tuple of
the database [33]. In order to relate two or more tables,
they must have a common relationship. A foreign key
(FK) denotes a relationship of its corresponding tuple
with a primary (PK) of another tuple. Finally, integrity
constraints, or simply constraints, are conditions used
to prevent the entry of incorrect information [34]. An
integrity constraint involving two relations is called for-
eign key (FK) constraint. The constraints may be writ-
ten over any kind of tuple value. A database element can
be a table, a column, a tuple, a value, a constraint, or a
key.

4.1.2 Ontologies

Ontology comes from two Greek words ontos (being) +
logos (science, study) [36]. The use of the term ontol-
ogy in computer science is related to building knowledge
bases using automatic computational reasoning, with in-
teroperable structures that describe concepts and rela-
tions among them [37, 38].

Ontologies standardize meanings through semantic
identifiers, which can represent the real and conceptual
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Figure 2 RPL2O Architecture and Components.

world [37, 39], using a specific and shared vocabulary to
describe a domain, capturing concepts and relations, and
axioms to restrict its interpretation [40].

An ontology O can be represented is denoted by five
kinds of elements O = <C, P, I, V, A>, denoting, re-
spectively, the sets of classes C = {c1, c2, ..., ci}, prop-
erties P = {p1, p2, ..., cj}, instances I = {i1, i2, ..., ik},
property values V = {v1, v2, ..., vl} and axioms A =
{a1, a2, ..., am}.

Informally, classes are used to represent a group of
elements, which have similar characteristics and form
a capable concept to represent an object belong to a
domain. Properties describe characteristics and interac-
tion types among concepts of a domain. The interactions
(or associations) are denoted by binary properties. Ax-
ioms represent conditions (or constraints) which must be
strictly adhered. Instances represent individuals which
share class properties, and property values is a set of
instances for each of these properties [41].

In our work, we use OWL (Web Ontology Language)
ontologies [42, 43] as basis for representation.

4.2 RPL2O Components

The RPL2O process developed in our architecture
has three main steps (see Figure 2), which follows
the pipeline described below. The approach is semi-
automatic. The metadata are partially extracted from
the database models. Additional information is manually
given, as explained below. After the definition files are
set, the execution of the mappings are fully automatic.

(Meta)data Definition Scripts: the metadata def-
inition script extracts and insert into a single CSV
(Comma-Separated-Value) metadata definition file the
RDB physical and logical data models, so it can be fur-
ther read in a single step. The (Meta)data Definition

Scripts follow the same template. The CSV is composed
of 18 columns. The first one receives an identification
of the database element type. It has three possible val-
ues: T(for tables); C(for columns); and R (for tuples).
The second CSV column receives the element physical
name and the logical database name is filled in the third
column. The physical and logical names of a database el-
ement are related to the tables or columns names. The
next column receives the table characteristics being iden-
tified by associative and non-associative table. This need
to be manually filled. The next CSV column stores the
columns constraints and additional information that can
be used to detail the database business rules. The last
two columns can receive record values of database tu-
ples. The produced file is independent of the underlying
RDB technology, it can be created by importing the data
from the database schema, not being mandatory to in-
form the RDB data or the Logical Data Model. The files
generated from the metadata and data definition scripts
are first extracted then completed manually. The physi-
cal metadata is acquired from the database schema. The
input logical may be available in specific RDB tuples or
in specific files according to a given modeling format.
The metadata definition file is filled with the physical
metadata, logical metadata plus additional information
that can be used to drive the process, such as the range
and the domain of a check constraint. In Figure 2, phys-
ical and logical metadata are merged by the Metadata
Definition Script (illustrated in the top-left rectangle).
All filled metadata can be automatic read in the Meta-
data Mapping(a). Similarly, the Data Definition Script
is filled with extracted data from the RDB Schema into
a specific data definition file. This file is used when a
subset of database instances are used in the Data Map-
ping(b), such as hierarchical information.
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(Meta)data mappings: the Metadata Mapping(a)
and the Data Mapping(b) processes use the input scripts
filled with RDB Metadata and Data. The Metadata Map-
ping component uses logical and physical metadata ob-
tained from the corresponding RDB data models to map
the RDB components to the ontology elements. When
the logical name is not inserted, the mapping occurs
considering the physical name of the database elements.
The Data Mapping component uses data gathered from
the RDB records to create ontology individuals or sub-
classes. This mapping allows to classify the future on-
tology elements with elements that already exist. It also
enables to create new elements hierarchically. Once the
files are created, the Metadata Mapping (a) and the Data
Mapping (b) processes are conducted automatically from
the input scripts, where it applies a set of mapping
rules, detailed in section 4.3. The results of the mappings
are automatically generated and stored in the Mapping
Repository (c). The mappings stored in the mapping
repository are initially used for forward transformations,
but the same architectural model could be used to be
extended and to implement inverse mappings. In our so-
lution, we have implemented only the forward transfor-
mation. The term “mapping” is often used to refer the
connection between database elements and ontology ele-
ments. For this, we designed a entity–relationship model
wherein the created entities to represent database and
ontology elements and its correspondences were repre-
sented by an entity relationship model. In RPL2O archi-
tecture, this model is a metamodel which we elaborated
to create a schema and maintain the relations between
database elements and ontology elements. The schema is
represented by Mapping Repository (c) component. Dur-
ing (Meta)data mappings the database elements (from
scripts) are stored as a record into tables defined for the
database context. Once the database elements are stored
and the RPL2O Mapping Rules (4.3) are applied, the
ontology elements are produced and inserted into tables
defined for ontology context. The relations between ta-
bles from database context and ontology context in this
metamodel enables source-to-target traceability. Each
record is associated to a database mapping process, be-
ing possible to keep stored the mapping of distinguished
databases without processing the entire mapping rou-
tine when is necessary only perform the Ontology gener-
ation. The (Meta)data mappings perform different types
of mappings, which occur according to the database el-
ements inputs, being the mapping processed in the fol-
lowing sequence: database tables, database columns and
database tuples.

Ontology generation: the Ontology Generator(d)
process uses the data previously stored in the Mapping
Repository(c) to create the target ontology, following
a series of naming and hierarchical organization rules
in order to avoid duplicated names within the ontol-
ogy elements. As a result of RPL2O architecture semi-
automated process, an OWL file is generated with the
results of this mapping process, keeping the mapping re-
lations stored in the Mapping Repository (c). RDB defi-

nitions that cannot be directly captured or inferred from
the RDB data and metadata produce inconsistent on-
tologies. Such inconsistencies can be used as feedback
and new definitions can be directly added to the repos-
itory. Once the Mapping Repository is changed, a new
version of the target ontology can be generated.

4.3 RPL2O Mapping Rules

In this section we present an extended set of mapping
rules between RDB elements and ontology elements. The
rules are organized in two groups: RDB Mapping Rules
and Ontology Validation Rules For each rule, we pro-
vide its definition, detailing the RDB data/metadata re-
quired, depicting specific details of the process and an
illustrative example extracted from the generated ontol-
ogy. As already stated, Figure 1 shows an excerpt of the
InfoSaude system data model used in the examples (for
managing a list of medical procedures), which will be
used as driving example.

4.3.1 RDB Mapping Rules

These rules focus in the RDB elements and handle how
to map each RDB component to the corresponding on-
tology elements (more than one rule can be defined to
map each RDB component). The approach is intended
for generating an ontology from scratch after giving an
input database and its models (logical and physical), at
least after its first execution. This means it won’t be nec-
essary to create more specialized mappings with interme-
diate nodes. Still, the approach handles N-N mappings
from the input database and translate them, correspond-
ing to the associative tables mapping. We do not handle
event-centric approaches, though we think it could be
adapted if added consistency maintenance. The mapping
rules handle and extend the five main kinds of mappings
identified in the related work: 1) RDB entities/tables
and ontology classes, 2) RDB attributes/columns and
ontology data properties, 3) RDB relationships/foreign
key constraints and ontology object properties; 4) RDB
tuples and ontology instances and 5) hierarchical rela-
tions between classes, including check constraints and
self-hierarchies.

Database Tables

A database table represent a collection of data for a given
domain concept.

Rule 1. Non-associative Tables to Classes.

Non-associative tables store information to be used
as reference to other tables. Each non-associative table
is mapped to an ontology class; the class name will be
assigned during the Ontology Generator process by using
the logical entity name.

This rule is equivalent to Rule A in Table 1. See
Section 4.3.2 for further details about naming ontology
elements and how we suggest guaranteeing unique ele-
ment names within the entire ontology.
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Example: tables SBC PROCEDURE, SBC COMPLEX TYPE

and SBC ICD 10 are non-associative tables, mapped to
the corresponding OWL classes, as shown below:

<Declaration>
<Class IRI="#MedicalProcedure"/>

</Declaration>

<Declaration>
<Class IRI="#ComplexityType"/>

</Declaration>

<Declaration>
<Class IRI="#Disease"/>

</Declaration>

Ontology Properties

Properties in are binary associations among individuals
that represent general facts about class members and
specific facts about individuals [42, 1]. Properties are
characterized by their domain, range or algebraic char-
acteristics [44]. More than one domain or range may be
declared to restrict the relation. There are two kinds
of properties: owl:ObjectProperty, which relates classes
and individuals and owl:DatatypeProperty, which relates
a class to a data type value.

Rule 2. Associative Tables to Object Properties

Associative tables store relationships between two or
more tables. We identify associative tables as those that
have two FKs used to associate two non-associative ta-
bles. However, in order to map RDB elements to on-
tology elements, we consider only the associative tables
that represent a relationship between exactly two ta-
bles. We also take into account whether the table con-
tains columns about the activation of the relation (often
found in RDB models). The PK and FK columns and the
database column used as “Active Flag” has to be explic-
itly configured in the Metadata Definition Script. Never-
theless, an associative candidate table can be forced to
be mapped as a non-associative one if specified in the
Metadata Definition Script.

Each associative table is mapped into two mutually
inverse object properties. When available, logical rela-
tionship names are preferably used to name the object
properties. Optionally, logical entity names that are part
of the associative relation can be used. For each object
property we inversely define Domain and Range accord-
ing to the classes mapped from the two non-associative
tables that are being associated. This rule is equivalent
to Rules D, E and F in Table 1.

Example: in Figure 1, table SBC PROCEDURE ICD

is an associative table between SBC PROCEDURE and
SBC CID 10. Additionally, column FL ACTIVE defines
whether or not the associative relation is active. The log-
ical associative relationship is named “allows” and “is
allowed to”. The associative table is mapped to the cor-
responding object properties:

<Declaration>
<ObjectProperty IRI="#DiseaseAllowsMedicalProcedure"/>

</Declaration>

<Declaration>
<ObjectProperty IRI="#MedicalProcedureIsAllowedToDisease"/>

</Declaration>

<InverseObjectProperties>
<ObjectProperty IRI="#MedicalProcedureIsAllowedToDisease"/>
<ObjectProperty IRI="#DiseaseAllowsMedicalProcedure"/>

</InverseObjectProperties>

<ObjectPropertyDomain>
<ObjectProperty IRI="#DiseaseAllowsMedicalProcedure"/>
<Class IRI="#Disease"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>
<ObjectProperty IRI="#MedicalProcedureIsAllowedToDisease"/>
<Class IRI="#MedicalProcedure"/>

</ObjectPropertyDomain>

<ObjectPropertyRange>
<ObjectProperty IRI="#DiseaseAllowsMedicalProcedure"/>
<Class IRI="#MedicalProcedure"/>

</ObjectPropertyRange>

<ObjectPropertyRange>
<ObjectProperty IRI="#MedicalProcedureIsAllowedToDisease"/>
<Class IRI="#Disease"/>

</ObjectPropertyRange>

Database Columns

A database column represents a set of data values of a
particular type, one value for each row of the table. We
define a data property for the columns defined in the
source RDB.

Rule 3. Database Columns to Data Properties

Each column from non-associative tables that is not
part of a FK and that the content is not restricted by a
check constraint with a list of possible values is mapped
to data properties in the target ontology. We do not con-
sider FK and check constraints, avoiding mapping mis-
takes with other rules, such as in rule 5. This rule is
equivalent to Rule M in Table 1. For each data prop-
erty, the domain of each property is specified using the
corresponding mapped class from the table columun; the
range is specified using the column data type.

Example: table SIP PROCEDURE has a column named
NM PROCEDURE (Medical Procedure Name) with datatype
VARCHAR(300), which is mapped to a data property with
the corresponding Domain and Range, resulting in the
OWL excerpt below:

<Declaration>
<DataProperty IRI="#MedicalProcedureName"/>

</Declaration>

<DataPropertyDomain>
<DataProperty IRI="#MedicalProcedureName"/>
<Class IRI="#MedicalProcedure"/>

</DataPropertyDomain>

<DataPropertyRange>
<DataProperty IRI="#MedicalProcedureName"/>
<Datatype abbreviatedIRI="xsd:string"/>

</DataPropertyRange>

Database constraints

Database check constraints are a type of integrity con-
straint which can ensure that only specific values are
allowed for a given column.

Rule 4. Check Constraints to Object Properties
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This rule maps the columns not mapped by Rule 3,
i.e., which contents are restricted by a list of possible
values. Each constraint is mapped to an object property.
It also creates a ontology class to represent the check
constraint domain and the possible values are mapped
as instances of the check domain class. The domain class
is then used to set the object property range. There is
no equivalent rule in Table 1.

Example: in Figure 1, column
FL GENDER RESTRICTION in table SBC ICD 10 is asso-
ciated with a check constraint that limits the possible
column values to “M”, “F” or “A” (Male, Female, or
All), resulting in the OWL excerpt below:

<Declaration>
<Class IRI="#GenderCheckDomain"/>

</Declaration>

<Declaration>
<NamedIndividual IRI="#Female"/>

</Declaration>

<Declaration>
<NamedIndividual IRI="#Male"/>

</Declaration>

<Declaration>
<NamedIndividual IRI="#All"/>

</Declaration>

<ClassAssertion>
<Class IRI="#GenderCheckDomain"/>
<NamedIndividual IRI="#Female"/>

</ClassAssertion>

<ClassAssertion>
<Class IRI="#GenderCheckDomain"/>
<NamedIndividual IRI="#Male"/>

</ClassAssertion>

<ClassAssertion>
<Class IRI="#GenderCheckDomain"/>
<NamedIndividual IRI="#All"/>

</ClassAssertion>

<Declaration>
<ObjectProperty IRI="#GenderRestriction"/>

</Declaration>

<ObjectPropertyDomain>
<ObjectProperty IRI="#GenderRestriction"/>
<Class IRI="#Disease"/>

</ObjectPropertyDomain>

<ObjectPropertyRange>
<ObjectProperty IRI="#GenderRestriction"/>
<Class IRI="#GenderCheckDomain"/>

</ObjectPropertyRange>

Rule 5. Foreign Keys to Object Properties

Columns that compose FKs between non-associative
tables are not mapped to data properties. Instead, these
columns are not mapped to data properties, but there
will be two mutually inverse object properties for each
FK. Although a FK can be a composite constraint (i.e.
defined with two or more table columns), we consider
the FK constraint as an entire object. For each object
property we define the domain and range according to
the classes mapped from the two non-associative tables
that are part of the relationship. This rule is equivalent
to Rules H and I in Table 1

Example: the SBC PROCEDURE table (Medical Pro-
cedure) has a column ID COMPLEX TYPE which is de-
fined as a NOT NULL FK constraint referencing the

table SBC COMPLEX TYPE (Complexity Type) where the
same column name is defined as the table PK. Column
ID COMPLEX TYPE is mapped to a data property for the
:1 table (SBC COMPLEX TYPE) but it is not for the :N table
(SBC PROCEDURE):

<Declaration>
<ObjectProperty IRI="#isComplexityTypeOf"/>

</Declaration>

<Declaration>
<ObjectProperty IRI="#hasComplexityType"/>

</Declaration>

<InverseObjectProperties>
<ObjectProperty IRI="#hasComplexityType"/>
<ObjectProperty IRI="#isComplexityTypeOf"/>

</InverseObjectProperties>

<ObjectPropertyDomain>
<ObjectProperty IRI="#isComplexityTypeOf"/>
<Class IRI="#ComplexityType"/>

</ObjectPropertyDomain>

<ObjectPropertyDomain>
<ObjectProperty IRI="#hasComplexityType"/>
<Class IRI="#MedicalProcedure"/>

</ObjectPropertyDomain>

<ObjectPropertyRange>
<ObjectProperty IRI="#isComplexityTypeOf"/>
<Class IRI="#MedicalProcedure"/>

</ObjectPropertyRange>

<ObjectPropertyRange>
<ObjectProperty IRI="#hasComplexityType"/>
<Class IRI="#ComplexityType"/>

</ObjectPropertyRange>

Rule 6. Inheritance Relationships

For each FK which is equivalent to a FK in non-
associative tables, the class corresponding to the refer-
enced table is defined as a superclass of the one that rep-
resents the non-associative table (this is usually known
in RDB data models as a 1:1 relationship). We do not
map the FK constraint to the corresponding object prop-
erty, ignoring Rule 5 and we do not map the PK columns
as data properties in the subclass. This rule is equivalent
to Rule K in Table 1.

Example: InfoSaude has a generic table to store infor-
mation about all the Employees (SHC EMPLOYEE). How-
ever, for those who are health professionals, there is an-
other table (SIP PROFESSIONAL) which the PK is defined
as a FK that references SHC EMPLOYEE, forming an in-
heritance relationship that should be handled. This two
tables are not shown in Figure 1.

<Declaration>
<Class IRI="#Employee"/>

</Declaration>

<Declaration>
<Class IRI="#Professional"/>

</Declaration>

<SubClassOf>
<Class IRI="#Professional"/>
<Class IRI="#Employee"/>

</SubClassOf>

Rule 7. Not Null Constraints

For each not null constraint we map the correspond-
ing ontology property with minCardinality equals to
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1. This rule is applied for database columns in non-
associative tables, columns associated to a check con-
straint, and FK constraints.

The only way to find ontology individuals that break
the minCardinality though the definition of ontology
assertions for each individual that has a property P as-
sociated with a RDB NOT NULL constraint, is by set-
ting such individual to a class P max 0, where P corre-
sponds to the data or object property mapped from the
database. We consider this rule as non-mandatory, and
it should only be used when the target ontology will be
used to check for missing individuals’ properties. This
rule is equivalent to Rule N in Table 1, not being re-
stricted to data properties, but rather extended to object
properties.

Example: the not null FK in the table SBC PROCEDURE

that references SBC COMPLEX TYPE is defined as NOT
NULL in the RDB data model, resulting the following
OWL tags for the corresponding object property in the
target ontology.

<SubClassOf>
<Class IRI="#MedicalProcedure"/>
<ObjectMinCardinality cardinality="1">

<ObjectProperty IRI="#hasComplexityType"/>
</ObjectMinCardinality>

</SubClassOf>

Rule 8. Unique Constraints

We do not map unique constraints (including the PK
constraint) to ontology elements. There are two reasons
to it: a) single column with unique constraints should
be mapped as inverse functional data properties, but in-
verse functional data properties are not defined in the
OWL 2.0 specification; b) composite unique constraints
cannot be mapped to ontology assertions using inverse
functional data properties, unless a composite data prop-
erty is defined to represent the composite value.

Object inverse functional properties are defined in the
OWL 2.0 specification, and could be further used to rep-
resent NOT NULL FK constraints in the target ontology.
However, this would require that the ontology individu-
als mapped from the table tuples should also be defined
in a disjoint group of individuals, to explicitly assert that
they are different to each other.

Database Tuples

A database tuple represents a tuple stored in one of the
RDB tables. The analyzed solutions map RDB tuples
to ontology instances. However, according to the table
characteristics, we propose to map the database tuples
to an instance or a class, depending if the table is set as
part of an existing hierarchical structure.

Rule 9. Tuples to Instances

We map each database tuple that is not in trans-
actional tables to an ontology instance. The columns
are mapped according to its specific mapping. The col-
umn values become data properties and FK and check

constraint values become object properties. This rule is
equivalent to Rule S in Table 1.

Example: table SBC COMPLEX TYPE is not a transac-
tional table. It has three tuples stored in the source RDB
that are mapped to the corresponding ontology instances
using the DE COMPLEX TYPE (Complexity Type Descrip-
tion) column, which is used to set the instance names,
resulting the following OWL tags:

<Declaration>
<NamedIndividual IRI="#HighComplexity"/>

</Declaration>

<ClassAssertion>
<Class IRI="#ComplexityType"/>
<NamedIndividual IRI="#HighComplexity"/>

</ClassAssertion>

<DataPropertyAssertion>
<DataProperty IRI="#hasComplexityTypeId"/>
<NamedIndividual IRI="#HighComplexity"/>
<Literal datatypeIRI="&xsd;integer">3</Literal>

</DataPropertyAssertion>

<DataPropertyAssertion>
<DataProperty IRI="#hasComplexTypeDescription"/>
<NamedIndividual IRI="#HighComplexity"/>
<Literal datatypeIRI="&xsd;string">High Complexity</Literal>

</DataPropertyAssertion>

<ObjectPropertyAssertion>
<ObjectProperty IRI="#hasStatus"/>
<NamedIndividual IRI="#HighComplexity"/>
<NamedIndividual IRI="#True"/>

</ObjectPropertyAssertion>

Ontology Subclasses

One class can inherit characteristics of another class
by establishing a hierarchically schematized relationship.
The class that inherits characteristics of the other class
is a subclass and all its instances belong to the base class.

Rule 10. Tuples to Subclasses

Tuples that are exclusively used to hierarchically or-
ganize the content of other tables can be used as input
to reproduce a similar hierarchical organization of sub-
classes. A table must have only one FK reference to its
PK to be considered as a hierarchical table. We create a
hierarchical class structure under the class corresponding
to the table that owns the FK to the hierarchical table.
This rule extends the idea behind Rule L in Table 1, us-
ing the content (tuples) of the referenced table to create
the hierarchical structure, rather than just mapping the
referenced table as one single superclass.

Example: tables SBC GROUP and SBC SUBGROUP are
used to organize the Medical Procedures stored in the ta-
ble SBC PROCEDURE. The two FKs amongst those three
tables are set as “hierarchical” in the Metadata Def-
inition Script, making the tuples stored in SBC GROUP

and SBC SUBGROUP to be mapped to subclasses under
the MedicalProcedure class. Thus, instead of instantiat-
ing all the medical procedure tuples directly connected
to its corresponding class, such instances can be or-
ganized in a two-level subclass hierarchy, according to
the group and subgroup each medical procedure is as-
sociated. Medical Procedure instances are directly con-
nected to the subclass corresponding to their subgroup.
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In Figure 3, the instance corresponding to the “Cerebral
Angio-Ressonance” procedure is not directly associated
to the MedicalProcedure class, but to its corresponding
subgroup (MRI ).

Figure 3 Hierarchical structure of Medical Procedures.

Database Columns with Self-hierarchical Structures

Hierarchies between database elements elements are de-
fined by self-relationship within a single table. This is
achieved by creating a new column with an integrity
constraint (FK) that references the own table primary
key (PK). When this occurs, this table represents a self-
hierarchical structure.

Rule 11. Self-hierarchical Columns

When the columns represent a self-hierarchical struc-
ture, we create a similar hierarchical structure of sub-
classes. This rule is not present in existing related work.

This rule is used to map self-hierarchies that are not
explicit in a “self” FK relationship and the hierarchies
are encoded in the instances, not in the schema, using
some specific encoding. For example, the “S08” element
has sub-elements “S081”, “S082”, “S083”; “S081” could
have elements “S0811”, “S0812”, etc. This means the hi-
erarchical information is domain dependent and need to
be interpreted by a specific function that is implemented.

Example: in table SBC ICD 10 (Disease), the PK col-
umn ID ICD 10 self-connects tuples without a FK def-
inition (e.g. a tuple with ID ICD 10 = “S08” repre-
sents a group of diseases that comprises tuples with
column ID ICD 10 in {“S081”,“S082”,“S088”,“S089”}).
Thus, tuple “S08” is used to create a subclass of Disease
instead of an ontology individual, whilst tuples compris-
ing PK values in {“S081”,“S082”,“S088”,“S089”} will
follow the Rule 9. However, they are associated with the
corresponding subclass “S08” instead of the superclass
Disease.

4.3.2 Naming ontology elements

Assigning name to ontology elements if often a difficult
task, specially when dealing with data properties. For in-
stance, we frequently find columns name DESCRIPTION in

RDB models, but they could not be directly translated
into several data properties. Acronyms, prefixes and suf-
fixes are often adopted to name physical RDB elements.
However, they are unlike to have any logical meaning,
as much as they are used as a system encoding in or-
der to physically arrange the elements. The adoption of
the logical metadata information helps on handling this
issue.

During the Metadata and Data mapping process,
names of ontology elements are independently defined
from each other.

In the Ontology Generator process, ontology elements
can be renamed and hierarchically reorganized to avoid
conflicts due to duplicated entities or attribute names. In
this step, elements are renamed to include additional in-
formation to distinguish them (e.g. columns sharing the
same logical name have the entity name concatenated to
its name as a suffix), and a “super” element is created
to handle the renamed ones in order to provide the com-
mon vocabulary of such knowledge domain represented
by the RDB.

Example: in Figure 1, tables SBC PROCEDURE,
SBC COMPLEX TYPE, and SBC CID 10 have all a column
named FL ACTIVE. Although they have the same name,
each column could be differently defined regarding its
datatype, or check and NOT NULL constraints, leading
to different ontology definitions for Domain, Range and
minCardinality. Thus, the Ontology Generator process
renames corresponding data properties originally defined
as Active to three different names, including the name
of the corresponding class as a prefix, and hierarchically
organizing these data properties in a super data prop-
erty with the original shared name. Figure 4 illustrates
the hierarchical structure of all the FL ACTIVE columns
mapped to data properties in the target ontology.

Figure 4 Hierarchical structure created for the columns
named as FL ACTIVE in the RDB.

The approaches used to rename the ontology elements
can be slightly different according to each element type.
Object and data properties can use the corresponding
class name as a suffix, as well as the schema name when
multiple schemata are being used to create a target inte-
grated ontology. Moreover, ontology individuals can use
the class name or the content of PK columns as prefixes
to the content of the main column used to textually de-
scribe a table tuple.
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Independently of the method used to rename ontol-
ogy elements, we strongly suggest to reorganized those
elements hierarchically in order to keep a common vo-
cabulary free of encodes.

4.4 Rule execution flow

We describe the rule execution flow in Algorithm .1.
The rules are executed following a specific order, con-
strained by the types of the input elements and addi-
tional conditions. The automated process of our Archi-
tecture receives as input the Metadata and Data defini-
tions, which are previously generated and/or manually
completed and it iterates through the input file lines.
MetadataMapping() is a procedure that gets all RDB ele-
ments and checks the type being processed, following the
sequence: Tables, Columns and Tuples. For each of them,
there is a specific method (getTableType, getTupleType
and getTupleType) that gets the element in the specific
position in the definition file. After the RDB element is
matched, the procedure identifies the appropriated rule
to be executed. Each rule transforms ALL elements of
a given type to the target ontology. The RDB elements
mapped are stored in the Mapping Repository so that at
the end of the process it is possible to generate an OWL
File as output.

5 Experiments

The evaluation of the generated ontology is done in two
steps. First, we check if the ontology is correctly built.
Second, we verify if the output data complied after the
execution of the mapping rules, through the inference
of logical consequences using a reasoner. We do not use
a gold standard ontology for comparing the result, as
proposed by the method of [45], because the application
domain of this work has not been mapped to a previous
ontology, making such comparison unfeasible.

We performed two different experiments to evaluate
our approach. First, we present the obtained results by
executing a full mapping process, to show the feasibility
of rules and tool 7 . We use a RDB physical and logi-
cal model of a dental care system. Second, we manually
applied the rules to the InfoSaude system. The objec-
tive was to compare the resulting ontologies with one
important previous work.

5.1 Experiment 1: RPL2O architecture
implementation

In this experiment we developed a tool handling all the
RPL2O components. We chosen a RDB model from a
dental care system, containing 25 tables, 45 primary
keys, 1 unique key, 42 foreign keys, 27 check constraints,
214 columns with no constraints and 696 tuples. The
RDB logical model of this subset has 229 columns with
logical name.

7 Available at https://github.com/caghuve/rdb-to-onto

Algorithm .1: Pseudocode of Automated Process

1 Input: Metadata and Data Definitions;
2 Output: OWL File;
3 Procedure: MetadataMapping()
4 for Line ln : {Metadata ∪Data}.getLine() do
5 type = ln.getElementType()
6 if type is Table then
7 if ln.getTableType() is non-associative then
8 Rule 1 (ln);
9 else

10 Rule 2 (ln);
11 end

12 else
13 if type is Column then
14 if ln.getColumnType() is not FK AND

ln.getColumnType() is not Check
Constraint then

15 Rule 3 (ln);
16 else
17 if ln.getColumnType() is Check

Constraint then
18 Rule 4 (ln);
19 else
20 Rule 5 (ln);
21 end
22 Rule 7 (ln);

23 end

24 else
25 if type is Tuple AND ln.getTupleType() is

from TableConcepts then
26 Rule 10 (ln);
27 else
28 if ln.getTupleType() is Self hierarchical

then
29 Rule 11 (ln);
30 else
31 Rule 9 (ln);
32 end

33 end

34 end

35 end

36 end
37 TargetOntology ←MapRepository;

We applied our tool in three scenarios. In scenario 1,
only the RDB physical model elements were used; in sce-
nario 2 we used the RDB physical and logical elements;
in scenario 3, we manually removed the RDB elements
that were not part of the application domain, such as
information about system configuration, logs and oth-
ers. This yield a difference of 143 columns. Consequently,
each scenario has a different Metadata Definition Script.

Table 2 presents the number of generated ontology
elements for each scenario. We classified the results of
different ontology elements by scenario. Scenarios 1 and
2 resulted in an ontology with the same number of el-
ements. The difference is on the name on the output
elements for scenario 2, since we used the RDB logical
model as additional input. Figure 5 shows an excerpt
of the resulting ontologies for scenarios 1 (left side) and

https://github.com/caghuve/rdb-to-onto


15

Table 2 Number of ontology elements

Elements Scen. 1 Scen. 2 Scen. 3
Class 31 31 31
Sub class of 344 344 203
Object property 73 73 73
Inverse 23 23 23
Domain 73 73 73
Range 73 73 73
Data property 236 236 95
Domain 236 236 95
Range 236 236 95
Instances 744 744 744
Object property assertion 0 0 0
Data property assertion 8 8 8
Class assertion 744 744 744

2 (right side). In scenario 3 we observed a difference
on generated elements. The number of RDB columns
with no constraints in scenario 3 is 73, thus resulting
in a smaller amount of data properties. The number of
subclasses was also small, according to the definitions
of Rule 7. The Object property elements were generated
from Rules 2, 4 and 5. The number of object property
is the same in the 3 scenarios, since the number of el-
ements in the scenarios does not change. In scenario 3,
The Instances and Object property assertion, Data prop-
erty assertion, and Class assertion were generated from
Rule 4 and 9. The tool did not generated Object prop-
erty assertion because the column values were mapped
only to Data property.

From RDB model with 27 check constraints, only
8 contains different values and 19 of them have values
that repeat in different tables e.g. gender: male / female,
so they were used to generated 27 object properties, 8
classes from a total of 31 to represent the check con-
straint domain and 48 instances, referring to possible
columns values. Considering the 48 generated instances
(from a total of 744) related to possible values of check
constraint and the instances generated from the 696 tu-
ples, 744 instances were created at the end of the map-
ping.

Figure 5 Sample target ontology for scenarios 1 and 2.

For each target ontology, we individually checked the
fulfillment of the definitions established in each one of
the Mapping rules; the naming and correct application
of specific characteristics of each element; the correct
grouping of elements which could generate duplicity; and
the establishment of relationship among the database
elements in the Mapping Schema. The architecture val-
idation was performed in each of the architecture com-

ponents. We observed its behavior and the ontology rep-
resentativenes in each of the scenarios. It was a hard
and manual validation task, but important to analyze
the coherence of the rule definitions, and regarding the
well functioning of Mapping Repository. Therefore, we
observed a greater clarity in the ontology element names
of the second scenario, compared to the first scenario,
highlighting one of the benefits gained through the use
of the Logic Data Model, which increases the ontology
legibility.

5.2 Experiment 2: comparing with other solutions

To show how our approach differs from some of the pre-
vious works [15, 6, 4], we compare the resulting on-
tologies performing a manual mapping using a subset
of mapping rules that affects the ontology hierarchical
structure (classes and properties). We select these works
because they clearly presents the definition and applica-
tion of their mapping rules, unambiguously. In this way
it was possible to calculate the number of generated rules
and to compare to our approach. However, it would be
more adequate if we had access to the implemented code,
since it could have bugs or different interpretations. It
is subject of a future work to use the same strategy and
to do an exhaustive comparison with other existing ap-
proaches.

We used a subset of the InfoSaude system, comprising
24 tables, 103 columns, and 24 foreign keys. We present
a set of illustrations to depict the differences. We use a
similar setting of scenario 3, considering only the domain
elements, and using the logical model in our approach.
Table 3 depicts the number of ontology elements created
in each approach.

Lines 1 and 2 in Table 3 refer to the classes
mapped from non-associative tables and object proper-
ties mapped from associative tables. Our approach dif-
fers from others by considering as associative tables even
those with additional boolean attributes that are used to
set whether the relation is positive or negative. All asso-
ciative tables in the InfoSaude system have an additional
boolean attribute and, thus, they are not recognized as
associative tables in the other approaches. Additionally,
other approaches are focused in the physical data model.
Instead, we use the logical nomenclature in order to pro-
vide a proper vocabulary.

Table 3 Target ontology elements in different approaches.

[6] [4] [15] RPL2O
1. Main Classes 24 24 24 15
2. Associative Obj Prop - - - 16
3. FK Obj Prop 48 24 24 12
4. Super Obj Prop - - - 22
5. Data Properties 62 103 58 41
6. Super Data Prop - - - 14
7. Validation Classes - - - 2
8. Validation Individuals - - - 2
9. Validation Obj Prop - - - 25
10. Hierarchical Classes - - - 480

Figures 6 and 7 contrast the resulting ontology based
on our proposed set of rules against the ontology pro-
duced by [15]. Figure 6(a) shows some of resulting
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(a) Classes (b) Data Properties (c) Object Properties

Figure 6 Sample of ontology elements resulting by applying RPL2O mapping rules.

(a) Classes (b) Data Properties (c) Object Properties

Figure 7 Sample of ontology elements resulting by applying [15].

classes following our approach. Subclasses under class
ColumV alidation result from Rule 4 (Check constraints
to Object Properties) and all subclasses levels under
class Procedimento result from Rule 10 (Tuples to Sub-
classes). Although disregarding the fact of missing logical
names, the amount of classes resulting by [15] is lower,
and no class hierarchy is produced (Figure 7(a)). Despite
being in Portuguese, both figures enable to understand
the differences in the elements hierarchy and naming.

Figures 6(b) and 6(c) show a sample of the object
and data properties resulting from our proposed map-
ping rules. The super-property Procedimento groups all
the object properties mapped from those foreign keys
that reference the table SBC PROCEDURE. Similarly, the
super-property Nome groups all the data properties re-
ferring attributes that correspond to names. In contrast,
Figures 7(b) and 7(c) shows how the set of properties
is usually mapped following previous works, in which no
property hierarchy is produced.

6 Conclusions

In this work we present an approach for mapping rela-
tional databases to ontologies using logical and hierar-
chical information. Our solution takes stock of previous
works and provides a more comprehensive set of rules,
handling cases uncovered by the literature. We were mo-
tivated by the implementation of a real-world scenario,
which lead us to identify different open issues. Since it
is hard to state that one set of rules for a given solution
is more appropriate than another, we provide a classifi-
cation of existing solutions with respect to the kind of
rules and we have identified several open issues yet to
be handled, finding as the main drawbacks the utiliza-
tion of the RDB schema with no logical information and
little support to hierarchical data.

The main contributions of our approach are the fol-
lowing. First, we use the RDB logical information for
generating the target ontology. This enables having more
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understandable names for the ontology elements, which
can be crucial when inferring complex relations. Sec-
ond, we go further than existing approaches by design-
ing and developing rules to handle hierarchical and self-
hierarchical structures by using domain information from
the RDB instances, such as the FK constraints. This
means our approach does RDB schema migration, but
we also use tuples from a subset of the RDB tables to en-
rich the output ontology. We also present a novel imple-
mentation for mapping N-to-N relationships and we take
database constraints into account. Finally, we present
a set of possibilities for handling ontology names, and
we also present directions towards alternative solutions.
Our architecture is independent from the input database
schema, since we use standard SQL code to access the
database elements. Once extracted, the logical and phys-
ical models together with the metadata and data infor-
mation are stored in to separate mapping files – data and
metadata files respectively. By ssing distinct metadata
reading components ii is possible to support different
database vendors.

We validate our approach with two real-world scenar-
ios in the healthcare domain: first we apply our semi-
automatic approach in a dental care system RDB model
in order to empirically analyze the generated ontology.
The tool is available for download. Second, we use the
RDB model from the InfoSaude system to validate all
the designed mapping rules and compare our approach
against existing solutions.

As future work, we aim to track the mapping process
for verification of completeness. The implemented exper-
iments are forward migration, but the script definitions
are generic enough and could be applied in the backward
scenario, using the mapping for bidirectional transforma-
tion and traceability on querying the relational database
through the ontology concepts.
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