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Constraining the Galaxy’s dark halo with RAVE stars

T. Piffl,1‹ J. Binney,1 P. J. McMillan,1 M. Steinmetz,2 A. Helmi,3 R. F. G. Wyse,4
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ABSTRACT
We use the kinematics of ∼200 000 giant stars that lie within ∼1.5 kpc of the plane to measure
the vertical profile of mass density near the Sun. We find that the dark mass contained within
the isodensity surface of the dark halo that passes through the Sun ((6 ± 0.9) × 1010 M�),
and the surface density within 0.9 kpc of the plane ((69 ± 10) M� pc−2) are almost inde-
pendent of the (oblate) halo’s axis ratio q. If the halo is spherical, 46 per cent of the radial
force on the Sun is provided by baryons, and only 4.3 per cent of the Galaxy’s mass is
baryonic. If the halo is flattened, the baryons contribute even less strongly to the local ra-
dial force and to the Galaxy’s mass. The dark matter density at the location of the Sun is
0.0126 q−0.89 M� pc−3 = 0.48 q−0.89 GeV cm−3. When combined with other literature results
we find hints for a mildly oblate dark halo with q � 0.8. Our value for the dark mass within
the solar radius is larger than that predicted by cosmological dark-matter-only simulations but
in good agreement with simulations once the effects of baryonic infall are taken into account.
Our mass models consist of three double-exponential discs, an oblate bulge and a Navarro–
Frenk–White dark matter halo, and we model the dynamics of the RAVE (RAdial Velocity
Experiment) stars in the corresponding gravitational fields by finding distribution functions
f ( J) that depend on three action integrals. Statistical errors are completely swamped by
systematic uncertainties, the most important of which are the distance to the stars in the pho-
tometric and spectroscopic samples and the solar distance to the Galactic Centre. Systematics
other than the flattening of the dark halo yield overall uncertainties ∼15 per cent.
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1 IN T RO D U C T I O N

There is abundant evidence that haloes of still undetected dark
matter dominate the mass budgets of galaxies. Galaxies with lumi-
nosities similar to that of the Milky Way have the largest baryon
fractions, yet even in these systems we think there is at least an
order of magnitude more dark matter than stars and gas. This be-
lief is founded on numerous lines of evidence, but two important
and essentially independent ones are the dynamics of the Local
Group (Kahn & Woltjer 1959; Li & White 2008) and fits of �CDM
cosmologies to the cosmic background radiation combined with
numerical simulations of galaxy formation (e.g. Bower et al. 2010).

Since attempts to detect dark matter through its weak interactions
in underground experiments have yet to bear fruit (Mirabolfathi
2013), dark matter is so far only detectable through its gravitational
field. Studies of weak lensing (Velander et al. 2014) and thermal
X-ray emission (Das et al. 2011) have been used to map dark matter
on large scales, while the kinematics of stars and gas provide the
most powerful probe on small scales. For intermediate regions,
strong lensing can provide some insights (e.g. Kneib & Natarajan
2011).

Studies of star and gas kinematics in our own Milky Way have to
date constrained the dark matter distribution less strongly than have
similar studies in external galaxies, such as NGC 3198 (van Albada
et al. 1985). The cause of this surprising fact is essentially that dark
matter is most important at large radii, where it becomes difficult to
determine distances to objects with measured velocities. Moreover,
the Sun’s velocity and location with respect to the Galactic Centre
(GC) has an uncertainty of several per cent, and this uncertainty
propagates to the Galactocentric velocities of all tracers, which are
inevitably measured in the heliocentric frame.

It is thought that of order half the inward force on the Sun de-
rives from dark matter and half from stars and gas, predominantly
in the disc (Sackett 1997). A significant step towards testing this
conviction would be to show that the structure of the Galaxy’s grav-
itational field perpendicular to the plane is consistent with roughly
half the mass interior to the Sun being contained in the disc and
the other half contained in a roughly spherical halo (e.g. Sackett
1997). One of the original goals of the RAdial Velocity Experiment
(RAVE; Steinmetz et al. 2006) was to test this hypothesis by gath-
ering spectra of large numbers of stars within the ‘extended solar
neighbourhood’, the region within ∼2 kpc of the Sun. In this paper,
we describe our attempt in this direction. The independent parallel
work by Bienaymé, Famaey & Siebert (2014) has similar goals,
but a very different methodology. Recently, also the SEGUE survey
(Yanny et al. 2009) was used by Zhang et al. (2013) to estimate the
local dark matter density.

The fourth data release from RAVE gives line-of-sight veloci-
ties and stellar parameters for ∼400 000 stars in the extended solar
neighbourhood (Kordopatis et al. 2013). Using these stellar pa-
rameters, Binney et al. (2014a) estimated distances to the stars,
which are roughly half giants and half dwarfs. Combining the RAVE
data with proper motions from the UCAC4 (Zacharias et al. 2013),
Binney et al. (2014b) derived the velocity distributions of stars in
eight spatial bins, four inside the solar radius R0 and four outside it,
and at various distances from the plane. They showed that these ve-
locity distributions were in remarkably good agreement with those
predicted by a dynamical model of the Galaxy that Binney (2012b,
hereafter B12b) had fitted to the velocity distribution at the Sun
determined by the Geneva–Copenhagen survey (hereafter GCS;
Nordström et al. 2004; Holmberg, Nordström & Andersen 2007)

and the estimate of density versus distance from the plane derived
by Gilmore & Reid (1983).

Although the agreement between data and model was near per-
fect near the plane, at distances |z| � 0.5 kpc the model failed to
reproduce the data in two respects: (i) the distribution of the com-
ponents V1 of velocity parallel to the longest principal axis of the
velocity ellipsoid (which points near to the GC) was predicted to be
too narrow; (ii) the predicted distribution of azimuthal components
Vφ tended to be slightly displaced to small Vφ with respect to the
observed distribution. Neither defect is an inherent feature of an
axisymmetric equilibrium model.

In this paper, we have two goals: (i) to seek a modified form of
the distribution function (DF) of the B12b model that is consistent
with the RAVE data, and (ii) to use models obtained in this way
to constrain the local gravitational field and thus the distribution of
dark matter.

2 DATA

In this section, we introduce the data we have used and explain how
we exploited them to constrain our Galaxy model. In order to make
model predictions for these measurements, we assume a distance
of the Sun to the GC, R0, to be 8.3 kpc (e.g. Gillessen et al. 2009;
McMillan 2011; Schönrich 2012), the position of the Sun above the
Galactic plane, z0, to be 14 pc (Binney, Gerhard & Spergel 1997)
and the solar motion with respect to the local standard of rest (LSR),
v�, to be (11.1, 12.24, 7.25) km s−1 (Schönrich, Binney & Dehnen
2010).

2.1 Gas terminal velocities

The distribution of H I and CO emission in the longitude-velocity
plane yield a characteristic maximum (‘terminal’) velocity for each
line of sight (e.g. Binney & Merrifield 1998, section 9.1.1). The
terminal velocities are related to the circular speed vc(R) by

vterm(l) = sign(sin l)vc(R) − vc(R0) sin l

= sign(sin l)vc(R0| sin l|) − vc(R0) sin l. (1)

We use the terminal velocities vterm(l) from Malhotra (1995).
Following Dehnen & Binney (1998) and McMillan (2011), we ne-
glect data at sin l < 0.5 in order not to be influenced by the Galactic
bar, and we assume that the ISM has a Gaussian velocity distribution
of dispersion 7 km s−1.

2.2 Maser observations

Reid et al. (2014) presented a compilation of 103 maser observations
that provide precise 6D phase space information. Since masers are
associated with young stars their motions are very close to circular
around the GC. We again assume an intrinsic velocity dispersion of
7 km s−1 and no lag against the circular speed (McMillan & Binney
2010). For the likelihood computation we neglected 15 sources that
were flagged as outliers by Reid et al. (2014) and also all sources
at R < 4 kpc. The latter is again to prevent a bias by the Galactic
bar. To assess the likelihood of a maser observation, we predict
the observed velocities (line-of-sight velocity, proper motions) as
functions of heliocentric distance and then integrate the resulting
probability density along the line of sight.
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2.3 Proper motion of SgrA*

Reid & Brunthaler (2004) measured the proper motion of the radio
source SgrA* in the GC to be

μSgrA� = −6.379 ± 0.024 mas yr−1.

This source is thought to be associated with the supermassive black
hole that sits in the gravitational centre of the Milky Way with a
velocity below 1 km s−1. Hence, this measurement reflects the solar
motion with respect to the GC.

2.4 Mass within 50 kpc

By modelling the kinematics of the Galaxy’s satellites, Wilkinson &
Evans (1999) estimated the mass of the Galaxy within 50 kpc to be

M(r < 50 kpc) = 5.4+0.2
−3.2 × 1011 M�.

Following McMillan (2011), we use this measurement as an upper
limit on the mass of our models. This limit effectively sets the
scale radius r0, dm of the halo because all plausible models have
M(r < 50 kpc) very close to the Wilkinson & Evans’ upper limit.

2.5 Concentration of the dark halo

The dark halo has two free parameters: the normalizing density
ρ0, dm and the scale radius r0, dm. We constrain the scale radius using
the most likely value for the concentration parameter c as found in
cosmological dark-matter-only simulations. The normalizing den-
sity of the dark halo is

ρ0,dm = 3H 2

8πG
δc, (2)

where δc is related to the halo’s concentration parameter c by

δc = �vir

3

c3

ln(1 + c) − c/(1 + c)
, (3)

with the parameter �vir being the virial overdensity. We take the
Hubble constant to be H = 73 km s−1 s−1 Mpc−1, and from Boylan-
Kolchin et al. (2010) adopt

�vir = 94

ln c = 2.256 ± 0.272. (4)

With these choices, the local dark matter density ρdm(R0, z0) be-
comes a function of only the dark-halo’s scale radius r0, dm, so the
latter can be determined once we have chosen ρdm(R0, z0).

2.5.1 Baryon fraction

By matching the number density of SDSS galaxies with different
stellar masses to that of dark matter haloes in the Millennium sim-
ulations, Guo et al. (2010) obtained a relation between stellar mass
M� and M200, the mass interior to a Galactocentric sphere within
which the mean density 200 times the critical density for closure of
the Universe. Their relation is

M� = M200 × A

[(
M200

M0

)−α

+
(

M200

M0

)β
]−γ

, (5)

where M0 = 1011.4 M�, A = 0.129, α = 0.926, β = 0.261 and
γ = 2.440. We have imposed this constraint with uncertainty 0.2 in
log10M�.

2.6 The RAVE survey

The RAVE survey has taken spectra at resolution R � 7500
of ∼500 000 stars that have 2MASS photometry. Stars were se-
lected for observation based on their I-band apparent magnitudes;
I ≈ 9–13. Stellar parameters were extracted from the spectra by a
pipeline described in Kordopatis et al. (2013), and from those pa-
rameters and the 2MASS photometry Binney et al. (2014a) deter-
mined probability density functions (pdfs) for the distances of most
stars. Roughly half the stars are giants, and these stars form our
main sample. Within the survey’s observing cone, the giants sam-
ple densely the region within ∼2 kpc of the Sun, so they are ideally
suited for determination of the vertical structure of the Galaxy’s
disc. Binney et al. (2014b) examine the kinematics of these stars in
some detail.

We clean the data using the following criteria:

(i) Signal-to-noise ratio (S/N) >10.
(ii) For stars with multiple observations, we chose the observa-

tion with the highest S/N.
(iii) The stars have a parallax estimate in Binney et al. (2014a).
(iv) Proper motion uncertainty <8 mas yr−1.
(v) |U| and |W| velocity components <350 km s−1.
(vi) The stars lie in the cylindrical shell around the Galactic centre

|R − R0| < 1 kpc.

The restrictions in the U and W velocities were introduced to weed
out unreliable proper motion and distance estimates. The last crite-
rion selects for relatively nearby stars in RAVE for which we have
more trust in the distance estimations. Note that throughout this
study we do not look at the azimuthal positions of the stars w.r.t.
the GC and hence implicitly assume axisymmetry (as we will do in
our Galaxy model). This is, of course, an approximation, as there is
known sub-structure in the local stellar population (Dehnen 1998;
Antoja et al. 2012; Siebert et al. 2012; Williams et al. 2013).

We then define a sample of giant stars through

log g < 3.5 dex .

This leaves us with a sample of 181 621 stars. For later use, we also
define a sample of hot dwarf stars using the following cuts:

log g > 3.5 dex,

Teff > 6000 K.

Here, we obtain a sample of 55 398 stars.

2.7 The vertical stellar density profile

Any dynamical mass measurement requires knowledge of the spa-
tial distribution of a tracer population in addition to knowledge of
that population’s kinematics. Hence, we need an estimate of the
spatial distribution of the population from which RAVE stars are
drawn. The seminal study of Gilmore & Reid (1983) provided an
estimate of the vertical density profile of dwarf stars that remains
valuable even though it is based on observations of only ∼2700
objects.1 More recent data sources include the 2MASS catalogue
and the Sloan Digital Sky Survey (SDSS; York et al. 2000). In a
subsequent paper, we will constrain the Galaxy’s mass distribution
by combining RAVE data with star counts from both 2MASS and
SDSS: use of both surveys is desirable because the magnitude limit
of 2MASS is too bright to give sensitivity to the thick disc, and the

1 Their estimate for stars with MV ∈ [3, 4].
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magnitude limit of SDSS is too faint to give sensitivity to the thin
disc.

However, here we adopt a less sophisticated approach based on
the vertical density profile that Jurić et al. (2008, hereafter J08)
deduced from the SDSS survey through a main-sequence colour–
magnitude relation. We use the data points shown in the middle
panel of their fig. 1 5, which shows results from M dwarf stars in
the colour range 0.70 < r − i < 0.80. Similar to RAVE, this sample
should carry only a weak metallicity bias and none in age. J08 fitted
their data with the density profile

ν(R = R0, z) ∝ exp(−|z|/zthn) + fthk exp(−|z|/zthk) (6)

and used artificial star tests to estimate the impact of Malmquist bias
and stellar multiplicity on the fitted density profile. They concluded
that the fitted scaleheights of both the thin and the thick disc have to
be increased 5 + 15 = 20 per cent to compensate for the two effects,
while the parameter fthk that sets the relative importance of the discs,
should be decreased by 10 per cent. This results in zthn = 0.3 kpc,
zthk = 0.9 kpc and fthk = 0.12.

Here, the Malmquist bias refers to the fact that in the presence
of random errors in the apparent and/or the absolute magnitudes
of stars – i.e. effectively in their distance moduli μ – their dis-
tance estimates will be on average too small. The stars in J08 have
magnitude-dependent photometric uncertainties of 0.02–0.12 dex
and there is an uncertainty in the estimates of the absolute magni-
tude coming from the finite width of the main sequence that is not
covered by J08’s colour–magnitude relation.

Before we compare the data to our predictions, we have to
introduce these biases into the model. The Malmquist bias is
modelled by folding the vertical stellar number count profile
N (z) ∝ 2π z2ν(R0, z) with a Gaussian of width 0.32 dex in dis-
tance modulus μ. This width is a combination (in quadrature) of the
maximal measurement uncertainty of 0.12 dex and a value 0.3 dex
for the finite width of the main sequence. For stellar multiplicity, the
modelling is more uncertain. We use the simplifying assumptions
that (1) we have only binaries and (2) that the companions have
about the same brightness as the primaries as such systems occur
preferentially (Delfosse et al. 2004) and also produce most of the
effect. This results in an underestimate of their true distance by a
factor of 1/

√
2. The resulting new profile N′(z) is then computed

from the original profile N(z) as follows:

N ′(z) = (1 − fbinary)N (z) + fbinaryN (
√

2z), (7)

where fbinary is the binary fraction. The biased number count pro-
file is then converted back into a density profile ∝ N ′(z)/(2π z2).
Dieterich et al. (2012) report a fraction of about 10 per cent of M
dwarfs having M dwarfs companions and we adopt this number.
Fig. 1 illustrates the effect of the two biases. Note that J08 assumed
higher binary fraction of 35 per cent to correct their fit results. This
led to more significant corrections than those applied here. The
differences are well within the range of systematic uncertainties
reported below.

3 M E T H O D O L O G Y

For a number of candidate mass distributions and associated gravita-
tional potentials, we choose the parameters of a DF for the Galaxy’s
stars such that the DF correctly predicts the distributions of the three
principal velocity components in each of eight spatial bins around
the Sun. The selected DF then predicts the vertical density profile
of stars in the solar cylinder. If the mass model assigns most mass
to the disc, the predicted stellar profile decreases very steeply with

Figure 1. Ratio of the artificially biased vertical mass density profile ρ′ to
the original profile ρ as a function of height above the Galactic plane z.

distance from the plane because the gravitational potential has a
deep minimum at z = 0. Conversely, if the mass model assigns little
mass to the disc, the potential’s minimum at z = 0 is shallow and
the predicted stellar density declines slowly with distance from the
plane. We identify the true potential by requiring that the predicted
density profile is consistent with density profiles inferred from star
counts.

In the next subsection, we explain how we selected candidate
mass distributions, and in Section 3.2 we present our multiparameter
DF.

3.1 The mass model

It is obviously sensible to take the fullest possible advantage of
existing constraints on the Galaxy’s mass distribution when select-
ing mass models. Indeed, although the RAVE data dramatically
tighten constraints on the vertical distribution of matter, they are
not well suited to constraining the radial distribution of matter –
estimates of the circular speed and the dynamics of halo tracers and
satellite galaxies are much better suited to that task. Here, we use
a methodology similar to that employed by Caldwell & Ostriker
(1981), Dehnen & Binney (1998) and McMillan (2011) to identify
a few-parameter family of mass models that can be confronted with
the RAVE data.

Our mass models have five components: a gas disc, a thin disc,
a thick disc, a flattened bulge and a dark halo. Since the stellar
halo has negligible mass, we do not explicitly include it in the mass
model; its tiny mass is negligible from a dynamical point of view
and can be considered subsumed within the dark halo. It is, however,
important when we consider the phase space distribution of stars
and we therefore include it in our stellar DF in Section 3.2. For the
density laws of the disc components, we have

ρ(R, z) = �0

2zd
exp

[
−

(
R

Rd
+ |z|

zd
+ Rhole

R

)]
, (8)

where R and z are the coordinates in a Galactocentric cylindrical
coordinate system and �0, Rd, zd and Rhole are parameters. A non-
zero parameter Rhole creates a central cavity in the disc. This is
used to model the gas disc while for the other two discs it is set
to zero. We further fix the fraction of the local baryonic surface
density contributed by the gas disc to 25 per cent. The other fixed
parameters for this component can be found in Table 1.
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Table 1. Parameters that are fixed in our Galaxy
mass model.

Gas disc
�g(R0) (�thin(R0) + �thick(R0))/3
Rd,g 2Rd, thin

zd,g [kpc] 0.04
Rhole,g [kpc] 4
Bulge
ρ0,b [M� kpc−3] 9.49 × 1010

qb 0.5
γ b 0
βb 1.8
r0,b [kpc] 0.075
rcut,b [kpc] 2.1
Dark halo
qdm 1
γ dm 1
βdm 3
rcut,dm [kpc] 105

The density distributions of the dark halo and the bulge compo-
nents are

ρ(R, z) = ρ0

mγ (1 + m)β−γ
exp[−(mr0/rcut)

2], (9)

where

m(R, z) =
√

(R/r0)2 + (z/qr0)2. (10)

Here, ρ0 sets the density scale, r0 is a scale radius, and the parameter
q is the axis ratio of the isodensity surfaces. The exponents γ and β

control the inner and outer radial slopes of the radial density profile.
For our standard model, we adopt a spherical NFW model

(Navarro, Frenk & White 1996) (q = 1, α = 1, β = 3, rcut �
∞) for the dark halo. In Section 4.2, we also consider flattened halo
configurations.

The bulge model is not varied in the course of our model fitting
process, because we use no data that might constrain its parameters.
Following McMillan (2011), we use a model similar to that con-
structed by Bissantz & Gerhard (2002). It has an axis ratio q = 0.5
and extends to rcut = 2.1 kpc: Table 1 lists the other parameters of
the bulge.

Since the thin and the thick disc density laws have three free
parameters each (�0, Rd, zd) and the dark halo has two free pa-
rameters (ρ0, r0), our mass model has eight parameters. Since our
constraints are not suited to fixing differing scale radii for the two
discs, we reduce the number of free parameters to seven by setting
Rd, thick = Rd, thin. We then use the constraints from the literature
listed in Section 2 to fix all remaining parameters except the lo-
cal dark matter density, ρdm, �, the scaleheights zthn and zthk of
the thin and thick discs, and the parameter fthk, which determines
the fraction (1 + f −1

thk )−1 of the local stellar mass density that is
contributed by the thick disc. The approach closely follows that of
McMillan (2011) except that we use the AMOEBA algorithm (Press
et al. 2007) to find the parameter set with maximum likelihood in-
stead of evaluating the full posterior via Markov Chain Monte Carlo
(MCMC) as in McMillan (2011). Figs 2 and 3 illustrate a typical
quality of fit that we achieve for the terminal velocities and the
maser data.

The three parameters, zthn, zthk and fthk are finally fixed using
the RAVE data and the stellar DF, which we describe in the next
subsection.

Figure 2. Comparison of the measured terminal velocities and the predic-
tion by one of our mass models (solid black line). The grey shaded area
illustrates the velocity dispersion of 7 km s−1 that we assumed. Measure-
ments left of the dotted vertical line were not included for the fit. This
particular model has the parameters given in Table 2, but the same quality of
the fit is achieved for all reasonable choices for ρdm, � and the parameters
for the vertical structure of the disc.

3.2 DF for the discs

Following Binney (2010a), we assume that the DFs of the discs can
be well approximated by analytic functions of the three action inte-
grals Ji. We use the ‘Stäckel Fudge’ introduced by Binney (2012a)
to evaluate the Ji given phase-space coordinates (x, v). (Details of
some technical improvements are given in Binney 2014.)

Our DFs are built up out of ‘quasi-isothermal’ components. The
DF of such a component is

f (Jr , Jz, Lz) = fσr (Jr , Lz)fσz (Jz, Lz), (11)

where fσr and fσz are defined to be

fσr (Jr , Lz) ≡ ��

πσ 2
r κ

[1 + tanh(Lz/L0)]e−κJr /σ
2
r (12)

and

fσz (Jz, Lz) ≡ ν

2πσ 2
z

e−νJz/σ
2
z . (13)

Here, �(Lz), κ(Lz) and ν(Lz) are, respectively, the circular, radial
and vertical epicycle frequencies of the circular orbit with angular
momentum Lz, while

�(Lz) = �0e−Rc/Rd , (14)

where Rc(Lz) is the radius of the circular orbit, determines the
surface density of the disc: to a moderate approximation this surface
density can be obtained by using for Lz in equation (14) the angular
momentum Lz(R) of the circular orbit with radius R. The functions
σ r(Lz) and σ z(Lz) control the radial and vertical velocity dispersions
in the disc and are approximately equal to them at Rc. Given that the
scaleheights of galactic discs do not vary strongly with radius (van
der Kruit & Searle 1981), these quantities must increase inwards.
We adopt the dependence on Lz

σr (Lz) = σr0 e(R0−Rc)/Rσ,r

σz(Lz) = σz0 e(R0−Rc)/Rσ,z , (15)

so the radial scalelengths on which the velocity dispersions decline
are Rσ ,i. Our expectation is that Rσ , i ∼ 2Rd.
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3138 T. Piffl et al.

Figure 3. Comparison of the maser measurements by Reid et al. (2014) with our model predictions. The vertical error bars show the uncertainties arising from
the uncertainties in the parallax estimations. In the leftmost panel, the grey shaded area illustrates the velocity dispersion of 7 km s−1 that we assumed. In the
middle and rightmost panels, this velocity dispersion is already included in the vertical error bars because for proper motions this uncertainty is dependent on
the individual distances of the masers. The sources plotted in red were considered outliers by Reid et al. (2014) and those closer than 4 kpc to the GC were
excluded from the fit.

In equation (12), the factor containing tanh serves to eliminate
retrograde stars; the value of L0 controls the radius within which
significant numbers of retrograde stars are found, and should be no
larger than the circular angular momentum at the half-light radius
of the bulge. Provided this condition is satisfied, the results for
the extended solar neighbourhood presented here are essentially
independent of L0.

We take the DF of the thick disc to be a single pseudo-isothermal.
The thin disc is treated as a superposition of the cohorts of stars that
have age τ for ages that vary from zero up to the age τmax �
10 Gyr of the thin disc. We take the DF of each such cohort to be
a pseudo-isothermal with velocity-dispersion parameters σ r and σ z

that depend on age as well as on Lz. Specifically, from Aumer &
Binney (2009) we adopt

σr (Lz, τ ) = σr0

(
τ + τ1

τm + τ1

)β

e(R0−Rc)/Rσ,r

σz(Lz, τ ) = σz0

(
τ + τ1

τm + τ1

)β

e(R0−Rc)/Rσ,z . (16)

Here, σ z0 is the approximate vertical velocity dispersion of local
stars at age τm � 10 Gyr, τ 1 sets velocity dispersion at birth, and
β � 0.33 is an index that determines how the velocity dispersions
grow with age. We further assume that the star formation rate in the
thin disc has decreased exponentially with time, with characteristic
time-scale t0, so the thin-disc DF is

fthn(Jr , Jz, Lz) =
∫ τm

0 dτ eτ/t0fσr (Jr , Lz)fσz (Jz, Lz)

t0(eτm/t0 − 1)
, (17)

where σ r and σ z depend on Lz and τ through equation (16). We set
the normalizing constant �0 that appears in equation (14) to be the
same for both discs and use for the complete DF

fdisc(Jr , Jz, Lz) = fthn(Jr , Jz, Lz) + Fthkfthk(Jr , Jz, Lz), (18)

where Fthk is a parameter that controls the fraction (1 + F−1
thk )−1 of

stars that belong to the thick disc.2

2 Note that Fthk is the ratio of the total masses of the thick and the thin discs,
while the parameter fthk used for the mass model is the ratio of the local
mass densities of the two discs. Hence, the two parameters are intimately
related but not the same.

The DFs of the thin and thick discs each involve five important
parameters, σ r0, σ z0, Rd, Rσ ,r and Rσ ,z. The DF of the thin disc
involves four further parameters, τ 1, τm, β and t0, but we shall not
explore the impact of changing these here because we do not con-
sider data that permit discrimination between stars of different ages.
Therefore following Aumer & Binney (2009), we adopt throughout
τ 1 = 0.01 Gyr, τm = 10 Gyr, β = 0.33 and t0 = 8 Gyr.

3.3 DF of the stellar halo

Due to the magnitude limits of RAVE, most of its stars belong to
the thin and thick discs. The sample does, however, contain a small
but non-negligible population of halo stars, which are identifiable
by their low or even negative values of the azimuthal velocity Vφ

(Piffl et al. 2014). We have added to the DF a component for the
stellar halo to prevent the fitting routine distorting the thick disc in
an attempt to account for the presence in the sample of halo stars.

The density of the stellar halo is generally thought to follow a
power law in Galactocentric radius, i.e. ρhalo ∝ r−α , with the power-
law index α � 3.5 (e.g. Binney & Merrifield 1998, section 10.5.2).
We can model such a configuration using the following form of the
DF (Posti et al., in preparation)

fhalo(Jr , Jz, Lz) =
(

h(Lc0)

h( J)

)α

, (19)

where h( J) is a homogeneous function of degree one [i.e. h(β J) =
βh( J)], and Lc0 is the angular momentum of a circular orbit of
radius R0. When the circular speed is independent of radius, the
density generated by the DF (19) declines with radius as r−α , so we
adopt α = 3.5. Our choice

h( J) = Jr + �z

�r

Jz + �φ

�r

|Lz|, (20)

where �i( J) are the characteristic frequencies of the orbit with
actions J , ensures that in a spherical potential the halo would be
approximately spherical. Since the Galaxy’s potential is somewhat
flattened, our halo will be slightly flattened too. The RAVE data
alone are not well suited to constraining the stellar halo, so we defer
this exercise to a later paper. We include the stellar halo only in
order to prevent distortion of the thick disc that is fitted to the data.
Our complete total DF is

f (Jr , Jz, Lz) = fdisc(Jr , Jz, Lz) + Fhalofhalo(Jr , Jz, Lz). (21)
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3.4 Model–RAVE comparison

RAVE, like any spectroscopic survey, has a non-trivial selection
function: potential targets were divided into bands by apparent mag-
nitude and then the spectrograph’s fibres were allocated to as many
stars as possible in a given band with the exposure time being band-
specific. From the resulting spectra the pipeline extracts acceptable
stellar parameters with a probability that to some extent depends
on metallicity. Hence, the probability that a given star enters the
final catalogue – the selection function – depends on the star’s
apparent magnitude, location and metallicity. These probabilities
will be derived and discussed in a forthcoming paper (Piffl et al., in
preparation), and we proceed here without using these probabilities.

Of the above-mentioned selection criteria, only the metallicity is
– via the birth time and place of a star – correlated with the stellar
velocities. Fortunately, the great majority of spectra yield stellar
parameters, so the dependence of the selection function on metal-
licity is weak. If we neglect this weak dependence, the selection
function is independent of stellar velocity, so we can predict the
velocity distribution n(v) = f (x, v)/ρ(x) of the catalogued stars
from a model’s DF, f (x, v). It is interesting to ask to what extent
the DF of the RAVE stars is constrained by the velocity distribu-
tions presented by Binney et al. (2014b). We focus on the velocity
distributions of the giant stars (log g < 3.5) which provide wider
spatial coverage than the dwarf stars. In Section 5, we will compare
the RAVE data for hot dwarf stars (log g > 3.5 and Teff > 6000 K)
with the predictions made by the most successful of the DFs we
obtain by fitting the giants.

We define eight spatial bins in the (R, z) plane. Four bins for
stars inside the solar cylinder with R0 − 1 kpc < R < R0 and |z| in
[0,0.3],[0.3,0.6],[0.6,1.0] or [1,1.5] kpc. The other four bins cover
the same z ranges but cover the regions 1 kpc outside the solar
cylinder, i.e. R0 < R < R0 + 1 kpc. After sorting the stars into
these bins, we compute the velocity distributions predicted by the
DF at the mean (R, z) positions (barycentre) of the stars in each
bin. For each bin, we have a histogram for each component of
velocity, so we accumulate χ2 from 24 histograms. Throughout this
work, we compute velocities in the coordinate system that Binney
et al. (2014b) found to be closely aligned with the velocity ellipsoid
throughout the extended solar neighbourhood – this system is quite
closely aligned with spherical coordinates. We denote the velocity

component along the long axis of the velocity ellipsoid – pointing
more or less towards the GC – with V1, the azimuthal component
with Vφ , and the remaining component with V3 which is close to
the latitudinal direction (cf. also Bond et al. 2010).

The resulting model distributions cannot be directly compared to
the observed distributions, because the latter are widened by errors
in the velocity and parallax estimates. We fold the model distribu-
tions with the average velocity uncertainties of the bin’s stars to
obtain Nbary(Vi). The distortions arising from the parallax error are
less straightforward to introduce: following Binney et al. (2014b),
we create a Monte Carlo realization of a given DF by randomly
assigning to each star in our RAVE sample a new ‘true’ distance
according to its (sometimes multimodal) distance pdf, and a new
‘true’ velocity according to the model velocity distribution at this
position. With these new phase-space coordinates, we compute new
observed line-of-sight velocities and proper motions. These are fi-
nally equipped with random observational errors. Using the original
catalogue distances, we then compute new realistically distorted ve-
locity distributions, NMC(Vi), based on the DF that can be compared
directly to the original RAVE distributions in a number of spatial
bins. We minimize the Poisson noise in NMC(Vi) by choosing 100
new velocities for each star. This procedure is computationally ex-
pensive and the distortions vary only weakly for reasonable choices
of the DF parameters. To speed up the process, we store the ratio
Nbary(Vi)/NMC(Vi) for a DF that is already a good match of the
RAVE data. Examples of these ratios are shown in the lower panels
of Fig. 4 while the upper panels plot the actual distributions. The
ratio is near unity in the core of the distribution but falls to <0.2
in the wings because distance errors scatter stars to high apparent
velocities. These ratios are then used to correct all DF predictions
before they are compared with the data.

This approach is far from perfect, because by comparing veloc-
ity histograms instead of assigning likelihoods to individual stars
we lose the information encoded in the correlations between the
velocity components. However, an approach based on computing
likelihoods for the full phase-space distribution is currently com-
putationally too expensive to allow for testing a large number of
models.

With our approach and the RAVE giant sample, we can determine
the values of the DF parameters to very high precision. UsingM-
CMC re-sampling, we find that the pseudo-velocity dispersions are

Figure 4. Distortion on the velocity distributions by uncertainties in the RAVE distances. The three upper panels are histograms of the three velocity
components for stars with R < R0 and |z| < 0.3 kpc. The solid red lines show the number of stars predicted by the DF at the barycentre of the bin, and the error
bars show the numbers of stars selected by Monte Carlo re-sampling. For the latter we take the mean of 100 realizations. The lower panels show the value of
the DF divided by the number of stars in the Monte Carlo sample.
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Figure 5. Vertical stellar density profile as predicted by the DF (upper
panel) and relative random residuals (lower panel). The green shaded area
shows the random variations introduced by the uncertainty of the DF pa-
rameters when fitted to the RAVE data. The measurements and uncertainties
from J08 are also shown for comparison. The grey shaded area illustrates
the uncertainty introduced by the uncertain distance scale of J08. Note that
the model profiles were only constrained by stars with |z| < 1.5 kpc.

fixed to a fraction of a per cent, while the thick disc dispersion
scalelengths and Fthk are fixed to ∼2 per cent. Only the stellar halo
normalization has a relatively large uncertainty of � 7 per cent as
is to be expected from the small number of halo stars in RAVE.
Fig. 5 illustrates the resulting uncertainties on the vertical disc pro-
file. Clearly the uncertainties on the J08 distance scale dominate the
error budget by far.

3.5 Finding a pair

We now describe how we find what we call a ‘self-consistent’
mass model–DF pair that has a predefined value of the dark matter
density at the position of the Sun, ρdm, �, and is consistent with the
kinematics the RAVE giants. With the ingredients outlined above
we cannot construct a truly self-consistent model in the sense that
both the collision-less Boltzmann equation and the Poisson equation
are fulfilled as in Binney (2014), because we do not include the
dark halo and the bulge in our DF. We call a mass model–DF pair
‘self-consistent’ if the mass distribution of the stellar disc implied
by the DF is consistent with the mass distribution of the stellar disc
assumed in the mass model.

In this spirit, we identify the disc scalelengths in the DF with the
scalelengths in the mass model, and we equate in the DF and the
mass model the parameters Fthk that determine the fraction of stars
that belong to the thick disc.

It is a priori to be expected that the RAVE data do not strongly
constrain the values of the scalelengths Rσ , r and Rσ , z of the veloc-
ity dispersions in the thin disc because, by virtue of the survey’s
avoidance of regions of low Galactic latitude b, radii R that differ
materially from R0 are only probed at high |z|, so radial and vertical
gradients of the dispersions are hard to disentangle, especially as
the thick disc dominates at high |z|. Experiments with the data con-
firm that the Rσ , i of the thin disc are poorly constrained. In fact, if
allowed to vary, their values tend to infinity, implying that the thin
disc flares strongly, contrary to observation. We decided to fix the
value of the Rσ,i,thn to 9 kpc which is 3–4 times the values of the
scalelength the data imply for the mass model. We tested smaller
and larger values of Rσ , i for the thin disc and found no significant
influence on our results.

With these assumptions our Galaxy model contains 4+7 free
parameters: ρdm, � ≡ ρdm(R0, z0), zd, thn, zd, thk and Fthk for the mass
model and σr0,thn, σz0,thn, σr0,thk, σz0,thk, Rσ,rthk, Rσ,zthk and Fhalo for
the DF.

Given a mass model, it is computationally relatively cheap to
adjust the parameters in the DF to optimize the fit between the pre-
dicted and observed velocity histograms. By contrast, any change
in the mass model requires the relatively costly computation of new
actions at a large number of points in phase space. Hence, we pro-
ceed as follows: for a trial mass model, we use AMOEBA minimization
to choose the DF that provides the best fit to the observed veloc-
ity histograms. Next, holding constant ρdm, �, we apply AMOEBA

to adjust the mass model to optimize the fit between the vertical
density profile of the stars predicted by the DF and assumed by
the mass model. In this process, we keep the velocity-dispersion
parameters of the DF fixed, with the result that the fit between
the predicted and RAVE kinematics deteriorates, but fortunately
only moderately even when the predicted stellar profile is materi-
ally altered. Once the stellar density profiles associated with the
mass model and the DF have been brought to good agreement, the
parameters of the DF are fine-tuned by another run of AMOEBA to
re-optimize the fit between the predicted and observed kinematics
on the spatially binned data, and then the mass model is read-
justed to restore optimum agreement between the vertical density
profiles.

The outcome of this procedure is a DF and a mass model that
are consistent with one another as regards the spatial distribution
of stars, and consistent with the observed kinematics of the RAVE
stars. As ρdm, � is increased, the mass of the disc decreases to
ensure that the constraints from the terminal velocities and proper
motion of Sgr A* continue to be satisfied, and the vertical density
profile of the model discs becomes steadily shallower. For a small
range of values of ρdm, �, the model’s profile is consistent with the
star counts. Fig. 6 shows this process in action: the black curves
show the density profile predicted by the DF of the self-consistent
mass model–DF pair found for the value of ρdm, � that is indi-
cated by the numbers 8, 9, . . . on each curve, where the units are
10−3 M� pc−3.

Figure 6. The full curves show the variation with |z| of the number den-
sity of stars predicted by the best-fitting DF in mass models with various
assumed values of ρdm, �; each curve is labelled by ρdm, � in units of
10−3 M� pc−3 and it can be shifted up or down at will. The red error bars
show the number density of stars measured by J08.
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4 R ESULTS

The red points in Fig. 7 show χ2 for the fit provided by each
mass model–DF pair to the J08 data; the red dashed curve shows
the best-fitting parabola through these points. Its minimum lies at
ρdm, � = 0.012 62 M� pc−3 and its curvature implies a remarkably
small uncertainty, ∼0.4 per cent. This is just the statistical uncer-
tainty from the comparison to the observational profiles and should
not be used, because – as we will show below – the systematic un-
certainties are much larger. The DF parameters for the best-fitting
model are given in Table 2.

Fig. 8 shows as a heavy black line the stellar density profile
provided by the mass model–DF pair for local dark matter density
0.012 M� pc−3. The fit to the red data points, which show the
star-count data from J08, is excellent both below and above the
Galactic plane. The dashed grey lines in Fig. 8 show the densities

Figure 7. Red dots: reduced χ2 distance between the vertical stellar mass
profile predicted by the DF and the observational profiles by J08 as a function
of the local density of a spherical dark matter halo. Blue dots show the
reduced χ2 distance from the density profile of Gilmore & Reid (1983). The
red and blue dashed lines are parabolas fitted to the red/blue dots.

Table 2. Best-fitting parameters.

Model potential parameters

�0,thin 570.7 M� pc−2

�0,thick 251.0 M� pc−2

Rd 2.68 kpc
zd,thin 0.20 kpc
zd,thick 0.70 kpc
�0,gas 94.5 M� pc−2

Rd,gas 5.36 kpc
ρ0,dm 0.018 16 M� pc−3

r0,dm 14.4 kpc

DF parameters

σr,thin 34.0 km s−1

σz,thin 25.1 km s−1

Rσ,r,thin 9.0 kpc
Rσ,z,thin 9.0 kpc
σr,thick 50.6 km s−1

σz,thick 49.1 km s−1

Rσ,r,thick 13.0 kpc
Rσ,z,thick 4.2 kpc

Fthick 0.447
Fhalo 0.026

contributed by the thin and thick stellar discs of the mass model,
while the dotted black curves show the densities yielded by the DF
for the thin and thick discs and the stellar halo. At z = 0 the dashed
curves from the mass model are unrealistically cusped on account
of our assumption of naive double-exponential discs. Otherwise the
agreement between the densities provided for the thick disc between
the mass model and the DF is perfect. The agreement between the
curves for the thin disc is nearly perfect within ∼1.5 scaleheights
of the plane, but at greater heights, where the thick disc strongly
dominates, the DF provides slightly lower density than the mass
model. This discrepancy implies that the DF breaks the total stellar
profile into thin- and thick-disc contributions in a slightly different
way to the mass model. Since a real physical distinction between
these components can only be made on the basis of age or chemistry
(e.g. Binney & Merrifield 1998), the minor difference between the
two thin-disc curves in Fig. 8 should not be considered significant
at this stage.

The green error bars in Fig. 8 show the stellar densities inferred
by Gilmore & Reid (1983) for stars with absolute visual magnitude
MV between 4 and 5 with an assumed vertical metallicity gradient of
−0.3 dex kpc−1 (in their table 2). The blue dots in Fig. 7 show the
χ2 values we obtain when we adopt the Gilmore–Reid data points.
They indicate a deeper minimum in χ2 occurring at a smaller dark-
halo density: ρdm, � = 0.012 00 M� pc−3.

4.1 Systematic uncertainties

The results presented above are based on a very sophisticated model
that involves a number of assumptions and approximations. Devia-
tions of the truth from these assumptions and approximations will
introduce systematic errors into our results. We can assess the size
of such systematic errors much more easily in some cases than in
others. We have not assessed the errors arising from:

(i) the functional form of the mass model;
(ii) the functional form of the DF;
(iii) the age–velocity dispersion relation in the thin disc;
(iv) the adopted value of L0 in disc DF: variation will affect the

normalization of stellar halo;
(v) the power-law slope and quasi-isotropy of the stellar halo –

we will investigate this in a future paper;
(vi) the solar motion w.r.t. the LSR.

The first two points include the approximation that the Galactic
disc is smooth and axisymmetric, so the flows induced by spi-
ral waves that have been detected by RAVE (Siebert et al. 2012;
Williams et al. 2013) and in simulations (Debattista 2014; Faure,
Siebert & Famaey 2014) are neglected.

We have investigated the sensitivity of our results to:

(i) R0, which controls the circular speed: a value of R0 = 8 kpc
reduces ρdm, � by 10 per cent.

(ii) The contribution of the gas disc to the local baryonic surface
density. If we assume 33 per cent instead of our standard value
of 25 per cent, we find slightly different structural parameters for
the stellar discs, but our best-fitting value for ρdm, � remains un-
changed.

(iii) Rσ , i for the thin disc: using Rσ , i = 6 kpc reduces ρdm, � by
<2 per cent.

(iv) The fact that r0,dm changes with ρdm, � on account of
the halo constraints: setting r0,dm = 20 kpc increases ρdm, � by
2 per cent.

MNRAS 445, 3133–3151 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/445/3/3133/1052064 by U
niversity C

ollege London user on 12 February 2020



3142 T. Piffl et al.

Figure 8. The full black curve shows the vertical density profile of the disc predicted by the DF for ρdm, � = 0.012 M� pc−3; the mostly overlying dashed
black curve shows the corresponding density profile in the mass model. The other dashed black lines show the profiles of the thin and thick discs in the mass
model. The dotted curves show the corresponding predictions of the DF for both discs and the stellar halo (which has no explicit counterpart in the mass
model). The red and blue error bars show the vertical profile measured by J08 for stars with r − i ∈ [0.7, 0.8] (‘a’, red symbols) and with r − i ∈ [0.15, 0.2] (‘b’,
blue symbols). The latter was not used in the analysis and is shown only for illustrative purposes. The green error bars show the profile measured by Gilmore
& Reid (1983).

Figure 9. Best-fitting value for the local dark matter density ρdm, � as
a function of the assumed axis ratio q of the dark matter halo. A value
of q = 1 implies a spherical halo, while smaller values lead to oblate
configurations. The dashed black line shows a power law fitted using least-
squares minimization.

(v) Equal scale radii for thin and thick disc: setting
Rd, thick/Rd, thin = 0.6 (resulting in Rd, thick � 2 kpc and Rd, thin �
3.5 kpc similar to Bovy et al. 2012a), increase ρdm, � by 4 per cent.

(vi) Flattening the dark halo: a flatter dark halo increases ρdm, �
significantly. See Fig. 9.

(vii) Systematic uncertainties in the distance scale of J08: if this
distance scale is increased by a factor α, ρdm, � proves to be almost
proportional to α, with a 20 per cent increase in α causing ρdm, � to
increase by 8 per cent. A different value for the binary fraction has
a very similar, but smaller, effect to a general change of the distance
scale, and is hence also covered in this uncertainty. For a flattened
dark matter halo with q = 0.6 the same test yielded a variation of
10 per cent.

The three most critical systematic uncertainties are therefore the
axis ratio q of the dark halo, the solar distance to the GC and the

distance scale used to construct the observational vertical stellar
density profile. Simply adding in quadrature the uncertainties other
than halo flattening listed above leads to a combined systematic
uncertainty of ∼15 per cent. Combining this with the uncertainty
associated with dark-halo flattening we arrive at our result

ρdm,� =
{

(0.48 × q−α)GeV cm−3 ± 15 per cent

(0.0126 × q−α)M� pc−3 ± 15 per cent
(22)

with α = 0.89 and q the axis ratio of the dark halo. We remark
that the given uncertainties are not statistically robust confidence
intervals, but are estimates based on the above test runs. Because
our kinematic data are restricted to |z| < 1.5 kpc, it is not possible
for us to reliably single out a preferred value of q. For this, data
at larger distances from the Galactic plane would be needed (cf.
Fig. 10). In Section 6, we discuss this further.

Note that there is an additional potential source of uncertainty
that we have not included in our estimate: Schönrich & Berge-
mann (2014) find hints that the common practice of assuming un-
correlated errors in the stellar parameters when deriving distance
estimates leads to overconfident results. Hence, the parallax uncer-
tainties reported by Binney et al. (2014a) might be underestimated.
To test the possible influence, we doubled the individual parallax
uncertainties (a worst case scenario) and repeated the fit. The best-
fitting value for ρdm, � increased by ∼7 per cent. A similar uncer-
tainty is shared by all studies that use distances inferred from stellar
parameters.

4.2 Flattening-independent results

The inverse dependence of ρdm, � on q implies that for similar
scale radii r0,dm the mass of the dark matter halo within an oblate
volume with axis ratio q is approximately independent of q. This
is confirmed by Fig. 10 (upper panel), which shows the cumulative
mass distribution as a function of elliptical radius.

The invariance of the dark matter mass profile can be qualitatively
understood by the following consideration: flattening the dark halo
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Figure 10. Upper panel: dark mass enclosed within the elliptical radius a for
best-fitting models with three different axis ratios q: 0.6, 0.8 and 1. Middle
panel: circular speed curves for the same models as in the upper panel. The
dashed and dot–dashed lines show the circular speed curve generated by
the dark matter halo and baryonic components alone. Bottom panel: same
as the middle panel but showing squared circular speed as a function of R,
which better illustrates the relative contributions of the dark matter and the
baryons to the radial force at each radius.

at fixed local density reduces its mass and its contribution to the
radial force, KR. But – due to its still large thickness – its contri-
bution to the vertical force Kz at low z remains almost constant or
slightly grows. To restore the value of the circular speed at the Sun’s
location, we have to either increase the mass of the halo or that of
the disc. However, filling the gap with disc material increases Kz

and consequently compresses the vertical mass profile predicted by
the DF. Thus the only possibility is to increase the mass of the halo
and decrease the mass of the disc in order to keep Kz at the appro-
priate level. The upper panel of Fig. 10 illustrates that this increase
does not fully balance the decrease from the initial flattening. The
differences between the lines are much smaller than the variations
coming from the systematic uncertainties. Taking the latter into ac-

Figure 11. Upper panel: total vertical gravitational force as a function of
distance from the Galactic plane for best-fitting models with three different
dark-halo axis ratios q: 0.6, 0.8 and 1. The dashed turquoise line shows
the Kz profile naively computed from the surface density profile using the
simple conversion often used in the literature. At |z| > 1 kpc this diverges
significantly from the true curve, namely the solid red line for the spherical
dark halo. Lower panel: same as above, but this time the surface density
�(z) is shown: solid lines show the total surface density while dashed and
the dot–dashed lines show the contributions of the dark halo and the Galactic
disc.

count, we find the mass of dark matter interior to an ellipsoidal
surface that goes through the solar annulus

Mdm(a < R0) = (6.0+1.35
−1.2 ) × 1010 M�

with a =
√

R2 + (z/q)2.
Interestingly, despite the fact that the enclosed dark mass is

slightly decreasing with decreasing axis ratio, its contribution to
the radial force increases. This is due to the enhanced gravitational
pull of a flattened distribution and leads to a smaller baryonic mass
required to sustain the rotation curve (middle and bottom panel of
Fig. 10).

Fundamentally, the mass profiles are nearly independent of axis
ratio because the observed kinematics determine the ability of stars
to resist Kz, and the J08 density profile shows the extent to which
they do resist Kz. Hence, Kz is narrowly constrained by the data
independently of what mass distribution generates it. Kz is closely
related to the surface density

�(z) =
∫ z

−z

dz′ρ(R0, z
′). (23)

Fig. 11 illustrates the z-dependences of these quantities for models
with varying q. We see that there is a region around z = 900 pc
where all profiles intersect. Taking into account the systematic un-
certainties given above, we find

|Kz(z = 0.9 kpc)| = (1.78 ± 0.4) km2 s−2 pc−1.
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For the surface density between ±900 pc, we find

�(z = 0.9 kpc) = (69 ± 15) M� pc−2.

Below in Fig. 15, we set these measurements in context with esti-
mates from the literature.

4.3 Other properties

We now give results for the model with a spherical dark halo. The
best-fitting model has a virial mass3 M200 = (1.3 ± 0.1) × 1012 M�.
The above-mentioned systematic uncertainties translate into a
<10 per cent uncertainty in the virial mass, but this does not encom-
pass the uncertainty introduced by the assumed shape of the radial
mass profile of the dark matter halo. For the models with flattened
haloes, we find slightly increased virial masses of 1.4 × 1012 M�
and 1.6 × 1012 M� for the axis ratios 0.8 and 0.6, respectively.

The total mass of the Galaxy’s stellar disc is
(3.7 ± 1.1) × 1010 M�. This is lower but not far from the
canonical value of 5 × 1010 M�. It is within the range of 3.6
– 5.4 × 1010 M� estimated by Flynn et al. (2006). Combining
the stellar disc with the bulge and the gas disc, we arrive at a
total baryonic mass (5.6 ± 1.6) × 1010 M�, or a baryon fraction
(4.3 ± 0.6) per cent. This value is much lower than the cosmic
baryon fraction of ∼16 per cent (Hinshaw et al. 2013; Planck Col-
laboration XVI 2013), once again illustrating the ‘missing baryon
problem’ (e.g. Klypin et al. 1999). While this baryon fraction does
not include the mass of the Galaxy’s virial-temperature corona,
the mass of the corona within ∼20 kpc of the GC is negligible
(Marinacci et al. 2010); the missing baryons have to lie well outside
the visible Galaxy in the circum- or intergalactic medium.

The thick disc contributes about 32 per cent of the disc’s stellar
mass which is lower than the 70 per cent found by J08. This result
depends, however, on our decision to equate the radial scalelengths
of the two discs. If the scalelength of the thick disc is assumed to
be shorter, as found by Bovy et al. (2012a), the mass fraction in this
component increases to ∼60 per cent. The better agreement with
J08 is only apparent, however, because these authors found a longer
scale radius for the thick disc.

Fig. 12 shows for several fairly successful spherical models the
surface densities of the stellar and gaseous discs at R0 (upper panel)
and the ratio of the radial forces at R0 from the baryons and dark mat-
ter (lower panel). The upper panel shows good agreement with the
estimates of the baryonic surface densities derived from Hipparcos
data by Flynn et al. (2006, coloured bands). The lower panel shows
that equal contributions to the radial force are achieved for local
dark matter densities ρdm, � that are lower than our favoured value
for a spherical halo, but still within the range encompassed by the
systematic uncertainties, which is shaded grey. In our best-fitting
model, the solar neighbourhood is mildly dark matter dominated
with only 46 per cent of the radial force coming from gas and stars.
Alternatively, we can look at the contribution of disc to the total
rotation curve at 2.2 times the scale radius to check whether our
disc is ‘maximal’ according to the definition of Sackett (1997). We
find a ratio Vc, disc/Vc, all = 0.63 (Vc, baryons/Vc, all = 0.72) that is be-
low the range of 0.75–0.95 for a maximal disc, but slightly above
the typical range of 0.47 ± 0.08 (0.57 ± 0.07) for external spiral

3 We define the virial mass as the mass interior to the radius R200 that
contains a mean density of 200 times the critical density for a flat universe,
ρcrit.

Figure 12. Upper panel: mass surface densities in our models for the stars
(black points and lines) and gas (grey points and lines). The green and orange
shaded area show the corresponding one/two sigma regions reported by
Flynn et al. (2006). Lower panel: the ratio FR,bary/FR,dm of the contributions
to the radial force at R0 from baryons and dark matter. In both panels, the
grey shaded area illustrates the systematic uncertainties of ρdm, � with the
(interpolated) best-fitting value marked by the black dashed line. For this
value, we have FR,bary/FR,dm ∼ 0.85.

galaxies (Bershady et al. 2011; Martinsson et al. 2013). It is still
lower than the value of 0.83 ± 0.04 found by Bovy & Rix (2013).

5 K I NEMATI CS

Here, we discuss the kinematic properties of our best-fitting model.
The circular speed at the solar radius, vc(R0) = 240 km s−1 is largely
the result of the adopted values of R0 = 8.3 kpc, the proper motion of
Sgr A*, and v�, the solar motion w.r.t. to the LSR. Our constraints
for the mass model actually fix the ratio vc(R0)/R0 (McMillan 2011).

For the local escape speed vesc = √
2�(R0), we find a value

of 613 km s−1. Piffl et al. (2014) recently found a lower value of
533+54

−41 km s−1, but for this they used a modified definition of the
escape speed as the minimum speed needed to reach 3Rvir. If we
apply their definition to our model we find a value of 580 km s−1

which is still on the high side, but within their 90 per cent confi-
dence interval. The uncertainties arising from the above-mentioned
systematics on this value are of order 1 per cent. This comes mainly
from our rather strong prior on the mass within 50 kpc and again
does not cover the uncertainties in the dark matter profile at large
radii.4

The data points in Fig. 13 show histograms for each principal
velocity component and spatial bins defined by 7.3 kpc < R < R0 and
ranges in z that increase from bottom to top: the upper limits of the
bins are at z = 0.3, 0.6, 1, 1.5 kpc and the coordinates of each bin’s
barycentre are given at the lower centre of each panel. The vertical
scales of the plots are logarithmic and cover nearly three orders of
magnitude in star density. The plotted velocity components V1 and

4 Because of this and also because of the focus of Piffl et al. (2014) on the
fastest stars in the RAVE survey, which carry most of the information on the
escape speed, we still consider their value as the more robust one.
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Constraining the Galaxy’s dark halo with RAVE stars 3145

Figure 13. Velocity distributions in four spatial bins. In each panel, the numbers at the lower centre give the (R, z) coordinates of the bin’s barycentre. The
grey error bars show the RAVE data, while the green error bars show the mean of 10 Monte Carlo re-samples of our model with ρdm, � = 0.012 M� pc−3,
which is close to our best-fitting value. The vertical dotted lines show the boundaries of the velocity ranges over which χ2 was computed. The full red curves
show the predictions of the DF in the absence of distance errors, while the dashed lines show the corresponding predictions when the DF of the stellar halo is
deleted.

V3 are along directions e1 and e2 that lie very close to the radial
and latitudinal directions, respectively, their precise directions being
those determined by Binney et al. (2014b) to be the eigenvectors of
the velocity dispersion tensor. The Poisson error on each data point
is marked by the error bar and is in most cases insignificant. The
grey data points represent the original RAVE data, while the green
symbols show the mean of 100 Monte Carlo re-samplings using
the mass model–DF pair with ρdm, � = 0.012 M� pc−3, which
is closest to our best-fitting value. Within the considered velocity
ranges (bracketed by the vertical dashed lines in the panels), the fits
to the data are good. For the Vφ-distributions, there is a systematic
shift by approximately 5 km s−1. This shift is much smaller or even
reversed for the spatial bins that lie beyond R0, which suggests that
it arises from spiral structure.

Far from the plane, the wings of the V1 distributions are systemat-
ically underpredicted while there is a hint of an overprediction near
the plane. A similar trend is apparent for the low-angular momen-
tum stars in the Vφ distributions and this anomaly is also present
in the histograms for bins that lie outside R0. These trends suggest
that the stellar halo density decreases less quickly with increasing
|z| than our model predicts, and hence that this component is less
flattened than we have implicitly assumed by adopting the form
(20) of the function h that appears in the halo DF. A definitive state-

ment is, however, impossible, because the wings of the distribution
are strongly affected by the uncertain distance estimates (and our
modelling of this effect). Stars at greater heights from the Galactic
plane, such as those in the SEGUE survey (Yanny et al. 2009) would
yield a clearer picture.

5.1 Kinematics of hot dwarfs

We next look at the kinematics predicted for a different set of
RAVE observations, namely hot dwarf stars. Stars in this group,
defined by log g > 3.5 dex and Teff > 6000 K, have the most precise
distance estimates, but due to their lower luminosity they can be
seen in a smaller volume than the giants. So we use spatial bins
defined by smaller distances from the Galactic plane: we place the
borders at |z| = 0.15, 0.3, 0.45, 0.6 kpc. Since these stars cannot
be old, we assume their DF is given by the portion of the thin-disc
DF for age below 5 Gyr (=τm). The green data points in Fig. 14
show the resulting Monte Carlo re-sampling of stellar distances
and velocities, while the grey points show the RAVE data. The
predicted and observed distributions agree well in their cores, but
in their wings the RAVE data lie higher, especially in the case
of V1. The predicted Vφ distributions underpopulate the high-Vφ

tails. Both phenomena are symptomatic of a model population that
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3146 T. Piffl et al.

Figure 14. Velocity distributions of hot dwarfs in four spatial bins. These plots are similar to those in Fig. 13, but the borders of the bins are (from bottom to
top) at |z| = 0.15, 0.30, 0.45 and 0.6 kpc. The (R, z) positions of the barycentres of the sub-samples are given in each panel. The grey error bars show the RAVE
data while the green error bars show the mean of 10 Monte Carlo re-samples of the model with ρdm, � = 0.012 M� pc−3, which is close to our best-fitting
value.

has less random motion than the real one. It might be argued that
5 Gyr is an excessively young age to adopt for this population,
which will contain stars with masses down to 1.1 M� that live in
excess of 7 Gyr. With an age cutoff of 7.5 Gyr improved fits to the
V1 distributions are obtained, but overall the velocity distributions
remain deficient, and anyway the adopted age cutoff should match
the mean lifetime of the population, not that of the longest-lived
stars within it.

The discrepancies between theory and observation in Fig. 14 tie
in with the DF’s curve for the thin disc in Fig. 8 falling rather steeply
at large |z|. It also ties in with a surprising result encountered by
B12b when fitting DFs like those used here to the GCS: the thin-
disc DF fully populated the wings of the U distribution of GCS stars
with the result that when a thick-disc DF was added, using both the
GCS velocities and the vertical density profile of Gilmore & Reid
(1983), the implied radial velocity dispersion of the thick disc was
lower than that of the old thin disc. Here, bins at large |z| strongly
influence the fitted DF, so the DF of the thick disc has sufficient in-
plane dispersion to fill out the wings of these distributions. With our
chosen functional form of the DF, the thick disc’s DF then places
enough stars in the bins near the plane to fill out the wings of these
distributions. It follows that the thin-disc DF is then chosen such
that it does not place additional, now unwanted, stars in the wings of
the V1 distributions at low |z|. Unfortunately, the RAVE distribution
for hot dwarfs, which are surely thin-disc stars, shows that the thin

disc does make a non-negligible contribution to the wings of the V1

distribution.
The difficulty encountered here with the hot dwarfs and the dif-

ficulty encountered by B12b with the thick disc may both arise
from an inappropriate choice for the functional dependences of
the DF on Jr and Jz. These dependences are not motivated by
any convincing physical arguments (but see Binney 2010b, for
a relevant discussion), they are simply those provided by famil-
iar analytic functions that have the right general properties. The
superb statistics provided by the RAVE survey may oblige us
to tweak these functions. This is, however, a topic for another
paper.

6 D I SCUSSI ON

We have built models of the Galaxy using the vast data set pro-
vided by the RAVE survey together with additional observations
constraining the Galactic rotation curve and the stellar density pro-
file above and below the Sun. In combination these measurements
allowed us to disentangle the contributions to the local gravitational
field of the baryonic and the dark matter and hence put tight con-
straints on the mass of the dark halo that lies interior to the Sun,
and on the surface density of matter that lies within ∼0.9 kpc of
the plane near the Sun. In order to compare our results to previ-
ous measurements in the literature one should keep in mind that
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Constraining the Galaxy’s dark halo with RAVE stars 3147

Figure 15. Vertical force law for our best-fitting model with a spherical
dark halo (solid black line) and its systematic uncertainty (grey shaded
area). The error bars and hatched regions show several other estimates from
the literature. The estimate by Bovy & Tremaine (2012) was computed using
their preferred parameters (dashed curve in their fig. 2).

our quoted uncertainties are not the statistical uncertainties which
are negligible (<0.4 per cent), but originate purely from a conser-
vative estimate of our systematic uncertainties. Similar systematic
uncertainties are generally present in other studies.

A comprehensive review of estimates of the local dark mat-
ter density was recently published by Read (2014). Most of the
more recent studies find lower values of ρdm, � than our esti-
mate of 0.0126 M� pc−3 ± 15 per cent for a spherical dark halo.
Almost all previous studies rely on the assumption that the mo-
tions of stars near the Sun are separable into radial and verti-
cal components. Recent examples of this approach are Bovy &
Tremaine (2012, 0.008 ± 0.003 M� pc−3) or Zhang et al. (2013,
0.0065 ± 0.0023 M� pc−3). However, Garbari et al. (2012) showed
by analysing mock data sets from N-body simulations that this can
bias the results to lower values. They propose a new method that
weakens this assumption and use this to re-analyse the data by
Kuijken & Gilmore (1991). Both their estimate and their revised
value 0.0087+0.007

−0.002 M� pc−3 in Read (2014) are consistent with
our results. Also most other recent studies that do not rely on the
separability assumption find value for ρdm, � that are in good agree-
ment with our measurement (Salucci et al. 2010; Iocco et al. 2011;
McMillan 2011; Nesti & Salucci 2013).

Parallel to this work, Bienaymé et al. (2014) used a sample of
∼4600 red clump stars from RAVE to measure the vertical force (see
Fig. 15 below) and from a more classical approach concluded that
the local dark matter density is ρdm, � = 0.0143 ± 0.0011 M� pc−3.
Their results are very similar to the results of this study despite a
radically different methodology, different distance estimates, and
only a partial overlap of the stellar samples. In particular, they used
stars at |z| > 1.5 kpc that were excluded for our study.

6.1 Surface density and vertical force

It is often assumed that once one has determined the vertical force Kz

acting on stars at a certain height z above or below the Galactic plane,
this can be trivially converted into the surface mass density between

±z. It was already remarked before that this is a good approximation
only for small |z|. A comparison of the dashed and solid red lines in
the upper panel of Fig. 11 illustrates this once again (see also Bovy
& Tremaine 2012). Previously, with sample sizes of hundreds or few
thousand stars, the distinction could be generously ignored. With
almost 200 000 stars, the statistical uncertainties become negligible
and adopting Kz = 2πG� introduces a significant bias. It is hence
advisable not to confuse Kz and 2πG�.

The full black curve in Fig. 15 shows the Kz profile of our best-
fitting model, while the grey band shows our systematic uncertainty.
Clearly these results are in excellent agreement with the data points,
which show the estimates of Bovy & Tremaine (2012), Kuijken &
Gilmore (1991), Korchagin et al. (2003), Holmberg & Flynn (2004),
Bienaymé et al. (2006), Bienaymé et al. (2014) and Zhang et al.
(2013). Note that uncertainties of these earlier studies are random
errors, while our uncertainties from random errors are negligible.

Interestingly, the study by Bienaymé et al. (2014) extended the
range of |z| values probed to 2 kpc, so above the volume in which
our stars reside. Their steep gradient between 1 and 2 kpc could
be interpreted as indicating a flattened dark halo with axis ratio
q � 0.8 (cf. the upper panel of Fig. 11). Their slightly higher value
for ρdm, � is consistent with this, as it requires q to be 0.79–0.94 to
match our results.

Moni Bidin et al. (2012b) claimed that the kinematics of a sample
of distant red giants from Moni Bidin, Carraro & Méndez (2012a)
proves that ρdm, � is negligible. However, Sanders (2012) showed
that the velocity dispersion gradients reported by Moni Bidin et al.
(2012a) were most likely too shallow by a factor 2–3 and their
uncertainties severely underestimated. Bovy & Tremaine (2012)
showed that the analysis in Moni Bidin et al. (2012b) is flawed, and
from the data in Moni Bidin et al. (2012a) derived a value for ρdm, �
that is consistent with a significant dark halo. However, the errors
on ρdm, � given by Bovy & Tremaine are based on the erroneous
errors in Moni Bidin et al. (2012a), and the use of realistic errors
would probably prohibit any significant statement.

We nevertheless include the results of Bovy & Tremaine (2012)
in Fig. 15. Surprisingly, Bovy & Tremaine find a steeper force
gradient than our standard model, yet derive a smaller dark mat-
ter density from it. They underestimate the surface density (cf.
Fig. 11), and hence the local dark matter density, because they
use the oversimple conversion from Kz to density mentioned
above.

Bovy & Rix (2013) used quasi-isothermal DFs to derive the es-
timates of Kz plotted in Fig. 16 from several populations within
the sample of G dwarfs studied by Lee et al. (2011) as part of
SEGUE. Each ‘mono-abundance’ population comprises stars that
lie in a small bin in the (α/Fe/[Fe/H]) plane and consists of a
couple of hundred stars at most. Bovy & Rix (2013) derived an in-
dependent gravitational potential and quasi-isothermal DF for each
sub-population by requiring that the population’s vertical kinemat-
ics and spatial distribution are consistent with the observations.
They argued that each population constrained Kz at a particular ra-
dius, and each point in Fig. 16 shows the constraint provided by
one population at the corresponding radius. Since the chemical in-
formation we have for our much larger sample of stars is associated
with large uncertainties, and we are sceptical that individual mono-
abundance populations have quasi-isothermal DFs, we have used a
much simpler, metallicity-blind, approach to the data in which it is
fundamental that all stars move in the same gravitational potential.
None the less, in the region R > 6.6 kpc, where the available data
are most clearly relevant, the Bovy & Rix points fall nicely within
our region of systematic uncertainty, shaded grey in Fig. 16.
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Figure 16. Data points: estimates of Kz(R, 1.1 kpc) obtained by Bovy &
Rix (2013) for mono-abundance populations within the SEGUE survey.
The black line and the grey-shaded area indicate our best-fitting model and
uncertainty.

6.2 Structural parameters of the discs

Our values for the parameters defining the vertical mass profile
of the Galactic disc are systematically lower than the canonical
values of 300 pc for the thin disc and 900–1400 pc for the thick disc
(Gilmore & Reid 1983, J08). One should keep in mind, however,
that these values, together with the normalization parameter fthk, are
not fully constrained by the data and their uncertainties. It is well
known, that extremely similar profiles are produced by parameter
values that fall in an extended region of parameter space (e.g. J08).

With our model we do not suffer from this degeneracy in the sense
that our values for zthn and zthk are fixed during the alignment of the
DF and the mass model, which is done by comparing smooth curves
that have no uncertainties. Since we are obtaining good fits to the
J08 data (and the Gilmore & Reid 1983 data), there can necessarily
be no significance in any difference of the parameters.

6.3 Baryonic mass content

Flynn et al. (2006) find the total luminosity surface density at the
Sun in the I band to be 29.5 L� pc−2 with an uncertainty of 10 per
cent. Combining this with our results we find a total luminosity
of the stellar disc of (3.95 ± 0.15) × 1010 L�. With an additional
contribution of 1010 L� from the bulge (Kent, Dame & Fazio 1991;
Flynn et al. 2006), we arrive at a total luminosity LI � 5 × 1010 L�
(MI � −22.4) and an I-band mass-to-light ratio of (1.4 ± 0.2). These
values are very similar to analogous estimates by Flynn et al. (2006,
MI ∼ −22.3, (M/L)I ∼ 1.3) and Bovy & Rix (2013, MI ∼ −22.5,
(M/L)I ∼ 1.3).

6.4 Consistency with �CDM

During our model fitting process, we apply a prior in the concen-
tration parameter c of the dark matter halo that was based on cos-
mological simulations of structure formation (Section 2.5). There
are, however, several other constraints that have to be satisfied and

our best-fitting model has a concentration ln (c) = 3.0 that is almost
3σ above the central value of the prior. A similar result was already
obtained by McMillan (2011). This illustrates that the additional
information from this prior was overruled and, indeed, our results
do not change significantly when we use a flat prior instead.

At first glance this seems to point to a mild tension with the
predictions from �CDM cosmology. One has to keep in mind,
however, that the above-mentioned simulations were dark-matter-
only runs. The formation of galaxies in the centres of the dark
matter haloes will alter their shapes and radial profiles. The classic
halo response model of Blumenthal et al. (1986), which assumes an
adiabatic contraction of the radial mass profile, is now thought to
overpredict the response (e.g. Gnedin et al. 2004, 2010; Abadi et al.
2010). There is also general agreement that there is no universal
response that depends only on the final distribution of the baryons,
but that the response also depends on the specific accretion history
of the Galaxy (Abadi et al. 2010; Gnedin et al. 2010).

Instead of looking at the global shape of the halo, we can compare
the predictions of numerical simulations with our robust result on
the dark mass contained within the solar radius, Mdm(r < R0) –
a similar approach was taken by Navarro & Steinmetz (2000) and
Abadi et al. (2010). We use the mass–concentration relation reported
by Macciò, Dutton & van den Bosch (2008),

log c200 = 0.917 − 0.104 log(M200[1012h−1 M�]), (24)

with h = 0.73, to compute Mdm(r < R0) as a function of halo
mass M200 as follows. Given M200, we find c200 from equation (24)
and compute the mass interior to R0 in a standard NFW model.
For the contracted profiles, we first tabulate the standard NFW
mass profile and then contract it according to the prescriptions
of Springel & White (1999) (adiabatic) and Abadi et al. (2010)
using the baryonic disc and bulge configurations from our best-
fitting model. The mass interior to R0 can then be obtained by
interpolation. The cosmic scatter around the relation (24) is well
approximated by a lognormal distribution and Macciò et al. (2008)
find σ log c = 0.105 and hence we obtain a probability distribution for
Mdm(r < R0) for each M200. We can then integrate over a plausible
range of Milky Way masses to obtain a probability distribution for
Mdm(r < R0) for our Galaxy. We choose a flat prior between 0.5
and 2 × 1012 M� that roughly covers the range of Milky Way
masses reported in the literature. Fig. 17 shows the results. If we
assume the original NFW profile, we find our model to be a mild
outlier as expected from the stronger concentration. Note that in
contrast to Abadi et al. (2010) we find that the Milky Way has
more mass inside R0 than predicted by cosmology. If we modify
the mass profile via adiabatic contraction or the prescription for an
intermediate contraction advocated by Abadi et al. (2010), we find
much better agreement. The old age of the Galaxy’s thin disc implies
that our Galaxy has avoided significant mergers for >8 Gyr. Abadi
et al. (2010) speculated that in such a case the dark halo would
contract more strongly than predicted by their formula. We also
note, that Gnedin et al. (2004, 2010) generally predict a contraction
that is closer to the adiabatic case than Abadi et al. (2010). Hence,
when halo contraction is taken into account we are in excellent
agreement with the Milky Way being a typical spiral galaxy in a
�CDM universe.

7 C O N C L U S I O N S

We have explored the vertical profile of mass density within
∼1.5 kpc of the Galactic plane by combining the kinematics of
∼200 000 giant stars in the RAVE survey with estimates of the
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Figure 17. pdfs for Mdm(r < R0) in the �CDM cosmology for galaxies
with virial masses between 0.5–2 × 1012 M�. The different lines show the
predictions when different degrees of contraction due to the formation of
central galaxies in the dark haloes are taken into account. The grey shaded
area marks the result of our study. The dashed lines show the predictions
for a virial mass equal to our best-fitting value. These are shifted to higher
value, because our best-fitting value of 1.3 × 1012 M� is slightly on the
high side of the above mass range.

variation with z in the number density of disc stars determined by
J08 from the SDSS. We have done this using a novel approach to
dynamics in which for a given mass model we fit a parametric DF
of the form f ( J) to the kinematics, and then compute the vertical
density profile predicted by the chosen DF. This process is repeated
using different mass models until the predicted stellar density profile
agrees with the observed one.

That we are able to obtain excellent agreement between the pre-
dicted and observed stellar profiles is a non-trivial result, and sug-
gests (a) that the parametric form of the DF with which we have
chosen to work is capable of approximating the true DF quite accu-
rately, and (b) that our mass models have an appropriate form. The
latter comprise double-exponential discs for the ISM, the thin and
thick stellar discs plus a NFW dark matter halo and a bulge with
spheroidal equidensity surfaces.

While the data we use here constrain tightly the vertical struc-
ture of the disc, other data constrain the Galaxy’s radial structure
better. Consequently, we have determined the radial scalelengths of
the density profiles of both the discs and the dark halo from mea-
surements of the proper motion of Sgr A*, terminal velocities of
gas inside the Sun, and six-dimensional phase-space coordinates of
maser sources. Our models fit these data to well within the errors.
The radial scales Rσ on which the velocity-dispersion parameters
σ r of and σ z of the thin and thick discs decrease with radius have
to be extracted from the RAVE data. For the thick disc, the RAVE
data yield a reasonable value of Rσ , but they do not yield credible
values of Rσ for the thin disc because the survey does not probe the
thin disc over a large enough radial range. The low-latitude infrared
survey APOGEE (Allende Prieto et al. 2008) should resolve this is-
sue, but to date it has not yielded physically plausible results (Bovy
et al. 2012b). Consequently, we have simply imposed Rσ = 9 kpc
to ensure that the thin disc has a roughly radius-independent scale-
height.

The star samples we are using are so large that statistical er-
rors are insignificant, so the uncertainties in our results are entirely
systematic. By far the biggest source of uncertainty are the solar

distance to the GC and systematic errors in the distances employed
in the determination of both the kinematics and the density pro-
file. J08 used a colour–magnitude relation to determine the density
of M dwarfs stars. The profile constructed in this way, which is
in excellent agreement with the original Gilmore & Reid (1983)
profile, is expected to be steeper than the true profile because the
observed stars are on average more luminous than they appear to be
on account of both Malmquist bias and undiagnosed binarity. We
have allowed for these effects by imposing them on our models,
using the photometric errors quoted by J08 and a 10 per cent binary
fraction. If one uses distances that are 20 per cent too small, one
derives a local dark matter density ρdm, � that is ∼8 per cent too
low. Similarly, decreasing the assumed value of R0 from 8.3 to 8 kpc
causes ρdm, � to decrease by ∼5 per cent.

What we are really measuring is the vertical profile of gravitating
matter, regardless of whether it is baryonic or dark. If we flatten
an initially spherical dark halo to axis ratio q < 1 while holding
constant its mass, the contribution of the halo to the radial force
on the Sun rises, as does the halo’s contribution to the vertical
force that keeps disc stars near the plane. Consequently, to keep
our model consistent with the data, the mass of the baryonic disc
has to decrease if one decides to use a flattened halo. Hence, flatter
haloes require lower mass baryonic discs. In fact, one finds that
as the halo is flattened, its mass also has to decrease slightly if
the data are to be fitted perfectly, so ρdm, � ∝ q−0.89 rather than
the relation ρdm, � ∝ q−1 that would apply if the dark-halo mass
were independent of q. The surface density within |z| = 0.9 kpc is
69 ± 15 M� pc−2 independent of halo flattening.

With a spherical halo, the total local surface density of the bary-
onic disc is 37 M� pc−2 in excellent agreement with the esti-
mate of Flynn et al. (2006), and the baryons contribute 46 per
cent of the radial force on the Sun. The virial mass of the halo
is M200 = (1.3 ± 0.1) × 1012 M� and the mass of the Galaxy’s
baryons is (5.6 ± 1.6) × 1010 M�, giving a baryon fraction (stars
and cold gas) as small as (4.3 ± 0.6) per cent.

We have used our models to predict the kinematics of hot dwarf
stars under the assumption that these stars faithfully sample the
contribution to the thin-disc DF from stars with ages <5 Gyr. In
the cores of the velocity histograms, the predictions agree well
with the RAVE data, but there is a tendency for the wings to be
underpredicted by the models, so the division of the overall DF into
thin- and thick-disc components may be imperfect, with the young
thin disc being slightly colder than it should be. On the other hand,
the models predict slightly lower mean-streaming velocities than
implied by the data, which is the opposite of what one would expect
if the thin disc were too cold. So in subsequent work, it may be
necessary to adopt a more complex functional form for the DF.

The fundamental assumption underlying our work is that RAVE
stars sample the same population as that probed by J08 and Gilmore
& Reid (1983). The worrying aspect of this assumption is that we
have used giants from RAVE, whereas J08 and Gilmore & Reid
used dwarfs. We do have the reassurance that Binney et al. (2014b)
found the kinematics of cool dwarfs and giants to be consistent with
one another in RAVE. However, it would be safer to compare the
kinematics of the RAVE giants to estimates of the density profile
that one derives from them, and we plan to do that soon. In this
connection, it will be valuable to derive the density profile from a
mixture of the 2MASS and SDSS surveys since SDSS stars are too
faint to sample the thin disc well.

In this paper, we have fitted models to the data in phase space
rather than the space of the observables (proper motions, parallaxes,
magnitudes, etc.). More robust handling of errors is possible if one
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fits in the space of observables (McMillan & Binney 2013), and we
hope to use the RAVE data in this way soon.
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Bienaymé O. et al., 2014, preprint (arXiv:1406.6896)
Binney J., 2010a, MNRAS, 401, 2318
Binney J. J., 2010b, in Falcón-Barroso J., Knapen J. H., eds, Secular Evolu-

tion of Galaxies. Cambridge Univ. Press, Cambridge, p. 141
Binney J., 2012a, MNRAS, 426, 1324
Binney J., 2012b, MNRAS, 426, 1328 (B12b)
Binney J., 2014, MNRAS, 440, 787
Binney J., Merrifield M., 1998, Galactic Astronomy. Princeton Univ. Press,

Princeton, NJ
Binney J., Gerhard O., Spergel D., 1997, MNRAS, 288, 365
Binney J. et al., 2014a, MNRAS, 437, 351
Binney J. et al., 2014b, MNRAS, 439, 1231
Bissantz N., Gerhard O., 2002, MNRAS, 330, 591
Blumenthal G. R., Faber S. M., Flores R., Primack J. R., 1986, ApJ, 301, 27
Bond N. A. et al., 2010, ApJ, 716, 1
Bovy J., Rix H. W., 2013, ApJ, 779, 115
Bovy J., Tremaine S., 2012, ApJ, 756, 89
Bovy J., Rix H. W., Liu C., Hogg D. W., Beers T. C., Lee Y. S., 2012a, ApJ,

753, 148
Bovy J. et al., 2012b, ApJ, 759, 131
Bower R. G., Vernon I., Goldstein M., Benson A. J., Lacey C. G., Baugh

C. M., Cole S., Frenk C. S., 2010, MNRAS, 407, 2017
Boylan-Kolchin M., Springel V., White S. D. M., Jenkins A., 2010, MNRAS,

406, 896
Caldwell J. A. R., Ostriker J. P., 1981, ApJ, 251, 61
Das P., Gerhard O., Mendez R. H., Teodorescu A. M., de Lorenzi F., 2011,

MNRAS, 415, 1244

Debattista V. P., 2014, MNRAS, 443, L1
Dehnen W., 1998, AJ, 115, 2384
Dehnen W., Binney J., 1998, MNRAS, 294, 429
Delfosse X. et al., 2004, in Hilditch R. W., Hensberge H., Pavlovski K., eds,

ASP Conf. Ser. Vol. 318, Spectroscopically and Spatially Resolving the
Components of the Close Binary Stars. Astron. Soc. Pac., San Francisco,
p. 166

Dieterich S. B., Henry T. J., Golimowski D. A., Krist J. E., Tanner A. M.,
2012, AJ, 144, 64

Faure C., Siebert A., Famaey B., 2014, MNRAS, 440, 2564
Flynn C., Holmberg J., Portinari L., Fuchs B., Jahreiß H., 2006, MNRAS,

372, 1149
Garbari S., Liu C., Read J. I., Lake G., 2012, MNRAS, 425, 1445
Gillessen S., Eisenhauer F., Fritz T. K., Bartko H., Dodds-Eden K., Pfuhl

O., Ott T., Genzel R., 2009, ApJ, 707, L114
Gilmore G., Reid N., 1983, MNRAS, 202, 1025
Gnedin O. Y., Kravtsov A. V., Klypin A. A., Nagai D., 2004, ApJ, 616, 16
Gnedin O. Y., Brown W. R., Geller M. J., Kenyon S. J., 2010, ApJ, 720,

L108
Guo Q., White S., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111
Hinshaw G. et al., 2013, ApJS, 208, 19
Holmberg J., Flynn C., 2004, MNRAS, 352, 440
Holmberg J., Nordström B., Andersen J., 2007, A&A, 475, 519
Iocco F., Pato M., Bertone G., Jetzer P., 2011, J. Cosmol. Astropart. Phys.,

11, 029
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