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ABSTRACT
Probability density functions (pdfs) are determined from new stellar parameters for the distance
moduli of stars for which the RAdial Velocity Experiment (RAVE) has obtained spectra with
S/N ≥ 10. Single-Gaussian fits to the pdf in distance modulus suffice for roughly half the stars,
with most of the other half having satisfactory two-Gaussian representations. As expected,
early-type stars rarely require more than one Gaussian. The expectation value of distance is
larger than the distance implied by the expectation of distance modulus; the latter is itself larger
than the distance implied by the expectation value of the parallax. Our parallaxes of Hipparcos
stars agree well with the values measured by Hipparcos, so the expectation of parallax is the
most reliable distance indicator. The latter are improved by taking extinction into account. The
effective temperature–absolute magnitude diagram of our stars is significantly improved when
these pdfs are used to make the diagram. We use the method of kinematic corrections devised
by Schönrich, Binney and Asplund to check for systematic errors for general stars and confirm
that the most reliable distance indicator is the expectation of parallax. For cool dwarfs and
low-gravity giants, 〈� 〉 tends to be larger than the true distance by up to 30 per cent. The most
satisfactory distances are for dwarfs hotter than 5500 K. We compare our distances to stars
in 13 open clusters with cluster distances from the literature and find excellent agreement for
the dwarfs and indications that we are overestimating distances to giants, especially in young
clusters.

Key words: stars: distances – dust extinction – solar neighbourhood – stellar content –
structure.

1 IN T RO D U C T I O N

Surveys of the stellar content of our Galaxy are key to the elu-
cidation of the Galaxy’s structure and history. Consequently, over

� E-mail: binney@thphys.ox.ac.uk

the last decade considerable observational resources have been de-
voted to such surveys. Three surveys are particularly worthy of
note: the 2MASS (Strutskie et al. 2006), the Sloan Digital Sky Sur-
vey (SDSS; York et al. 2000; Yanny et al. 2009) and the RAdial
Velocity Experiment (RAVE; Steinmetz et al. 2006; Siebert et al.
2011). The 2MASS was an all-sky, near-infrared photometric sur-
vey, while the SDSS combined a photometric survey in the ugriz
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system with spectroscopy for a subset of objects with spectral reso-
lution R = 2500. The RAVE survey has taken spectra at resolution
R � 7500 of ∼500 000 stars that have 2MASS photometry. The
RAVE and SDSS surveys are complementary in that SDSS worked
at apparent magnitudes r � 18 so faint that it catalogued mainly
dwarf stars that lie more than 500 pc from the Sun, while RAVE
operates at apparent magnitudes I ≈ 9–13 and observes both nearby
dwarfs and giants at distances up to ∼4 kpc (Burnett et al. 2011).

Although the ideal way to extract science from a survey is to
project models into the space of observables, i.e. sky coordinates,
line-of-sight velocity, apparent magnitudes, etc., and fit the pro-
jected models to the data (e.g. Binney 2011); in practice one gen-
erally assigns a distance to each star and uses this distance to place
the star in the space in which physics applies, namely phase space
complemented with luminosity, colour, chemical composition, etc.
Since RAVE’s targets overwhelmingly lie beyond the range of
Hipparcos and include both dwarfs and giants, the task of assigning
distances to these stars is complex. To date three papers (Breddels
et al. 2010; Zwitter et al. 2010; Burnett et al. 2011) address this
task with techniques of increasing sophistication. Results presented
in those papers are based on stellar parameters produced by the
pipeline that was developed for analysis of the RAVE spectra. This
pipeline was described in the papers that accompanied the second
and third releases of RAVE data (Zwitter et al. 2008; Siebert et al.
2011). Between those two data releases changes were made to the
pipeline’s parameters that were designed to improve the accuracy of
the derived metallicities, but the parameters from neither version of
the pipeline were entirely satisfactory (Burnett et al. 2011, hereafter
B11).

On account of residual internal and external inconsistencies in the
parameters, a completely new pipeline has been developed for the
analysis of RAVE spectra. This pipeline and the stellar parameters
it produces are described in Kordopatis et al. (2013). The new
stellar parameters form a much more compelling and consistent
data base than the old ones, and their arrival prompts us to revisit
the assignment of distances using the new parameters as inputs.

We use the Bayesian framework described by Burnett & Binney
(2010) but modified to allow for the impact of interstellar dust. Two
other significant novelties are (i) the production of multi-Gaussian
fits to each star’s probability density function (pdf) in distance mod-
ulus and (ii) the use of the kinematic correction factors introduced
by Schönrich, Binney & Asplund (2012a) to check for systematic
errors in our distances. We have derived distances for all stars that
have spectra to which the new pipeline assigns a signal-to-noise ra-
tio (S/N) of 10 or higher. These distances are contained in RAVE’s
fourth data release, and the RAVE collaboration recommends the
use of these distances. When a star has more than one spectrum
in the data base, the catalogued distance is that derived from the
highest S/N spectrum.

The plan of the paper is as follows. In Section 2, we recapitulate
the principles of Bayesian distance determination and describe how
we take extinction into account. In Section 3, we discuss typical pdfs
in distance modulus and explain how we produce multi-Gaussian
fits to them. In Section 4, we compare our spectrophotometric paral-
laxes to Hipparcos parallaxes and describe how these comparisons
are affected by neglecting extinction. In Section 5, we analyse our
distances to the generality of stars, using kinematic correction fac-
tors to test for systematic biases in distances as functions of surface
gravity or effective temperature, and to modify distance pdfs (Sec-
tion 5.1). In Section 6, we compare our distances to cluster stars with
the established distances to their clusters. In Section 7, we examine
the scatter in the distances to the same star obtained from different

spectra. In Section 8, we examine the distribution of extinctions to
stars. Section 9 sums up.

2 M E T H O D O L O G Y

As in B11 we start from the trivial Bayesian statement

p(model|data) = p(data|model)p(model)

p(data)
, (1)

where ‘data’ comprises the observed parameters and photometry
of an individual star and ‘model’ comprises a star of specified
initial mass M, age τ , metallicity [M/H] and location. We use
p(model|data) either to calculate expectation values 〈x〉 and disper-
sions σ x of quantities of interest, such as the stars’s distance x = s
and parallax x = � , by integrating P(model|data) times an appropri-
ate power of x through the space spanned by the model parameters
[M/H], τ,M, . . ., or the pdf in distance modulus by marginalizing
P(model|data) over all model parameters other than distance.

A key role is played by the prior probability p(model), which
reflects our prior knowledge of the Galaxy: massive young stars are
rarely found far from the plane, while a star far from the plane is
likely to be old and have subsolar abundances. We have used the
same three-component prior used in B11:

p(model) = p(M)
3∑

i=1

pi([M/H]) pi(τ ) pi(r), (2)

where i = 1, 2, 3 correspond to a thin disc, thick disc and stel-
lar halo, respectively. We assumed an identical Kroupa-type initial
mass function (IMF) for all three components and distinguish them
as follows:
Thin disc (i = 1):

p1([M/H]) = G([M/H], 0.2),

p1(τ ) ∝ exp(0.119 τ/Gyr) for τ ≤ 10 Gyr,

p1(r) ∝ exp

(
− R

Rthin
d

− |z|
zthin
d

)
; (3)

Thick disc (i = 2):

p2([M/H]) = G([M/H] + 0.6, 0.5),

p2(τ ) ∝ uniform in range 8 ≤ τ ≤ 12 Gyr,

p2(r) ∝ exp

(
− R

Rthick
d

− |z|
zthick
d

)
; (4)

Halo (i = 3):

p3([M/H]) = G([M/H] + 1.6, 0.5),

p3(τ ) ∝ uniform in range 10 ≤ τ ≤ 13.7 Gyr,

p3(r) ∝ r−3.39, (5)

where R signifies the Galactocentric cylindrical radius, z cylindrical
height and r spherical radius, and G(x, y) is a Gaussian distribution
in x of zero mean and dispersion y. The parameter values were
taken as in Table 1; the values are taken from the analysis of SDSS
data in Jurić et al. (2008). The metallicity and age distributions for
the thin disc come from Haywood (2001) and Aumer & Binney
(2009), while the radial density of the halo comes from the ‘inner
halo’ detected in Carollo et al. (2009). The metallicity and age
distributions of the thick disc and halo are influenced by Reddy
(2009) and Carollo et al. (2009).
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Table 1. Values of disc parameters
used.

Parameter Value (pc)

Rthin
d 2600

zthin
d 300

Rthick
d 3600

zthick
d 900

Table 2. Metallicities of isochrones
used, taking (Z�, Y�) = (0.017,
0.260).

Z Y [M/H]

0.0022 0.230 −0.914
0.003 0.231 −0.778
0.004 0.233 −0.652
0.006 0.238 −0.472
0.008 0.242 −0.343
0.010 0.246 −0.243
0.012 0.250 −0.160
0.014 0.254 −0.090
0.017 0.260 0.000
0.020 0.267 0.077
0.026 0.280 0.202
0.036 0.301 0.363
0.040 0.309 0.417
0.045 0.320 0.479
0.050 0.330 0.535
0.070 0.372 0.727

The normalizations were then adjusted so that at the solar posi-
tion, taken as R0 = 8.33 kpc (Gillessen et al. 2009), z0 = 15 pc
(Binney, Gerhard & Spergel 1997; Jurić et al. 2008), we have num-
ber density ratios n2/n1 = 0.15 (Jurić et al. 2008) and n3/n1 = 0.005
(Carollo et al. 2009).

The IMF chosen follows the form originally proposed by Kroupa,
Tout & Gilmore (1993), with a minor modification following Aumer
& Binney (2009), being

p(M) ∝

⎧⎪⎪⎨⎪⎪⎩
M−1.3 if M < 0.5 M�,

0.536M−2.2 if 0.5 ≤ M < 1 M�,

0.536M−2.519 otherwise.

(6)

We predicted the photometry of stars from the isochrones of the
Padova group (Bertelli et al. 2008), which provide tabulated values
for the observables of stars with metallicities ranging upwards from
around [M/H] ≈ −0.92, ages in the range τ ∈ [0.01, 19] Gyr and
masses in the range M ∈ [0.15, 20] M�. We used isochrones for
16 metallicities as shown in Table 2, selecting the helium mass
fraction Y as a function of the metal mass fraction Z according to
the relation used in Aumer & Binney (2009), i.e. Y ≈ 0.225 +
2.1Z and assuming solar values of (Y�, Z�) = (0.260, 0.017). The
metallicity values were selected by eye to ensure that there was not
a great change in the stellar observables between adjacent isochrone
sets.

In B11 no correction was made for the differences between the
Johnson–Cousins–Glass photometric system used for the Padova
stellar models that we use and the 2MASS system. Here we use the
transformations of Koen et al. (2007) to transform the 2MASS
magnitudes J2, . . . to the Johnston–Cousins–Glass magnitudes

J, . . . :

J = 0.029 + J2 + 0.07(J2 − K2) − 0.045(J2 − H2)2

H = H2 + 0.555(H2 − K2)2 − 0.441(H2 − K2) + 0.089(J2 − H2)

K = 0.009 + K2 + 0.195(J2 − H2)2 − 0.156(J2 − H2)

+ 0.304(H2 − K2) − 0.615(H2 − K2)2. (7)

Unless explicitly stated to the contrary, we will state JHK magni-
tudes in the Johnston–Cousins–Glass system.

Dust both dims and reddens stars. Let the column of dust between
us and a given star produce optical extinction AV, then from Rieke
& Lebofsky (1985) we take the extinctions to be

AJ = 0.282AV

AH = 0.175AV

AK = 0.112AV . (8)

In B11 AV was set identically to zero and the H magnitude was not
employed. Here we include the H magnitude in the set of observa-
tions so we have three constraints on the star’s spectral distribution:
the spectroscopically derived Teff and two IR colours. Consequently,
we should be able to constrain the extinction to some extent. We
integrate over all possible values of AV. We include AV in the prior
by multiplying the prior (2) by the probability density of AV. Since
AV is an intrinsically non-negative quantity, a completely flat prior
would be one uniform in a ≡ ln (AV). We do not want a flat prior
but one that reflects increasing extinction with distance and higher
extinction towards the Galactic Centre than towards the poles. Let
aprior(x) be the expected value of ln (AV) for the location x. Then a
natural choice for the probability of extinctions associated with the
interval (a, a + da) is

dP = (2πσ 2)−1/2e−(a−aprior)2/2σ 2
da

= (2πσ 2)−1/2e− ln2(AV /AV prior)/2σ 2
da. (9)

The dispersion σ reflects the random fluctuation of the extinction
from one sight line to the next on account of the cloudy nature of the
interstellar medium (ISM). We have rather arbitrarily set 2σ 2 = 1.

AVprior is related to distance by

AV prior(b, �, s) = AV ∞(b, �)

∫ s

0 ds ′ ρ[x(s ′)]∫ ∞
0 ds ′ ρ[x(s ′)]

, (10)

where x(s) is the position vector of the point that lies distance s
down the line of sight (b, �), AV∞(b, �) is defined below and ρ(x)
is a model of the density of extincting material. Following Sharma
et al. (2011), we adopt

ρ(x) = exp

[
R0 − R

hR

− |z − zw|
kflhz

]
, (11)

where kfl(R) and zw(R) describe the flaring and warping of the gas
disc:

kfl(R) = 1 + γfl min(Rfl, R − Rfl)

zw(R, φ) = γw min(Rw, R − Rw) sin φ. (12)

Here φ is the Galactocentric azimuth that increases in the direction
of Galactic rotation and places the Sun at φ = 0. Table 3 gives the
values of the parameters that occur in these formulae.

We take the extinction to infinity, AV∞(b, �), from observation:
except along exceptionally obscured lines of sight, AV∞ is 3.1 times
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Table 3. Parameters of the model of the dust distribution.
Distances are in kiloparsecs.

AV(0) hR hz Rfl γ fl Rw γ w

1.67 4.2 0.088 1.12R0 0.0054 8.4 0.18

the reddening estimated by Schlegel, Finkbeiner & Davis (1998).
However, Arce & Goodman (1999) pointed out that Schlegel et al.
overestimate the reddening in regions with E(B − V) > 0.15. Fol-
lowing Sharma et al. (2011), we correct for this effect by multiplying
the Schlegel et al. values of E(B − V) by the correction factor

f (E(B − V )) = 0.6 + 0.2

[
1 − tanh

(
E(B − V ) − 0.15

0.3

)]
,

(13)

which has the effect of leaving E(B − V) invariant for E(B −
V) � 0.16 and multiplying large values of E(B − V) by a factor 0.6.

The function AVprior(s) is tabulated on a non-uniform grid in s
before each star is analysed so AVprior can be subsequently obtained
quickly by linear interpolation.

Given a model star characterized by ([M/H],τ,M), a first esti-
mate of the distance to the star is made under the assumption AV = 0.
Then AVprior is evaluated for this distance and a second estimate of
distance obtained, and AVprior is evaluated at this improved distance
and stored as AVmodel. The reddened J − K colour of the star is now
predicted and compared with the observed colour. The given model
star is considered sufficiently plausible to be worth considering fur-
ther only if both its colour reddened by e times AVmodel is redder
than the blue end of the 3σ range around the measured colour and
the star’s colour reddened by 1/e times AVmodel is bluer than the red
end of the measured 3σ range. If these conditions are satisfied, we
consider values of AV that lie the range (e−1.5, e1.5)AVmodel. For each
value of AV, all plausible distances are considered.

We calculate the expectation 〈a〉 of a ≡ ln AV and use ÃV ≡
exp(〈a〉) as our final estimate of the extinction to each star.

3 PD F S FO R D I S TA N C E

The Bayesian argument yields the five-dimensional pdf that each
star has a given mass, metallicity, age, line-of-sight extinction and
distance, but Burnett & Binney (2010) and B11 reported only the im-

plied means and standard deviations of distance and parallax. Hence,
they had two logically independent measures of the distance to a
star: 〈s〉 and 1/〈� 〉. A third natural distance measure is provided
by the expectation of the distance modulus μ = 5log10(s/10 pc).
We shall show that these three measures yield systematically differ-
ent distances and conclude that 1/〈� 〉 is the most reliable estimate.

A logical next step is to inspect the pdfs we obtain for s, etc., after
marginalizing over the star’s other properties. If any of these pdfs
is well approximated by a Gaussian, it can be fully characterized
by its mean and dispersion. In this section, we show that the pdfs
often deviate significantly from a Gaussian, and in this case it is
important to know more than the pdf’s mean and dispersion.

Fig. 1 shows pdfs in distance modulus for three stars. The red
curves show Gaussian distributions in distance modulus μ≡ m − M,
while the green curves show distributions that are Gaussian in dis-
tance s and the blue curves show distributions that are Gaussian in
parallax � . Given how strongly these three curves differ from one
another, especially in the left-hand and centre panels, it is clear that
a very particular assumption is being made if one supposes that a
star’s distribution of either μ, s or � is Gaussian, and if one of these
distributions is Gaussian, the other two cannot be.

In each panel of Fig. 1, the black curve shows the computed
marginalized pdf in distance modulus μ, while the red curve shows
Gaussian with the same mean and standard deviation as the com-
puted pdf. The green curve shows the pdf which is a Gaussian in
distance and has the mean and standard deviation of the computed
pdf in distance, while the blue curve shows the pdf which is a Gaus-
sian in parallax and has the mean and dispersion of the computed
pdf in parallax. None of the coloured curves can be considered a
reasonable representation of the computed pdf. The clear message
of Fig. 1 is that it is dangerous to quantify the distance to these stars
in the form x ± y kpc because this notation implies that a Gaussian
pdf adequately approximates the true pdf.

We have derived multi-Gaussian approximations to the pdf in μ

since this variable is physically meaningful for any real number. We
write

P (μ) =
N∑

k=1

fk√
2πσ 2

k

exp

(
− (μ − μk)2

2σ 2
k

)
, (14)

where N, the means μk, weights fk and dispersions σ i are to be
determined. We take bins in distance modulus of width wi = 0.2,

Figure 1. Pdfs in distance modulus for three RAVE stars that are not among the ∼45 per cent of stars with pdfs that can be adequately fitted by a single
Gaussian. The black line shows the computed pdf while the red curve shows a Gaussian with the same mean and standard deviation. The blue curve shows the
pdf implied by a Gaussian in parallax and the green curve that implied by a Gaussian in distance. Approximately 20 per cent of the pdfs are bimodal (left),
5 per cent are trimodal (centre) and 25 per cent are dominated by a sharp peak that sits on a broader component that has a much lower probability density, but
contributes a significant fraction of the total probability (right).
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containing a fraction pi of the total probability taken from the com-
puted pdf, and a fraction Pi of the total probability taken from the
multi-Gaussian approximation and consider the statistic

F =
∑

i

(
pi

wi

− Pi

wi

)2

σ̃wi, (15)

where the weighted dispersion

σ̃ 2 ≡
∑

k=1,N

fkσ
2
k (16)

is a measure of the overall width of the pdf. Our definition of F
includes the factor σ̃ to ensure that F is unchanged when the width
of both the true pdf and our approximation is increased by the
same factor: this condition ensures that F is a measure of how well
the shape of the distribution is fitted. We use σ̃ in equation (15)
rather than the dispersion of the pdf because in some circumstances
(double- or triple-peaked distributions) the dispersion is dominated
by the distance between peaks, rather than the widths of the individ-
ual peaks themselves, and it is the peaks that should set the scale. A
practical difficulty is that F is minimized by letting every σ k → 0.
Hence, instead of minimizing F, we minimize the alternative
statistic

F ′ =
∑

i

(
pi

wi

− Pi

wi

)2

wi (17)

and only use F to measure whether the fit is a sufficiently accurate
description of the data.

If the value of F for a Gaussian with the same mean and dis-
persion in μ as that taken from the computed pdf is less than a
threshold value Ft = 0.04, we accept this as an adequate descrip-
tion of the data. This condition holds for around 45 per cent of
the RAVE stars. When it fails, we use the Levenberg–Marquardt
algorithm to minimize F′ with N = 2 and several different initial
choices for the parameters. We accept this description of the data if
it gives F < Ft and the dispersion of the model is within 20 per cent
of that of the complete pdf. The latter condition ensures that we
do not accept models that provide an excellent fit to a significant
component of the probability but ignore a small but non-negligible
component at a different distance. If the two-Gaussian description
fails, we fit a three-Gaussian approximation. We reach this stage for
around 5 per cent of the RAVE stars because the double-Gaussian
approximation is accepted in ∼50 per cent of cases. Fig. 2 shows
the multi-Gaussian models fitted to the pdfs shown in Fig. 1.

Any fits for which the dispersion of the fitted model differs by
more than 20 per cent from that of the data are flagged as possibly

inadequate. Approximately 4 per cent of the models are flagged for
this reason. In Fig. 3, we show some typical examples of the flagged
models. We see that the problems are in fact minor ones.

4 Hipparcos STARS

As in B11, the primary test of the validity of our spectrophotomet-
ric distances is provided by Hipparcos stars that are likely to be
single stars because in the van Leeuwen (2007) catalogue they have
soln < 10. There are 5614 distinct stars of this type for which we
have RAVE parameters, and the mean S/N of their spectra is 84.

The quoted errors on the stellar parameters play a big role in
the Bayesian algorithm, and good results are obtainable only with
accurate error estimates. When the data were first processed using
only the internal error estimates produced by the spectral-reduction
pipeline, manifestly inconsistent results for Hipparcos stars were
produced. The results were dramatically improved by adding to the
internal errors the external errors for various classes of star derived
by Kordopatis et al. (2013) and listed in Table 4. The quadrature
sums of the internal and external errors prove to be quite similar
to the errors adopted by B11, which could not be founded on star-
specific error estimates from the old pipeline.

The black points in Fig. 4 show histograms of the discrepancies
between Hipparcos parallaxes � H and expectation values of paral-
laxes obtained from P(model|data) for three groups of stars: giants
(log g < 3.5), hot dwarfs (Teff > 5500 K) and cool dwarfs. The
parallax differences are normalized by the quadrature sum of the
formal errors in the Hipparcos data and our adopted errors, so if our
procedure were sound and the central limit theorem applied to the
data, the histograms would be Gaussians of unit dispersion. This
expectation is met to a pleasing extent for hot dwarfs and giants
– for the hot dwarfs the mean of the distribution is 0.143 and the
dispersion is 1.061 and for the giants they are −0.057 and 1.077.
Thus, on average the parallaxes of the hot dwarfs are slightly too
large, while those of the giants are slightly too small and our error
estimates are only a shade too small. The results for the smaller
number of cool dwarfs are less clear-cut: the mean and dispersion
are 0.123 and 1.314 implying that our parallaxes are slightly too
large and our errors are materially too small.

It is interesting to compute means of the distances ratios. Let

xrsμ ≡ 〈s〉/s〈μ〉 rμ� ≡ s〈μ〉 〈� 〉
r�H ≡ �H/ 〈� 〉 rsH ≡ 〈s〉�H, (18)

where overbars imply averages of a group of stars and s〈μ〉 is the
distance implied by the expectation value of the distance modulus.

Figure 2. The black curves show the pdfs in distance modulus for the same three stars as in Fig. 1, while the blue line shows the chosen multi-Gaussian fitting.
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Figure 3. Pdfs in distance modulus for three stars that are flagged as having potentially inadequate multi-Gaussian fits to their pdfs because the true dispersions
in μ differ by more than 20 per cent from the dispersions of the fitted models. As in Fig. 2, the black line shows the computed pdf and the blue line shows the
output from the multi-Gaussian fitting. The red line shows a Gaussian with the same mean and dispersion. The reason for the flag in the left-hand panel is the
very small component of the computed pdf at μ ∼ 5, which is not picked up by the fitted pdf. In the centre panel, the flag is raised because the fitted pdf does
not fully reflect the broad wings of the pdf. In the right-hand panel, the fit appears nearly perfect, but this reflects the resolution of the histogram (used both to
find the approximation and to plot this figure) being low compared to the width of the pdf – the dispersion in distance modulus is 0.15, which is smaller than
the histogram bin size.

Figure 4. Histograms of the difference between spectrophotometric and Hipparcos parallaxes. The left-hand panel is for hot dwarfs, the centre panel is for
cool dwarfs and the right-hand panel is for giants. The full curves are Gaussians of zero mean and unit dispersion, not fits to the data. The black points are
obtained from the simple expectation of � while the red points are obtained as described in the text from the Gaussian fits to the pdf in distance modulus. In
these and subsequent histograms, the vertical axis plots dN/dx, the horizontal error bars mark the widths of the bins and the vertical error bars indicate Poisson
uncertainties.

Table 4. Estimates of the external errors in the stellar parameters. The
boundary between ‘metal poor’ and ‘metal rich’ lies at [M/H] = −0.5, and
between ‘hot’ and ‘cool’ lies at 6000 K.

Stellar type N σ (Teff) σ (log g) σ ([M/H])

Dwarfs

Hot, metal poor 28 314 0.466 0.269
Hot, metal rich 104 173 0.276 0.119
Cool, metal poor 97 253 0.470 0.197
Cool, metal rich 138 145 0.384 0.111

Giants

Hot 8 263 0.423 0.300
Cool, metal poor 273 191 0.725 0.217
Cool, metal rich 136 89 0.605 0.144

Table 5 gives these ratios for hot dwarfs, cool dwarfs and giants.
For the hot dwarfs all ratios are pleasingly close to unity, but for
both the cool dwarfs and the giants we see that 〈s〉 gives a systemat-
ically larger distance than s〈μ〉, which in turn gives a bigger distance
than 1/〈� 〉, which itself gives a bigger distance than 1/� H, which
we take to be the most reliable distance estimator. These biases

Table 5. Mean distance ratios for Hipparcos stars. Ideally,
all entries would be unity.

〈s〉/s〈μ〉 s〈μ〉〈� 〉 〈� 〉/�H 〈s〉�H

Hot dwarfs 1.045 1.040 0.958 1.042
Cool dwarfs 1.116 1.094 1.132 1.447
Giants 1.111 1.093 1.115 1.386

are easily understood in terms of the weights that each estimator
attaches to possibilities of long or short distances. The comparison
with the Hipparcos parallaxes clearly indicates that for stars with
wide distance pdfs (cool dwarfs and giants), 1/〈� 〉 performs much
better than either 〈s〉 or s〈μ〉.

The red points Fig. 4 show histograms of discrepancies be-
tween the Hipparcos parallaxes and parallaxes based on the multi-
Gaussian fits to the distance moduli as follows. When a single
Gaussian has been fitted, we convert the mean and dispersion of
this Gaussian into a parallax and its error by standard formulae. If
two or three Gaussians have been fitted, we choose the Gaussian that
makes the Hipparcos parallax most probable and convert the mean
and dispersion of this Gaussian to a parallax and its error as before.
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The red histogram for the hot dwarfs is an almost perfect realiza-
tion of the unit Gaussian while that for the giants is only marginally
less satisfactory than the corresponding black histogram. The red
histogram for the cool dwarfs is both significantly displaced to the
right and broader than it should be.

Fig. 5 clarifies the situation by splitting the histogram of the
cool dwarfs into those with pdfs that have been fitted with a single
Gaussian (lower panel) and those with multi-Gaussian fits (upper
panel). We see that for the latter stars the crude mean of possi-
ble parallaxes is smaller than it should be, and a more satisfac-
tory distribution of spectrophotometric parallaxes is obtained if
Hipparcos is used to choose between the Gaussians. The lower
panel in Fig. 5 shows that when a cool dwarf has a single-Gaussian
pdf, its parallax is systematically overestimated. When the single-
and multi-Gaussian samples are aggregated in Fig. 4, the overes-
timated parallaxes of the single-Gaussian stars combine with the
underestimated parallaxes of the multi-Gaussian stars to produce
a deceptively satisfactory black histogram. The mean S/N of the
Hipparcos stars with single-Gaussian fits is lower than that of the
stars with multi-Gaussian fits (51.0 versus 66.5), so one suspects
that with poorer data the system loses track of the possibility that
the star has left the main sequence.

We test the soundness of the probabilities assigned to each Gaus-
sian component of the pdf by calculating the sums sk = ∑

stars1/fk,
where k = 1, 2, 3 depending on which Gaussian component the
Hipparcos data points to, and fk is the weight of that component.
Given a large sample of stars with accurate parallaxes (so the true
component is always chosen), sk should be independent of k be-
cause when fk is small, that component will be rarely chosen so sk

will have a small number of large contributions, while a component
with large fk will be chosen often, but each contribution to sk will be
modest. When we compute mean values of 1/fk for our Hipparcos

Figure 5. The centre histogram of Fig. 4 broken down into cold dwarfs
with single-Gaussian (lower) and multiple-Gaussian (upper) pdfs.

stars, we find 441/2807 hot dwarfs with two Gaussians fitted, and
for these stars we find sk = (444, 458). Similarly, 615/970 cool
dwarfs have two Gaussians and for these stars we find sk = (577,
2100), while 100 cool dwarfs have three Gaussians and for these
stars sk = (94, 126, 476). 934/2015 giants have two Gaussians and
these stars yield sk = (779, 3593) while 492 giants have three Gaus-
sians and for these stars sk = (350, 759, 748). These results suggest
that the probabilities assigned to the various Gaussians are broadly
correct although there is a tendency for too little probability to be
assigned to the weakest components.

The likely explanation of the neglect of weaker components is
that the Hipparcos stars are biased towards nearer stars because
stars thought to be near, usually on account of having large proper
motions, preferentially entered the Hipparcos Input Catalogue. Con-
sequently, we have tested the constancy of the sk for a sample in
which distant options will have been rather rarely chosen. For the
giants the distant option is the more probable one, so it is natural
that for these stars Hipparcos chooses the less probable Gaussian
more often than one would expect if we had parallaxes for every
star in our sample.

Fig. 6 shows the effect of setting AV = 0 for all stars. With
reddening neglected, dwarfs must be moved to lower masses to
match the observed colours, and the consequent diminution of their
luminosities causes them to be brought closer to match the observed
magnitudes. The overall effect is to increase the spectrophotometric
parallaxes of hot dwarfs by ∼0.05σ , so those of the hot dwarfs are
now on average too large by ∼0.19σ , while those of the cool dwarfs
are too large by ∼0.14σ . With extinction neglected, giants need to
be moved away to diminish their brightnesses so their histogram
of 〈� 〉 − � H moves leftwards, and our parallaxes become too
small by 0.12σ on average. Thus, the Hipparcos stars convincingly
validate our procedure for taking into account the effects of dust.

Fig. 7 compares the distribution in the fractional errors in Hippar-
cos parallaxes (shown in green) with the corresponding errors in our
parallaxes: the black points are for the straightforward expectation
values of � while the red points are for the parallaxes computed
from the multi-Gaussian fits to the pdfs in distance modulus. For
hot dwarfs, the black and red histograms are similar because few
of these stars have multimodal pdfs. They show error distributions
that are materially narrower than that from Hipparcos, with most
values of σπ/〈� 〉 falling in the range (0.18, 0.38) with a median
value of 0.26.

For the cool dwarfs, the black and red histograms are quite dif-
ferent in that the red histogram shows a substantial population with
spectrophotometric parallaxes in error by less than 10 per cent and
essentially no stars with errors greater than 35 per cent. The stars
with σ� /〈� 〉 < 0.1 are stars that the spectrophotometry cannot
securely assign to dwarfs or giants until astrometric data become
available – in the present case a Hipparcos parallax. There will
probably be many stars of this type in the Gaia Catalogue. The red
histogram for the giants shows a similar if smaller population of
stars.

For now we must live with dwarf/giant confusion, and the black
histograms of parallax errors are most relevant. These show that
the spectrophotometric parallaxes of cool dwarfs are not compet-
itive with Hipparcos parallaxes, in contrast to the case of some
hot dwarfs and a number of giants, which do have more precise
spectrophotometric parallaxes than Hipparcos parallaxes. Thus, the
competitiveness of the spectrophotometric parallaxes vis-à-vis Hip-
parcos parallaxes increases along the sequence cool dwarfs to hot
dwarfs to giants in parallel with the increase in the luminosities and
thus typical distances of these stars.
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Figure 6. Histograms of the difference between the Hipparcos parallaxes and expectation of the parallax from the spectrophotometry for hot dwarfs (left),
cool dwarfs (centre) and giants (right) when the extinction is assumed to be zero. The full curves are Gaussians of zero mean and unit dispersion.

Figure 7. The distributions of errors in Hipparcos parallaxes (green) and in our spectrophotometric parallaxes (black and red) for hot dwarfs (left), cool dwarfs
(centre) and giants (right). The black points show the errors in 〈� 〉 computed directly. The red points show the errors in parallaxes derived from the Gaussian
fits to the pdf in distance modulus.

5 D ISTANCES TO A LL STARS

We have examined the statistics of distances to RAVE stars as
functions of a cutoff in the S/N of the analysed spectrum and found
that the dependence on the cutoff S/N is weak. Below we report
results obtained for stars with S/N ≥ 10 – the mean S/N for such
stars that lie closer than 1.3 kpc is 33.

We have investigated the sensitivity of our distances to the model
of the disc used in the prior (equations 3 and 4) by re-evaluating the
distances to every 20th star in the catalogue with the scaleradii and
scaleheights of both discs multiplied by a factor 1.5. The resulting
histogram of ratios 〈� 〉2/〈� 〉1 of the parallax with the revised prior
to the parallax with the standard prior peaks sharply at 1.02 but has
a long tail to values ∼1.2 with the consequence that the mean of
this ratio is 1.045. This result shows that, as one would hope, our
results are not sensitive to the prior.

Table 6 shows the ratios of the available distance measures for
ordinary stars, broken down into giants and dwarfs, with the giants
subdivided into stars with lower surface gravity than the red clump
(1.7 < log g < 2.4 and 0.55 ≤ J − K ≤ 0.8), the red clump itself and
stars with higher gravities. We see that in every case the distances
are ordered 〈s〉 > s〈μ〉 > 1/〈� 〉. Moreover, 〈s〉 and 1/〈� 〉 are
discrepant at the 26 per cent level for the highest gravity giants and
coolest dwarfs, while for moderately cool dwarfs these measures
are discrepant at the 17 per cent level.

5.1 Kinematic distance corrections

Schönrich et al. (2012a, hereafter SBA) describe a technique that
uses the kinematics of stellar populations to identify and correct
systematic errors in distances, and we can use this technique to
determine which of our discrepant distance estimates is most reli-

Table 6. Ratios of distance measures for general stars with
s < 2 kpc.

N� 〈s〉/s〈μ〉 s〈μ〉〈� 〉 〈s〉〈� 〉

Giants (log g < 3.5)

log g > 2.4 69 008 1.11 1.13 1.26
Red clump 39 900 1.04 1.04 1.09
log g < 1.7 28 472 1.06 1.05 1.11

Dwarfs (log g ≥ 3.5)

Teff > 6500 22 701 1.04 1.03 1.07
5500 < Teff ≤ 6500 71 641 1.04 1.04 1.08
5200 < Teff ≤ 5500 19 697 1.08 1.08 1.17
Teff ≤ 5200 27 408 1.13 1.12 1.29

able, and potentially to correct the most reliable measure for any
systematic bias.

The corrections of SBA are based on the assumption that one
knows roughly how the velocity ellipsoid is oriented at each point
in the Galaxy, and that the only mean-streaming motion is azimuthal
circulation at a speed v(R, z) = �g(R, z), where � is an unspecified
constant and g(R, z) is a function one chooses. We adopt

g =
√

1 − (2ψ/π)2, where ψ ≡ arctan(z/R), (19)

which has an appropriate form, but the results are very insensi-
tive to the choice of g: essentially unchanged results are obtained
with g = 1. The algorithm involves converting heliocentric ve-
locities to Galactocentric velocities and thus requires assumptions
regarding the Galactocentric velocity of the Sun and the distance
R0 to the Galactic Centre. We assume that R0 = 8.33 kpc, that the
local circular speed is �0 = 230 km s−1 and that the Sun’s velocity

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/437/1/351/1000411 by U
niversity C

ollege London user on 21 M
ay 2020



New distances to RAVE stars 359

Figure 8. Histogram of the errors in the component μb of proper motion
for all RAVE stars. The long tail of errors in excess of 8 mas yr−1 gives rise
to nonsensical results, so we drop stars with such large proper-motion errors
from the sample.

with respect to the local standard of rest is (U0, V0, W0) = (11.1,
12.24, 7.25) km s−1 (Schönrich, Binney & Dehnen 2012b). There
is very little sensitivity to the value of �0. The azimuthal direction
is assumed to be a principal axis of the velocity ellipsoid, while
the latter’s longest axis is tilted with respect to the plane by angle
β = a0 arctan(z/R), where a0 is a parameter.

The corrections exploit pattern on the sky of correlations between
the local Cartesian velocity components U, V, W that are introduced
by distance errors. To assess the magnitude of these correlations,
one has first to correct the raw correlations for contributions from
sources other than distance errors. The most important such source
is observational errors in the proper motions, so knowledge of the
magnitude of these errors is needed for the correction.

Proper motions for RAVE stars can be drawn from several cat-
alogues. Williams et al. (2013) compare results obtained with dif-
ferent proper-motion catalogues, and on the basis of this discussion
we decided to work with the PPMX proper motions (Röser et al.
2008) because these are available for all our stars and they tend to
minimize anomalous streaming motions. Fig. 8 shows a histogram
of the errors for RAVE stars given in the PPMX catalogue. It shows
that there is a fat tail in the error distribution, and one may show
that this tail should not to be taken at face value because when one
calculates the velocity dispersions of all the RAVE stars in spatial
bins that are further than ∼0.5 kpc from the Sun, the dispersions are
often smaller than the contribution expected from proper-motion
errors alone. This paradox disappears if one cuts stars with errors
in one component of proper motion greater than 8 mas yr−1, and
we impose this cut throughout the SBA analysis. The only class
of stars that is significantly depleted by this cut is that of the very
cool dwarfs, which shrinks from 38 330 stars to 27 332 stars. This
cut reduces the rms error in one component of proper motion to
2.5 mas yr−1.

A second source of correlations that complicate the SBA analysis
is rotation of the velocity ellipsoid’s principal axes as one moves
around the Galaxy, and a model of the velocity ellipsoid is used
to correct for this effect. The final product is the factor 1 + f by
which all distances must be contracted (or expanded if f < 0) for
all correlations between U, V and W to be accounted for by a
combination of observational errors and rotation of the principal
axes of the velocity ellipsoid.

SBA give two formulae for corrections, one, fU, involving ‘tar-
geting’ U and one, fW, using W as a target. Because the latter is
independent of azimuthal streaming, it is the simpler and more

Table 7. Kinematic correction factors for general stars at
s < 2 kpc. The first two columns give results of a test in
which all stars were recorded to be further from the Sun than
their true locations by a factor of 1.3. The last two columns
are computed from the real RAVE catalogue.

fW(T) fU(T) fW fU

Giants (log g < 3.5)

log g > 2.4 0.304 0.323 0.134 0.248
Red clump 0.311 0.332 0.160 0.249
log g < 1.7 0.310 0.348 0.453 0.676

Dwarfs (log g ≥ 3.5)

Teff > 6500 0.295 0.295 −0.270 −0.210
5500 < Teff ≤ 6500 0.312 0.312 −0.081 −0.037
5200 < Teff ≤ 5500 0.286 0.286 −0.064 −0.027
Teff ≤ 5200 0.306 0.306 −0.026 0.043

reliable. Their equations 19 and 38 give the W and U correction
factors, respectively, after the raw covariances have been corrected
for observational errors using their equations 22 and 25.

From the RAVE data, we have extracted correction factors to
the distance estimator 1/〈� 〉 for the three types of giants and four
types of dwarfs listed in Table 6. The code used to determine the
corrections was tested as follows. For each star in a class, the mea-
sured U, V, W velocities were replaced by values chosen from a
triaxial Gaussian velocity ellipsoid that has dispersions σ i = (40,
40/

√
2, 30) km s−1 around systematic rotation at 200 km s−1. Most

tests were run with the orientation of the principal axes determined
by setting a0 = 0.8, but excellent results are obtained with other
plausible values of a0, including zero. Likewise, the outcome of
the code tests is not sensitive to the adopted dispersions σ i. Next
proper motions and line-of-sight velocities are calculated from the
model velocities, and Gaussian observational errors are added with
the dispersions that are given in the PPMX catalogue. Then the
stars are moved along their lines of sight to points more distant by a
factor 1 + f, and their U, V, W components are re-evaluated from the
proper motions. In this way, we obtain a catalogue of phase-space
positions for a population of objects whose distances have been
overestimated by a factor 1 + f. The SBA algorithms are then used
to infer the value of f from this catalogue.

The first two numerical columns of Table 7 show the fractional
distance excesses fW and fU obtained by targeting W and U when
distances to the stars have been overestimated by a factor 1 + f with
f = 0.3. Consequently, ideally we would have fW = fU = 0.3 for all
star classes. For fW this expectation is borne out for all classes to
better than 5 per cent, and for the dwarfs it is similarly for fU. For
the giants, fU is up to 16 per cent larger than it should be, a result
which reflects the breakdown of the approximations made by SBA
when dealing with more distant stars.

The final two columns of Table 7 show the fractional distance
excesses fW and fU for the seven classes of RAVE stars using the
measured distances and velocities when 1/〈� 〉 is used as the dis-
tance measure. For the giants, the differences between fW and fU are
in the same sense (fU > fW) as in the tests but they are larger than
those in the tests. The cause of this difference is not obvious, but one
suspects a major contributor is the well-known existence of clumps
of stars in the (U, V) plane (Dehnen 1998; Famaey et al. 2005;
Antoja et al. 2012), which conflict with the assumption of simple
azimuthal streaming that is fundamental to SBA’s derivation of the
formula for fU. Since prominent clumps are absent from the distri-
bution of Hipparcos stars in the (U, W) and (V, W) planes (Dehnen
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Table 8. Kinematic correction factors for general stars at
s < 1.3 kpc. The first two columns report results from a test in
which the recorded locations of stars were further than their
true locations by a factor 1 + f, where f is a random variable
with mean and dispersion 0.2.

fW(T) fU(T) fW fU

Giants (log g < 3.5)

log g > 2.4 0.203 0.203 0.066 0.185
Red clump 0.157 0.157 0.114 0.148
log g < 1.7 0.100 0.130 0.210 0.334

Dwarfs (log g ≥ 3.5)

Teff > 6500 0.220 0.207 −0.270 −0.210
5500 < Teff ≤ 6500 0.217 0.217 −0.081 −0.037
5200 < Teff ≤ 5500 0.227 0.247 −0.064 −0.027
Teff ≤ 5200 0.217 0.217 −0.050 0.041

1998), fW is expected to be a more reliable diagnostic of distance
errors than fU. Table 7 then suggests that 1/〈� 〉 overestimates dis-
tances to high-gravity giants and red clump stars by ∼15 per cent,
and gives distances to dwarfs that are too small by factors that rise
from ∼5 per cent at the cool end to ∼25 per cent at the hot end.

In selecting stars for inclusion in the SBA analysis, we have
imposed a limit smax on the reported distance, and the results one
obtains for both the test and with the real data depend on the value
chosen for smax. Table 7 is based on the choice smax = 2 kpc. Table 8
is based on smax = 1.3 kpc, and the results of tests reported in the
first two numerical columns of this table differ from those reported
in the corresponding columns of Table 7 in that the distances to stars
were increased by a factor 1 + f, where f is now a Gaussian random
variable with mean and dispersion 0.2. The test results are fairly
satisfactory for the dwarfs in that both fW and fU have values within
∼10 per cent of the true value, 0.2. The test results for the giants are
decidedly less satisfactory in that the f values are too small by an
amount which increases with the typical luminosity within a class.
It is easy to understand why this is so: stars that happen to get a
large fractional distance increase are liable to be pushed beyond
smax whilst stars that have their distances decreased can enter the
sample from beyond smax, and the SBA algorithm correctly infers

that on average the stars in the analysed sample have small distance
overestimates even though in the population as a whole stars have
larger distance overestimates. Clearly, for this phenomenon to be
important, the catalogue needs to contain many stars that really are
at distances ∼smax. The dwarfs do not satisfy this condition, but the
low-gravity giants very much straddle the 1.3 kpc distance cut.

Comparing columns 3 and 4 of Table 8 with the corresponding
columns of Table 7, we see that reducing smax from 2 to 1.3 kpc has
only a modest effect on the f values for dwarfs and a significant
effect on giants. The f values of giants decrease significantly for all
three classes, but the final fW factors still increase with decreasing
gravity contrary to the tendency seen in the test, so we really must be
overestimating distances to the lowest gravity (and most luminous)
giants. A possible explanation is that we are using stellar parameters
obtained under the assumption of local thermodynamic equilibrium
(LTE). The validity of LTE decreases with log g, and when non-
LTE effects are taken into account, the recovered gravity of a giant
star increases (Ruchti et al. 2013), and the predicted luminosity
decreases, bringing the star closer.

The squares in Fig. 9 show the values of 1 + fW obtained when
the giants are grouped by log g and the dwarfs are grouped by Teff

– in each case the SBA algorithm is used on 15 bins of stars at
1/〈� 〉 < 1.3 kpc with equal numbers of stars in each bin, and all
bins are statistically independent. The triangles show the analogous
ratios � H/〈� 〉 of our distance to that implied by the Hipparcos par-
allax. The curves show fifth-order polynomial fits to all the points.
The squares and triangles tell the same story from a qualitative per-
spective: along the sequence of giants, there is a steady increase in
the tendency to overestimate distances as one moves to lower grav-
ity (and higher luminosity), while the dwarfs show a clear trend
towards distance overestimation with falling Teff with the exception
of the coolest bin, which shows marked distance underestimates.
The SBA points for dwarfs tend to lie below those from Hipparcos,
so SBA and Hipparcos disagree about the value of Teff at which our
distances are unbiased.

Our tests suggest that fW should be a reliable guide to any sys-
tematic errors in the distances to our dwarf stars. The situation
regarding the giant stars is less clear because the f values are biased
low unless smax is large enough to encompass most of the stars in
the catalogue. Unfortunately, the more distant the stars, the more

Figure 9. The squares show the ratios 1 + fW of the spectrophotometric distances 1/〈� 〉 to the true distances for giants with 1/〈� 〉 < 1.3 kpc broken down
by log g (left) and dwarfs broken down by Teff (right). All bins contain the same number of stars, and each star is in only one bin so the data points are mutually
independent. The triangles show the same quantities inferred for Hipparcos stars from their directly measured parallaxes, again using equally populated and
independent bins. The red curve shows fifth-order Chebyshev polynomials fitted to all the data.
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sensitive the returned value of fU becomes to restrictive assumptions
regarding the pattern of mean-streaming and random velocities in
the Galaxy and some approximations. The value of fW is less sensi-
tive to these issues and therefore more reliable, but its sensitivity to
smax is worrying. A further blow to the credibility of fW will emerge
below from an analysis of the red clump stars.

5.1.1 Kinematic corrections to multi-Gaussian pdfs

SBA assume that one is working with a simple distance estimator,
while in Section 3 we saw that our most complete information is
contained in a distance pdf. Can we use a kinematic analysis to
refine these pdfs?

The SBA algorithm involves several sample averages such as
〈Wy〉, where W and y are quantities that depend on the distance to
each star. In our analysis above, we evaluated these for just one
distance, but given a pdf P(μ) it is straightforward to replace Wy by
the expectation value of Wy:

Wy ≡
∫

dμ P (μ)W (μ)y(μ). (20)

These expectation values are then averaged over the sample to pro-
duce the sample averages 〈Wy〉, etc., that appear in the SBA for-
malism. Thus, it is straightforward to use the pdfs to calculate a
kinematic correction factor such as fy.

It is less clear how one should modify the pdf in light of a non-zero
value of fy. We have experimented with two possibilities.

(i) Move the centres of all the Gaussians to larger or smaller
distance moduli until fy = 0. This procedure produces results that
are rather similar to, but slightly less convincing than, those obtained
without the pdfs.

(ii) When a star has more than one Gaussian in its pdf, modify the
probabilities fk (equation 14) associated with the two most probable
Gaussians. This procedure is appropriate if the Bayesian algorithm
has correctly identified the two model stars that an observed star
could be, but, perhaps driven by a faulty prior, has assigned inap-
propriate odds to the options. We now report results obtained with
this procedure.

We make the probabilities f1 and f2 in equation (14) a function of
a variable θ through

f1 = A cos2(θ ), f2 = A sin2(θ ), (21)

where at the outset we fix A ≡ f1 + f2 to be the total probability
associated with the two most probable options. Then we make θ ,
which is confined to the range (0,π/2), a function of a variable ξ

that can span the whole real line, through

θ = arctan(eξ ). (22)

The original values of fi determine starting values for θ and ξ . If
the kinematic analysis has returned fy > 0, implying that distances
need to be shortened and the first Gaussian describes a nearer option
than the second, then we lower θ by subtracting 5fy from ξ – the
factor 5 is arbitrary: smaller values lead to slower convergence of
the iterations but larger values can cause the iterations to undergo
diverging oscillations. If, conversely, fy < 0, we need to increase θ

and ξ so we add 5fy to ξ .
Table 9 shows results obtained by iterating up to six times or until

|fy| < 0.01. The first numerical column gives the mean of |ξ | for
all stars that have more than one Gaussian. A value greater than ∼3
implies that all available probability has been driven into whichever
Gaussian will reduce |fy|. For the giants, this condition is reached

Table 9. Kinematic corrections to the pdfs. A large
average value of the parameter ξ defined by equation
(22) implies that all the probability has been driven
into one Gaussian. The second and third numerical
columns give the initial and final values of the kine-
matic error estimator, which is ideally zero.

|ξ | fy(i) fy(f)

Giants (log g < 3.5)

log g > 2.4 2.16 0.403 0.004
Red clump 24.85 0.906 0.858
log g < 1.7 5.55 0.290 0.134

Dwarfs (log g ≥ 3.5)

Teff > 6500 8.22 −0.252 −0.247
5500 < Teff ≤ 6500 0.39 −0.015 −0.009
5200 < Teff ≤ 5500 0.55 0.030 0.004
Teff ≤ 5200 1.99 0.247 0.005

after about four iterations and is signalled by successive values of
fy becoming nearly identical. The second column gives the initial
value of fy and the third column gives the value of fy at the end of
the iterations. We see that in the case of the highest gravity giants,
adjusting the fi has reduced fy to the target value, but that there
is insufficient ambiguity in the nature of the clump stars and the
low-gravity giants to get fW below the target value.

There is very little ambiguity in the nature of the hottest dwarfs,
so the procedure makes no significant progress in eliminating the
tendency for their distances to be underestimated.

The procedure succeeds with the remaining dwarfs: for all three
classes, |fy| is reduced to below the target value, and the modest
values of |ξ | given in the first numerical column show that this is
achieved without driving all the probability into one option.

From this analysis, we conclude that there is sufficient ambiguity
in the nature of stars that are cooler that Teff = 5500 K and have
log g > 2.4 to account for non-zero values of the SBA factor fW but
too little ambiguity in the nature of hotter dwarfs and low-gravity
giants to account for non-zero fW.

5.2 Absolute magnitude of the red clump

Helium-burning stars in the red clump have frequently been used as
standard candles (e.g. Cannon 1970; Pietrzynski, Gieren & Udalski
2003). Recently, Williams et al. (2013) used clump stars in the
RAVE survey to analyse the velocity field around the Sun, and
reviewed our knowledge of the absolute magnitudes of these objects
and the possibility that they depend on age and metallicity. They
identified 78 019 clump stars as those satisfying the cuts 0.55 ≤ J
− K ≤ 0.8 and 1.8 ≤ log g ≤ 3, where log g was taken from the
vDR3 pipeline (Siebert et al. 2011). We use the same colour range
but a narrower band (1.7, 2.4) in log g and with gravity taken from
the vDR4 pipeline (Kordopatis et al. 2013).

Fig. 10 shows the distributions of H- and K-band absolute magni-
tudes for distance 1/〈� 〉 of clump stars. The distributions are satis-
fyingly narrow – each has a standard deviation of 0.20 mag – but they
are skew, so while their means lie at MH = −1.39 and MK = −1.49
their peaks lie at MH = −1.42 and MK = −1.53. These magni-
tudes are in the SAAO system: using the formulae of Koen et al.
(2007) to convert to the 2MASS system, we find the mean of MK

to be MK = −1.51. The sample was restricted by 1/〈� 〉 < 1.3 kpc,
but increasing the distance cutoff to 2 kpc only changes the mean
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362 J. Binney et al.

Figure 10. The distribution of absolute H and K magnitudes of red clump
stars with 1/〈� 〉 < 1.3 kpc.

absolute magnitudes to MH = −1.36 and MK = −1.46.
For comparison, Laney, Joner & Pietrzynski (2012) de-
termined MH = −1.49 ± 0.022 and MK = −1.61 ±
0.022 from a sample of 191 Hipparcos stars, and Williams
et al. (2013) used calibrations in which the 2MASS abso-
lute magnitudes were MK = −1.65, −1.54 and −1.64 +
0.0625z/kpc. In the last calibration, the decrease in luminosity with
increasing distance from the plane reflects the expected increasing
age and decreasing metallicity of clump stars. However, the age–
metallicity sensitivity of the absolute magnitude is expected to be
smallest in the K band (e.g. Salaris 2013). Several issues require
discussion when considering why our values are ∼0.1 mag fainter
than those of Laney et al.

(i) One might argue that the figures given above actually under-
estimate the scale of the conflict with Laney et al. (2012) (and many
similar values in the literature) because we ought to have corrected
our values for the systematic distance overestimates implied by the
upper panel of Fig. 9. When this is done (using the red curve), we
obtain MH = −1.21 and MK = −1.32; since we have moved the
stars nearer, we conclude that they are less luminous.

(ii) The study of Laney et al. (2012) involved obtaining new JHK
photometry for their Hipparcos stars because the 2MASS pho-
tometry of Hipparcos red clump stars, which have bright apparent
magnitudes, is affected by saturation, which makes them appear
fainter than they really are. Unfortunately, only four of our stars

were measured by Laney et al. For these stars, Laney et al. obtained
J magnitudes brighter than the 2MASS values by amounts in the
range (−0.006, 0.457), but their H and K values are not clearly
brighter than the 2MASS values, which suggests that saturation in
2MASS is mainly confined to the J band. Interestingly, the Bayesian
algorithm assigns an anomalous extinction (AV = 0.633) to the star
(Hipp 32222) that shows by far the strongest saturation effects,
presumably because a high extinction can explain the unexpect-
edly faint J magnitude given the spectroscopically determined Teff.
From this rather fragmentary evidence, we infer that the effects of
saturation on the 2MASS magnitudes might cause us to make the
nearest clump stars underluminous by ∼0.1 mag. The triangles in
Fig. 9 suggest on the contrary that we have found these stars to be
overluminous by ∼0.4 mag.

(iii) Are the red clump stars in our sample correctly identified?
Fig. 11 shows the density of stars in the (J − K, log g) plane for
two metallicity ranges. In both panels, peaks in density are apparent
near the theoretical locations of core helium-burning stars. These
peaks are captured by our selection criteria 1.7 < log g < 2.4 and
0.55 ≤ J − K ≤ 0.8. The core helium-burning model star that sits
at the centre of the red circle has Teff = 4485, log g = 2.37 and
MK = −1.60, in agreement with the empirical data of Laney et al.
(2012).

This discussion explains why our raw distances imply absolute
magnitudes for clump stars that differ little from the empirical value
of Laney et al., and why these distances are only slightly larger than
the Hipparcos parallaxes imply. The puzzle remains that the SBA
kinematic analysis points to our distances being too large. For the
SBA analysis to be correct, we would require both that the stellar
models were too luminous and the Hipparcos stars to be mislead-
ing, perhaps because they are nearby and therefore anomalously
young and have atypical chemistry. Consequently, we set the SBA
correction factors aside for the moment, but in a companion paper
(Binney et al. 2013) we will return to this issue in the context of
dynamical Galaxy models.

Table 6 shows that 1/〈� 〉 is always the shortest of our distance
measures, and given the suggestion from the SBA analysis that even
this measure might be too long, we do not present an SBA analysis
of distances based on 〈s〉 or s〈μ〉. However, such analyses do confirm
that these measures overestimate distances to all classes of star by
even larger factors than 1/〈� 〉 does, so there is no case to be made
for using them.

Figure 11. Density of stars on a logarithmic scale for two metallicity ranges in the (J − K, log g) plane together with Padova isochrones for metal-rich
populations. The left-hand panel is for (−0.4 < [Fe/H] < −0.2) and the right-hand panel is for (−0.2 < [Fe/H] < 0).
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5.3 Effective temperature–absolute magnitude diagrams

Fig. 12 shows effective temperature–absolute magnitude diagrams
for high-latitude (|b| > 40◦) stars created either (a) using 〈� 〉 to
assign a single distance to each star (left-hand panel) or (b) spreading
each star in MK according to the multi-Gaussian fit to its pdf in
distance modulus. The red octagon centred on (Teff, MK) = (5780,
3.28) shows the location of the Sun in the effective temperature–
absolute magnitude diagram.

The red clump is prominent in both panels but the horizontal
branch extends further to the blue when the pdfs are used as a
consequence of eliminating the messy scatter of stars in the left-hand
panel between the horizontal branch and the main sequence. Using
the pdfs similarly eliminates the unphysical scatter of stars inside
the turnoff curve. In both diagrams, vertical stripes are evident,
especially at the coolest temperatures: these are a legacy of the
use by the pipeline of the DEGAS decision-tree routine to identify
template spectra (Kordopatis et al. 2013). This artefact is enhanced
because we have smeared stars in MK but not in Teff, as we should
have done for consistency.

Fig. 13 shows effective temperature–absolute magnitude di-
agrams for two slices through the Galaxy: |z| < 0.2 kpc or
0.4 < |z|/ kpc < 0.9. For these plots, we used the multi-Gaussian

representations of pdfs to spread stars in distance modulus and thus
in z. At |z|< 0.2 kpc the main sequence, subgiant and giant branches
show up nicely, and the red clump is extremely sharp. More than
0.4 kpc away from the plane the lower main sequence has disap-
peared and giant branch becomes more strongly populated because
the volume surveyed is much larger.

6 C LUSTER STARS

By searching for stars that have suitable sky coordinates and line-
of-sight velocities that agree with a cluster convergence point, we
have identified RAVE stars in 15 open clusters. NGC 3680 has just
one RAVE star so we cannot analyse its statistics. Table 10 lists
the remaining clusters with RAVE stars in order of increasing age,
giving for each cluster the values of several quantities from the
literature. The values given are taken from Dias et al. (2002) with
the exception of the Hyades, where we used Perryman et al. (1998).

Columns 7 and 8 give the number of giants in our sample and
the ratio of their mean value of 1/〈� 〉 to the distance listed in
Table 10. Columns 9 and 10 give the same data for dwarfs, and
column 11 gives the overall mean of 1/〈� 〉 for cluster stars divided
by the literature distance. A tendency for the giants to overestimate

Figure 12. Effective temperature–absolute magnitude diagrams for |b| > 40◦ either using for each star the absolute magnitude implied by the distance
estimator 1/〈� 〉 (left) or spreading each star out in absolute magnitude according to the multi-Gaussian representation of its pdf in distance modulus (right).
The density scale is essentially logarithmic: the quantity plotted is log10(1 + n), where n is the number of stars in a cell. The red octagon is centred on the
location of the Sun (Teff, H) = (5780, 3.28).

Figure 13. Effective temperature–absolute magnitude diagrams for two slices in |z| constructed using the multi-Gaussian representations of stars’ pdfs and
using the same density scale as in Fig. 12.
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Table 10. Analysis of cluster stars. σ cl is the assumed cluster radius and log τ gives the literature age while log τ is the mean logarithm of the
inferred ages of cluster stars (in years) and scl is the literature value of the cluster distance (in pc). Ng and Nd are the numbers of giants and dwarfs
in the sample and sg and sd are the mean distances to giants and dwarfs inferred from values of 1/〈� 〉. sall is the mean distance of all cluster stars
and is given also when extinction is neglected (sall,nE) and when a strong, cluster-specific age prior is used (sall,τ ).

Cluster σ cl E(B − V) log τ log τ scl Ng sg/scl Nd sd/scl sall/scl sall,nE/scl sall,age/scl

Blanco 1 5.5 0.01 7.80 9.59 269 4 1.61 23 1.07 1.15 1.13 0.87
NGC 2422 3.6 0.07 7.86 8.82 490 0 – 13 1.09 1.09 1.08 0.85
Alessi 34 15.4 0.18 7.89 9.58 1100 24 1.20 0 – 1.20 1.82 3.71
ASCC 69 14.0 0.17 7.91 9.51 1000 30 1.63 2 0.84 1.58 2.11 4.87
NGC 6405 2.8 0.14 7.97 8.89 487 0 – 12 0.94 0.94 0.90 0.71
Melotte 22 (Pleiades) 4.6 0.03 8.13 9.39 133 2 1.11 35 1.09 1.09 1.11 0.93
NGC 3532 7.1 0.04 8.49 8.95 486 1 1.71 17 1.23 1.26 1.24 0.97
NGC 2477 (M93) 5.7 0.24 8.78 9.29 1300 45 0.91 3 1.02 0.92 1.13 1.27
Hyades 5.7 0.01 8.80 9.70 46 0 – 31 1.08 1.08 1.08 1.00
NGC 2632 (Praesepe, M44) 3.8 0.01 8.86 9.48 187 0 – 34 1.14 1.14 1.12 1.03
NGC 2423 2.7 0.10 8.87 8.96 766 3 1.36 17 0.99 1.05 0.99 1.17
IC 4651 2.6 0.12 9.06 9.30 888 7 1.03 5 0.68 0.87 0.87 1.00
NGC 2682 (M67) 6.6 0.06 9.41 9.74 908 32 0.74 12 0.65 0.72 0.74 0.78

distances is evident, particularly in the younger clusters such as
Alessi 34 and ASCC 69. The distances inferred for dwarfs are gen-
erally in good agreement with the literature values, but significant
underestimates are evident in the cases of the oldest clusters, IC
1651 and NGC 2682 (M67). The penultimate column gives the
mean value of 1/〈� 〉 divided by the literature distance when ex-
tinction is assumed to be zero. Setting AV = 0 shortens distances
to dwarfs and lengthens those to giants, and for a few clusters the
results with no dust are markedly worse but neglecting dust has
little impact on most clusters.

Column 5 gives the mean inferred value of the logarithm of age
(in years), and comparing these values with the literature values in
column 4 we see little sign of correlation with the result that stars
in younger clusters are being presumed much older than they really
are. This phenomenon reflects the fact that dating an isolated star
is enormously harder than dating a cluster of coeval stars. Clearly,
poor ages will bias the recovered distances, so in the last column of
Table 10 we give the mean values of 1/〈� 〉 divided by the literature
distance when distances are determined under the strong age prior

P (τ ) ∝ exp
[− log2

10(τ/τcl)/2(0.1)2
]
. (23)

This cluster-specific age prior improves the accuracy of mean dis-
tances to stars in clusters older than 100 Myr, but has an unfortunate
effect on the distances to stars in younger clusters.

Fig. 14 shows histograms of distances to stars in 12 of the 13
clusters listed in Table 10; the red histograms are for our standard
distances and the blue histograms are for distances obtained under
the strong cluster-specific prior. The numbers in parentheses after
the cluster names in the top-left corner of each panel give the number
of giants and dwarfs in that cluster. The top panel of Fig. 15 shows
the corresponding plot for NGC 2682 (M67). We see that the strong
age prior shortens distances to dwarfs and lengthens those to giants
in a way that is moderate and beneficial in clusters as old as the
Melotte 22 (Pleiades) but unhelpful in younger clusters. The red
histograms are generally quite satisfactory.

7 R EPEAT O BSERVATIONS

We have more than one spectrum for 12 012 stars and can form
8526 independent pairs of measurements for the same dwarf star
and 11 868 independent pairs of measurements for the same giant
star. Fig. 16 shows histograms of the discrepancies between these

measurements when normalized in two ways. In the upper panel,
the difference in 〈� 〉 is divided by the mean parallax, while in the
lower panel it is divided by the quadrature sum of the uncertainties
of the measurements. The median fractional parallax discrepancy
is 0.063 for giants and 0.069 for dwarfs – it is easy to show that
these values apply also to the discrepancies in distances 1/〈� 〉.
The dispersions of the parallax discrepancies normalized by the
formal uncertainties are 0.295 for giants and 0.348 for dwarfs. That
these numbers are significantly smaller than unity emphasises that
much of the error is external and does not derive from noise in the
spectrum.

8 ESTI MATED EXTI NCTI ONS

As with distances, the Bayesian algorithm determines a probability
distribution for possible extinctions to each star, and one has to
consider how best to reduce this distribution to a single value for the
extinction. For the reasons given in Section 2, the code marginalizes
over extinctions by integrating with respect to a ≡ ln (AV) rather
than integrating with respect to AV directly. Consequently, a natural
quantity to output is 〈a〉, and we use ÃV ≡ e〈a〉 as our estimator of
the extinction. ÃV places less weight on high extinctions than does
〈AV〉.

Fig. 17 shows that different spectra yield the same value for ÃV

to high precision: the dispersions in the differences divided by the
quadrature sum of the uncertainties are only 0.117 for giants and
0.097 for dwarfs. This result is to be expected because ÃV depends
strongly on the photometry, and we only change the spectrum be-
tween determinations of ÃV .

Fig. 18 shows in red the distribution of extinctions to Hipparcos
stars; the blue points show the distribution of the prior values of
the extinction to the final locations 1/〈� 〉 of the stars. Since the
red and blue points follow very similar distributions, on average
our recovered extinctions coincide well with our priors. This find-
ing could indicate either that our priors are accurate guesses of the
actual extinction or that the extinction to an individual star cannot
be determined from the data we have. We know that the data are
adequate because when we took the priors from the smooth model
(11) normalized in an average sense by the Schlegel et al. redden-
ings, the recovered values of ÃV were systematically smaller than
the prior values. Thus, the data suffice to shift the recovered val-
ues away from a poor prior. Presumably, the Hipparcos stars lie in
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New distances to RAVE stars 365

Figure 14. Histograms (in red) of the distances 1/〈� 〉 to stars in individual clusters (see Fig. 15 for NGC 2682). The blue points show results obtained when
the prior on the age is a Gaussian in log τ with dispersion 0.1 Gyr and centred on the literature value given in Table 10. The clusters are ordered from top
left to bottom right by age. The numbers in parentheses after the cluster name give the number of giants and dwarfs contributing to the plot. The normalizing
dispersion σ is the quadrature sum of the errors on the distances and the size of the cluster listed in Table 10. The blue points have been moved up slightly for
clarity.

directions of anomalously low extinction, an effect that is captured
when the extinction is estimated to be the fraction of the measured
extinction to infinity that is expected to lie within distance s.

For hot dwarfs most values of ÃV lie in (0.1, 0.25) [so ÃJ lies
in (0.03, 0.07)], while a significant fraction of cool dwarfs have
ÃV < 0.1 as we would expect given that some of these stars are
quite close. The distribution of values of ÃV for giants peaks around
0.2 but has a long tail extending out to ∼0.6 as we expect for stars
that can be quite distant.

Fig. 19 shows histograms of the differences between our esti-
mated extinctions ÃV to stars in the complete sample and the value
of the prior on extinction to the star’s proposed location. The red,
blue and black histograms are for stars that lie in three ranges of
Galactic latitude b. The means of all the two highest latitude his-
tograms are satisfyingly close to zero. The mean of the histogram

for |b| < 20 ◦ is negative (−0.2σ ), implying that the dust model
slightly overestimates extinctions to low-latitude stars.

Fig. 20 shows the relationship between extinction and distance
for hot dwarfs (Teff > 5500 K), cool dwarfs and giants (log g < 3.5)
in the full RAVE sample. In addition to showing the extent of the
relation between distance and extinction, these plots show how
the three classes of star are distributed in distance. The ridge line
through the distribution of giants has a slope of � 0.19 mag kpc−1,
while that through the distribution of cool dwarfs has a slope of
�0.78 mag kpc−1. For comparison, the traditional relation for paths
near the mid-plane is AV � 1.6 s/kpc (e.g. Binney & Merrifield
1998). Since most of our sight lines move away from the mid-
plane, they naturally have lower values of extinction per unit length.
Moreover, our samples are subject to the already-noted observa-
tional bias against stars’ high extinctions, and this bias particularly
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Figure 15. Upper panel: histogram of distances to stars in NGC 2682
(M87). The red points are obtained with the standard age prior and the blue
points with prior that specifies the literature age of the cluster. Lower panel:
histogram of ratios of extinctions of stars to the cluster’s literature extinction.
The red points denote the Bayesian extinctions and the blue points the priors
from the Schlegel et al. map.

concentrates the giants at high latitudes, where extinction per unit
distance is low.

The red points in Fig. 21 show for each cluster the distribution of
log10(ÃV /AV cl), where AVcl is 3.1 times the cluster’s literature value
of E(B − V). The blue points show the corresponding distributions
of the values obtained by replacing ÃV by the prior extinction
AVprior at 1/〈� 〉. For all clusters the red and blue points have similar
distributions, which suggests that the priors are reasonable. In light
of this result, it is striking (a) how broad the distributions are, and
(b) that in four clusters (Melotte 22, Hyades, NGC 2632 and NGC
2682) the literature extinction lies off one wing or the other of the
distribution. These findings call into question the very concept of a
cluster-wide characteristic extinction, and suggest that if one must
choose a single characteristic extinction, the literature value may be
a poor choice.

9 C O N C L U S I O N S

We have extended the Bayesian approach to distance determination
of Burnett & Binney (2010) to allow for extinction and reddening
and to deliver pdfs in distance modulus in addition to expectation
values of three distance measures, distance s, distance modulus μ

and parallax � .
We have fitted each star’s pdf in distance modulus with a sum of

up to three Gaussians. A single Gaussian provides a good fit to about
45 per cent of the pdfs, two Gaussians provide a good fit to most
of the remaining pdfs, so just 5 per cent of the pdfs require three
Gaussians for a good fit. When these Gaussian decompositions are

Figure 16. Discrepancies between different measurements of the distances
of the same star.

Figure 17. Discrepancies between different measurements of the extinc-
tions to the same star.

used to make Hess diagrams by splitting each star’s contribution
to the density into one, two or three parts at the luminosity asso-
ciated with the centre of each Gaussian component, the diagrams
become significantly sharper as the main-sequence turnoff and the
horizontal branch emerge clearly. This phenomenon indicates that
multimodal pdfs are associated with stars that could be upper main-
sequence stars or blue horizontal-branch stars, or could be lower
main-sequence stars or subgiants.

For every class of star examined, we find that 〈s〉 > s〈μ〉 > 1/〈� 〉,
a phenomenon that arises because these distance measures weight
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Figure 18. The blue points show the distributions of ÃV for Hipparcos stars: hot dwarfs (left), cool dwarfs (centre) and giants (right). The red points show the
distribution of the values of the prior extinction at the predicted locations of the stars.

Figure 19. Histogram of the offsets between the estimated visual extinction
ÃV to stars in the complete RAVE sample and the extinction in the dust
model used as a prior to the location (l, b, 1/〈� 〉).

differently the possibilities that a given star is far or near. The dif-
ferences between these distance measures are least for hot dwarfs
Teff > 5500 K and red clump stars, and greatest for very cool dwarfs
(Teff < 5200 K) and high-gravity giants (log g > 2.4) because hot
dwarfs and red clump stars have quite narrow pdfs in distance while
the dwarf/giant ambiguity causes cool dwarfs and high-gravity gi-
ants to have broad pdfs in distance.

The RAVE survey encompasses ∼5000 Hipparcos stars.
Histograms of the difference between our values of 〈� 〉 and the

Hipparcos parallaxes normalized by the quadrature sum of our er-
rors and the Hipparcos errors come close to the ideal of a unit
Gaussian of zero mean in the cases of warm dwarfs (Teff > 5500 K)
and giants (log g < 3.5), so not only are our parallax estimates
fairly reliable, but our error estimates are reasonable. The situa-
tion regarding the smaller sample of cool dwarfs is unsatisfactory.
The majority of these stars require multi-Gaussian fits to their pdfs.
When a Hipparcos parallax is available, it agrees within the errors
with one of the Gaussians as one would wish. But the single Gaus-
sians fitted to a minority of cool dwarfs yield parallaxes that are
significantly larger than the Hipparcos parallaxes. Thus, our ability
to determine distances to cool dwarfs is rather limited.

For giants our parallaxes are competitive with those of Hipparcos,
but for cool dwarfs errors on Hipparcos parallaxes are smaller than
the errors on ours by a factor of ∼3.

The good agreement between our parallaxes and the Hipparcos
parallaxes suggests that 1/〈� 〉 is our most reliable estimator of
distance, a conclusion we were able to confirm subsequently. Hence,
we have concentrated on assessing the accuracy of the distance
estimator 1/〈� 〉.

The Hipparcos stars in the RAVE survey reveal (Fig. 9) a tendency
for our distances to the hottest dwarfs to be ∼15 per cent too small,
while our distances to dwarfs with Teff ∼ 5000 K are too large
by about the same amount. Our distances to the coolest dwarfs
are 20–30 per cent too small. The Hipparcos stars reveal that our
distances to giants are too large by a factor that increases smoothly
with decreasing log g from unity at log g = 3.5 to ∼1.2 at the lowest
gravities. This phenomenon may reflect our use of stellar parameters
obtained under the assumption of LTE. However, it should be noted
that Kordopatis et al. (2013) excise the cores of strong lines, where
non-LTE effects will be most prominent.

The values of the kinematic corrections obtained by the method
of SBA for all the giants and dwarfs in the RAVE sample confirm
the results from the Hipparcos stars: 1/〈� 〉 is a more reliable dis-
tance estimator for cool stars than 〈s〉 and for dwarfs the ratio of
1/〈� 〉 to the true distance increases with decreasing Teff except
below Teff ∼ 4500 K, where it drops abruptly. For dwarfs the SBA
kinematic indicators agree moderately with each other and suggest
that our distances tend to be too short by an amount that decreases
with Teff from �20 per cent at the hot end to perfection at Teff �
5000 K. The shape of the plot of the ratios of our distance to true
distance agrees perfectly with the Hipparcos results, but there is a
small vertical offset between the curves.

For giants 1/〈� 〉 has a tendency to be too large, by an amount that
emerges equally from the Hipparcos results and the SBA kinematic
corrector fW. The ratio of our distance to the true distance increases
with decreasing log g from ∼1.05 at the high-gravity end to ∼1.2
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Figure 20. Density of stars in the distance versus extinction plane for hot dwarfs, cool dwarfs and giants in the range of Galactic latitudes |b| < 30◦. The
density scale is the same as in Fig. 12.

Figure 21. As Fig. 14 but showing in red the offsets of log10 ÃV from the cluster’s literature value of log10AV (see Fig. 15 for NGC 2682). The blue points
show the amounts by which the prior extinction at 1/〈� 〉 differs from the literature value. The blue points have been moved up slightly for clarity.
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at the low-gravity end. Unfortunately, the Hipparcos results are
of course confined to s � 0.15 kpc and the SBA analysis proves
sensitive to the upper limit on the distances of stars we use in the
analysis. Moreover, for stars with s � 2 kpc, the two SBA factors
disagree with each other. Therefore, it is difficult to assess the
accuracy of our distances to stars at s > 2 kpc, which tend to be
luminous low-gravity giants. However, the indications are that we
are overestimating these distances by �20 per cent.

We have identified red clump stars by cuts in the (J − K, log g)
plane and found that a histogram of these stars’ values of MK is nar-
row and peaks ∼0.1 mag fainter than the standard magnitude. The
origin of this offset is unclear. If we accept the indications from both
the Hipparcos stars and the SBA analysis that we systematically
overestimate distances to giants, the offset is made significantly
larger: 0.3 mag underluminous.

We have identified 364 RAVE stars in 15 open clusters. Our
standard distances generally form a satisfyingly narrow distribution
with the cluster’s literature distance almost always within one stan-
dard deviation of the distribution’s mean. There is a clear tendency
for the giants in any cluster to be assigned distances that are larger
than the distances assigned to the cluster’s dwarfs. In the oldest
clusters, IC 4651 and NGC 2682 (M67), the dwarf distances are
only ∼67 per cent of the cluster distance, but in the other clusters
the dwarf distances appear about right.

The data barely constrain the ages of stars. Consequently, our
standard distances are based on the assumption that stars are quite
old, older than the ages of many of the clusters we have studied.
Curiously, using a prior on ages that enforces the cluster’s literature
age produces a more satisfying histogram of distances only for
clusters older than Melotte 22 (the Pleiades).

The data do contain sufficient information to place significant
constraints on the extinctions of stars – we know this because the
extinctions we first derived were systematically lower than the priors
we then employed. This phenomenon led to improved priors, and
our extinctions now scatter nearly randomly around the prior values.
Since extinction varies discontinuously from one line of sight to the
next on account of the fractal nature of the ISM, and we do not have a
sample of stars with accurately determined extinctions, it is difficult
to test the validity of our extinctions. Our results for clusters indicate
that different stars in the same cluster generally have significantly
different extinctions, and that the mean extinction of stars in a
given cluster often differs significantly from the cluster’s literature
value.

The distances we derive from different spectra of the same star
are entirely consistent with one another and imply that noise in the
spectrum contributes less than half the uncertainty in the derived
distance.

This work could and should be significantly improved in three
ways. First, photometry in optical bands is now available for most of
our stars from the APASS survey (Henden et al. 2012). Use of this
photometry would sharpen constraints on some combination of AV

and Teff. Secondly, the stellar models used here are now a few years
old and should be updated and extended. Inclusion of α-enhanced
stars with lower metallicities should improve accuracy for stars
that are far from the plane. Moreover, we could now use models
for which magnitudes in the 2MASS system have been directly
computed rather than obtained by transformation of magnitudes
in the Johnson–Cousins system. Thirdly, stellar parameters that
include corrections for non-LTE effects as discussed by Ruchti
et al. (2013) may yield improved distances, especially to luminous
giants. Distances based on extended photometry and models will be
made available on the RAVE website as soon as possible.
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