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1. Introduction11

The demand for lighter designs is a continuing trend in structural applications and the con-12

sequential need to predict how light-weight components, composed of relatively thin ductile13

materials, respond to extreme load cases arising from blast and/or local impact is of in-14

creasing importance in design calculations [1–4]. Hitherto, nearly all the dynamic structural15

plasticity models of ‘fully-clamped’ ductile plate calculate only its mode I (inelastic) defor-16

mation. Here, we develop an analytical model that could predict the mode II, II* and III17

deformations of the ductile plate - these modes of deformation are exemplified by the partial18

and complete plate detachment from its support through material rupture.19

Unlike a simple cantilever, the transverse deformation of a plate involves two spatial coor-20

dinates and the effects of large deflection are inevitably linked with in-plane stretching that21

soon dominates the development of its plastic deformation. Hence, the coupling between22

flexure, stretch and shear follows directly as a consequence of both the plastic flow law and of23

large deflections through the equations of motion [5]. In addition, the structural deformation24

is also influenced by second-order effects, such as rate dependent material properties. The25

emphasis of this paper is on modelling the structural response of a fully-clamped, monolithic26

plate rather than the interactions between blast wave and structure such as those modelled27

in [6, 7]; and, to reduce the complexity of the analysis by providing the simplest possible28

model formulation that contains all the essence of a material and deformation effect needed29

to capture the physics of the problem.30

Nomenclature

a half length of square plate
c length of plastic hinge
d distance from plate corner when complete detachment occurs
h plate thickness
I∗, Î non-dimensional impulse and impulse per unit area
m = ρh mass per unit area
M bending moment
MP = 4ρa2h total mass of plate
M0, Md static and dynamic fully plastic bending moment
n material hardening coefficient
N membrane force
N0, Nd static and dynamic fully plastic membrane force
q, ε̇0 material constants for Cowper-Symonds constitutive equation
Q transverse shear force
Q0, Qd static and dynamic fully plastic transverse shear force
t time
T kinetic energy of one-quarter plate
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Tf residual energy of one-quarter plate
T0 initial kinetic energy of one-quarter plate
V0 = Î/m initial velocity
W transverse plate displacement
Wf maximum central deflection
WP (t) temporal central deflection
WS(t) temporal plastic shear sliding at support
β Πs

S/(Πb
S + Πm

S + Πs
S)

βc critical β value at the transition from modes II to III’
η = a/h half length to thickness ratio
∆ plate elongation
∆W = W −WS relative displacement
εf uniaxial rupture strain
ε̇m uniaxial mean strain rate
φi(x, y) mode functions
Ω plastic work absorbed per unit area
ΩA, ΩB Ω at point A and B
Ωc critical plastic work absorbed per unit area
Ω̄(, Ω/Ωc), ωs state variable for ductile and shear damage
Π total potential (strain) energy for one-quarter plate
ΠS, ΠP strain energy absorbed within plate and at support
Πb
S, Πm

S , Πs
S bending, shear, membrane energy at support

ρ density
σ0, σd static and dynamic yield strength
θ relative rotation about a straight hinge line
ξ position of travelling plastic hinge line relative to centre of the plate
(̇) ∂()/∂t
(̈) ∂2()/∂t2

31

A considerable body of experimental work on the blast response of ductile structural com-32

ponents already exists. One example is the classical experiment by Menkes and Opat [8]33

where it was shown that the deformation of fully-clamped aluminium beams under impulsive34

blast load can be delineated into three distinct modes: mode I - large inelastic deformation;35

mode II - tensile-tearing and deformation; mode III - shear-band localisation. The same36

modes were also reported for circular and square plates by Teeling-Smith and Nurick [9] and37

Olson et al. [10], respectively. Unlike beams, however, Olson et al. [10] noted that ‘tensile-38

tearing’ in square plates initiates at the mid-point of the plate boundary and detachment39

(via material rupture) occurs progressively – the extent of which depends on the applied40

impulse – along the boundary towards its corners. This ‘partial tearing’ along parts of the41

plate boundary is termed mode II∗ by Nurick and Shave [11] and Nurick et al. [12]. The42

literature also contains a number of detailed three-dimensional finite element (FE) models43
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of the aforesaid that could simulate the different modes of deformation to varying degrees44

of accuracy; for example, by Yuan and Tan [13], Gupta and Nagesh [14], Rudrapatna et al.45

[15], Olson et al. [10], Ramajeyathilagam and Vendhan [16], to name a few.46

Typically, analytical models of plastic deformation in ductile plates to impulsive blast load47

were formulated within the constitutive framework of limit analysis where, for the conve-48

nience of calculating structural response, it is assumed that the stress resultants on any49

section, together with the approximation that plane sections remain plane, are related to50

the deformation by a rigid-perfectly plastic constitutive equation. Such a simplification pro-51

vides a good approximation for elastic-plastic material with negligible strain hardening since52

it is the asymptotic limit for stress resultants as curvature becomes indefinitely large [5].53

Previous works by Jones et al. [17] and Yu and Chen [18] adopt the aforesaid approach but54

both neglect the influence of transverse shear in their yield condition. The effects of trans-55

verse shear on plastic yielding during modes II and III deformation were considered by Shen56

and Jones [19] and Yuan et al. [20] for beams and, again, by [21] for circular plates. Despite57

the good agreement between the predicted mode I deflection of [21] with the experimental58

data of [9, 22], there are considerable discrepancies between the predicted critical impulse59

at mode I→II transition and the experimental values of [9].60

In this paper, an analytical model of a fully-clamped square plate subjected to impulsive61

blast load is developed which, for the first time, is able to calculate all the three modes of62

its deformation. Results for their experimental counter-part were previously reported by63

Teeling-Smith and Nurick [9] and Olson et al. [10]. The analytical model is an extension64

of the ones developed in [17, 18] to include the following additional features: (1) effects of65

material strain rate sensitivity; (2) large inelastic deformation with catenary actions; (3)66

effects of transverse shear force at the support; (4) interactions between bending, membrane67

and shear in the yield criterion; and (5) modelling the tear initiation and progressive ductile68

fracture along the support through an extension of the energy density criterion of Shen69

and Jones [19, 21]. Accuracy of the model predictions will be assessed by comparing to70

experimental data and finite-element predictions compiled from the literature.71

The outline of this paper is as follows: Section 2 presents the formulation of the dynamic72

structural plasticity model of a fully-clamped ductile plate; comparisons between predictions73

by the current analytical model with experimental and numerical data compiled from the74

literature are made in Section 3; and, Section 4 presents design charts constructed using the75

analytical model that was developed.76

2. Model formulation77

In this section, we formulate a dynamic structural plasticity model, within the constitutive78

framework of limit analysis, for a ‘fully-clamped’ square plate subject to an impulsive blast79

load. For definiteness, damage shall refer to a state of deformation during which parts of80

the plate become partially detached from its support - this occurs for mode II* deformation81
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[11, 12]. By contrast, failure shall refer to a total loss of load carrying capacity by the plate82

following its complete detachment (or severance) from the support - this occurs for modes83

II and III deformation.84

2.1. Problem statement85
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Figure 1: Schematic of a fully clamped square plate (in third-angle projection). Reflectional symmetry exists
on two planes: viz. (x = 0, −h/2 ≤ z ≤ h/2) and (y = 0, −h/2 ≤ z ≤ h/2).

Consider a fully-clamped square plate of side length 2a and uniform thickness h subjected86

to a uniformly-distributed impulsive load that acts transversely to the x-y plane, as shown87

schematically in Fig. 1. Symmetry (both loading and geometric) dictates that only one-88

quarter of the full plate needs to be modelled. Following [17–19], a rigid, perfectly-plastic89

material idealisation is also employed here - this simplification of the material constitutive90

law is needed for analytical calculations of structural response to be tractable - where elastic91

deformation of the plate is neglected since its transverse displacement W � h. In accordance92

to the Cowper-Symonds constitutive equation [23], the mean dynamic flow stress of the plate93

can be estimated as94

σd = σ0[1 + (ε̇m/ε̇0)1/q] (1)

where σ0 is the static yield strength; ε̇m is the mean uniaxial strain rate; and, ε̇0 and95

q are material constants. The loading is assumed to be imparted by a blast pulse of a96

much shorter duration compared to the characteristic time needed by the plate to reach97

its maximum transverse displacement, i.e. it is a zero-period uniform momentum impulse.98

Hence, the plate acquires an instantaneous velocity given simply by [17–19]99

V0 = Î/m (2)
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where Î is the impulse per unit area acting on the plate, m = ρh is mass per unit area and100

ρ is the plate density. The zero-period impulse can be non-dimensionalised as follows:101

I∗ = V0√
σ0/ρ

. (3)

2.2. Damage and failure criteria102
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Figure 2: Direction of crack paths propagation along the plate boundary (only one-quarter of the square
plate is shown).

Experiments by Nurick and Shave [11] showed the following sequence of plate deformation:103

(1) tearing (through material rupture) initiates simultaneously at the mid-point on each104

side of the square plate (points A in Fig. 2); (2) as the transverse deflection of a plate105

increases, detachment progresses along its boundary, giving rise to two cracks propagating106

in opposite direction on each side; (3) the crack are deflected inwards into the plate to meet107

with the deflected crack from an adjoining side as it reaches a critical distance (points B108

in Fig. 2) to circumvent the corners; and (4) complete plate detachment occurs when the109

two crack paths meet. A recent study by Schiano-Moriello et al. [24] – the detailed results110

will be reported elsewhere – have shown that the inward deflection of the crack path (as it111

approaches a corner) is controlled by the triaxial state of stress: in general, the direction of112

crack propagation follows region(s) with a zero stress triaxiality (i.e. under pure shear). A113

cursory post-mortem examination of the deformed test specimen (see Fig. 12c in Aune et114

al. [2]) shows that d = 0.097a; here, it suffices to assume that d = a/10. To further simplify115

calculations, it is assumed that the time taken for the two cracks to intersect after points B116

(see Fig. 2) is negligibly small compared to the time for a crack to propagate from A to B.117

To quantify the extent and progression of plate detachment, a damage ‘measure’ is proposed118

for each side of the plate – this is based on the energy density damage criterion proposed119

by Shen and Jones [19]. Symmetry of deformation dictates that only one side of the plate120
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(i.e. the side of 0 ≤ x ≤ a− d and y = a) is needed to establish the energy density damage121

criterion which is expressed as122

Ω̄(x) , Ω(x)
Ωc

≤ 1 ∀ 0 ≤ x ≤ a− d (4)

where Ωc = σdεfhc is the critical dissipation of plastic work per unit hinge length and εf123

is the uniaxial rupture strain of the plate which may be assumed to be independent of124

the mean uniaxial strain rate ε̇m. A similar expression to Eq. 4 can be written for Ω̄(y)125

∀ 0 ≤ y ≤ a−d. Here, c = αh is the width of the plastic hinge (zone) which typically ranges126

between 0.5 ≤ α ≤ 1 [19, 21]. It is clear that the critical impulse at mode I→II transition127

depends on the value of α. Here, we use an identical α = 0.6 throughout - this was obtained128

through calibration to the critical impulse at mode I→II transition given in [11].129

According to Eq. 4, initiation of material rupture, points A in Fig. 2, occurs when130

Ω̄A = Ω̄(x = 0) = Ω(x = 0)
Ωc

= 1 ; (5)

whilst complete tearing follows almost immediately after the following damage criterion is131

met at a finite distance d from the plate corner given by132

Ω̄B = Ω̄(x = a− d) = Ω(x = a− d)
Ωc

= 1. (6)

The mean uniaxial strain rate ε̇ in Eq. 1 is expressed as133

ε̇m = εf Ω̄B

tf
(7)

where time tf corresponds to the instant at either the point of cessation of motion (i.e.134

Ω̄B < 1) or failure (i.e. Ω̄B=1 if complete detachment from the supports occurs).135

It was noted by Nurick and Shave [11] that, in mode II∗ (i.e. Ω̄A = 1 and Ω̄B < 1), the plate136

tears away from the support resulting in ‘pulling-in’ of its mid-side. In the current model,137

however, the effects of ‘pull-in’ on the transverse velocity acting on the plate is neglected138

for simplicity. Furthermore, the model does not account for the degradation of stress resul-139

tants at the support as progressive cracking occurs along the plate boundary. Despite these140

simplifications, which will result in a somewhat under-prediction of the transverse plate de-141

flection, it will be shown later that there is a good correlation between the current analytical142

prediction and existing experimental data.143

When Ω̄B reaches unity, either a mode II or mode III deformation ensues. Here, we adopt a144

similar criterion to that proposed by Shen and Jones [19, 21] to delineate between a mode II145
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and III deformation. Mode III deformation occurs when the state variable ωs reaches unity,146

i.e.147

ωs = β

βc
= 1 , (8)

where β is the ratio of the plastic work absorbed through shearing deformation to the total148

plastic work done by all the stress components at the entire support given by149

β = Πs
S

Πs
S + Πb

S + Πm
S

, (9)

where Πs
S, Πb

S and Πm
S are, respectively, the shear strain energy, bending strain energy and150

membrane strain energy obtained at the support; and, βc is the critical β value at the151

transition from mode II to III. Note that superscripts s, b and m denote shear, bending152

and membrane, respectively. It will be shown later that β increases monotonically with the153

dimensionless impulse I∗ and the critical transition – this was obtained through calibration154

to the experimental data by Nurick and Shave [11] – delineating the transition between155

modes II and III deformation is βc=0.32.156

Hence, the criteria used here to delineate the different modes of plate deformation in [11]
are as follows:

Mode I : Ω̄A < 1, Ω̄B < 1, ωs < 1 (10a)
Mode II∗ : Ω̄A = 1, Ω̄B < 1, ωs < 1 (10b)
Modes II : Ω̄A = 1, Ω̄B = 1, ωs < 1 (10c)
Mode III : Ω̄A = 1, Ω̄B = 1, ωs ≥ 1. (10d)

Expressions for Ω̄A, Ω̄B and ωs in Eq. 10 are derived in Section 2.4. An iterative method157

is used to predict the modes of deformation for a fully clamped square plate subjected to a158

non-dimensional impulse of I∗ (or having an initial velocity of V0). For known value of σ0,159

εf , ρ, a, h and V0, and assuming an initial value for n1, one can calculate the values of Ω̄B160

and tf corresponding to the cessation of plate motion (i.e. plate central velocity becomes161

zero), or when complete detachment occurs (i.e. Ω̄B = 1). This gives a new value of n2.162

The above iteration on n continues until ni ≈ ni−1. The value of ni is then used to calculate163

the final value of Ω̄A, Ω̄B, ωs and tf .164

2.3. Yield condition165

Here, an interactive yield condition that combines the bending moment M , membrane force166

N and the transverse shear force given by Q [5]167

|M |
Md

√√√√1− Q2

Q2
d

+ N2

N2
d

+ Q

Qd

− 1 = 0 (11)
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is employed to describe plastic yielding in the plate, where Md = σdh
2/4, N0 = σdh and168

Qd = σdh/
√

3 are the dynamic fully plastic bending moment, in-plane membrane force and169

transverse shear force, respectively. It is convenient to re-cast Eq. 11 in a non-dimensional170

form as follows:171

|M̄ |
√

1− Q̄2 + N̄2 + Q̄2 − 1 = 0 (12)

where M̄ = M/Md, N̄ = N/Nd and Q̄ = Q/Qd are the non-dimensional fully plastic172

generalised stresses.173

2.4. Equations of motion174

The transverse velocity at any point x, y (x ≥ 0, y ≥ 0) of the square plate – note that only175

one-quarter is modelled because of loading and geometric symmetry – may be approximated176

as a sum of n generalised velocities and mode functions given by [25]177

Ẇ (x, y, t) =
n∑
i=1

φi(x, y)Ẇi(t) (13)

where the partial functions φi(x, y) are admissible mode functions that satisfy the geometric178

boundary conditions and the temporal functions Ẇi(t) are generalised transverse velocities179

to be determined by the Lagrange equation of the 2nd kind. The corresponding displacement180

field – this also uses the same partial functions – is given by181

W (x, y, t) =
n∑
i=1

φi(x, y)Wi(t). (14)

The total kinetic energy at time t may be written as182

T =
n1∑
i=1

1
2

∫
Vi

ρẆ 2(x, y, t)dVi (15)

for one-quarter of the square plate which consists of n1 number of plastic hinge zones. The183

potential (strain) energy is absorbed by the plastic hinge lines that separate the plastic hinge184

zones. Hence, the total strain energy for one-quarter of the square plate with n2 number of185

plastic hinge lines, each of length li, can be expressed as186

Π =
n2∑
i=1

∫
li
(Mθi +N∆Wθi +QWS)dli (16)

where θi is the relative rotation across a hinge line; WS(t) is plastic shear sliding distance187

at the support; and, ∆W (, W (x, y, t)−WS(t)) is relative displacement.188

Since the Lagrangian of the structural beam system is189

L = T + Π, (17)
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the differential equations governing Wi can be obtained by substituting Eqs. 17 and 19 into190

the well-known Lagrange equation of the 2nd kind as follows:191

d
dt

(
∂L
∂Ẇi

)
+ ∂L
∂Wi

= Qi, i = 1, 2, ..., n. (18)

Since an initial velocity is prescribed to the entire plate for impulse loading condition, the192

potential energy loss EP due to the external loading is zero; hence, the generalised force is193

simply194

Qi = ∂EP

∂Wi

= 0. (19)

The key to obtaining the governing equations of motion in Eq. 18 is the expressions for the195

total kinetic energy T and strain energy Π, which will be derived later.196
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Figure 3: Deformation mechanisms for one-quarter of the square plate depending on the position of travelling
plastic hinge lines [18]: (a) 0 < ξ < a and (b) ξ = 0 .

Within the constitutive framework of limit analysis, travelling plastic hinge lines develop in
a rigid, perfectly-plastic plate along the principal stress-moment directions [23]. According
to the position of the travelling hinge line, there are two stages of deformation for a plate
(see Fig. 3): (1) when plastic hinge lines travel towards the centre of the plate; and (2) when
the plastic hinge lines reach and coalesce at the centre, leading to a final (and stationary)
collapse configuration. Following [17–19, 21], it is assumed that the membrane force N̄ is
identical throughout the plastic hinge lines and transverse shear is negligible on the plastic
hinge lines located in the plate interior. According to Eq. 11, the yield condition at the
support (i.e. hinge lines AC and CD) and in the plate interior (i.e. plastic hinge lines CE,
EF and EH) are given, respectively, by

|M̄S|(1− Q̄2
S) + N̄2 + Q̄2

S = 1, if |M̄S| > 0 (20a)
N̄2 + Q̄2

S = 1, if |M̄S| = 0 (20b)

10



and197

M̄P + N̄2 = 1. (21)
Note that subscripts S and P are used here to denote support and plate, respectively.198

For the deformation mechanism in Fig. 3a, the transverse velocity profiles in zone 1 , 2
and 3 are given by

Ẇ1(x, y, t) = ẆS(t) + [ẆP (t)− ẆS(t)](a− x)/[a− ξ(t)], Zone 1 (22a)
Ẇ2(x, y, t) = ẆS(t) + [ẆP (t)− ẆS(t)](a− y)/[a− ξ(t)], Zone 2 (22b)

Ẇ3(x, y, t) = ẆP (t), Zone 3 . (22c)

When the travelling plastic hinge lines reach the centre of the plate (i.e. x = 0 and y = 0),
the transverse velocity profiles in Fig. 3b become

Ẇ1(x, y, t) = ẆS(t) + [ẆP (t)− ẆS(t)](a− x)/a, Zone 1 (23a)
Ẇ2(x, y, t) = ẆS(t) + [ẆP (t)− ẆS(t)](a− y)/a, Zone 2 . (23b)

It is worth highlighting that in Fig. 3a, the central portion of the plate is assumed to travel199

at a constant transverse speed [17, 18], i.e.200

ẄP = 0, ẆP = V0, (24)

and its acceleration is solely governed by ẄS; whereas in Fig. 3b, the motion of the central201

portion of the plate is determined by both ẄP and ẄS.202

Taking into account the deformation mechanisms that develop in the square plate (a quar-
ter), its total kinetic energy (Eq. 15) and strain energy (Eq. 16) are given, respectively,
by

T = 1
2m

[ ∫ a

ξ(t)

∫ ξ(t)

0
Ẇ 2

1 (x, y, t)dxdy +
∫ a

ξ(t)

∫ x

ξ(t)
Ẇ 2

1 (x, y, t)dxdy

+
∫ a

ξ(t)

∫ a

x
Ẇ 2

2 (x, y, t)dxdy +
∫ ξ(t)

0

∫ a

ξ(t)
Ẇ 2

2 (x, y, t)dxdy +
∫ ξ(t)

0

∫ ξ(t)

0
Ẇ 2

3 (x, y, t)dxdy
]

(25)

and

Π = 2ξ(t)
[
MSθ1 +N∆WP θ1 +QSWS(t)

]
+ 2

∫ a

ξ(t)
(MS +N∆W1)θ1 +QSWS(t)dx

+
√

2
∫ a

ξ(t)
[MS +N∆W1]θ3dx+ ξ(t)(2θ1 + 2θ2)(MP +N∆W3) (26)

where ∆WP = WP (t)−WS(t), ∆W1 = W1(x, y, t)−WS(t) and ∆W3 = W3(x, y, t)−WS(t);203

θ1 = θ2 = ∆WP/[a− ξ(t)] are relative rotations along the outer boundaries (fully clamped)204

of plastic zone 1 and 2 respectively; and θ3 =
√

2θ1 is the change in rotation across the205

inclined plastic hinges that lie at the intersections of plastic zone 1 and 2 . Note that the206
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sum of the first two terms in Eq. 26 corresponds to the strain energy dissipated along its207

support, whereas the last term relates to the strain energy absorbed at the plate interior.208

The parameters MS, QS, N , MP and ξ(t) in Eqs. 25 and 26 are unknowns. Recasting209

them in non-dimensional form, viz. M̄S, Q̄S, N̄ , M̄P and ξ̄ = ξ(t)/a, they are computed as210

described below.211

The non-dimensional position of the travelling plastic hinge line is212

ξ̄ =
∫ t

0

˙̄ξdt (27)

and ˙̄ξ is the non-dimensional velocity of the travelling plastic hinge line given by213

˙̄ξ =
(σd/ρa2)

[
12(M̄S + M̄P ) + 24N̄∆W̄P (1 + ξ̄)

]
+ (1− ξ̄)2(1 + ξ̄) ¨̄WS

(ξ̄ − 1)(1 + 3ξ̄)∆ ˙̄WP

(28)

where W̄P = WP (t)/h, ˙̄WS = ẆS(t)/h, ∆W̄P = ∆WP/h and ¨̄WS = ẄS(t)/h. When the214

travelling plastic hinge lines EF and EH reach the centre of the plate, they coalesce with215

the plastic hinge line CE into a single plastic hinge line so that in the subsequent motion,216

˙̄ξ = 0 and ξ̄ = 0. (29)

The generalised strain rates associated with bending θ̇S and shear ˙̄∆ are given by

θ̇S = ∆ ˙̄WP

η(1− ξ̄)
(30a)

˙̄∆ = ∆̇
h

= ∆W̄P∆ ˙̄WP

η(1− ξ̄)
(30b)

where η = a/h. Normality requirements dictate that [23]

˙̄∆
θ̇S

= 1
2N̄(1 + 1√

1− Q̄2
S

) (31a)

˙̄WS

θ̇S
=
√

3
4

( 2Q̄S√
1− Q̄2

S

− Q̄SM̄S

1− Q̄2
S

)
(31b)

if M̄S > 0, and217

˙̄WS

˙̄∆
=
√

3Q̄S

N̄
(32)
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if M̄S = 0. Substituting Eqs. 30 into 31 and 32, and re-arranging, gives

N̄(1 + 1√
1− Q̄2

S

) = 2∆W̄P (33a)

Q̄S

( 2√
1− Q̄2

S

− M̄S

1− Q̄2
S

)
= γ(1− ξ̄) ˙̄WS

∆ ˙̄WP

(33b)

if M̄S > 0, and218

Q̄S

N̄
= γ ˙̄WS(1− ξ̄)

∆ ˙̄WP∆W̄P

(34)

if M̄S = 0, where γ = Qda/Md = 4a/
√

3h.219

To calculate M̄S, Q̄S, N̄ and M̄P , they would need to be expressed as functions of W̄P ,220

W̄S, ˙̄WP , ˙̄WS, ξ̄ and t through Eqs. 20, 21, 28, 33 and 34. The temporal evolution of221

these parameters are obtained by solving the aforementioned equations using the 4th order222

Runge-Kutta method with the initial conditions of W̄P = W̄S = ˙̄WS = 0 and ˙̄WP = V0.223

When considering the influences of membrane forces and transverse shear forces as well as224

bending moments in the yield condition, the travelling hinge will initiate from a position225

which is near to the support but not from it [19, 21]. Here, an initial plastic hinge line226

position of ξ̄|t=∆t = 1−
√

3M0∆t/ρa2hV0 [18] over a small time step ∆t is used.227

Since the bending, membrane and shear strain energy dissipated at the support are given
by

Πb
S = 2aMSθ1 (35a)

Πm
S = 2ξ(t)N∆P θ1 + 2

∫ a

ξ(t)
N∆W1θ1dx (35b)

Πs
S = 2aQSWS(t), (35c)

the expression for ωs can be written as follows (by substituting Eq. 35 into 8 and re-228

arranging):229

ωs = β

βc
= 1
βc

γQ̄SW̄S

ηM̄Sθ1 + 4ηξ̄N̄∆W̄P θ1 +
∫ 1
ξ̄ 4ηN̄∆W̄1θ1dx̄+ γQ̄SW̄S

(36)

where x̄ = x/a.230

The density of plastic energy dissipation at any location 0 ≤ x ≤ a on one side of the231

boundary is given by232

Ω(x) =
{
MSθ1 +Nθ1∆WP +QSWS(t), 0 ≤ x ≤ ξ(t)
MSθ1 +Nθ1∆W1 +QSWS(t), ξ(t) ≤ x ≤ a

(37)
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Therefore the damage variables Ω̄A (in Eq. 5) and Ω̄B (in Eq. 6) become233

Ω̄A = M̄Sθ1 + 4N̄θ1∆W̄P + γ/ηQ̄SW̄S

4εfα
(38)

and

Ω̄B = Ω̄A, ξ̄ ≥ d̄ (39a)

Ω̄B = M̄Sθ1 + 4N̄θ1∆W̄P (1− d̄)/(1− ξ̄) + γ/ηQ̄SW̄S

4εfα
, ξ̄ < d̄. (39b)

Plate deformation ends at time t = tf if the motion of the plate ceases, i.e.234

˙̄WP = 0. (40)

If the damage variable Ω̄B < 1 when this occurs, the plate is said to deform in either mode235

I or II∗. Otherwise, a mode II or III deformation would develop if Ω̄B = 1.236

If the plate fails before all its initial kinetic energy is expended, then it would acquire a237

residual kinetic energy at the point of severance from the support. Parts of this are absorbed238

through further plastic deformation as the plate continues to deform until it reaches a rigid239

permanent set whilst the remaining as translational kinetic energy. In the current model,240

the energy that is absorbed post severance from the support is not considered. The residual241

energy of the plate (one quarter) at the instant of plate severance is242

Tf = T (t = tf ) (41)

or, in non-dimensional form, as243

T̄f = Tf
T0

(42)

where T0 = ρa2hV 2
0 /2 is the initial kinetic energy for a quarter of the square plate.244

3. Results and discussion245

In this section, the analytical predictions are validated against the experimental data of246

Nurick and Shave [11] for fully-clamped square plates. It is worth emphasizing that the247

blast loadings in [11] may be idealised as zero-period impulses [13, 15]. The square mild-248

steel plates used in [11] have dimensions of 0.089 (2a) × 0.089 (2a) × 0.0016 (h), and their249

material properties are listed in Table 2. A flow-chart of the numerical implementation is250

shown in Fig. 4.251

Figure 5 compares the predicted central deflection (W̄f ) of the plate to its corresponding252

experimental data. Numerical predictions by Yuan and Tan [13] and Rudrapatna et al.253

[15] were also included in the same figure for comparison. In general, there is an excellent254

14



Initialize t=0Start

Calculate generalised 

displacement WP
i, WS

i 

Calculate total strain energy 

P (Eq. 25) and kinetic energy 

T (Eq. 26)

Solve equation of 

motion (Eq. 18)

Update acceleration 

and velocity

Calculate generalised stresses MS
i, 

QS
i , MP

i , Ni and traveling plastic 

hinge line location xi , (Eqs. 20-21, 

27-34)  

`WA =1 ?

`WB =1 ? ws =1 ?ẆP
i =0 ?

Stop, t=tf

(Mode I)

Stop, t=tf

(Mode II*)

Stop, t=tf

(Mode II)

Stop, t=tf

(Mode III)

Begin  new time step t=t+Dt

Yes

No

No

Yes

NoYes

Figure 4: Flow-chart of numerical implementation for solving the analytical model described in Section 2.

agreement, between the current analytical predictions and experimental data, for plates255

deforming in modes I and II∗. By contrast, the numerical predictions in [13, 15] tend to256

over-predict the mode I and II∗ deflections. This is clearly evident in Fig 6 where the257

analytical prediction of the temporal central plate deflection and the numerical prediction258

by [15] were compared to the experimental data of [11].259

Figure 5 shows that the current analytical model correctly estimate a reduction in W̄f with260

15



Table 2: Material properties for the mild-steel plate [11]

Density Static yield stress Rupture strain Material constant
ρ (kg/m3) σ0 (MPa) εf ε̇0 q

7830 237 0.31 40.4 5

I*

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

Wf

Numerical:
Yuan and Tan [13]

Experimental [11]:

Analytical:
Present

Mode I
Mode II*

Mode II

Mode III

Rudrapatna et al. [15]

Figure 5: Comparison of the analytical central (maximum) deflection with numerical and experimental data
at different levels of I∗. Each red cross indicates a transition in deformation mode predicted by the current
analytical model.

increasing I∗ in mode II; in addition, they are also in excellent agreement with the predictions261

by Yuan and Tan [13]. The discrepancy between analytical predictions and experimental262

data in mode II can be attributed to the fact that the former records the central deflection263

just before complete detachment from the support occurs unlike in the latter. The current264

model over-predicts the central deflection in mode III since it assumes a constant length of265

plastic hinge c = αh following the approach of [20, 26, 27]. Unlike in [19], if α is obtained266

by calibration to the experimental data (mode III deflection), a better correlation between267

the analytical prediction and its experimental counterpart, and a monotonically decreasing268

of α with I∗, can be expected.269

Table 3 compares the range of non-dimensional impulse I∗ predicted by the current model270

for each mode of deformation with those from [11, 13, 15] . It is clear that there are overlaps271

in the non-dimensional I∗ between mode I and mode II∗ and between mode II∗ and mode272
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(a) I∗ = 0.58
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WP

Present

Rudrapatna et al. [15]

Wf=10.4 (Nurick and Shave [11])

(b) I∗ = 0.98

Figure 6: Time history for non-dimensional central deflection of plates deforming in (a) mode I and (b)
mode II∗ [11].

Table 3: Range of non-dimensional impulse I∗ for each mode of deformation considered in the different
studies.

Mode Current model Yuan and Tan [13] Rudrapatna et al. [15] Nurick and Shave [11]
I 0-0.62 0-0.75 0-0.97 0.53-0.64

II∗ 0.62-1.12 0.75-0.98 0.97-1.02 0.62-1.09
II 1.12-2.39 0.98-2.45 1.02-2.32 0.92-2.39

II in the experimental data of Nurick and Shave [11]. In general, the current analytical273

model better predicts the range of I∗ corresponding to the different modes of deformation274

than the numerical ones in literature; the predicted I∗ in mode II also agrees well with the275

experimental data.276

The ‘post-detached’ residual energy T̄f for fully-severed square plates is plotted in Fig.277

7. There is a good general agreement between the current analytical predictions and the278

numerical predictions by [15]. However both are considerably higher than the experimental279

data. The reason is that the loss of kinetic energy due to further plastic deformation (after280

complete detachment has occurred) is neglected in both the current and the numerical model281

of [15]. It is also evident from the figure that, beyond the transition from mode II∗→II, the282

residual energy rises sharply, and monotonically, with increasing I∗. Consequently, even283

though a large impulse is generally needed to induce mode III damage during impulsive284

loading conditions, a significant amount of residual kinetic energy remains in the plate after285

it is severed.286

The components of plastic work absorbed at the support through bending, membrane and287
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Figure 7: Non-dimensional residual energy of the fully-severed square plate.
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Πm
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S

II IIII, II*Πm
S
,b,s

Figure 8: Components of the plastic work absorbed through bending, membrane and shear deformation at
the supports.

shear deformation can be non-dimensionalised as follows:288

Π̄b
S = Πb

S

Πs
S + Πb

S + Πm
S

, Π̄m
S = Πm

S

Πs
S + Πb

S + Πm
S

, and Π̄s
S = β = Πs

S

Πs
S + Πb

S + Πm
S

(43)
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where Π̄b
S + Π̄m

S + Π̄s
S = 1. Figure 8 plots the aforesaid components of plastic work as a289

function of I∗ at the point of cessation of beam motion or when it is fully severed from the290

support. The fact that Π̄s
S or β increases monotonically with I∗ suggests that the damage291

criterion (Eq. 9) introduced by Shen and Jones [19] is applicable to distinguish between a292

mode II and III damage for a three-dimensional structural member. It is worth emphasizing293

that the critical β value (βc = 0.32) is obtained by calibration to the experimental data in294

[11] as mentioned in Section 2.2. With increasing I∗, deformation by shear and bending plays295

increasing important roles at the support, whilst the influence of membrane deformation on296

plastic work absorbed at the support reduces. Nonetheless, the majority of the plastic work297

dissipated at the support is by membrane deformation, apart for when I∗ > 0.84 in mode298

III where Π̄m
S is smaller than either Π̄b

S or Π̄s
S. In general, mode III deformation is governed299

by the combined effects of bending, membrane and transverse shear.300

I*
0 0.5 1 1.5 2 2.5 3

t
(µs)

0

50

100

150

I II* II III

Partial tearing

Complete tearing

Figure 9: Time taken for partial and complete tearing against non-dimensional impulse I∗.

Figure 9 shows the time taken t versus I∗ for partial tearing and complete detachment to301

occur. Notice that there is a monotonic decrease in t for both curves with increasing I∗. The302

difference in time between the two curves after the transition from mode II∗ →II corresponds303

to the passage of time needed for tearing to progress from mid-point (points A in Fig. 2)304

at the support to the vicinity of boundary corner (points B in Fig. 2). This time difference305

is greatest at the transition between mode II∗ →II, after which it decreases monotonically306

with I∗. It is interesting to note that somewhere in mode II (I∗ > 2.0) where the impulsive307

load becomes sufficiently intense, the two curves overlap, indicating instantaneous tearing308

along support. This agrees with the numerical prediction by Rudrapatna et al. [15].309

To gain some insight into the differences in the damage of the plate for each mode of defor-310
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Figure 10: Temporal variation of damage variable Ω̄(x) along one side of the square plate at time tf : (a)
mode I; (2) mode II∗; (3) mode II; and (4) mode III.

mation, temporal variations of the non-dimensionalised density of plastic work dissipation311

are plotted in Figs. 10a-10d for modes I, II∗, II and III respectively. It is evident in Fig.312

10a that Ω̄ is greatest at the mid-point of the support and drops monotonically with x̄ in313

mode I. Figures 10b and 10c show that in modes II* and II tearing will progress from the314

central potion of the plate towards its corner where Ω̄ is below unity. Figure 10d shows315

an example of instantaneous tearing (i.e. damage criterion is met at both point A and B316

simultaneously) when complete detachment occurs when the impulsive load is greater than317

a critical value.318
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Figure 11: Design maps for square mild-steel plates (with a mass of MP = 0.0992 kg) where isolines
correspond to a constant non-dimensional (a) transverse central deflection and (b) residual kinetic energy.
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4. Blast resistant design319

The validated analytical model is employed here to construct design maps in η-I∗-space for320

practical ranges of 25 ≤ η ≤ 50 and 0.45 ≤ I∗ ≤ 3. To ensure that the maps corresponds321

to plates of identical mass MP , their half length to thickness ratio (η) are varied according322

to a = (MPη/4ρ)1/3 and h = (MPη/4ρ)1/3/η. In this manner, the mass of the plate (MP =323

0.0992 kg) remains a constant for different half length to thickness ratio η.324

Figure 11a presents a map for square plates subjected to zero-period impulsive loading. It325

can be seen that the critical non-dimensional impulses at mode I→II∗ and II∗→II transi-326

tions decreases monotonically with η. However, the critical I∗ needed to induce mode III327

deformation is insensitive to η. This agrees with the numerical results of [13] where it is328

suggested that the non-dimensional impulse at II→III transition does not vary with plate329

geometries and is essentially a material-related parameter. Isolines connecting constant val-330

ues of transverse central plate deflection W̄f within that particular mode of deformation331

are also inserted into the map. This gives a map which is useful to designers. Any pair332

of values of η and I∗ now locates a point on the map. From the map, one can determine333

the deformation mode the plate deforms in and its mid-point deflection. Alternatively, it334

allows a designer to determine the critical non-dimensional impulsive I∗ delineating different335

modes of deformation and the corresponding central plate deflection, at a given half length336

to thickness ratio η. Another design map with isolines of non-dimensional residual kinetic337

energy for a fully-severed is plotted in Fig. 11b.338

5. Conclusions339

An analytical model is developed, and validated against experimental data and numeri-340

cal predictions from existing literature, which is capable of predicting the deformation and341

damage associated with a fully clamped square mild-steel plate subjected to a wide range of342

impulsive loadings. Through the incorporation of an energy density damage criterion, the343

model is able to account for the combined effects of bending, membrane and transverse shear344

on ductile damage, and to capture partial and/or complete tearing at the support. Predic-345

tions by the analytical model is shown to be in good agreement with existing experimental346

results.347

The analytical predictions offer the following insights: (1) Post-severance residual kinetic348

energy increases dramatically during mode II deformation and is considerable under a sub-349

stantial zero-period impulse; (2) Membrane effects dominate the plate response in modes I,350

II* and II, whereas in mode III, bending, membrane and shear all play important roles; and351

(3) the time taken for both partial and complete tearing decreases monotonically with I∗,352

after a certain value of which they overlap, indicating instantaneous tearing along the entire353

support.354
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It was shown that a thicker plate is able withstand higher impulses before the onset of partial355

and complete tearing, and the critical impulse needed to induce mode III deformation is356

insensitive to its length versus thickness ratio.357
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